1
|
Zlatanova I, Sun F, Wu RS, Chen X, Lau BH, Colombier P, Sinha T, Celona B, Xu SM, Materna SC, Huang GN, Black BL. An injury-responsive mmp14b enhancer is required for heart regeneration. SCIENCE ADVANCES 2023; 9:eadh5313. [PMID: 38019918 PMCID: PMC10686572 DOI: 10.1126/sciadv.adh5313] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023]
Abstract
Mammals have limited capacity for heart regeneration, whereas zebrafish have extraordinary regeneration abilities. During zebrafish heart regeneration, endothelial cells promote cardiomyocyte cell cycle reentry and myocardial repair, but the mechanisms responsible for promoting an injury microenvironment conducive to regeneration remain incompletely defined. Here, we identify the matrix metalloproteinase Mmp14b as an essential regulator of heart regeneration. We identify a TEAD-dependent mmp14b endothelial enhancer induced by heart injury in zebrafish and mice, and we show that the enhancer is required for regeneration, supporting a role for Hippo signaling upstream of mmp14b. Last, we show that MMP-14 function in mice is important for the accumulation of Agrin, an essential regulator of neonatal mouse heart regeneration. These findings reveal mechanisms for extracellular matrix remodeling that promote heart regeneration.
Collapse
Affiliation(s)
- Ivana Zlatanova
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Fei Sun
- Duke Regeneration Center, Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Roland S. Wu
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Xiaoxin Chen
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Bryan H. Lau
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Pauline Colombier
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Tanvi Sinha
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Barbara Celona
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Shan-Mei Xu
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Stefan C. Materna
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Guo N. Huang
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Brian L. Black
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
2
|
Hu W, Wang X, Bi Y, Bao J, Shang M, Zhang L. The Molecular Mechanism of the TEAD1 Gene and miR-410-5p Affect Embryonic Skeletal Muscle Development: A miRNA-Mediated ceRNA Network Analysis. Cells 2023; 12:cells12060943. [PMID: 36980284 PMCID: PMC10047409 DOI: 10.3390/cells12060943] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/03/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Muscle development is a complex biological process involving an intricate network of multiple factor interactions. Through the analysis of transcriptome data and molecular biology confirmation, this study aims to reveal the molecular mechanism underlying sheep embryonic skeletal muscle development. The RNA sequencing of embryos was conducted, and microRNA (miRNA)-mediated competitive endogenous RNA (ceRNA) networks were constructed. qRT-PCR, siRNA knockdown, CCK-8 assay, scratch assay, and dual luciferase assay were used to carry out gene function identification. Through the analysis of the ceRNA networks, three miRNAs (miR-493-3p, miR-3959-3p, and miR-410-5p) and three genes (TEAD1, ZBTB34, and POGLUT1) were identified. The qRT-PCR of the DE-miRNAs and genes in the muscle tissues of sheep showed that the expression levels of the TEAD1 gene and miR-410-5p were correlated with the growth rate. The knockdown of the TEAD1 gene by siRNA could significantly inhibit the proliferation of sheep primary embryonic myoblasts, and the expression levels of SLC1A5, FoxO3, MyoD, and Pax7 were significantly downregulated. The targeting relationship between miR-410-5p and the TEAD1 gene was validated by a dual luciferase assay, and miR-410-5p can significantly downregulate the expression of TEAD1 in sheep primary embryonic myoblasts. We proved the regulatory relationship between miR-410-5p and the TEAD1 gene, which was related to the proliferation of sheep embryonic myoblasts. The results provide a reference and molecular basis for understanding the molecular mechanism of embryonic muscle development.
Collapse
Affiliation(s)
- Wenping Hu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xinyue Wang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yazhen Bi
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jingjing Bao
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Mingyu Shang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Li Zhang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
3
|
Attwaters M, Hughes SM. Cellular and molecular pathways controlling muscle size in response to exercise. FEBS J 2022; 289:1428-1456. [PMID: 33755332 DOI: 10.1111/febs.15820] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/27/2021] [Accepted: 03/12/2021] [Indexed: 12/14/2022]
Abstract
From the discovery of ATP and motor proteins to synaptic neurotransmitters and growth factor control of cell differentiation, skeletal muscle has provided an extreme model system in which to understand aspects of tissue function. Muscle is one of the few tissues that can undergo both increase and decrease in size during everyday life. Muscle size depends on its contractile activity, but the precise cellular and molecular pathway(s) by which the activity stimulus influences muscle size and strength remain unclear. Four correlates of muscle contraction could, in theory, regulate muscle growth: nerve-derived signals, cytoplasmic calcium dynamics, the rate of ATP consumption and physical force. Here, we summarise the evidence for and against each stimulus and what is known or remains unclear concerning their molecular signal transduction pathways and cellular effects. Skeletal muscle can grow in three ways, by generation of new syncytial fibres, addition of nuclei from muscle stem cells to existing fibres or increase in cytoplasmic volume/nucleus. Evidence suggests the latter two processes contribute to exercise-induced growth. Fibre growth requires increase in sarcolemmal surface area and cytoplasmic volume at different rates. It has long been known that high-force exercise is a particularly effective growth stimulus, but how this stimulus is sensed and drives coordinated growth that is appropriately scaled across organelles remains a mystery.
Collapse
Affiliation(s)
- Michael Attwaters
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College London, UK
| | - Simon M Hughes
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College London, UK
| |
Collapse
|
4
|
The transcription factor of the Hippo signaling pathway, LmSd, regulates wing development in Locusta migratoria. Int J Biol Macromol 2021; 179:136-143. [PMID: 33667555 DOI: 10.1016/j.ijbiomac.2021.02.174] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 02/20/2021] [Accepted: 02/22/2021] [Indexed: 01/11/2023]
Abstract
Scalloped (Sd) is transcription factor that regulates cell proliferation and organ growth in the Hippo pathway. In the present research, LmSd was identified and characterized, and found to encode an N-terminal TEA domain and a C-terminal YBD domain. qRT-PCR showed that the LmSd transcription level was highest in the fifth-instar nymphs and very little was expressed in embryos. Tissue-specific analyses showed that LmSd was highly expressed in the wing. Immunohistochemistry indicated that LmSd was highly abundant in the head, prothorax, and legs during embryonic development. LmSd dsRNA injection resulted in significantly down-regulated transcription and protein expression levels compared with dsGFP injection. Gene silencing of LmSd resulted in deformed wings that were curved, wrinkled, and failed to fully expand. Approximately 40% of the nymphs had wing pads that were not able to close normally during molting from fifth-instar nymphs into adults. After silencing of LmSd, the transcription levels of cell division genes were suppressed and the expression levels of apoptosis genes were significantly up-regulated. Our results reveal that LmSd plays an important role in wing formation and development by controlling cell proliferation and inhibiting apoptosis.
Collapse
|
5
|
Prats-Puig A, García-Retortillo S, Puig-Parnau M, Vasileva F, Font-Lladó R, Xargay-Torrent S, Carreras-Badosa G, Mas-Parés B, Bassols J, López-Bermejo A. DNA Methylation Reorganization of Skeletal Muscle-Specific Genes in Response to Gestational Obesity. Front Physiol 2020; 11:938. [PMID: 32848869 PMCID: PMC7412435 DOI: 10.3389/fphys.2020.00938] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/13/2020] [Indexed: 12/25/2022] Open
Abstract
The goals were to investigate in umbilical cord tissue if gestational obesity: (1) was associated with changes in DNA methylation of skeletal muscle-specific genes; (2) could modulate the co-methylation interactions among these genes. Additionally, we assessed the associations between DNA methylation levels and infant's variables at birth and at age 6. DNA methylation was measured in sixteen pregnant women [8-gestational obesity group; 8-control group] in umbilical cord using the Infinium Methylation EPIC Bead Chip microarray. Differentially methylated CpGs were identified with Beta Regression Models [false discovery rate (FDR) < 0.05 and an Odds Ratio > 1.5 or < 0.67]. DNA methylation interactions between CpGs of skeletal muscle-specific genes were studied using data from Pearson correlation matrices. In order to quantify the interactions within each network, the number of links was computed. This identification analysis reported 38 differential methylated CpGs within skeletal muscle-specific genes (comprising 4 categories: contractibility, structure, myokines, and myogenesis). Compared to control group, gestational obesity (1) promotes hypermethylation in highly methylated genes and hypomethylation in low methylated genes; (2) CpGs in regions close to transcription sites and with high CpG density are hypomethylated while regions distant to transcriptions sites and with low CpG density are hypermethylated; (3) diminishes the number of total interactions in the co-methylation network. Interestingly, the associations between infant's fasting glucose at age 6 and MYL6, MYH11, TNNT3, TPM2, CXCL2, and NCAM1 were still relevant after correcting for multiple testing. In conclusion, our study showed a complex interaction between gestational obesity and the epigenetic status of muscle-specific genes in umbilical cord tissue. Additionally, gestational obesity may alter the functional co-methylation connectivity of CpG within skeletal muscle-specific genes interactions, our results revealing an extensive reorganization of methylation in response to maternal overweight. Finally, changes in methylation levels of skeletal muscle specific genes may have persistent effects on the offspring of mothers with gestational obesity.
Collapse
Affiliation(s)
- Anna Prats-Puig
- University School of Health and Sport (EUSES), University of Girona, Girona, Spain
| | - Sergi García-Retortillo
- University School of Health and Sport (EUSES), University of Girona, Girona, Spain
- Complex Systems in Sport, National Institute of Physical Education and Sport of Catalonia (INEFC), Universitat de Barcelona (UB), Barcelona, Spain
| | - Miquel Puig-Parnau
- University School of Health and Sport (EUSES), University of Girona, Girona, Spain
| | - Fidanka Vasileva
- Faculty of Physical Education, Sport and Health, Ss. Cyril and Methodius University, Skopje, North Macedonia
| | - Raquel Font-Lladó
- University School of Health and Sport (EUSES), University of Girona, Girona, Spain
| | - Sílvia Xargay-Torrent
- Pediatric Endocrinology, Girona Institute for Biomedical Research, Dr. Josep Trueta Hospital, Girona, Spain
| | - Gemma Carreras-Badosa
- Pediatric Endocrinology, Girona Institute for Biomedical Research, Dr. Josep Trueta Hospital, Girona, Spain
| | - Berta Mas-Parés
- Maternal & Fetal Metabolic Research, Girona Institute for Biomedical Research, Salt, Spain
| | - Judit Bassols
- Maternal & Fetal Metabolic Research, Girona Institute for Biomedical Research, Salt, Spain
| | - Abel López-Bermejo
- Pediatric Endocrinology, Girona Institute for Biomedical Research, Dr. Josep Trueta Hospital, Girona, Spain
| |
Collapse
|
6
|
Vestigial-like 2 contributes to normal muscle fiber type distribution in mice. Sci Rep 2017; 7:7168. [PMID: 28769032 PMCID: PMC5540913 DOI: 10.1038/s41598-017-07149-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 05/08/2017] [Indexed: 12/21/2022] Open
Abstract
Skeletal muscle is composed of heterogeneous populations of myofibers that are classified as slow- and fast-twitch fibers. The muscle fiber-type is regulated in a coordinated fashion by multiple genes, including transcriptional factors and microRNAs (miRNAs). However, players involved in this regulation are not fully elucidated. One of the members of the Vestigial-like factors, Vgll2, is thought to play a pivotal role in TEA domain (TEAD) transcription factor-mediated muscle-specific gene expression because of its restricted expression in skeletal muscles of adult mice. Here, we generated Vgll2 null mice and investigated Vgll2 function in adult skeletal muscles. These mice presented an increased number of fast-twitch type IIb fibers and exhibited a down-regulation of slow type I myosin heavy chain (MyHC) gene, Myh7, which resulted in exercise intolerance. In accordance with the decrease in Myh7, down-regulation of miR-208b, encoded within Myh7 gene and up-regulation of targets of miR-208b, Sox6, Sp3, and Purβ, were observed in Vgll2 deficient mice. Moreover, we detected the physical interaction between Vgll2 and TEAD1/4 in neonatal skeletal muscles. These results suggest that Vgll2 may be both directly and indirectly involved in the programing of slow muscle fibers through the formation of the Vgll2-TEAD complex.
Collapse
|
7
|
Lee DS, Vonrhein C, Albarado D, Raman CS, Veeraraghavan S. A Potential Structural Switch for Regulating DNA-Binding by TEAD Transcription Factors. J Mol Biol 2016; 428:2557-2568. [PMID: 27016204 DOI: 10.1016/j.jmb.2016.03.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 03/02/2016] [Accepted: 03/13/2016] [Indexed: 10/22/2022]
Abstract
TEA domain (TEAD) transcription factors are essential for the normal development of eukaryotes and are the downstream effectors of the Hippo tumor suppressor pathway. Whereas our earlier work established the three-dimensional structure of the highly conserved DNA-binding domain using solution NMR spectroscopy, the structural basis for regulating the DNA-binding activity remains unknown. Here, we present the X-ray crystallographic structure and activity of a TEAD mutant containing a truncated L1 loop, ΔL1 TEAD DBD. Unexpectedly, the three-dimensional structure of the ΔL1 TEAD DBD reveals a helix-swapped homodimer wherein helix 1 is swapped between monomers. Furthermore, each three-helix bundle in the domain-swapped dimer is a structural homolog of MYB-like domains. Our investigations of the DNA-binding activity reveal that although the formation of the three-helix bundle by the ΔL1 TEAD DBD is sufficient for binding to an isolated M-CAT-like DNA element, multimeric forms are deficient for cooperative binding to tandemly duplicated elements, indicating that the L1 loop contributes to the DNA-binding activity of TEAD. These results suggest that switching between monomeric and domain-swapped forms may regulate DNA selectivity of TEAD proteins.
Collapse
Affiliation(s)
- Dong-Sun Lee
- Jeju National University, 102 Jejudaehak-ro, Jeju-si, Jeju Special Self-Governing Province, 690-756, South Korea
| | - Clemens Vonrhein
- Global Phasing Limited, Sheraton House, Castle Park, Cambridge CB3 0AX, UK
| | - Diana Albarado
- Pennington Biomedical Research Center, 6400 Perkins Rd, Baton Rouge, LA 70808, USA
| | - C S Raman
- University of Maryland School of Pharmacy, 20 N. Pine St., Baltimore, MD 21201, USA
| | - Sudha Veeraraghavan
- University of Maryland School of Pharmacy, 20 N. Pine St., Baltimore, MD 21201, USA.
| |
Collapse
|
8
|
Kim M, Kim T, Johnson RL, Lim DS. Transcriptional co-repressor function of the hippo pathway transducers YAP and TAZ. Cell Rep 2015; 11:270-82. [PMID: 25843714 DOI: 10.1016/j.celrep.2015.03.015] [Citation(s) in RCA: 226] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 02/02/2015] [Accepted: 03/05/2015] [Indexed: 12/12/2022] Open
Abstract
YAP (yes-associated protein) and TAZ are oncogenic transcriptional co-activators downstream of the Hippo tumor-suppressor pathway. However, whether YAP and/or TAZ (YAP/TAZ) engage in transcriptional co-repression remains relatively unexplored. Here, we directly demonstrated that YAP/TAZ represses numerous target genes, including tumor-suppressor genes such as DDIT4 (DNA-damage-inducible transcript 4) and Trail (TNF-related apoptosis-inducing ligand). Mechanistically, the repressor function of YAP/TAZ requires TEAD (TEA domain) transcription factors. A YAP/TAZ-TEAD complex recruits the NuRD complex to deacetylate histones and alters nucleosome occupancy at target genes. Functionally, repression of DDIT4 and Trail by YAP/TAZ is required for mTORC1 (mechanistic target of rapamycin complex 1) activation and cell survival, respectively. Our demonstration of the transcriptional co-repressor activity of YAP/TAZ opens a new avenue for understanding the Hippo signaling pathway.
Collapse
Affiliation(s)
- Minchul Kim
- National Creative Research Center for Cell Division and Differentiation, Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Korea.
| | - Taekhoon Kim
- National Creative Research Center for Cell Division and Differentiation, Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Korea
| | - Randy L Johnson
- Department of Cancer Biology, University of Texas, M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Dae-Sik Lim
- National Creative Research Center for Cell Division and Differentiation, Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Korea.
| |
Collapse
|
9
|
Qiao C, Jiang Y, Deng C, Huang Z, Teng K, Chen L, Liu X. Characterization of the transcriptional activation domains of human TEF3-1 (transcription enhancer factor 3 isoform 1). Arch Biochem Biophys 2015; 569:54-61. [PMID: 25687649 DOI: 10.1016/j.abb.2015.02.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 01/23/2015] [Accepted: 02/04/2015] [Indexed: 10/24/2022]
Abstract
TEF3-1 (transcription enhancer factor 3 isoform 1) is a human transcriptional factor, which has a N-terminal TEA/ATTS domain supposedly for DNA binding and C-terminal PRD and STY domains for transcriptional activation. Taking advantage of the efficient reporter design of yeast two-hybrid system, we characterized the TEF3-1 domains in activating gene expression. Previously study usually mentioned that the C-terminal domain of TEF3-1 has the transcriptional activity, however, our data shows that the peptides TEF3-11-66 and TEF3-1197-434 functioned as two independent activation domains, suggesting that N-terminal domain of TEF3-1 also has transcriptional activation capacity. Additionally, more deletions of amino acids 197-434 showed that only the peptides TEF3-1197-265 contained the minimum sequences for the C-terminal transcriptional activation domain. The protein structure is predicted to contain a helix-turn-helix structure in TEF3-11-66 and four β sheets in TEF3-1197-265. Finally, after the truncated fragments of TEF3-1 were expressed in HUVEC cells, the whole TEF3-1 and the two activation domains could increase F-actin stress fiber, cell proliferation, migration and targeted gene expression. Further analysis and characterization of the activation domains in TEF3-1 may broaden our understanding of the gene involved in angiogenesis and other pathological processes.
Collapse
Affiliation(s)
- Cheng Qiao
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Yajie Jiang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Cuilan Deng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Zebo Huang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Kaixuan Teng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Lan Chen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Xin Liu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China.
| |
Collapse
|
10
|
Abstract
The 9p21.3 locus was the first to yield to genome-wide association studies (GWAS) seeking common genetic variants predisposing to increased risk of coronary artery atherosclerotic disease (CAD). The 59 single nucleotide polymorphisms that show highest association with CAD are clustered in a region 100,000 to 150,000 base pairs 5' to the cyclin-dependent kinase inhibitors CDKN2B (coding for p15(ink4b)) and CDKN2A (coding for p16(ink4a) and p14(ARF)). This region also covers the 3' end of a long noncoding RNA transcribed antisense to CDKN2B (CDKN2BAS, aka ANRIL for antisense noncoding RNA at the ink4 locus) whose expression has been linked to chromatin remodeling at the locus. Despite intensive investigation over the past 7 years, the functional significance of the 9p21.3 locus remains elusive. Other variants at this locus have been associated with glaucoma, glioma, and type 2 diabetes mellitus, diseases that implicate tissue-resident macrophages. Here, we review the evidence that genetic variants at 9p21.3 disrupt tissue-specific enhancers and propose new insights to guide future studies.
Collapse
|
11
|
He P, Philbrick MJ, An X, Wu J, Messmer-Blust AF, Li J. Endothelial differentiation gene-1, a new downstream gene is involved in RTEF-1 induced angiogenesis in endothelial cells. PLoS One 2014; 9:e88143. [PMID: 24520353 PMCID: PMC3919740 DOI: 10.1371/journal.pone.0088143] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 01/03/2014] [Indexed: 11/18/2022] Open
Abstract
Related Transcriptional Enhancer Factor-1 (RTEF-1) has been suggested to induce angiogenesis through regulating target genes. Whether RTEF-1 has a direct role in angiogenesis and what specific genes are involved in RTEF-1 driven angiogenisis have not been elucidated. We found that over-expressing RTEF-1 in Human dermal microvascular endothelial cells-1 (HMEC-1) significantly increased endothelial cell aggregation, growth and migration while the processes were inhibited by siRNA of RTEF-1. In addition, we observed that Endothelial differentiation gene-1 (Edg-1) expression was up-regulated by RTEF-1 at the transcriptional level. RTEF-1 could bind to Edg-1 promoter and subsequently induce its activity. Edg-1 siRNA significantly blocked RTEF-1-driven increases in endothelial cell aggregation in a Matrigel assay and retarded RTEF-1-induced endothelial cell growth and migration. Pertussis Toxin (PTX), a Gi/Go protein sensitive inhibitor, was found to inhibit RTEF-1 driven endothelial cell aggregation and migration. Our data demonstrates that Edg-1 is a potential target gene of RTEF-1 and is involved in RTEF-1-induced angiogenesis in endothelial cells. Gi/Go protein coupled receptor pathway plays a role in RTEF-1 driven angiogenesis in endothelial cells.
Collapse
Affiliation(s)
- Ping He
- Department of Gerontology of Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Melissa J. Philbrick
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Xiaojin An
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jiaping Wu
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Angela F. Messmer-Blust
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jian Li
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
12
|
Investigation of four candidate genes (IGF2, JHDM1A, COPB1 and TEF1) for growth rate and backfat thickness traits on SSC2q in Large White pigs. Mol Biol Rep 2013; 41:309-15. [PMID: 24234674 DOI: 10.1007/s11033-013-2863-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 11/05/2013] [Indexed: 10/26/2022]
Abstract
As important quantitative traits, the growth rate and backfat thickness are controlled by multiple genes. The aim of this investigation was to evaluate the effect of the single and multiple SNPs of four candidate genes (IGF2, JHDM1A, COPB1 and TEF-1) on growth rate and backfat thickness. The four candidate genes were mapped on the p arm of SSC 2, and there are several QTLs, such as average daily gain, backfat thickness, an imprinted QTLs affecting muscle mass and fat deposition have been reported in this region. The polymorphisms of these genes were detected using PCR-RFLP methods, mixed procedure was used to analyze the single marker association with the growth and backfat thickness traits, and the gene-gene combination was investigated using multiple-markers analysis. The single marker association analysis indicated that the IGF2 intron-3 g.3072G > A and the substitution g.93G > A of TEF-1 gene were significantly associated with the age at 100 kg (P < 0.05). The JHDM1A 3′UTR g.224C > G, the c.3096C > T polymorphism of COPB1 gene and the substitution g.93G > A of TEF-1 gene were all significantly associated with the backfat at the shoulder (P < 0.05), backfat at the last rib, backfat at the lumbar, and the average backfat thickness, respectively. The multiple-markers analysis indicated that IGF2 and TEF-1 integrated gene networks for the age at 100 kg. Therefore, we can suggest that the polymorphism of IGF2 and TEF-1 gene could be used in marker-assisted selection for the age at 100 kg in Large White pigs.
Collapse
|
13
|
TEAD1 controls C2C12 cell proliferation and differentiation and regulates three novel target genes. Cell Signal 2012; 25:674-81. [PMID: 23220227 DOI: 10.1016/j.cellsig.2012.11.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 11/29/2012] [Accepted: 11/29/2012] [Indexed: 11/21/2022]
Abstract
TEAD1 is a transcription factor involved in activation of muscle specific genes, such as the cardiac muscle troponin T gene, skeletal muscle actin, myosin heavy chains genes. Here, we reported that TEAD1 was expressed ubiquitously in different mouse tissues and was up-regulated in differentiation process of the mouse myoblast cell line C2C12. Functional assay revealed that overexpression of TEAD1 gene can arrest the C2C12 cell cycle and promote C2C12 cell differentiation. To understand the physiological role of TEAD1 in muscle development, three new regulated genes of TEAD1, Mrpl21, Ndufa6 and Ccne1, were identified by expression analysis, promoter activity measurement assay. The expression patterns of target genes were detected in the cell differentiation process. The Mrpl21 and Ndufa6 genes were up-regulated in cell differentiation while Ccne1 gene was significantly down-regulated. Overexpression of Mrpl21 and Ndufa6 in C2C12 can up-regulate Myh4 gene expression thus promote C2C12 differentiation, but did not affect cell cycle. Co-overexpression of Ccne1 with Ndufa6 resulted in Myh4 expression decrease and the number of S-phase cells slight increase. Together, our results suggested that TEAD1 may mediate muscle development through its target genes, Mrpl21, Ndufa6 and Ccne1.
Collapse
|
14
|
Abstract
OBJECTIVES Because post-transcriptional mechanisms modulate levels of p16 (encoded by CDKN2A) and p15 (encoded by CDKN2B), we tested whether interferon-γ regulates the expression of these proteins and the effect of the 9p21 genotype. BACKGROUND The mechanism whereby the common variant at chromosome 9p21.3 confers risk for coronary artery disease (CAD) remains uncertain. A recent report proposed that 9p21.3 confers differential activation of adjacent genes in response to interferon-γ, and reported that mRNA levels of CDKN2B are reduced in response to interferon-γ. METHODS Human umbilical vein endothelial cells (HUVECs), aortic smooth muscle cells, HeLa cells, HEK293 cells, and 16 human lymphoblastoid cell lines, all genotyped for the 9p21.3 locus, were treated with interferon-γ and analyzed by immunoblot. RESULTS In all cells tested--except HUVECs where expression was not modulated by interferon-γ--regardless of 9p21.3 genotype, interferon-γ increased the expression of p16 and p15. Northern blot analysis confirmed that interferon-γ has little effect on mRNA levels of CDKN2A and CDKN2B. CONCLUSIONS The 9p21.3 risk genotype does not affect the activation of cyclin-dependent kinase inhibitors p15 and p16 by interferon-γ. Thus, another mechanism is likely to account for the CAD risk associated with this locus.
Collapse
|
15
|
An X, Jin Y, Philbrick MJ, Wu J, Messmer-Blust A, Song X, Cully BL, He P, Xu M, Duffy HS, Li J. Endothelial cells require related transcription enhancer factor-1 for cell-cell connections through the induction of gap junction proteins. Arterioscler Thromb Vasc Biol 2012; 32:1951-9. [PMID: 22652601 DOI: 10.1161/atvbaha.112.250159] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Capillary network formation represents a specialized endothelial cell function and is a prerequisite to establish a continuous vessel lumen. Formation of endothelial cell connections that form the vascular structure is regulated, at least in part, at the transcriptional level. We report here that related transcription enhancer factor-1 (RTEF-1) plays an important role in vascular structure formation. METHODS AND RESULTS Knockdown of RTEF-1 by small interfering RNA or blockage of RTEF-1 function by the transcription enhancer activators domain decreased endothelial connections in a Matrigel assay, whereas overexpression of RTEF-1 in endothelial cells resulted in a significant increase in cell connections and aggregation. In a model of oxygen-induced retinopathy, endothelial-specific RTEF-1 overexpressing mice had enhanced angiogenic sprouting and vascular structure remodeling, resulting in the formation of a denser and more highly interconnected superficial capillary plexus. Mechanistic studies revealed that RTEF-1 induced the expression of functional gap junction proteins including connexin 43, connexin 40, and connexin 37. Blocking connexin 43 function inhibited RTEF-1-induced endothelial cell connections and aggregation. CONCLUSIONS These findings provide novel insights into the transcriptional control of endothelial function in the coordination of cell-cell connections.
Collapse
Affiliation(s)
- Xiaojin An
- Institute of Molecular Medicine, Peking University, Beijing, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Koivisto E, Karkkola L, Majalahti T, Aro J, Tokola H, Kerkelä R, Ruskoaho H. M-CAT element mediates mechanical stretch-activated transcription of B-type natriuretic peptide via ERK activation. Can J Physiol Pharmacol 2011; 89:539-50. [PMID: 21812548 DOI: 10.1139/y11-049] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The muscle-CAT (M-CAT) promoter element is found on promoters of most muscle-specific cardiac genes, but its role in cardiac pathology is poorly understood. Here we studied whether the M-CAT element is involved in hypertrophic process activated by mechanical stretch, and identified the intracellular pathways mediating the response. When an in vitro stretch model of cultured neonatal rat cardiomyocytes and luciferase reporter construct driven by rat B-type natriuretic peptide (BNP) promoter were used, mutation of M-CAT element inhibited not only the basal reporter activity (88%), but also the stretch-activated BNP transcription (58%, p < 0.001). Stretch-induced BNP promoter activation was associated with an increase in transcriptional enhancer factor-1 (TEF-1) binding activity after 24 h mechanical stretch (p < 0.05). Inhibition of mitogen-activated protein kinases ERK, JNK, or p38 attenuated stretch-induced BNP activation. Interestingly, as opposed to p38 and JNK, inhibition of ERK had no additional effect on transcriptional activity of BNP promoter harboring the M-CAT mutation, suggesting a pivotal role for ERK in regulating stretch-induced BNP transcription via M-CAT binding site. Finally, immunoprecipitation studies showed that mechanical stretch induced myocyte enhancer factor-2 (MEF-2) binding to TEF-1. These data suggest a central role for M-CAT element in regulation of mechanical stretch-induced hypertrophic response via ERK activation.
Collapse
Affiliation(s)
- Elina Koivisto
- Institute of Biomedicine, Department of Pharmacology and Toxicology, Biocenter Oulu, University of Oulu, Oulu FIN-90014, Finland
| | | | | | | | | | | | | |
Collapse
|
17
|
Jin Y, Wu J, Song X, Song Q, Cully BL, Messmer-Blust A, Xu M, Foo SY, Rosenzweig A, Li J. RTEF-1, an upstream gene of hypoxia-inducible factor-1α, accelerates recovery from ischemia. J Biol Chem 2011; 286:22699-705. [PMID: 21540178 DOI: 10.1074/jbc.m111.237024] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The amount of available hypoxia-inducible factor (HIF)-1α has been considered to be largely a consequence of post-translational modification by multiple ubiquitin-proteasome pathways. However, the role of transcriptional regulation of HIF-1α is less certain, and the mechanisms of transcriptional regulation of HIF-1α require further investigation. Here we report that related transcriptional enhancer factor-1 (RTEF-1), a member of the TEF transcriptional factor family, transcriptionally regulates the HIF-1α gene under normoxic and hypoxic conditions. The expression of HIF-1α mRNA was decreased in endothelial cells in which RTEF-1 was knocked down with siRNA. Sequential deletional analysis of the HIF-1α promoter revealed that the MCAT-like element in the HIF-1α promoter was essential for HIF-1α transcription. Binding of RTEF-1 to the MCAT-like element was confirmed by ChIP. Treatment of endothelial cells with a HIF-1 inhibitor resulted in retardation of RTEF-1-induced proliferation and tube formation. Moreover, increased HIF-1α expression was observed in transgenic mice expressing RTEF-1 under the VE-cadherin promoter (VE-Cad/RTEF-1). VE-Cad/RTEF-1 mice subjected to hindlimb ischemia demonstrated increased levels of HIF-1α, accelerated recovery of blood flow, and increased capillary density compared with littermate controls. These results identify RTEF-1 as a regulator of HIF-1α transcription, which results in up-regulation of HIF-1α and acceleration of recovery from ischemia.
Collapse
Affiliation(s)
- Yi Jin
- Institute of Molecular Medicine, Peking University, Beijing 100871, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Qiu H, Wang F, Liu C, Xu X, Liu B. TEAD1-dependent expression of the FoxO3a gene in mouse skeletal muscle. BMC Mol Biol 2011; 12:1. [PMID: 21211055 PMCID: PMC3025863 DOI: 10.1186/1471-2199-12-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2010] [Accepted: 01/07/2011] [Indexed: 01/28/2023] Open
Abstract
Background TEAD1 (TEA domain family member 1) is constitutively expressed in cardiac and skeletal muscles. It acts as a key molecule of muscle development, and trans-activates multiple target genes involved in cell proliferation and differentiation pathways. However, its target genes in skeletal muscles, regulatory mechanisms and networks are unknown. Results In this paper, we have identified 136 target genes regulated directly by TEAD1 in skeletal muscle using integrated analyses of ChIP-on-chip. Most of the targets take part in the cell process, physiology process, biological regulation metabolism and development process. The targets also play an important role in MAPK, mTOR, T cell receptor, JAK-STAT, calcineurin and insulin signaling pathways. TEAD1 regulates foxo3a transcription through binding to the M-CAT element in foxo3a promoter, demonstrated with independent ChIP-PCR, EMSA and luciferase reporter system assay. In addition, results of over-expression and inhibition experiments suggest that foxo3a is positively regulated by TEAD1. Conclusions Our present data suggests that TEAD1 plays an important role in the regulation of gene expression and different signaling pathways may co-operate with each other mediated by TEAD1. We have preliminarily concluded that TEAD1 may regulate FoxO3a expression through calcineurin/MEF2/NFAT and IGF-1/PI3K/AKT signaling pathways in skeletal muscles. These findings provide important clues for further analysis of the role of FoxO3a gene in the formation and transformation of skeletal muscle fiber types.
Collapse
Affiliation(s)
- Haifang Qiu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | | | | | | | | |
Collapse
|
19
|
Mahoney W, Hong JH, Yaffe M, Farrance I. The transcriptional co-activator TAZ interacts differentially with transcriptional enhancer factor-1 (TEF-1) family members. Biochem J 2009; 388:217-25. [PMID: 15628970 PMCID: PMC1186710 DOI: 10.1042/bj20041434] [Citation(s) in RCA: 170] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Members of the highly related TEF-1 (transcriptional enhancer factor-1) family (also known as TEAD, for TEF-1, TEC1, ABAA domain) bind to MCAT (muscle C, A and T sites) and A/T-rich sites in promoters active in cardiac, skeletal and smooth muscle, placenta, and neural crest. TEF-1 activity is regulated by interactions with transcriptional co-factors [p160, TONDU (Vgl-1, Vestigial-like protein-1), Vgl-2 and YAP65 (Yes-associated protein 65 kDa)]. The strong transcriptional co-activator YAP65 interacts with all TEF-1 family members, and, since YAP65 is related to TAZ (transcriptional co-activator with PDZ-binding motif), we wanted to determine if TAZ also interacts with members of the TEF-1 family. In the present study, we show by GST (glutathione S-transferase) pull-down assays, by co-immunoprecipitation and by modified mammalian two-hybrid assays that TEF-1 interacts with TAZ in vitro and in vivo. Electrophoretic mobility-shift assays with purified TEF-1 and GST-TAZ fusion protein showed that TAZ interacts with TEF-1 bound to MCAT DNA. TAZ can interact with endogenous TEF-1 proteins, since exogenous TAZ activated MCAT-dependent reporter promoters. Like YAP65, TAZ interacted with all four TEF-1 family members. GST pull-down assays with increasing amounts of [35S]TEF-1 and [35S]RTEF-1 (related TEF-1) showed that TAZ interacts more efficiently with TEF-1 than with RTEF-1. This differential interaction also extended to the interaction of TEF-1 and RTEF-1 with TAZ in vivo, as assayed by a modified mammalian two-hybrid experiment. These data show that differential association of TEF-1 proteins with transcriptional co-activators may regulate the activity of TEF-1 family members.
Collapse
Affiliation(s)
- William M. Mahoney
- *Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, U.S.A
| | - Jeong-Ho Hong
- †Center for Cancer Research, E18-580, Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139-4307, U.S.A
| | - Michael B. Yaffe
- †Center for Cancer Research, E18-580, Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139-4307, U.S.A
| | - Iain K. G. Farrance
- *Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|
20
|
Deng H, Hughes SC, Bell JB, Simmonds AJ. Alternative requirements for Vestigial, Scalloped, and Dmef2 during muscle differentiation in Drosophila melanogaster. Mol Biol Cell 2008; 20:256-69. [PMID: 18987343 DOI: 10.1091/mbc.e08-03-0288] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Vertebrate development requires the activity of the myocyte enhancer factor 2 (mef2) gene family for muscle cell specification and subsequent differentiation. Additionally, several muscle-specific functions of MEF2 family proteins require binding additional cofactors including members of the Transcription Enhancing Factor-1 (TEF-1) and Vestigial-like protein families. In Drosophila there is a single mef2 (Dmef2) gene as well single homologues of TEF-1 and vestigial-like, scalloped (sd), and vestigial (vg), respectively. To clarify the role(s) of these factors, we examined the requirements for Vg and Sd during Drosophila muscle specification. We found that both are required for muscle differentiation as loss of sd or vg leads to a reproducible loss of a subset of either cardiac or somatic muscle cells in developing embryos. This muscle requirement for Sd or Vg is cell specific, as ubiquitous overexpression of either or both of these proteins in muscle cells has a deleterious effect on muscle differentiation. Finally, using both in vitro and in vivo binding assays, we determined that Sd, Vg, and Dmef2 can interact directly. Thus, the muscle-specific phenotypes we have associated with Vg or Sd may be a consequence of alternative binding of Vg and/or Sd to Dmef2 forming alternative protein complexes that modify Dmef2 activity.
Collapse
Affiliation(s)
- Hua Deng
- Department of Cell Biology, Department of Biological Sciences, and Department of Medical Genetics, University of Alberta, Edmonton, Canada
| | | | | | | |
Collapse
|
21
|
Tsika RW, Schramm C, Simmer G, Fitzsimons DP, Moss RL, Ji J. Overexpression of TEAD-1 in transgenic mouse striated muscles produces a slower skeletal muscle contractile phenotype. J Biol Chem 2008; 283:36154-67. [PMID: 18978355 DOI: 10.1074/jbc.m807461200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
TEA domain (TEAD) transcription factors serve important functional roles during embryonic development and in striated muscle gene expression. Our previous work has implicated a role for TEAD-1 in the fast-to-slow fiber-type transition in response to mechanical overload. To investigate whether TEAD-1 is a modulator of slow muscle gene expression in vivo, we developed transgenic mice expressing hemagglutinin (HA)-tagged TEAD-1 under the control of the muscle creatine kinase promoter. We show that striated muscle-restricted HA-TEAD-1 expression induced a transition toward a slow muscle contractile protein phenotype, slower shortening velocity (Vmax), and longer contraction and relaxation times in adult fast twitch extensor digitalis longus muscle. Notably, HA-TEAD-1 overexpression resulted in an unexpected activation of GSK-3alpha/beta and decreased nuclear beta-catenin and NFATc1/c3 protein. These effects could be reversed in vivo by mechanical overload, which decreased muscle creatine kinase-driven TEAD-1 transgene expression, and in cultured satellite cells by TEAD-1-specific small interfering RNA. These novel in vivo data support a role for TEAD-1 in modulating slow muscle gene expression.
Collapse
Affiliation(s)
- Richard W Tsika
- Department of Biochemistry, School of Medicine, University of Missouri, Columbia, Missouri 65211, USA.
| | | | | | | | | | | |
Collapse
|
22
|
Xu X, Xing S, Du ZQ, Rothschild MF, Yerle M, Liu B. Porcine TEF1 and RTEF1: molecular characterization and association analyses with growth traits. Comp Biochem Physiol B Biochem Mol Biol 2008; 150:447-53. [PMID: 18558506 DOI: 10.1016/j.cbpb.2008.05.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2008] [Revised: 04/28/2008] [Accepted: 05/05/2008] [Indexed: 11/15/2022]
Abstract
TEA domain transcription factors play vital roles in myogenesis by binding the M-CAT motif in the promoter of the muscle-specific genes. In the present study, we cloned two porcine TEA domain family genes, TEF1 and RTEF1, and identified two different variants respectively. RT-PCR revealed that the TEF1-a variant was highly expressed and up-regulated with the development of the porcine skeletal muscle, indicating its potential regulatory function for muscle development. Promoter analysis revealed porcine TEF1 was regulated, in a TATA-independent manner, by a specific intact initiator element, and numerous binding motifs of multiple transcription factors, including SP1, CREB/ATF and AREB6. A substitution G93A was identified in the 5'-flanking sequence and used for the linkage mapping of TEF1. Association analyses in a BerkshirexYorkshire F(2) population revealed that the substitution of G93A has a significant effect on average daily gain from birth to weaning (p<0.05) and 16-day weight (p<0.05), and a suggestive effect on loin eye area (p<0.06), average back fat (p<0.07) and lumbar back fat (p<0.08). The association analyses results are in agreement with the gene's localization demonstrated by linkage analysis, SCHP and RH mapping to the QTL region of growth and carcass traits on chromosome 2p14-17.
Collapse
Affiliation(s)
- Xuewen Xu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | | | | | | | | | | |
Collapse
|
23
|
Yoshida T. MCAT elements and the TEF-1 family of transcription factors in muscle development and disease. Arterioscler Thromb Vasc Biol 2007; 28:8-17. [PMID: 17962623 DOI: 10.1161/atvbaha.107.155788] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
MCAT elements are located in the promoter-enhancer regions of cardiac, smooth, and skeletal muscle-specific genes including cardiac troponin T, beta-myosin heavy chain, smooth muscle alpha-actin, and skeletal alpha-actin, and play a key role in the regulation of these genes during muscle development and disease. The binding factors of MCAT elements are members of the transcriptional enhancer factor-1 (TEF-1) family. However, it has not been fully understood how these transcription factors confer cell-specific expression in muscle, because their expression patterns are relatively broad. Results of recent studies revealed multiple mechanisms whereby TEF-1 family members control MCAT element-dependent muscle-specific gene expression, including posttranslational modifications of TEF-1 family members, the presence of muscle-selective TEF-1 cofactors, and cell-selective control of TEF-1 accessibility to MCAT elements. In addition, of particular interest, recent studies regarding MCAT element-dependent transcription of the myocardin gene and the smooth muscle alpha-actin gene in muscle provide evidence for the transcriptional diversity among distinct cell types and subtypes. This article summarizes the role of MCAT elements and the TEF-1 family of transcription factors in muscle development and disease, and reviews recent progress in our understanding of the transcriptional regulatory mechanisms involved in MCAT element-dependent muscle-specific gene expression.
Collapse
Affiliation(s)
- Tadashi Yoshida
- Department of Molecular Physiology and Biological Physics, University of Virginia, MR5 Room 1226, 415 Lane Road, Charlottesville, Virginia 22908, USA.
| |
Collapse
|
24
|
Gupta MP. Factors controlling cardiac myosin-isoform shift during hypertrophy and heart failure. J Mol Cell Cardiol 2007; 43:388-403. [PMID: 17720186 PMCID: PMC2701247 DOI: 10.1016/j.yjmcc.2007.07.045] [Citation(s) in RCA: 168] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2007] [Revised: 06/25/2007] [Accepted: 07/10/2007] [Indexed: 12/18/2022]
Abstract
Myosin is a molecular motor, which interacts with actin to convert the energy from ATP hydrolysis into mechanical work. In cardiac myocytes, two myosin isoforms are expressed and their relative distribution changes in different developmental and pathophysiologic conditions of the heart. It has been realized for a long time that a shift in myosin isoforms plays a major role in regulating myocardial contractile activity. With the recent evidence implicating that alteration in myosin isoform ratio may be eventually beneficial for the treatment of a stressed heart, a new interest has developed to find out ways of controlling the myosin isoform shift. This article reviews the published data describing the role of myosin isoforms in the heart and highlighting the importance of various factors shown to influence myosin isofrom shift during physiology and disease states of the heart.
Collapse
Affiliation(s)
- Mahesh P Gupta
- Department of Surgery, Basic Science Division, MC5040, University of Chicago, 5841 S. Maryland Avenue, Chicago, IL 60637, USA.
| |
Collapse
|
25
|
Garg A, Srivastava A, Davis MM, O'Keefe SL, Chow L, Bell JB. Antagonizing scalloped with a novel vestigial construct reveals an important role for scalloped in Drosophila melanogaster leg, eye and optic lobe development. Genetics 2007; 175:659-69. [PMID: 17110491 PMCID: PMC1800616 DOI: 10.1534/genetics.106.063966] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2006] [Accepted: 11/01/2006] [Indexed: 11/18/2022] Open
Abstract
Scalloped (SD), a TEA/ATTS-domain-containing protein, is required for the proper development of Drosophila melanogaster. Despite being expressed in a variety of tissues, most of the work on SD has been restricted to understanding its role and function in patterning the adult wing. To gain a better understanding of its role in development, we generated sd(47M) flip-in mitotic clones. The mitotic clones had developmental defects in the leg and eye. Further, by removing the VG domains involved in activation, we created a reagent (VGDeltaACT) that disrupts the ability of SD to form a functional transcription factor complex and produced similar phenotypes to the flip-in mitotic clones. The VGDeltaACT construct also disrupted adult CNS development. Expression of the VGDeltaACT construct in the wing alters the cellular localization of VG and produces a mutant phenotype, indicating that the construct is able to antagonize the normal function of the SD/VG complex. Expression of the protein:protein interaction portion of SD is also able to elicit similar phenotypes, suggesting that SD interacts with other cofactors in the leg, eye, and adult CNS. Furthermore, antagonizing SD in larval tissues results in cell death, indicating that SD may also have a role in cell survival.
Collapse
Affiliation(s)
- Ankush Garg
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | | | | | | | | | | |
Collapse
|
26
|
Yamasaki Y, Komoike Y, Higashinakagawa T. Adaptive changes in TEF-1 gene expression during cold acclimation in the medaka. Zoolog Sci 2006; 23:903-8. [PMID: 17116993 DOI: 10.2108/zsj.23.903] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
How animals adaptively respond to a cold or hot environment has been questioned for a long time. Recently, with the aid of microarray analysis, various temperature-sensitive genes have been identified in several species. However, a definitive hypothesis regarding the mechanism of adaptation has not been proposed. In the present study, we surveyed, in medaka (Oryzias latipes), genes for which the level of expression changes depending on the surrounding temperature. A messenger RNA differential display of medaka muscle total RNA revealed one such gene encoding transcription enhancer factor-1 (TEF-1). In medaka muscle, the TEF-1 gene produces two splicing variants, TEF-1A and TEF-1B mRNAs. During cold acclimation, the mRNA level of TEF-1A decreased, whereas that of TEF-1B increased. We also found that three putative downstream genes of TEF-1, two for myosin heavy chain (MyHC) and one for troponin T (TnT), a specific group of muscle proteins, were transcribed in a temperature-dependent manner. These results suggest that the transcription of MyHC and/or TnT is regulated by TEF-1 and that these molecules participate in muscle reconstruction during temperature adaptation in fish.
Collapse
Affiliation(s)
- Yukihiko Yamasaki
- Department of Biology, School of Education, Waseda University, Shinjuku, Tokyo, Japan
| | | | | |
Collapse
|
27
|
Pasquet S, Naye F, Faucheux C, Bronchain O, Chesneau A, Thiébaud P, Thézé N. Transcription Enhancer Factor-1-dependent Expression of the α-Tropomyosin Gene in the Three Muscle Cell Types. J Biol Chem 2006; 281:34406-20. [PMID: 16959782 DOI: 10.1074/jbc.m602282200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
In vertebrates, the actin-binding proteins tropomyosins are encoded by four distinct genes that are expressed in a complex pattern during development and muscle differentiation. In this study, we have characterized the transcriptional machinery of the alpha-tropomyosin (alpha-Tm) gene in muscle cells. Promoter analysis revealed that a 284-bp proximal promoter region of the Xenopus laevis alpha-Tm gene is sufficient for maximal activity in the three muscle cell types. The transcriptional activity of this promoter in the three muscle cell types depends on both distinct and common cis-regulatory sequences. We have identified a 30-bp conserved sequence unique to all vertebrate alpha-Tm genes that contains an MCAT site that is critical for expression of the gene in all muscle cell types. This site can bind transcription enhancer factor-1 (TEF-1) present in muscle cells both in vitro and in vivo. In serum-deprived differentiated smooth muscle cells, TEF-1 was redistributed to the nucleus, and this correlated with increased activity of the alpha-Tm promoter. Overexpression of TEF-1 mRNA in Xenopus embryonic cells led to activation of both the endogenous alpha-Tm gene and the exogenous 284-bp promoter. Finally, we show that, in transgenic embryos and juveniles, an intact MCAT sequence is required for correct temporal and spatial expression of the 284-bp gene promoter. This study represents the first analysis of the transcriptional regulation of the alpha-Tm gene in vivo and highlights a common TEF-1-dependent regulatory mechanism necessary for expression of the gene in the three muscle lineages.
Collapse
|
28
|
Azakie A, Fineman JR, He Y. Sp3 inhibits Sp1-mediated activation of the cardiac troponin T promoter and is downregulated during pathological cardiac hypertrophy in vivo. Am J Physiol Heart Circ Physiol 2006; 291:H600-11. [PMID: 16617124 DOI: 10.1152/ajpheart.01305.2005] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Combinatorial interactions between cis elements and trans-acting factors are required for regulation of cardiac gene expression during normal cardiac development and pathological cardiac hypertrophy. Sp factors bind GC boxes and are implicated in recruitment and assembly of the basal transcriptional complex. In this study, we show that the cardiac troponin T (cTnT) promoter contains a GC box that is necessary for basal and cAMP-mediated activity of cTnT promoter constructs transfected in embryonic cardiomyocytes. Cardiac nuclear proteins bind the cTnT GC box in a sequence-specific fashion and consist of Sp1, Sp2, and Sp3 protein factors. By chromatin immunoprecipitation, Sp1 binds the cTnT promoter "in vivo." Cotransfected Sp1 trans-activates the cTnT promoter in cardiomyocytes in culture. Sp3 represses Sp1-mediated transcriptional activation of the cTnT gene in embryonic cardiomyocytes. Sp3 repression of Sp1-mediated cTnT promoter activation is dose dependent, inferring a mechanism of competitive binding/inhibition. To evaluate the role of Sp factors in cardiac gene expression in vivo, we have established a clinically relevant animal model of pathological cardiac hypertrophy where the fetal cardiac program is activated. In this animal model, cardiac hypertrophy results from increased left-right shunting, volume loading of the left ventricle, and pressure loading of the right ventricle. Sp1 expression is increased in all four hypertrophied cardiac chambers, whereas Sp3 expression is diminished. This observation is consistent with the in vitro activating function of Sp1 and inhibitory effects of Sp3 on activity of cTnT promoter constructs. Sp factor levels are modulated during the hypertrophic cardiac program in vivo.
Collapse
Affiliation(s)
- Anthony Azakie
- Department of Surgery, Univ. of California, San Francisco, San Francisco, CA 94143, USA.
| | | | | |
Collapse
|
29
|
Azakie A, Lamont L, Fineman JR, He Y. Divergent transcriptional enhancer factor-1 regulates the cardiac troponin T promoter. Am J Physiol Cell Physiol 2005; 289:C1522-34. [PMID: 16049055 DOI: 10.1152/ajpcell.00126.2005] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
MCAT elements are essential for cardiac gene expression during development. Avian transcriptional enhancer factor-1 (TEF-1) proteins are muscle-enriched and contribute to MCAT binding activities. However, direct activation of MCAT-driven promoters by TEF-1-related proteins has not been uniformly achieved. Divergent TEF (DTEF)-1 is a unique member of the TEF-1 multigene family with abundant transcripts in the heart but not in skeletal muscle. Herein we show that DTEF-1 proteins are highly expressed in the heart. Protein expression is activated at very early stages of chick embryogenesis (Hamburger-Hamilton stage 4, 16–18 h), after which DTEF-1 becomes abundant in the sinus venosus and is expressed in the trabeculated ventricular myocardium and ventricular outflow tracts. By chromatin immunoprecipitation, DTEF-1 interacts with the cardiac troponin T (cTnT) promoter in vivo. DTEF-1 also interacts with MEF- 2 by coimmunoprecipitation and independently or cooperatively (with MEF-2) trans-activates the cTnT promoter. DTEF-1 isoforms do not activate the cTnT promoter in fibroblasts or skeletal muscle. DTEF-1 expression occurs very early in chick embryogenesis (16–18 h), preceding sarcomeric protein expression, and it activates cardiac promoters. As such, DTEF-1 may be an early marker of the myocardial phenotype. DTEF-1 trans-activates the cTnT promoter in a tissue-specific fashion independent of AT-rich, MEF-2, or GATA sites. The observed spatial pattern suggests decreasing levels of expression from the cardiac inlet to the ventricular outflow tracts, which may mark a cardiogenic or differentiation pathway that parallels the direction of flow through the developing chick heart.
Collapse
Affiliation(s)
- Anthony Azakie
- Department of Surgery, Univ. of California San Francisco, San Francisco, CA 94143, USA
| | | | | | | |
Collapse
|
30
|
Sawada A, Nishizaki Y, Sato H, Yada Y, Nakayama R, Yamamoto S, Nishioka N, Kondoh H, Sasaki H. Tead proteins activate the Foxa2 enhancer in the node in cooperation with a second factor. Development 2005; 132:4719-29. [PMID: 16207754 DOI: 10.1242/dev.02059] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The cell population and the activity of the organizer change during the course of development. We addressed the mechanism of mouse node development via an analysis of the node/notochord enhancer (NE) of Foxa2. We first identified the core element (CE) of the enhancer, which in multimeric form drives gene expression in the node. The CE was activated in Wnt/β-catenin-treated P19 cells with a time lag, and this activation was dependent on two separate sequence motifs within the CE. These same motifs were also required for enhancer activity in transgenic embryos. We identified the Tead family of transcription factors as binding proteins for the 3′motif. Teads and their co-factor YAP65 activated the CE in P19 cells, and binding of Tead to CE was essential for enhancer activity. Inhibition of Tead activity by repressor-modified Tead compromised NE enhancer activation and notochord development in transgenic mouse embryos. Furthermore, manipulation of Tead activity in zebrafish embryos led to altered expression of foxa2 in the embryonic shield. These results suggest that Tead activates the Foxa2 enhancer core element in the mouse node in cooperation with a second factor that binds to the 5′ element, and that a similar mechanism also operates in the zebrafish shield.
Collapse
Affiliation(s)
- Atsushi Sawada
- Laboratory for Embryonic Induction, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-minamimachi, Kobe, Hyogo 650-0047, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Takahashi K, Maruyama M, Tokuzawa Y, Murakami M, Oda Y, Yoshikane N, Makabe KW, Ichisaka T, Yamanaka S. Evolutionarily conserved non-AUG translation initiation in NAT1/p97/DAP5 (EIF4G2). Genomics 2005; 85:360-71. [PMID: 15718103 DOI: 10.1016/j.ygeno.2004.11.012] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2004] [Accepted: 11/22/2004] [Indexed: 11/17/2022]
Abstract
Only a few cases of exclusive translation initiation at non-AUG codons have been reported. We recently demonstrated that mammalian NAT1 mRNA, encoded by EIF4G2, uses GUG as its only translation initiation codon. In this study, we identified NAT1 orthologs from chicken, Xenopus, and zebrafish and found that in all species, the GUG codon also serves as the initiation codon. In all species, the GUG codon fulfilled the reported requirements for non-AUG initiation: an optimal Kozak motif and a downstream hairpin structure. Site-directed mutagenesis showed that nucleotides at positions -3 and +4 are critical for the GUG-mediated translation initiation in vitro. We found that NAT1 orthologs in Drosophila melanogaster and Halocynthia roretzi also use non-AUG start codons, demonstrating evolutionary conservation of the noncanonical translation initiation.
Collapse
Affiliation(s)
- Kazutoshi Takahashi
- Research and Education Center for Genetic Information, Nara Institute of Science and Technology, Ikoma 8916-5, Nara 630-0101, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Reichenstein M, German T, Barash I. BLG-e1 - a novel regulatory element in the distal region of the beta-lactoglobulin gene promoter. FEBS Lett 2005; 579:2097-104. [PMID: 15811325 DOI: 10.1016/j.febslet.2005.02.061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2005] [Revised: 02/16/2005] [Accepted: 02/20/2005] [Indexed: 10/25/2022]
Abstract
beta-Lactoglobulin (BLG) is a major ruminant milk protein. A regulatory element, termed BLG-e1, was defined in the distal region of the ovine BLG gene promoter. This 299-bp element lacks the established cis-regulatory sequences that affect milk-protein gene expression. Nevertheless, it alters the binding of downstream BLG sequences to histone H4 and the sensitivity of the histone-DNA complexes to trichostatin A treatment. In mammary cells cultured under favorable lactogenic conditions, BLG-e1 acts as a potent, position-independent silencer of BLG/luciferase expression, and similarly affects the promoter activity of the mouse whey acidic protein gene. Intragenic sequences upstream of BLG exon 2 reverse the silencing effect of BLG-e1 in vitro and in transgenic mice.
Collapse
Affiliation(s)
- Moshe Reichenstein
- Institute of Animal Science, ARO, The Volcani Center, P.O. Box 6, Bet-Dagan 50250, Israel
| | | | | |
Collapse
|
33
|
Chen HH, Maeda T, Mullett SJ, Stewart AFR. Transcription cofactor Vgl-2 is required for skeletal muscle differentiation. Genesis 2005; 39:273-9. [PMID: 15287000 DOI: 10.1002/gene.20055] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
TEF-1 transcription factors regulate gene expression in skeletal muscle but are not muscle-specific. Instead, TEF-1 factors rely on the muscle-specific cofactor Vestigial-like 2 (Vgl-2), a protein related to Drosophila vestigial. Previously, we showed that Vgl-2 promotes skeletal muscle differentiation and activates muscle-specific promoters. However, the mechanism whereby Vgl-2 regulates TEF-1 factors and the requirement for Vgl-2 for muscle-specific gene expression were not known. In Drosophila, vestigial alters DNA binding specificity of the TEF-1 homolog scalloped to drive wing and flight muscle-specific gene expression. Here, gel mobility shift assays show that Vgl-2 differentially affects DNA binding of different TEF-1 factors. Using an antisense morpholino, we blocked the expression of Vgl-2 and a muscle-specific gene in the myogenic C2C12 cell line and in chick embryos by electroporation. These results demonstrate that Vgl-2 is required for muscle gene expression, in part by switching DNA binding of TEF-1 factors during muscle differentiation.
Collapse
Affiliation(s)
- Hsiao-Huei Chen
- Cardiovascular Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | | | | |
Collapse
|
34
|
Hirao C, Yonemura I, Miyazaki JI. Genomic structure of the chicken slow skeletal muscle troponin T gene. Gene 2004; 338:243-56. [PMID: 15315828 DOI: 10.1016/j.gene.2004.05.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2004] [Revised: 04/06/2004] [Accepted: 05/28/2004] [Indexed: 11/15/2022]
Abstract
Troponin T (TnT) is a key protein for Ca(2+)-sensitive molecular switching of muscle contraction. In vertebrates, three TnT genes have been identified, which produce isoforms characteristic of cardiac, fast skeletal, and slow skeletal muscles through alternative splicing in a tissue-specific and developmentally regulated manner. The diversification of myofibers into forms with specific metabolic and contractile characteristics is thought to be closely associated with the differential expression of these TnT isoforms. Herein, we determined the nucleotide sequence of the chicken slow skeletal muscle TnT gene and its upstream region. The gene was simpler in structure than the two other chicken genes. The transcription initiation site was positioned 183 bp upstream of the 3' end of exon 1. Alternative splicing of exon 5 using an internal acceptor site generated two distinct slow skeletal muscle troponin T (sTnT) transcripts. We identified possible regulatory elements, M-CAT-like, CACC-box, and E-box (E-box1 to E-box3) motifs in the upstream region and an E-box motif (E-box4) in exon 1.
Collapse
Affiliation(s)
- Chinami Hirao
- Institute of Biological Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8572, Japan
| | | | | |
Collapse
|
35
|
Shie JL, Wu G, Wu J, Liu FF, Laham RJ, Oettgen P, Li J. RTEF-1, a Novel Transcriptional Stimulator of Vascular Endothelial Growth Factor in Hypoxic Endothelial Cells. J Biol Chem 2004; 279:25010-6. [PMID: 15073166 DOI: 10.1074/jbc.m403103200] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Vascular endothelial growth factor (VEGF) is an angiogenic growth factor known to be up-regulated in ischemic heart and hypoxic endothelial cells. However, the transcriptional regulation of VEGF in hypoxia-induced angiogenesis is not fully understood. Transcriptional enhancer factor-1 (TEF-1) is a transcriptional factor family that can regulate many genes expressed in cardiac and skeletal muscle cells by binding to myocyte-specific chloramphenicol acetyltransferase heptamer elements in the promoters of these genes. In this study, we demonstrated that related TEF-1 (RTEF-1), a member of the TEF-1 family, is up-regulated in hypoxic endothelial cells. Overexpression of RTEF-1 increases VEGF promoter activity and VEGF expression. Sequential deletion and site-directed mutation analyses of the VEGF promoter demonstrated that a GC-rich region containing four Sp1 response elements, located between -114 and -50, was essential for RTEF-1 function. This region is beyond the hypoxia-inducible factor-1alpha binding site and does not consist of M-CAT-related elements. By electrophoretic mobility shift assay, RTEF-1 was found to interact with the first Sp1 residue (-97 to -87) of the four consecutive Sp1 elements. Binding activity of RTEF-1 to VEGF promoter is also confirmed by chromatin immunoprecipitation. In addition, induction of VEGF promoter activity by RTEF-1 results in an increase of angiogenic processes including endothelial cells proliferation and vascular structure formation. These results indicate that RTEF-1 acts as a transcriptional stimulator of VEGF by regulating VEGF promoter activity through binding to Sp1 site. In addition, RTEF-1-induced VEGF promoter activity was enhanced in a hypoxic condition, indicating that RTEF-1 may play an important role in the regulation of VEGF under hypoxia.
Collapse
Affiliation(s)
- Jue-Lon Shie
- Division of Cardiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Srivastava A, Simmonds AJ, Garg A, Fossheim L, Campbell SD, Bell JB. Molecular and Functional Analysis of scalloped Recessive Lethal Alleles in Drosophila melanogaster. Genetics 2004. [DOI: 10.1093/genetics/166.4.1833] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Abstract
The Drosophila melanogaster scalloped (sd) gene is a homolog of the human TEF-1 gene and is a member of the TEA/ATTS domain-containing family of transcription factors. In Drosophila, sd is involved in wing development as well as neural development. Herein, data are presented from a molecular analysis of five recessive lethal sd alleles. Only one of these alleles complements a viable allele associated with an sd mutant wing phenotype, suggesting that functions important for wing development are compromised by the noncomplementing alleles. Two of the wing noncomplementing alleles have mutations that help to define a VG-binding domain for the SD protein in vivo, and another noncomplementing allele has a lesion within the TEA DNA-binding domain. The VG-binding domain overlaps with a domain important for viability of the fly, since two of the sd lethal lesions are located there. The fifth lethal affects a yet undefined motif lying just outside the VG-binding domain in the C-terminal direction that affects both wing phenotype and viability. This is the first example linking mutations affecting specific amino acids in the SD protein with phenotypic consequences for the organism.
Collapse
Affiliation(s)
- Ajay Srivastava
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Andrew J Simmonds
- Department of Cell Biology, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Ankush Garg
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Leif Fossheim
- Department of Cell Biology, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Shelagh D Campbell
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - John B Bell
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| |
Collapse
|
37
|
Himeda CL, Ranish JA, Angello JC, Maire P, Aebersold R, Hauschka SD. Quantitative proteomic identification of six4 as the trex-binding factor in the muscle creatine kinase enhancer. Mol Cell Biol 2004; 24:2132-43. [PMID: 14966291 PMCID: PMC350548 DOI: 10.1128/mcb.24.5.2132-2143.2004] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2003] [Revised: 09/09/2003] [Accepted: 12/05/2003] [Indexed: 11/20/2022] Open
Abstract
Transcriptional regulatory element X (Trex) is a positive control site within the Muscle creatine kinase (MCK) enhancer. Cell culture and transgenic studies indicate that the Trex site is important for MCK expression in skeletal and cardiac muscle. After selectively enriching for the Trex-binding factor (TrexBF) using magnetic beads coupled to oligonucleotides containing either wild-type or mutant Trex sites, quantitative proteomics was used to identify TrexBF as Six4, a homeodomain transcription factor of the Six/sine oculis family, from a background of approximately 900 copurifying proteins. Using gel shift assays and Six-specific antisera, we demonstrated that Six4 is TrexBF in mouse skeletal myocytes and embryonic day 10 chick skeletal and cardiac muscle, while Six5 is the major TrexBF in adult mouse heart. In cotransfection studies, Six4 transactivates the MCK enhancer as well as muscle-specific regulatory regions of Aldolase A and Cardiac troponin C via Trex/MEF3 sites. Our results are consistent with Six4 being a key regulator of muscle gene expression in adult skeletal muscle and in developing striated muscle. The Trex/MEF3 composite sequence ([C/A]ACC[C/T]GA) allowed us to identify novel putative Six-binding sites in six other muscle genes. Our proteomics strategy will be useful for identifying transcription factors from complex mixtures using only defined DNA fragments for purification.
Collapse
MESH Headings
- Animals
- Cells, Cultured
- Chick Embryo
- Creatine Kinase/genetics
- Creatine Kinase/metabolism
- Creatine Kinase, MM Form
- DNA-Binding Proteins/metabolism
- Enhancer Elements, Genetic
- Gene Expression Regulation, Enzymologic
- Genes, Regulator
- HeLa Cells
- Homeodomain Proteins/genetics
- Homeodomain Proteins/metabolism
- Humans
- Immunomagnetic Separation
- Isoenzymes/genetics
- Isoenzymes/metabolism
- Mice
- Mice, Inbred C57BL
- Muscle, Skeletal/cytology
- Muscle, Skeletal/metabolism
- Myocytes, Cardiac/cytology
- Myocytes, Cardiac/metabolism
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/metabolism
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Proteomics
- Trans-Activators
- Transcription Factors/metabolism
- Transcriptional Activation
Collapse
Affiliation(s)
- Charis L Himeda
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA
| | | | | | | | | | | |
Collapse
|
38
|
Tidyman WE, Sehnert AJ, Huq A, Agard J, Deegan F, Stainier DYR, Ordahl CP. In vivo regulation of the chicken cardiac troponin T gene promoter in zebrafish embryos. Dev Dyn 2003; 227:484-96. [PMID: 12889057 DOI: 10.1002/dvdy.10328] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The chicken cardiac troponin T (cTnT) gene is representative of numerous cardiac and skeletal muscle-specific genes that contain muscle-CAT (MCAT) elements within their promoters. We examined the regulation of the chicken cTnT gene in vivo in zebrafish embryos, and in vitro in cardiomyocyte, myoblast, and fibroblast cultures. Defined regions of the cTnT promoter were linked to the green fluorescent protein (GFP) gene for in vivo analysis, and the luciferase gene for in vitro analysis. Injection of the cTnT promoter constructs into fertilized zebrafish eggs resulted in GFP expression in both heart and skeletal muscle cells reproducing the pattern of expression of the endogenous cTnT gene in the chicken embryo. Promoter deletion analysis revealed that the cis-regulatory regions responsible for cardiac and skeletal muscle-specific expression functioned in an equivalent manner in both in vitro and in vivo environments. In addition, we show that mutation of the poly-ADP ribose polymerase-I (PARP-I) binding site adjacent to the distal MCAT element in the chicken cTnT promoter produced a non-cell-specific promoter in vitro and in the zebrafish. Thus, the PARP-I transcriptional regulatory mechanism that governs muscle specificity of the chicken cTnT promoter is conserved across several chordate classes spanning at least 350 million years of evolution.
Collapse
Affiliation(s)
- William E Tidyman
- Department of Anatomy and Cardiovascular Research Institute, University of California San Francisco, 94143, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Firulli AB, Thattaliyath BD. Transcription factors in cardiogenesis: the combinations that unlock the mysteries of the heart. INTERNATIONAL REVIEW OF CYTOLOGY 2002; 214:1-62. [PMID: 11893163 DOI: 10.1016/s0074-7696(02)14002-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Heart formation is one of the first signs of organogenesis within the developing embryo and this process is conserved from flies to man. Completing the genetic roadmap of the molecular mechanisms that control the cell specification and differentiation of cells that form the developing heart has been an exciting and fast-moving area of research in the fields of molecular and developmental biology. At the core of these studies is an interest in the transcription factors that are responsible for initiation of a pluripotent cell to become programmed to the cardiac lineage and the subsequent transcription factors that implement the instructions set up by the cells commitment decision. To gain a better understanding of these pathways, cardiac-expressed transcription factors have been identified, cloned, overexpressed, and mutated to try to determine function. Although results vary depending on the gene in question, it is clear that there is a striking evolutionary conservation of the cardiogenic program among species. As we move up the evolutionary ladder toward man, we encounter cases of functional redundancy and combinatorial interactions that reflect the complex networks of gene expression that orchestrate heart development. This review focuses on what is known about the transcription factors implicated in heart formation and the role they play in this intricate genetic program.
Collapse
Affiliation(s)
- Anthony B Firulli
- Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio 78229, USA
| | | |
Collapse
|
40
|
Kun E, Kirsten E, Ordahl CP. Coenzymatic activity of randomly broken or intact double-stranded DNAs in auto and histone H1 trans-poly(ADP-ribosylation), catalyzed by poly(ADP-ribose) polymerase (PARP I). J Biol Chem 2002; 277:39066-9. [PMID: 12205080 DOI: 10.1074/jbc.c200410200] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The enzymatic transfer of ADP-ribose from NAD to histone H1 (defined as trans-poly(ADP-ribosylation)) or to PARP I (defined as auto-poly(ADP-ribosylation)) was studied with respect to the nature of the DNA required as a coenzyme. Linear double-stranded DNA (dsDNA) containing the MCAT core motif was compared with DNA containing random nicks (discontinuous or dcDNA). The dsDNAs activated trans-poly(ADP-ribosylation) about 5 times more effectively than dcDNA as measured by V(max). Activation of auto-poly(ADP-ribosylation) by dcDNA was 10 times greater than by dsDNA. The affinity of PARP I toward dcDNA or dsDNA in the auto-poly(ADP-ribosylation) was at least 100-fold lower than in trans-poly(ADP-ribosylation) (K(a) = 1400 versus 3-15, respectively). Mg2+ inhibited trans-poly(ADP-ribosylation) and so did dcDNA at concentrations required to maximally activate auto-poly(ADP-ribosylation). Mg2+ activated auto-poly(ADP-ribosylation) of PARP I. These results for the first time demonstrate that physiologically occurring dsDNAs can serve as coenzymes for PARP I and catalyze preferentially trans-poly(ADP- ribosylation), thereby opening the possibility to study the physiologic function of PARP I.
Collapse
Affiliation(s)
- Ernest Kun
- Department of Anatomy, San Francisco School of Medicine, University of California, San Francisco, California 94143, USA
| | | | | |
Collapse
|
41
|
Maeda T, Maeda M, Stewart AFR. TEF-1 transcription factors regulate activity of the mouse mammary tumor virus LTR. Biochem Biophys Res Commun 2002; 296:1279-85. [PMID: 12207913 DOI: 10.1016/s0006-291x(02)02085-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The mouse mammary tumor virus long terminal repeat (LTR) is a potent transcriptional enhancer. We identified several putative binding sites for the TEF-1 family of transcription factors (TEF-1, RTEF-1, DTEF-1, and ETF) in the proximal negative regulatory element of the LTR. Gel mobility shift assays revealed strong TEF-1 factor binding to one site using nuclear extracts from CV-1 cells and from the human breast cancer cell line MCF-7. Mutation of this site increased basal activity of the LTR. In transient transfection assays, TEF-1 squelched the basal LTR activity and completely abrogated the response to the glucocorticoid dexamethasone. RTEF-1 and DTEF-1 had little effect on the basal activity, whereas ETF activated the LTR. These TEF-1 factors also interfered with the response to dexamethasone. Taken together, our results reveal an important new role for TEF-1 factors in regulating MMTV LTR activity and suggest that TEF-1 factors might participate in mammary tumorigenesis.
Collapse
Affiliation(s)
- Tomoji Maeda
- Cardiovascular Institute, School of Medicine, University of Pittsburgh, BST 1704.3, 200 Lothrop Street, 15213, Pittsburgh, PA, USA
| | | | | |
Collapse
|
42
|
Maeda T, Sepulveda J, Chen HH, Stewart AFR. Alpha(1)-adrenergic activation of the cardiac ankyrin repeat protein gene in cardiac myocytes. Gene 2002; 297:1-9. [PMID: 12384280 DOI: 10.1016/s0378-1119(02)00924-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cardiac ankyrin repeat protein (CARP) is a nuclear transcription cofactor that is activated by multiple signaling pathways in hypertrophic cardiac myocytes. Since CARP has been reported to be a transcriptional co-repressor, its activation during hypertrophy might contribute to the deregulation of gene expression leading to heart failure. Here, we found that alpha(1)-adrenergic signaling activates CARP mRNA expression in rat cardiac myocytes. To examine how alpha(1)-adrenergic signaling activates the CARP gene, a 660 bp fragment of the mouse CARP promoter was cloned. Previous reports suggested that the mouse CARP promoter was dependent on the GATA4 transcription factor whereas the human CARP promoter was dependent on transcriptional enhancer factor-1 (TEF-1). TEF-1 and GATA4 transcription factors, known mediators of alpha(1)-adrenergic signaling, bound to the mouse CARP promoter at several sites as determined by gel mobility shift assays. These sites are highly conserved between the mouse and human promoters, suggesting that they are functionally important in both. Mutation analysis showed that binding of TEF-1 factors is required for basal activity of the CARP promoter in cardiac myocytes. However, over-expression of TEF-1 factors could not potentiate the response of the CARP promoter to alpha(1)-adrenergic stimulation. On the other hand, the alpha(1)-adrenergic response was potentiated by GATA4 over-expression. Taken together, our results demonstrate that alpha(1)-adrenergic signaling regulates CARP expression in cardiac myocytes, in part through the transcription factor GATA4.
Collapse
Affiliation(s)
- Tomoji Maeda
- Cardiovascular Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | | | | | | |
Collapse
|
43
|
Maeda T, Mazzulli JR, Farrance IKG, Stewart AFR. Mouse DTEF-1 (ETFR-1, TEF-5) is a transcriptional activator in alpha 1-adrenergic agonist-stimulated cardiac myocytes. J Biol Chem 2002; 277:24346-52. [PMID: 11986313 DOI: 10.1074/jbc.m201171200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
alpha(1)-Adrenergic signaling in cardiac myocytes activates the skeletal muscle alpha-actin gene through an MCAT cis-element, the binding site of the transcriptional enhancer factor-1 (TEF-1) family of transcription factors. TEF-1 accounts for more than 85% of the MCAT binding activity in neonatal rat cardiac myocytes. Other TEF-1 family members account for the rest. Although TEF-1 itself has little effect on the alpha(1)-adrenergic activation of skeletal muscle alpha-actin, the related factor RTEF-1 augments the response and is a target of alpha(1)-adrenergic signaling. Here, we examined another TEF-1 family member expressed in cardiac muscle, DTEF-1, and observed that it also augmented the alpha(1)-adrenergic response of skeletal muscle alpha-actin. A DTEF-1 peptide-specific antibody revealed that endogenous DTEF-1 accounts for up to 5% of the MCAT binding activity in neonatal rat cardiac myocytes. A TEF-1/DTEF-1 chimera suggests that alpha(1)-adrenergic signaling modulates DTEF-1 function. Orthophosphate labeling and immunoprecipitation of an epitope-tagged DTEF-1 showed that DTEF-1 is phosphorylated in vivo. alpha(1)-Adrenergic stimulation increased while phosphatase treatment lowered the MCAT binding by DTEF-1 and the endogenous non-TEF-1 MCAT-binding factor. In contrast, alpha(1)-adrenergic stimulation did not alter, and phosphatase treatment increased, MCAT binding of TEF-1 and RTEF-1. Taken together, these results suggest that DTEF-1 is a target for alpha(1)-adrenergic activation of the skeletal muscle alpha-actin gene in neonatal rat cardiac myocytes.
Collapse
Affiliation(s)
- Tomoji Maeda
- Cardiovascular Institute, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | | | | | | |
Collapse
|
44
|
Maeda T, Gupta MP, Stewart AFR. TEF-1 and MEF2 transcription factors interact to regulate muscle-specific promoters. Biochem Biophys Res Commun 2002; 294:791-7. [PMID: 12061776 DOI: 10.1016/s0006-291x(02)00556-9] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Many muscle-specific genes are regulated by transcriptional enhancer factor-1 (TEF-1), serum response factor (SRF), and myocyte enhancer factor-2 (MEF2) transcription factors. TEF-1 interacts with the MADS domain of SRF and together SRF and TEF-1 co-activate the skeletal alpha-actin promoter. MEF2 factors also contain a MADS domain with 50% amino acid identity to the SRF MADS domain. Because of this sequence divergence, some SRF co-factors do not interact with MEF2. To demonstrate that TEF-1 factors could also interact with MEF2 through its MADS domain, we used co-immunoprecipitation and GST pull-down assays in vitro and a mammalian two-hybrid assay in vivo. The MADS domain was not sufficient for MEF2 interaction with TEF-1, because additional sequences in the activation domains of both proteins were required for in vivo association. The physiological significance of this interaction was also demonstrated by transient transfection assays using muscle-specific promoters. Our results suggest that by their interaction with MEF2 factors, TEF-1 factors can control MEF2-dependent muscle-specific gene expression.
Collapse
Affiliation(s)
- Tomoji Maeda
- Cardiovascular Institute, School of Medicine, University of Pittsburgh, BST 1704.3, PA 15213, USA
| | | | | |
Collapse
|
45
|
Abstract
Transcription factors can regulate the expression of other genes in a tissue-specific and quantitative manner and are thus major regulators of embryonic developmental processes. Several transcription factors that regulate cardiac genes specifically have been described, and the recent discovery that dominant inherited transcription factor mutations cause congenital heart defects in humans has brought direct medical relevance to the study of cardiac transcription factors in heart development. Although this field of study is extensive, several major gaps in our knowledge of the transcriptional control of heart development still exist. This review will concentrate on recent developments in the field of cardiac transcription factors and their roles in heart formation.
Collapse
Affiliation(s)
- Benoit G Bruneau
- Division of Cardiovascular Research and Programme in Developmental Biology, The Hospital for Sick Children, Toronto, Ontario, Canada M5G 1X8.
| |
Collapse
|
46
|
Carlini LE, Getz MJ, Strauch AR, Kelm RJ. Cryptic MCAT enhancer regulation in fibroblasts and smooth muscle cells. Suppression of TEF-1 mediated activation by the single-stranded DNA-binding proteins, Pur alpha, Pur beta, and MSY1. J Biol Chem 2002; 277:8682-92. [PMID: 11751932 DOI: 10.1074/jbc.m109754200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
An asymmetric polypurine-polypyrimidine cis-element located in the 5' region of the mouse vascular smooth muscle alpha-actin gene serves as a binding site for multiple proteins with specific affinity for either single- or double-stranded DNA. Here, we test the hypothesis that single-stranded DNA-binding proteins are responsible for preventing a cryptic MCAT enhancer centered within this element from cooperating with a nearby serum response factor-interacting CArG motif to trans-activate the minimal promoter in fibroblasts and smooth muscle cells. DNA binding studies revealed that the core MCAT sequence mediates binding of transcription enhancer factor-1 to the double-stranded polypurine-polypyrimidine element while flanking nucleotides account for interaction of Pur alpha and Pur beta with the purine-rich strand and MSY1 with the complementary pyrimidine-rich strand. Mutations that selectively impaired high affinity single-stranded DNA binding by fibroblast or smooth muscle cell-derived Pur alpha, Pur beta, and MSY1 in vitro, released the cryptic MCAT enhancer from repression in transfected cells. Additional experiments indicated that Pur alpha, Pur beta, and MSY1 also interact specifically, albeit weakly, with double-stranded DNA and with transcription enhancer factor-1. These results are consistent with two plausible models of cryptic MCAT enhancer regulation by Pur alpha, Pur beta, and MSY1 involving either competitive single-stranded DNA binding or masking of MCAT-bound transcription enhancer factor-1.
Collapse
Affiliation(s)
- Leslie E Carlini
- Department of Biochemistry and Molecular Biology, Mayo Foundation, Rochester, Minnesota 55905, USA
| | | | | | | |
Collapse
|
47
|
Tanoue Y, Yasunami M, Suzuki K, Ohkubo H. Identification and characterization of cell-specific enhancer elements for the mouse ETF/Tead2 gene. Biochem Biophys Res Commun 2001; 289:1010-8. [PMID: 11741291 DOI: 10.1006/bbrc.2001.6104] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have identified and characterized by transient transfection assays the cell-specific 117-bp enhancer sequence in the first intron of the mouse ETF (Embryonic TEA domain-containing factor)/Tead2 gene required for transcriptional activation in ETF/Tead2 gene-expressing cells, such as P19 cells. The 117-bp enhancer contains one GC-rich sequence (5'-GGGGCGGGG-3'), termed the GC box, and two tandemly repeated GA-rich sequences (5'-GGGGGAGGGG-3'), termed the proximal and distal GA elements. Further analyses, including transfection studies and electrophoretic mobility shift assays using a series of deletion and mutation constructs, indicated that Sp1, a putative activator, may be required to predominate over its competition with another unknown putative repressor, termed the GA element-binding factor, for binding to both the GC box, which overlapped with the proximal GA element, and the distal GA element in the 117-bp sequence in order to achieve a full enhancer activity. We also discuss a possible mechanism underlying the cell-specific enhancer activity of the 117-bp sequence.
Collapse
Affiliation(s)
- Y Tanoue
- Institute of Molecular Embryology and Genetics, Kumamoto University, Kuhonji 4-24-1, Kumamoto, 862-0976, Japan
| | | | | | | |
Collapse
|
48
|
Chen JC, Love CM, Goldhamer DJ. Two upstream enhancers collaborate to regulate the spatial patterning and timing of MyoD transcription during mouse development. Dev Dyn 2001; 221:274-88. [PMID: 11458388 DOI: 10.1002/dvdy.1138] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
MyoD is a member of the basic-helix-loop-helix (bHLH) transcription factor family, which regulates muscle determination and differentiation in vertebrates. While it is now well established that the MyoD gene is regulated by Sonic hedgehog, Wnts, and other signals, it is not known how MyoD transcription is initiated and maintained in response to these signals. We have investigated the cis control of MyoD expression to identify and characterize the DNA targets that mediate MyoD transcription in embryos. By monitoring lacZ reporter gene expression in transgenic mice, we show that regulatory information contained in 24 kb of human MyoD 5' flanking sequence is sufficient to accurately control MyoD expression in embryos. Previous studies have identified two muscle-specific regulatory regions upstream of MyoD, a 4-kb region centered at -20 kb (designated fragment 3) that contains a highly conserved 258-bp core enhancer sequence, and a more proximal enhancer at -5 kb, termed the distal regulatory region (DRR), that heretofore has been identified only in mice. Here, we identify DRR-related sequences in humans and show that DRR function is conserved in humans and mice. In addition, transcriptional activity of MyoD 5' flanking sequences in somites and limb buds is largely a composite of the individual specificities of the two enhancers. Deletion of fragment 3 resulted in dramatic but temporary expression defects in the hypaxial myotome and limb buds, suggesting that this regulatory region is essential for proper temporal and spatial patterning of MyoD expression. These data indicate that regulatory sequences in fragment 3 are important targets of embryonic signaling required for the initiation of MyoD expression.
Collapse
Affiliation(s)
- J C Chen
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6058, USA
| | | | | |
Collapse
|
49
|
Gupta M, Kogut P, Davis FJ, Belaguli NS, Schwartz RJ, Gupta MP. Physical interaction between the MADS box of serum response factor and the TEA/ATTS DNA-binding domain of transcription enhancer factor-1. J Biol Chem 2001; 276:10413-22. [PMID: 11136726 DOI: 10.1074/jbc.m008625200] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Serum response factor is a MADS box transcription factor that binds to consensus sequences CC(A/T)(6)GG found in the promoter region of several serum-inducible and muscle-specific genes. In skeletal myocytes serum response factor (SRF) has been shown to heterodimerize with the myogenic basic helix-loop-helix family of factors, related to MyoD, for control of muscle gene regulation. Here we report that SRF binds to another myogenic factor, TEF-1, that has been implicated in the regulation of a variety of cardiac muscle genes. By using different biochemical assays such as affinity precipitation of protein, GST-pulldown assay, and coimmunoprecipitation of proteins, we show that SRF binds to TEF-1 both in in vitro and in vivo assay conditions. A strong interaction of SRF with TEF-1 was seen even when one protein was denatured and immobilized on nitrocellulose membrane, indicating a direct and stable interaction between SRF and TEF-1, which occurs without a cofactor. This interaction is mediated through the C-terminal subdomain of MADS box of SRF encompassing amino acids 204-244 and the putative 2nd and 3rd alpha-helix/beta-sheet configuration of the TEA/ATTS DNA-binding domain of TEF-1. In the transient transfection assay, a positive cooperative effect of SRF and TEF-1 was observed when DNA-binding sites for both factors, serum response element and M-CAT respectively, were intact; mutation of either site abolished their synergistic effect. Similarly, an SRF mutant, SRFpm-1, defective in DNA binding failed to collaborate with TEF-1 for gene regulation, indicating that the synergistic trans-activation function of SRF and TEF-1 occurs via their binding to cognate DNA-binding sites. Our results demonstrate a novel association between SRF and TEF-1 for cardiac muscle gene regulation and disclose a general mechanism by which these two super families of factors are likely to control diversified biological functions.
Collapse
Affiliation(s)
- M Gupta
- Heart Institute for Children and Department of Physiology and Biophysics, University of Illinois, Chicago 60612, USA.
| | | | | | | | | | | |
Collapse
|
50
|
Zuzarte PC, Farrance IK, Simpson PC, Wildeman AG. Tumor cell splice variants of the transcription factor TEF-1 induced by SV40 T-antigen transformation. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1517:82-90. [PMID: 11118619 DOI: 10.1016/s0167-4781(00)00261-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The large tumor antigen (TAg) of simian virus 40 is able to transform cells through interactions with cellular proteins, notably p53 and Rb. Among the other proteins that form complexes with TAg is TEF-1, a transcription factor utilized by the viral enhancer to activate expression of the early gene which encodes TAg. We show that fibroblasts contain several alternately spliced TEF-1 mRNAs, the most abundant of which encodes a protein with an additional four amino acid exon compared to the database entry for Hela cell TEF-1. Transformation by TAg induces alternate splicing, producing a more abundant form lacking this exon and matching the published sequence. Splicing variants lacking this exon were detected in mouse pancreatic tumors and in cell lines derived from human pancreatic cancers, in contrast to a single isoform with the exon in normal mouse pancreas. A total of eight splice variants were identified, with the loss of the four amino acid exon typical of transformed cells. These and other data presented suggest that TAg 're-models' host cell transcription factors that are used early in viral infection, and thereby mimics an event that naturally occurs during transformation. The data indicate that TEF-1 alterations may be a hallmark feature of tumorigenesis.
Collapse
Affiliation(s)
- P C Zuzarte
- Department of Molecular Biology and Genetics, University of Guelph, Ontario, Canada
| | | | | | | |
Collapse
|