1
|
Levic DS, Bagnat M. Self-organization of apical membrane protein sorting in epithelial cells. FEBS J 2022; 289:659-670. [PMID: 33864720 PMCID: PMC8522177 DOI: 10.1111/febs.15882] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/25/2021] [Accepted: 04/14/2021] [Indexed: 02/03/2023]
Abstract
Polarized epithelial cells are characterized by the asymmetric distribution of proteins between apical and basolateral domains of the plasma membrane. This asymmetry is highly conserved and is fundamental to epithelial cell physiology, development, and homeostasis. How proteins are segregated for apical or basolateral delivery, a process known as sorting, has been the subject of considerable investigation for decades. Despite these efforts, the rules guiding apical sorting are poorly understood and remain controversial. Here, we consider mechanisms of apical membrane protein sorting and argue that they are largely driven by self-organization and biophysical principles. The preponderance of data to date is consistent with the idea that apical sorting is not ruled by a dedicated protein-based sorting machinery and relies instead on the concerted effects of oligomerization, phase separation of lipids and proteins in membranes, and pH-dependent glycan interactions.
Collapse
Affiliation(s)
- Daniel S. Levic
- Department of Cell Biology, Duke University, Durham, NC 27710, USA
| | - Michel Bagnat
- Department of Cell Biology, Duke University, Durham, NC 27710, USA
| |
Collapse
|
2
|
Diekmann L, Behrendt M, Amiri M, Naim HY. Structural determinants for transport of lactase phlorizin-hydrolase in the early secretory pathway as a multi-domain membrane glycoprotein. Biochim Biophys Acta Gen Subj 2016; 1861:3119-3128. [PMID: 27773655 DOI: 10.1016/j.bbagen.2016.10.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 10/16/2016] [Accepted: 10/19/2016] [Indexed: 11/27/2022]
Abstract
BACKGROUND Lactase phlorizin-hydrolase (LPH) is a membrane anchored type I glycoprotein of the intestinal epithelium that is composed of four homologous structural domains. The role of each distinct domain in the intramolecular organization and function of LPH is not completely understood. METHODS Here, we analyzed the early events of LPH biosynthesis and trafficking by directed restructuring of the domain compositions. RESULTS Removal of domain I (LPH∆1) results in a malfolded ER-localized protein. By contrast, LPH without domain II (LPH∆2) is normally transported along the secretory pathway, but does not dimerize nor is enzymatically active. Interestingly a polypeptide stretch in domain II between L735-R868 exerts an intriguing role in modulating the trafficking behavior of LPH and its biological function. In fact, association of this stretch with transport-competent LPH chimeras results in their ER-arrest or aberrant trafficking. This stretch harbors a unique N-glycosylation site that is responsible for LPH retention in the ER via association with calnexin and facilitates proper folding of domains I and III before ER exit of LPH. Notably, a similar N-glycosylation site is also found in domain IV with comparable effects on the trafficking of LPH-derived molecules. CONCLUSIONS Our study provides novel insights into the intramolecular interactions and the sequence of events involved in the folding, dimerization and transport of LPH. GENERAL SIGNIFICANCE Elucidation of the structural-functional relevance of the domains in pro-LPH is crucial in unravelling and understanding the molecular basis of carbohydrate malabsorption disorders that are associated with lactase deficiency or lactase malfunction.
Collapse
Affiliation(s)
- Lena Diekmann
- Department of Physiological Chemistry, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Marc Behrendt
- Institute of Physiology and Pathophysiology, Philipps-University Marburg, Marburg, Germany
| | - Mahdi Amiri
- Department of Physiological Chemistry, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Hassan Y Naim
- Department of Physiological Chemistry, University of Veterinary Medicine Hannover, Hannover, Germany.
| |
Collapse
|
3
|
Amiri M, Diekmann L, von Köckritz-Blickwede M, Naim HY. The Diverse Forms of Lactose Intolerance and the Putative Linkage to Several Cancers. Nutrients 2015; 7:7209-30. [PMID: 26343715 PMCID: PMC4586527 DOI: 10.3390/nu7095332] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 08/07/2015] [Accepted: 08/21/2015] [Indexed: 12/12/2022] Open
Abstract
Lactase-phlorizin hydrolase (LPH) is a membrane glycoprotein and the only β-galactosidase of the brush border membrane of the intestinal epithelium. Besides active transcription, expression of the active LPH requires different maturation steps of the polypeptide through the secretory pathway, including N- and O-glycosylation, dimerization and proteolytic cleavage steps. The inability to digest lactose due to insufficient lactase activity results in gastrointestinal symptoms known as lactose intolerance. In this review, we will concentrate on the structural and functional features of LPH protein and summarize the cellular and molecular mechanism required for its maturation and trafficking. Then, different types of lactose intolerance are discussed, and the molecular aspects of lactase persistence/non-persistence phenotypes are investigated. Finally, we will review the literature focusing on the lactase persistence/non-persistence populations as a comparative model in order to determine the protective or adverse effects of milk and dairy foods on the incidence of colorectal, ovarian and prostate cancers.
Collapse
Affiliation(s)
- Mahdi Amiri
- Department of Physiological Chemistry, University of Veterinary Medicine Hannover, Hannover, Germany.
| | - Lena Diekmann
- Department of Physiological Chemistry, University of Veterinary Medicine Hannover, Hannover, Germany.
| | - Maren von Köckritz-Blickwede
- Department of Physiological Chemistry, University of Veterinary Medicine Hannover, Hannover, Germany.
- The Research Center for Emerging Infections and Zoonosis (RIZ), University of Veterinary Medicine Hannover, Hannover, Germany.
| | - Hassan Y Naim
- Department of Physiological Chemistry, University of Veterinary Medicine Hannover, Hannover, Germany.
| |
Collapse
|
4
|
Behrendt M, Polaina J, Naim HY. Structural hierarchy of regulatory elements in the folding and transport of an intestinal multidomain protein. J Biol Chem 2009; 285:4143-4152. [PMID: 19955176 DOI: 10.1074/jbc.m109.060780] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Human intestinal lactase-phlorizin hydrolase, LPH, encompasses four homologous domains, which presumably have evolved from two subsequent duplications of one ancestral gene. The profragment, LPHalpha, comprises homologous domains I and II and functions as an intramolecular chaperone in the context of the brush-border LPHbeta region of LPH. Here, we analyze the inter-relationship between homologous domains III and IV of LPHbeta and their implication in the overall structure, function, and trafficking of LPH. In silico analyses revealed potential domain boundaries for these domains as a basis for loop-out mutagenesis and construction of deletion or individual domain forms of LPH. Removal of domain IV, which contains lactase, results in a diminished phlorizin hydrolase activity, lack of dimerization in the endoplasmic reticulum (ER), but accelerated transport kinetics from the ER to the Golgi apparatus. By contrast, deletion of domain III, which harbors phlorizin hydrolase, generates a malfolded protein that is blocked in the ER. Interestingly, homologous domain III is transport-competent per se and sorted to the apical membrane in polarized Madin-Darby canine kidney cells. Nevertheless, it neither dimerizes nor acquires complete phlorizin hydrolase activity. Our data present a hierarchical model of LPH in which the homologous domain III constitutes (i) a fully autonomous core domain within LPH and (ii) another intramolecular chaperone besides the profragment LPHalpha. Nevertheless, the regulation of the trafficking kinetics and activity of domain III and entire LPH including elevation of the enzymatic activities require the correct dimerization of LPH in the ER, an event that is accomplished by the non-autonomous domain IV.
Collapse
Affiliation(s)
- Marc Behrendt
- From the Department of Physiological Chemistry, University of Veterinary Medicine Hannover, D-30559 Hannover, Germany and
| | - Julio Polaina
- the Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones Científicas, Apartado de Correos 73, Burjassot, E46100 Valencia, Spain
| | - Hassan Y Naim
- From the Department of Physiological Chemistry, University of Veterinary Medicine Hannover, D-30559 Hannover, Germany and.
| |
Collapse
|
5
|
Lactose digestion and the evolutionary genetics of lactase persistence. Hum Genet 2008; 124:579-91. [PMID: 19034520 DOI: 10.1007/s00439-008-0593-6] [Citation(s) in RCA: 224] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2008] [Accepted: 11/06/2008] [Indexed: 12/11/2022]
Abstract
It has been known for some 40 years that lactase production persists into adult life in some people but not in others. However, the mechanism and evolutionary significance of this variation have proved more elusive, and continue to excite the interest of investigators from different disciplines. This genetically determined trait differs in frequency worldwide and is due to cis-acting polymorphism of regulation of lactase gene expression. A single nucleotide polymorphism located 13.9 kb upstream from the lactase gene (C-13910 > T) was proposed to be the cause, and the -13910*T allele, which is widespread in Europe was found to be located on a very extended haplotype of 500 kb or more. The long region of haplotype conservation reflects a recent origin, and this, together with high frequencies, is evidence of positive selection, but also means that -13910*T might be an associated marker, rather than being causal of lactase persistence itself. Doubt about function was increased when it was shown that the original SNP did not account for lactase persistence in most African populations. However, the recent discovery that there are several other SNPs associated with lactase persistence in close proximity (within 100 bp), and that they all reside in a piece of sequence that has enhancer function in vitro, does suggest that they may each be functional, and their occurrence on different haplotype backgrounds shows that several independent mutations led to lactase persistence. Here we provide access to a database of worldwide distributions of lactase persistence and of the C-13910*T allele, as well as reviewing lactase molecular and population genetics and the role of selection in determining present day distributions of the lactase persistence phenotype.
Collapse
|
6
|
Cramm-Behrens CI, Dienst M, Jacob R. Apical cargo traverses endosomal compartments on the passage to the cell surface. Traffic 2008; 9:2206-20. [PMID: 18785995 DOI: 10.1111/j.1600-0854.2008.00829.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Epithelial polarity is based on intracellular sorting machinery that maintains the asymmetric distribution of lipids and proteins to the cell surface. Dependent on their lipid raft affinity, newly synthesized apical polypeptides are segregated into distinct vesicle populations subsequent to the passage through the Golgi apparatus. Using a combined fluorescence microscopic and biochemical approach, we found that lipid raft-associated sucrase-isomaltase (SI) as well as non-raft-associated lactase-phlorizin hydrolase (LPH) traverse endosomal compartments before entering the apical membrane. Fluorescent fusion proteins of both hydrolases were co-stained with Rab4-, Rab8- and Rab11-positive endosomes in polarized Madin-Darby canine kidney and non-polarized COS-1 cells. Immunoisolation of post-Golgi vesicles subsequent to different times of TGN release revealed that LPH and SI navigate in chronological order through Rab4-, Rab8- and Rab11-positive endosomes. Thereafter, the two hydrolases are segregated into distinct vesicle populations. In addition, apical membrane traffic could be significantly inhibited by RNA interference-mediated depletion of these guanosine triphosphatases. These results suggest that in epithelial cells, lipid raft-dependent and -independent apical cargo follow a transendosomal route.
Collapse
|
7
|
Beau I, Cotte-Laffitte J, Géniteau-Legendre M, Estes MK, Servin AL. An NSP4-dependant mechanism by which rotavirus impairs lactase enzymatic activity in brush border of human enterocyte-like Caco-2 cells. Cell Microbiol 2007; 9:2254-66. [PMID: 17506819 DOI: 10.1111/j.1462-5822.2007.00956.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Lactase-phlorizin hydrolase (LPH, EC 3.2.1.23-62) is a brush border membrane (BBM)-associated enzyme in intestinal cells that hydrolyse lactose, the most important sugar in milk. Impairing in lactase activity during rotavirus infection has been described in diseased infants but the mechanism by which the functional lesion occurs remains unknown. We undertook a study to elucidate whether rotavirus impairs the lactase enzymatic activity in BBM of human enterocyte cells. In this study we use cultured human intestinal fully differentiated enterocyte-like Caco-2 cells to demonstrate how the lactase enzymatic activity at BBM is significantly decreased in rhesus monkey rotavirus (RRV)-infected cells. We found that the decrease in enzyme activity is not dependent of the Ca(2+)- and cAMP-dependent signalling events triggered by the virus. The LPH biosynthesis, stability, and expression of the protein at the BBM of infected cells were not modified. We provide evidence that in RRV-infected cells the kinetic of lactase enzymatic activity present at the BBM was modified. Both BBM(control) and BBM(RRV) have identical K(m) values, but hydrolyse the substrate at different rates. Thus, the BBM(RRV) exhibits almost a 1.5-fold decreased V(max) than that of BBM(control) and is therefore enzymatically less active than the latter. Our study demonstrate conclusively that the impairment of lactase enzymatic activity at the BBM of the enterocyte-like Caco-2 cells observed during rotavirus infection results from an inhibitory action of the secreted non-structural rotavirus protein NSP4.
Collapse
Affiliation(s)
- Isabelle Beau
- INSERM, UMR 756, Signalisation et Physiopathologie des Cellules Epithéliales, Châtenay-Malabry, France
| | | | | | | | | |
Collapse
|
8
|
Keiser M, Alfalah M, Pröpsting MJ, Castelletti D, Naim HY. Altered Folding, Turnover, and Polarized Sorting Act in Concert to Define a Novel Pathomechanism of Congenital Sucrase-Isomaltase Deficiency. J Biol Chem 2006; 281:14393-9. [PMID: 16543230 DOI: 10.1074/jbc.m513631200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Naturally occurring mutants of membrane and secretory proteins are often associated with the pathogenesis of human diseases. Here, we describe the molecular basis of a novel phenotype of congenital sucrase-isomaltase deficiency (CSID), a disaccharide malabsorption disorder of the human intestine in which several structural features and functional capacities of the brush-border enzyme complex sucrase-isomaltase (SI) are affected. The cDNA encoding SI from a patient with CSID reveals a mutation in the isomaltase subunit of SI that results in the substitution of a cysteine by an arginine at amino acid residue 635 (C635R). When this mutation is introduced into the wild type cDNA of SI a mutant enzyme, SI(C635R), is generated that shows a predominant localization in the endoplasmic reticulum. Nevertheless, a definite localization of SI(C635R) in the Golgi apparatus and at the cell surface could be also observed. Epitope mapping with conformation-specific mAbs protease sensitivity assays, and enzymatic activity measurements demonstrate an altered folding pattern of SI(C635R) that is responsible for a substantially increased turnover rate and an aberrant sorting profile. Thus, SI(C635R) becomes distributed also at the basolateral membrane in contrast to wild type SI. Concomitant with the altered sorting pattern, the partial detergent extractability of wild type SI shifts to a complete detergent solubility with Triton X-100. The mutation has therefore affected an epitope responsible for the apical targeting fidelity of SI. Altogether, the combined effects of the C635R mutation on the turnover rate, function, polarized sorting, and detergent solubility of SI constitute a unique and novel pathomechanism of CSID.
Collapse
Affiliation(s)
- Markus Keiser
- Department of Physiological Chemistry, University of Veterinary Medicine Hannover, D-30559 Hannover, Germany
| | | | | | | | | |
Collapse
|
9
|
Alfalah M, Krahn MP, Wetzel G, von Hörsten S, Wolke C, Hooper N, Kalinski T, Krueger S, Naim HY, Lendeckel U. A mutation in aminopeptidase N (CD13) isolated from a patient suffering from leukemia leads to an arrest in the endoplasmic reticulum. J Biol Chem 2006; 281:11894-900. [PMID: 16469741 DOI: 10.1074/jbc.m511364200] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Human aminopeptidase N (APN) is used as a routine marker for myelomonocytic cells in hematopoietic malignant disorders. Its gene and surface expressions are increased in cases of malignant transformation, inflammation, or T cell activation, whereas normal B and resting T cells lack detectable APN protein expression. In this study we elucidated the intracellular distribution, expression pattern, and enzymatic activity of a naturally occurring mutation in the coding region of the APN gene. At physiological temperatures the mutant protein is enzymatically inactive, persists as a mannose-rich polypeptide in the endoplasmic reticulum, and is ultimately degraded by an endoplasmic reticulum-associated degradation pathway. It shows in part the distinct behavior of a temperature-sensitive mutant with a permissive temperature of 32 degrees C, leading to correct sorting of the Golgi compartment accompanied by the acquisition of proper glycosylation but without reaching the cell-surface membrane and without regaining its enzymatic activity. Because the patient bearing this mutation suffered from leukemia, possible links to the pathogenesis of leukemia are discussed.
Collapse
Affiliation(s)
- Marwan Alfalah
- Department of Physiological Chemistry, School of Veterinary Medicine, D-30559 Hannover, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Alfalah M, Wetzel G, Fischer I, Busche R, Sterchi EE, Zimmer KP, Sallmann HP, Naim HY. A novel type of detergent-resistant membranes may contribute to an early protein sorting event in epithelial cells. J Biol Chem 2005; 280:42636-43. [PMID: 16230359 DOI: 10.1074/jbc.m505924200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
One sorting mechanism of apical and basolateral proteins in epithelial cells is based on their solubility profiles with Triton X-100. Nevertheless, apical proteins themselves are also segregated beyond the trans-Golgi network by virtue of their association or nonassociation with cholesterol/sphingolipid-rich microdomains (Jacob, R., and Naim, H. Y. (2001) Curr. Biol. 11, 1444-1450). Therefore, extractability with Triton X-100 does not constitute an absolute criterion of protein sorting. Here, we investigate the solubility patterns of apical and basolateral proteins with other detergents and demonstrate that the mild detergent Tween 20 is adequate to discriminate between apical and basolateral proteins during early stages in their biosynthesis. Although the mannose-rich forms of the apical proteins sucrase-isomaltase, lactase-phlorizin hydrolase, aminopeptidase N, and dipeptidylpeptidase IV reveal similar solubility profiles comprising soluble and nonsoluble fractions, the basolateral proteins, vesicular stomatitis virus G protein, major histocompatibility complex class I, and CD46 are entirely soluble with this detergent. The insoluble Tween 20 membranes are enriched in phosphatidylinositol and phosphatidylglycerol compatible with their synthesis in the endoplasmic reticulum and the existence of a novel class of detergent-resistant membranes. The association of the mannose-rich biosynthetic forms of the apical proteins, sucraseisomaltase, lactase-phlorizin hydrolase, aminopeptidase N, and dipeptidylpeptidase IV with the Tween 20-resistant membranes suggests an early polarized sorting mechanism prior to maturation in the Golgi apparatus.
Collapse
Affiliation(s)
- Marwan Alfalah
- Department of Physiological Chemistry, School of Veterinary Medicine, D-30559 Hannover, Germany
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Heine M, Cramm-Behrens CI, Ansari A, Chu HP, Ryazanov AG, Naim HY, Jacob R. Alpha-kinase 1, a new component in apical protein transport. J Biol Chem 2005; 280:25637-43. [PMID: 15883161 DOI: 10.1074/jbc.m502265200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
A key aspect in the structure of epithelial cells is the maintenance of a polarized organization based on a highly specific sorting machinery for cargo destined for the apical or the basolateral membrane domain at the exit site of the trans-Golgi network. We could recently identify two distinct post-trans-Golgi network vesicle populations that travel along separate routes to the plasma membrane, a lipid raft-dependent and a lipid raft-independent pathway. A new component of raft-carrying apical vesicles is alpha-kinase 1 (ALPK1), which was identified in immunoisolated vesicles carrying raft-associated sucrase-isomaltase (SI). This kinase was absent from vesicles carrying raft-non-associated lactase-phlorizin hydrolase. The expression of ALPK1 increases by the time of epithelial cell differentiation, whereas the intracellular localization of ALPK1 on apical transport vesicles was confirmed by confocal analysis. A phosphorylation assay on isolated SI-carrying vesicles revealed the phosphorylation of a protein band of about 105 kDa, which could be identified as the motor protein myosin I. Finally, a specific reduction of ALPK1-expression by RNA interference results in a significant decrease in the apical delivery of SI. Taken together, our data suggest that the phosphorylation of myosin I by ALPK1 is an essential process in the apical trafficking of raft-associated SI.
Collapse
Affiliation(s)
- Martin Heine
- Department of Cell Biology and Cell Pathology, Philipps-University Marburg, D-35033 Marburg, Germany
| | | | | | | | | | | | | |
Collapse
|
12
|
Jacob R, Heine M, Eikemeyer J, Frerker N, Zimmer KP, Rescher U, Gerke V, Naim HY. Annexin II Is Required for Apical Transport in Polarized Epithelial Cells. J Biol Chem 2004; 279:3680-4. [PMID: 14670963 DOI: 10.1074/jbc.c300503200] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The sorting of apical proteins comprises an initial recognition step in the trans Golgi network and a final partitioning of the apical pool of proteins into at least two different types of vesicular carriers. One criteria of these carriers is the association or non-association of the protein content with lipid rafts. We have previously characterized a population containing the raft-associated sucrase-isomaltase-carrying vesicles (SAVs) and another one, the non-raft-associated lactase-phlorizin hydrolase-carrrying vesicles (LAVs) that are targeted separately to the apical membrane. Here, we demonstrate biochemically and by employing confocal laser microscopy that the annexin II-S100A10 complex is a component of SAVs and is absent from LAVs. The unequivocal role of annexin II in the apical targeting of SI is clearly demonstrated when down-regulation of this protein by annexin II-specific small interfering RNA drastically decreases the apical delivery of SI in the epithelial cell line Madin-Darby canine kidney. The annexin II-S100A10 complex plays therefore a crucial role in routing SAVs to the apical membrane of epithelial cells.
Collapse
Affiliation(s)
- Ralf Jacob
- Department of Physiological Chemistry, School of Veterinary Medicine Hannover, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Pröpsting MJ, Jacob R, Naim HY. A glutamine to proline exchange at amino acid residue 1098 in sucrase causes a temperature-sensitive arrest of sucrase-isomaltase in the endoplasmic reticulum and cis-Golgi. J Biol Chem 2003; 278:16310-4. [PMID: 12624106 DOI: 10.1074/jbc.c300093200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A striking feature of phenotype II in congenital sucrase-isomaltase deficiency is the retention of the brush border protein sucrase-isomaltase (SI) in the cis-Golgi. This transport block is the consequence of a glutamine to proline substitution at amino acid residue 1098 of the sucrase subunit. Here we provide unequivocal biochemical and confocal data to show that the SI(Q/P) mutant reveals characteristics of a temperature-sensitive mutant. Thus, correct folding, competent intracellular transport, and full enzymatic activity can be partially restored by expression of the mutant SI(Q/P) at the permissive temperature of 20 degrees C instead of 37 degrees C. The acquisition of normal trafficking and function appears to utilize several cycles of anterograde and retrograde steps between the endoplasmic reticulum and the Golgi implicating the molecular chaperones calnexin and heavy chain-binding protein. The data presented in this communication are to our knowledge the first to implicate a temperature-sensitive mutation in an intestinal enzyme deficiency or an intestinal disorder.
Collapse
Affiliation(s)
- Marcus J Pröpsting
- Department of Physiological Chemistry, School of Veterinary Medicine Hannover, Bünteweg 17, D-30559 Hannover, Germany
| | | | | |
Collapse
|
14
|
Jacob R, Heine M, Alfalah M, Naim HY. Distinct cytoskeletal tracks direct individual vesicle populations to the apical membrane of epithelial cells. Curr Biol 2003; 13:607-12. [PMID: 12676094 DOI: 10.1016/s0960-9822(03)00188-x] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
A key aspect in the structure of epithelial and neuronal cells is the maintenance of a polarized organization based on highly specific sorting machinery at the exit site of the trans Golgi network (TGN). Epithelial cells sort protein and lipid components into different sets of carriers for the apical or basolateral plasma membrane. The two intestinal proteins lactase-phlorizin hydrolase (LPH) and sucrase-isomaltase (SI) are delivered to the apical plasma membrane of epithelial cells with high fidelity but differ in their affinity to detergent-insoluble, glycolipid-enriched complexes (DIGs). Using a two-color labeling technique, we have recently characterized two post-Golgi vesicle populations that direct LPH and SI separately to the apical cell surface. Here, we investigated the structure and identification of protein components in these vesicle populations and assessed the role of cytoskeletal post-Golgi transport routes for apical cargo. Apart from the central role of microtubules in vesicle transport, we demonstrate that the transport of SI-carrying apical vesicles (SAVs) occurs along actin tracks in the cellular periphery, whereas LPH-carrying apical vesicles (LAVs) are transferred in an actin-independent fashion to the apical membrane. Our data further indicate that myosin 1A is the actin-associated motor protein that drives SAVs along actin filaments to the apical cell surface.
Collapse
Affiliation(s)
- Ralf Jacob
- Department of Physiological Chemistry, School of Veterinary Medicine, Hannover, Bünteweg 17, D-30559, Hannover, Germany.
| | | | | | | |
Collapse
|
15
|
Jacob R, Peters K, Naim HY. The prosequence of human lactase-phlorizin hydrolase modulates the folding of the mature enzyme. J Biol Chem 2002; 277:8217-25. [PMID: 11751874 DOI: 10.1074/jbc.m111500200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The efficient transport of proteins along the secretory pathway requires that the polypeptide adopts a stably folded conformation to egress the endoplasmic reticulum (ER). The transport-competent precursor of the brush border enzyme LPH, pro-LPH, undergoes an intracellular cleavage process in the trans-Golgi network between Arg(734) and Leu(735) to yield LPH beta(initial). The role of the prodomain comprising the N-terminally located 734 amino acids of pro-LPH, LPH alpha, in the folding events of LPH beta(initial) has been analyzed by the individual expression of both forms in COS-1 cells. Following synthesis at 37 degrees C LPH beta(initial) acquires a misfolded and enzymatically inactive conformation that is degraded by trypsin. A temperature shift to 20 degrees C generates a stable, trypsin-resistant, and enzymatically active LPH beta(initial) indicating that the individual expression of LPH beta(initial) results in a temperature-sensitive conformation. This form interacts at non-permissive temperatures sequentially with the ER chaperones immunoglobulin-binding protein and calnexin resulting in an ER retention. The LPH alpha prodomain resides in the ER when individually expressed. It reveals compact structural features that are stabilized by disulfide bridges. LPH alpha and LPH beta(initial) readily interact with each other upon coexpression, and this interaction appears to trigger the formation of a trypsin-resistant, correctly folded, enzymatically active, and transport-competent LPH beta(initial) polypeptide. These data clearly demonstrate that the proregion of pro-LPH is an intramolecular chaperone that is critically essential in facilitating the folding of the intermediate form LPH beta(initial) in the context of the pro-LPH polypeptide.
Collapse
Affiliation(s)
- Ralf Jacob
- Department of Physiological Chemistry, School of Veterinary Medicine Hannover, Bünteweg 17, Hannover D-30559, Germany
| | | | | |
Collapse
|
16
|
Spodsberg N, Alfalah M, Naim HY. Characteristics and structural requirements of apical sorting of the rat growth hormone through the O-glycosylated stalk region of intestinal sucrase-isomaltase. J Biol Chem 2001; 276:46597-604. [PMID: 11577111 DOI: 10.1074/jbc.m108187200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The apical sorting of the small intestinal membrane glycoprotein sucrase-isomaltase (SI) depends on the presence of O-linked glycans and the transmembrane domain. Here, we investigate the role of O-glycans carried by the Ser/Thr-rich stalk region of SI as an apical sorting signal and evaluate the spatial requirements for an efficient recognition of this signal. Several hybrid proteins are generated comprising the unsorted and unglycosylated protein, the rat growth hormone (rGH), fused to either the transmembrane domain of SI (GH-SI(TM)), or the transmembrane and the stalk domains (GH-SI(SR/TM)). Both constructs are randomly distributed over the apical and basolateral membranes of MDCK cells indicating that neither the transmembrane domain nor the O-glycans are sufficient per se for an apical delivery. Only when a polyglycine spacer is inserted between the stalk region of SI and the luminal part of rGH in the GH-SI(Gly/SR/TM) fusion protein does efficient apical sorting of an O-glycosylated protein as well as a time-dependent association with detergent-insoluble lipid microdomains occur. Obviously, the polyglycine spacer facilitates the accessibility of the O-glycans in GH-SI(Gly/SR/TM) to a putative sorting receptor, whereas these glycans are inadequately recognized in GH-SI(SR/TM). We conclude that the O-glycans in the stalk region of SI act as an apical sorting signal within a sorting machinery that comprises at least a carbohydrate-binding protein and fulfills specific spatial requirements provided, for example by a polyglycine spacer in the context of rGH or the P-domain within the SI enzyme complex.
Collapse
Affiliation(s)
- N Spodsberg
- Department of Physiological Chemistry, School of Veterinary Medicine Hanover, Bünteweg 17, Hanover D-30559, Germany
| | | | | |
Collapse
|
17
|
Abstract
The function of polarized epithelial cells and neurons is achieved through intracellular sorting mechanisms that recognize classes of proteins in the trans-Golgi network (TGN) and deliver them into separate vesicles for transport to the correct surface domain. Some proteins are delivered to the apical membrane after their association with membrane detergent-insoluble glycophosphatidylinositol/cholesterol (DIG) membrane microdomains [1], while some do not associate with DIGs [2-4]. However, it is not clear if this represents transport by two different pathways or if it can be explained by differences in the affinity of individual proteins for DIGs. Here, we investigate the different trafficking mechanisms of two apically sorted proteins, the DIG-associated sucrase-isomaltase (SI) and lactase-phlorizin hydrolase, which uses a DIG-independent pathway [5]. These proteins were tagged with YFP or CFP, and their trafficking in live cells was visualized using confocal laser microscopy. We demonstrate that each protein is localized to distinct subdomains in the same transport vesicle. A striking triangular pattern of concentration of the DIG-associated SI in subvesicular domains was observed. The original vesicles partition into smaller carriers containing either sucrase-isomaltase or lactase-phlorizin hydrolase, but not both, demonstrating for the first time a post-TGN segregation step and transport of apical proteins in different vesicular carriers.
Collapse
Affiliation(s)
- R Jacob
- Department of Physiological Chemistry, School of Veterinary Medicine, Hannover, Germany
| | | |
Collapse
|
18
|
Jacob R, Alfalah M, Grünberg J, Obendorf M, Naim HY. Structural determinants required for apical sorting of an intestinal brush-border membrane protein. J Biol Chem 2000; 275:6566-72. [PMID: 10692463 DOI: 10.1074/jbc.275.9.6566] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The distinct protein and lipid constituents of the apical and basolateral membranes in polarized cells are sorted by specific signals. O-Glycosylation of a highly polarized intestinal brush-border protein sucrase isomaltase is implicated in its apical sorting through interaction with sphingolipid-cholesterol microdomains. We characterized the structural determinants required for this mechanism by focusing on two major domains in pro-SI, the membrane anchor and the Ser/Thr-rich stalk domain. Deletion mutants lacking either domain, pro-SI(DeltaST) (stalk-free) and pro-SI(DeltaMA) (membrane anchor-free), were constructed and expressed in polarized Madin-Darby canine kidney cells. In the absence of the membrane anchoring domain, pro-SI(DeltaMA) does not associate with lipid rafts and the mutant is randomly delivered to both membranes. Therefore, the O-glycosylated stalk region is not sufficient per se for the high fidelity of apical sorting of pro-SI. Pro-SI(DeltaST) does not associate either with lipid rafts and its targeting behavior is similar to that of pro-SI(DeltaMA). Only wild type pro-SI containing both determinants, the stalk region and membrane anchor, associates with lipid microdomains and is targeted correctly to the apical membrane. However, not all sequences in the stalk region are required for apical sorting. Only O-glycosylation of a stretch of 12 amino acids (Ala(37)-Pro(48)) juxtapose the membrane anchor is required in conjunction with the membrane anchoring domain for correct targeting of pro-SI to the apical membrane. Other O-glycosylated domains within the stalk (Ala(49)-Pro(57)) are not sufficient for apical sorting. We conclude that the recognition signal for apical sorting of pro-SI comprises O-glycosylation of the Ala(37)-Pro(48) stretch and requires the presence of the membrane anchoring domain.
Collapse
Affiliation(s)
- R Jacob
- Department of Physiological Chemistry, School of Veterinary Medicine Hannover, Bünteweg 17, D-30559 Hannover, Germany
| | | | | | | | | |
Collapse
|
19
|
Naim HY, Joberty G, Alfalah M, Jacob R. Temporal association of the N- and O-linked glycosylation events and their implication in the polarized sorting of intestinal brush border sucrase-isomaltase, aminopeptidase N, and dipeptidyl peptidase IV. J Biol Chem 1999; 274:17961-7. [PMID: 10364244 DOI: 10.1074/jbc.274.25.17961] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The temporal association between O-glycosylation and processing of N-linked glycans in the Golgi apparatus as well as the implication of these events in the polarized sorting of three brush border proteins has been the subject of the current investigation. O-Glycosylation of pro-sucrase-isomaltase (pro-SI), aminopeptidase N (ApN), and dipeptidyl peptidase IV (DPPIV) is drastically reduced when processing of the mannose-rich N-linked glycans is blocked by deoxymannojirimycin, an inhibitor of the Golgi-located mannosidase I. By contrast, O-glycosylation is not affected in the presence of swainsonine, an inhibitor of Golgi mannosidase II. The results indicate that removal of the outermost mannose residues by mannosidase I from the mannose-rich N-linked glycans is required before O-glycosylation can ensue. On the other hand, subsequent mannose residues in the core chain impose no sterical constraints on the progression of O-glycosylation. Reduction or modification of N- and O-glycosylation do not affect the transport of pro-SI, ApN, or DPPIV to the cell surface per se. However, the polarized sorting of two of these proteins, pro-SI and DPPIV, to the apical membrane is substantially altered when O-glycans are not completely processed, while the sorting of ApN is not affected. The processing of N-linked glycans, on the other hand, has no influence on sorting of all three proteins. The results indicate that O-linked carbohydrates are at least a part of the sorting mechanism of pro-SI and DPPIV. The sorting of ApN implicates neither O-linked nor N-linked glycans and is driven most likely by carbohydrate-independent mechanisms.
Collapse
Affiliation(s)
- H Y Naim
- Department of Physiological Chemistry, School of Veterinary Medicine Hannover, Bünteweg 17, D-30559 Hannover, Germany.
| | | | | | | |
Collapse
|
20
|
Jacob R, Preuss U, Panzer P, Alfalah M, Quack S, Roth MG, Naim H, Naim HY. Hierarchy of sorting signals in chimeras of intestinal lactase-phlorizin hydrolase and the influenza virus hemagglutinin. J Biol Chem 1999; 274:8061-7. [PMID: 10075706 DOI: 10.1074/jbc.274.12.8061] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Lactase-phlorizin hydrolase (LPH) is an apical protein in intestinal cells. The location of sorting signals in LPH was investigated by preparing a series of mutants that lacked the LPH cytoplasmic domain or had the cytoplasmic domain of LPH replaced by sequences that comprised basolateral targeting signals and overlapping internalization signals of various potency. These signals are mutants of the cytoplasmic domain of the influenza hemagglutinin (HA), which have been shown to be dominant in targeting HA to the basolateral membrane. The LPH-HA chimeras were expressed in Madin-Darby canine kidney (MDCK) and colon carcinoma (Caco-2) cells, and their transport to the cell surface was analyzed. All of the LPH mutants were targeted correctly to the apical membrane. Furthermore, the LPH-HA chimeras were internalized, indicating that the HA tails were available to interact with the cytoplasmic components of clathrin-coated pits. The introduction of a strong basolateral sorting signal into LPH was not sufficient to override the strong apical signals of the LPH external domain or transmembrane domains. These results show that basolateral sorting signals are not always dominant over apical sorting signals in proteins that contain each and suggest that sorting of basolateral from apical proteins occurs within a common compartment where competition for sorting signals can occur.
Collapse
Affiliation(s)
- R Jacob
- Department of Physiological Chemistry, School of Veterinary Medicine Hannover, D-30559 Hannover, Germany
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Panzer P, Preuss U, Joberty G, Naim HY. Protein domains implicated in intracellular transport and sorting of lactase-phlorizin hydrolase. J Biol Chem 1998; 273:13861-9. [PMID: 9593732 DOI: 10.1074/jbc.273.22.13861] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The roles of various domains of intestinal lactase-phlorizin hydrolase (pro-LPH) on its folding, dimerization, and polarized sorting are investigated in deletion mutants of the ectodomain fused or not fused with the membrane-anchoring and cytoplasmic domains (MACT). Deletion of 236 amino acids immediately upstream of MACT has no effect on the folding, dimerization, transport competence, or polarized sorting of the mutant LPH1646MACT. By contrast, LPH1646, an anchorless counterpart of LPH1646MACT, is not transported beyond the ER and persists as a mannose-rich monomer during its entire life cycle. The further deletion of 87 amino acids generates a correctly folded but transport-incompetent monomeric LPH1559MACT mutant. The results strongly suggest that dimerization and transport of pro-LPH implicate a stretch of 87 amino acids in the ectodomain between LPH1646MACT and LPH1559MACT. In addition, dimerization of pro-LPH requires at least two further criteria: (i) a correctly folded ectodomain of pro-LPH and (ii) the presence of the transmembrane region. Neither of these requirements alone is sufficient for dimerization. Finally, the sorting of pro-LPH appears to be mediated by signals located between the cleavage site of pro-LPH and the LPH1646MACT mutant.
Collapse
Affiliation(s)
- P Panzer
- Protein Secretion Group, Institute of Microbiology, Heinrich Heine University of Düsseldorf, Universitätsstrasse 1, Geb. 26.12.01, D-40225 Düsseldorf, Germany
| | | | | | | |
Collapse
|
22
|
Ouwendijk J, Peters WJ, van de Vorstenbosch RA, Ginsel LA, Naim HY, Fransen JA. Routing and processing of lactase-phlorizin hydrolase in transfected Caco-2 cells. J Biol Chem 1998; 273:6650-5. [PMID: 9506961 DOI: 10.1074/jbc.273.12.6650] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human lactase-phlorizin hydrolase (LPH) is a digestive enzyme that is expressed in the small intestinal brush-border membrane. After terminal glycosylation in the Golgi apparatus, the 230-kDa pro-LPH is cleaved into the 160-kDa brush-border LPHbeta and the 100-kDa profragment (LPHalpha). Since LPHbeta is not transport-competent when it is expressed separately from LPHalpha in COS-1 cells, it was suggested that LPHalpha functions as an intramolecular chaperone. What happens to LPHalpha after cleavage is still unclear. To analyze and localize LPHalpha in polarized epithelial cells, wild type and tagged LPH were stably expressed in Caco-2 cells. In tagged LPH, a vesicular stomatitis virus epitope tag was inserted into the LPHalpha region. Wild type and tagged proteins were processed at similar rates, and both cleaved LPHbeta forms were expressed at the apical cell surface. Pro-LPH was recognized by antibodies against LPH, a profragment epitope and the vesicular stomatitis virus tag. LPHalpha alone, however, could not be recovered by these antibodies. Our data suggest that LPHalpha is degraded immediately after cleavage.
Collapse
Affiliation(s)
- J Ouwendijk
- Department of Cell Biology and Histology, University of Nijmegen, P. O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | | | | | | | | | | |
Collapse
|
23
|
Wüthrich M, Creemers JW, van de Ven WJ, Sterchi EE. Human lactase-phlorizin hydrolase is not processed by furin, PC1/PC3, PC2, PACE4 and PC5/PC6A of the family of subtilisin-like proprotein processing proteases. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1311:199-203. [PMID: 8664347 DOI: 10.1016/0167-4889(96)00007-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Human lactase-phlorizin hydrolase (LPH, EC 3.2.1.23/62) is synthesized as a single-chain precursor glycoprotein (pro-LPH) with a relative molecular mass of just over 200 kDa. Maturation to the mature enzyme (m-LPH, 160 kDa) occurs after passage of pro-LPH through the Golgi complex and involves the proteolytic removal of a 849 amino acid propeptide. The role of this propeptide as well as its removal is not fully understood and the proteolytic enzyme or enzymes involved are unknown. We studied the potential role of five different members of the family of subtilisin-like proprotein processing proteases in the maturation process of human LPH using a vaccinia virus based coexpression system in pig kidney PK(15) cells. Infected/transfected PK(15) cells expressed full-length pro-LPH but no maturation to m-LPH was observed. Coexpression of human pro-LPH with human furin, human PC1/PC3, human PC2, human PACE4 and mouse PC6A in PK(15) cells did not result in maturation of the enzyme. Cleavage and secretion of von Willebrand factor precursor (pro-vWF) was used as a positive control. None of the five proprotein processing proteases tested were capable of cleaving human pro-LPH, strongly suggesting that they are not involved in the maturation of this enzyme.
Collapse
Affiliation(s)
- M Wüthrich
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of Berne, Switzerland
| | | | | | | |
Collapse
|
24
|
Jacob R, Radebach I, Wüthrich M, Grünberg J, Sterchi EE, Naim HY. Maturation of human intestinal lactase-phlorizin hydrolase: generation of the brush border form of the enzyme involves at least two proteolytic cleavage steps. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 236:789-95. [PMID: 8665896 DOI: 10.1111/j.1432-1033.1996.t01-1-00789.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Human lactase-phlorizin hydrolase (LPH), a brush border membrane hydrolase of the small intestine, is synthesized as a precursor molecule that undergoes proteolytic cleavage to yield mature LPH (LPHbeta) by a trypsin-like protease (Naim et al., 1987, 1991). Arg868-Ala869 has been previously proposed to be the putative cleavage site for this processing step. Site-directed mutagenesis of this monobasic site does not lead to the generation of an uncleaved proLPH species, which strongly suggests the existence of an additional cleavage site. Further analyses of LPH synthesized in different cell lines lend support to this hypothesis. Biosynthetic labeling of human intestinal biopsy samples in the presence of trypsin reveals an LPHbeta species that is slightly smaller than the intracellularly cleaved molecule. When the proLPH molecule is screened for potential cleavage sites, two dibasic pairs are revealed upstream of the N-terminal end of brush border LPH at Lys851-Arg852 and Arg830-Lys831. Treatment of proLPH with trypsin for different periods of time supports the idea of at least two cleavage steps, whereby Arg868-Ala869 represents the final cleavage site that generates LPHbeta. We propose that the initial cleavage of proLPH takes place intracellularly at a site further away from Arg868-Ala869, to generate LPHbeta initial; LPHbeta is subsequently cleaved extracellularly in the gut lumen, presumably by trypsin, at Arg868-Ala869 to mature brush border LPH (LPHbeta initial).
Collapse
Affiliation(s)
- R Jacob
- Protein Secretion Group, Institute of Microbiology, Heinrich Heine University of Düsseldorf, Germany
| | | | | | | | | | | |
Collapse
|
25
|
Perton FG, Baron W, Scheffer AJ, Beintema JJ. Production and characterization of monoclonal antibodies against Panulirus interruptus hemocyanin. BIOLOGICAL CHEMISTRY HOPPE-SEYLER 1995; 376:243-7. [PMID: 7542893 DOI: 10.1515/bchm3.1995.376.4.243] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Since the primary and higher-order structures of hemocyanin from the crustacean arthropod Panulirus interruptus have been elucidated completely, it should be possible to determine which regions of this immunogenic molecule are recognized most often by antibodies. Monoclonal antibodies were raised against subunits a and b of this hemocyanin, and fourteen of them were further characterized. The produced antibodies were of class IgG, subclasses 1 or 2a. Most of them had dissociation constants on the order of magnitude 10(-8)-10(-10), a few had lower affinities. Most clones showed no or negligible cross-reactivity with other crustacean hemocyanins. The reactivity of most other clones diminished with increasing sequence difference between the investigated hemocyanins. However, in a few instances a stronger reactivity with other hemocyanins was observed than with that from Panulirus interruptus. After complete denaturation of the hemocyanin there was no reaction with the monoclonal antibodies, indicating that the latter recognize conformational epitopes. Only one monoclonal antibody reacted with denatured hemocyanin. This antibody was also the only one which reacted with a CNBr digest, which means that it recognizes a sequential epitope. Several antibodies showed a faint reaction on Western blots, indicating the presence of some refolded native structure. Limited proteolysis of the hemocyanin molecule results in the formation of a 18 kDa fragment, representing domain 1, and a 55 kDa fragment representing domains 2 and 3. It was determined on Western blots of the digest on which fragment epitopes for eleven of the monoclonal antibodies were located.
Collapse
Affiliation(s)
- F G Perton
- Biochemisch Laboratorium, Rijksuniversiteit Groningen, The Netherlands
| | | | | | | |
Collapse
|
26
|
Van Beers EH, Büller HA, Grand RJ, Einerhand AW, Dekker J. Intestinal brush border glycohydrolases: structure, function, and development. Crit Rev Biochem Mol Biol 1995; 30:197-262. [PMID: 7555019 DOI: 10.3109/10409239509085143] [Citation(s) in RCA: 121] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The hydrolytic enzymes of the intestinal brush border membrane are essential for the degradation of nutrients to absorbable units. Particularly, the brush border glycohydrolases are responsible for the degradation of di- and oligosaccharides into monosaccharides, and are thus crucial for the energy-intake of humans and other mammals. This review will critically discuss all that is known in the literature about intestinal brush border glycohydrolases. First, we will assess the importance of these enzymes in degradation of dietary carbohydrates. Then, we will closely examine the relevant features of the intestinal epithelium which harbors these glycohydrolases. Each of the glycohydrolytic brush border enzymes will be reviewed with respect to structure, biosynthesis, substrate specificity, hydrolytic mechanism, gene regulation and developmental expression. Finally, intestinal disorders will be discussed that affect the expression of the brush border glycohydrolases. The clinical consequences of these enzyme deficiency disorders will be discussed. Concomitantly, these disorders may provide us with important details regarding the functions and gene expression of these enzymes under specific (pathogenic) circumstances.
Collapse
|