1
|
Mihìc P, Hédouin S, Francastel C. Centromeres Transcription and Transcripts for Better and for Worse. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2021; 60:169-201. [PMID: 34386876 DOI: 10.1007/978-3-030-74889-0_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Centromeres are chromosomal regions that are essential for the faithful transmission of genetic material through each cell division. They represent the chromosomal platform on which assembles a protein complex, the kinetochore, which mediates attachment to the mitotic spindle. In most organisms, centromeres assemble on large arrays of tandem satellite repeats, although their DNA sequences and organization are highly divergent among species. It has become evident that centromeres are not defined by underlying DNA sequences, but are instead epigenetically defined by the deposition of the centromere-specific histone H3 variant, CENP-A. In addition, and although long regarded as silent chromosomal loci, centromeres are in fact transcriptionally competent in most species, yet at low levels in normal somatic cells, but where the resulting transcripts participate in centromere architecture, identity, and function. In this chapter, we discuss the various roles proposed for centromere transcription and their transcripts, and the potential molecular mechanisms involved. We also discuss pathological cases in which unscheduled transcription of centromeric repeats or aberrant accumulation of their transcripts are pathological signatures of chromosomal instability diseases. In sum, tight regulation of centromeric satellite repeats transcription is critical for healthy development and tissue homeostasis, and thus prevents the emergence of disease states.
Collapse
Affiliation(s)
- Pia Mihìc
- Université De Paris, Epigenetics and Cell Fate, CNRS UMR7216, Paris, France
| | - Sabrine Hédouin
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Claire Francastel
- Université De Paris, Epigenetics and Cell Fate, CNRS UMR7216, Paris, France.
| |
Collapse
|
2
|
Abstract
Codon usage depends on mutation bias, tRNA-mediated selection, and the need for high efficiency and accuracy in translation. One codon in a synonymous codon family is often strongly over-used, especially in highly expressed genes, which often leads to a high dN/dS ratio because dS is very small. Many different codon usage indices have been proposed to measure codon usage and codon adaptation. Sense codon could be misread by release factors and stop codons misread by tRNAs, which also contribute to codon usage in rare cases. This chapter outlines the conceptual framework on codon evolution, illustrates codon-specific and gene-specific codon usage indices, and presents their applications. A new index for codon adaptation that accounts for background mutation bias (Index of Translation Elongation) is presented and contrasted with codon adaptation index (CAI) which does not consider background mutation bias. They are used to re-analyze data from a recent paper claiming that translation elongation efficiency matters little in protein production. The reanalysis disproves the claim.
Collapse
|
3
|
Kaneko H, Katoh T, Hirano I, Hasegawa A, Tsujita T, Yamamoto M, Shimizu R. Induction of erythropoietin gene expression in epithelial cells by chemicals identified in GATA inhibitor screenings. Genes Cells 2017; 22:939-952. [PMID: 29044949 DOI: 10.1111/gtc.12537] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Accepted: 09/07/2017] [Indexed: 01/10/2023]
Abstract
Erythropoietin (EPO) is a hormone that promotes proliferation, differentiation and survival of erythroid progenitors. EPO gene expression is regulated in a tissue-specific and hypoxia-inducible manner and is mainly restricted to renal EPO-producing cells after birth. Chronic kidney disease (CKD) confers high risk for renal anemia due to lower EPO production from injured kidneys. In transgenic reporter lines of mice, disruption of a GATA-binding motif within the Epo gene promoter-proximal region restores constitutive reporter expression in epithelial cells. Here, mitoxantrone and its analogues, identified as GATA factor inhibitors through high-throughput chemical library screenings, markedly induce EPO/Epo gene expression in epithelium-derived cell lines and mice regardless of oxygen levels. In contrast, mitoxantrone interferes with hypoxia-induced EPO gene expression in Hep3B cells. Cryptic promoters are created for the EPO/Epo gene expression in epithelial cells upon mitoxantrone treatment, and consequently, unique 5'-untranslated regions are generated. The mitoxantrone-induced aberrant transcripts contribute to the reporter protein production in epithelial cells that carry the reporter gene in the proper reading frame of mouse Epo gene. Thus, EPO production in uninjured adult epithelial cells may be a therapeutic approach for renal anemia in patients with CKD.
Collapse
Affiliation(s)
- Hiroshi Kaneko
- Department of Molecular Hematology, Tohoku University Graduate School of Medicine, Sendai, Japan.,Tohoku Medical Mega-Bank Organization, Tohoku University, Sendai, Japan
| | - Takehide Katoh
- Department of Molecular Hematology, Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Ikuo Hirano
- Department of Molecular Hematology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Atsushi Hasegawa
- Department of Molecular Hematology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tadayuki Tsujita
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masayuki Yamamoto
- Tohoku Medical Mega-Bank Organization, Tohoku University, Sendai, Japan.,Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Ritsuko Shimizu
- Department of Molecular Hematology, Tohoku University Graduate School of Medicine, Sendai, Japan.,Tohoku Medical Mega-Bank Organization, Tohoku University, Sendai, Japan
| |
Collapse
|
4
|
Meinders M, Hoogenboezem M, Scheenstra MR, De Cuyper IM, Papadopoulos P, Németh T, Mócsai A, van den Berg TK, Kuijpers TW, Gutiérrez L. Repercussion of Megakaryocyte-Specific Gata1 Loss on Megakaryopoiesis and the Hematopoietic Precursor Compartment. PLoS One 2016; 11:e0154342. [PMID: 27152938 PMCID: PMC4859556 DOI: 10.1371/journal.pone.0154342] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Accepted: 04/11/2016] [Indexed: 12/22/2022] Open
Abstract
During hematopoiesis, transcriptional programs are essential for the commitment and differentiation of progenitors into the different blood lineages. GATA1 is a transcription factor expressed in several hematopoietic lineages and essential for proper erythropoiesis and megakaryopoiesis. Megakaryocyte-specific genes, such as GP1BA, are known to be directly regulated by GATA1. Mutations in GATA1 can lead to dyserythropoietic anemia and pseudo gray-platelet syndrome. Selective loss of Gata1 expression in adult mice results in macrothrombocytopenia with platelet dysfunction, characterized by an excess of immature megakaryocytes. To specifically analyze the impact of Gata1 loss in mature committed megakaryocytes, we generated Gata1-Lox|Pf4-Cre mice (Gata1cKOMK). Consistent with previous findings, Gata1cKOMK mice are macrothrombocytopenic with platelet dysfunction. Supporting this notion we demonstrate that Gata1 regulates directly the transcription of Syk, a tyrosine kinase that functions downstream of Clec2 and GPVI receptors in megakaryocytes and platelets. Furthermore, we show that Gata1cKOMK mice display an additional aberrant megakaryocyte differentiation stage. Interestingly, these mice present a misbalance of the multipotent progenitor compartment and the erythroid lineage, which translates into compensatory stress erythropoiesis and splenomegaly. Despite the severe thrombocytopenia, Gata1cKOMK mice display a mild reduction of TPO plasma levels, and Gata1cKOMK megakaryocytes show a mild increase in Pf4 mRNA levels; such a misbalance might be behind the general hematopoietic defects observed, affecting locally normal TPO and Pf4 levels at hematopoietic stem cell niches.
Collapse
Affiliation(s)
- Marjolein Meinders
- Dept. of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, Academic Medical Centre (AMC), University of Amsterdam (UvA), Amsterdam, the Netherlands
| | - Mark Hoogenboezem
- Dept. of Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory, AMC, UvA, Amsterdam, the Netherlands
| | - Maaike R. Scheenstra
- Dept. of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, Academic Medical Centre (AMC), University of Amsterdam (UvA), Amsterdam, the Netherlands
| | - Iris M. De Cuyper
- Dept. of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, Academic Medical Centre (AMC), University of Amsterdam (UvA), Amsterdam, the Netherlands
| | - Petros Papadopoulos
- Dept. of Hematology, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain
| | - Tamás Németh
- Dept. of Physiology, Semmelweis University School of Medicine, Budapest, Hungary
- MTA-SE “Lendület” Inflammation Physiology Research Group of the Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Attila Mócsai
- Dept. of Physiology, Semmelweis University School of Medicine, Budapest, Hungary
- MTA-SE “Lendület” Inflammation Physiology Research Group of the Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Timo K. van den Berg
- Dept. of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, Academic Medical Centre (AMC), University of Amsterdam (UvA), Amsterdam, the Netherlands
| | - Taco W. Kuijpers
- Dept. of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, Academic Medical Centre (AMC), University of Amsterdam (UvA), Amsterdam, the Netherlands
- Emma Children’s Hospital, Academic Medical Centre (AMC), UvA, Amsterdam, the Netherlands
| | - Laura Gutiérrez
- Dept. of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, Academic Medical Centre (AMC), University of Amsterdam (UvA), Amsterdam, the Netherlands
- Dept. of Hematology, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain
- * E-mail:
| |
Collapse
|
5
|
Liu D, Liu X, Meng Y, Sun C, Tang H, Jiang Y, Khan MA, Xue J, Ma N, Gao J. An organ-specific role for ethylene in rose petal expansion during dehydration and rehydration. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:2333-44. [PMID: 23599274 PMCID: PMC3654423 DOI: 10.1093/jxb/ert092] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Dehydration is a major factor resulting in huge loss from cut flowers during transportation. In the present study, dehydration inhibited petal cell expansion and resulted in irregular flowers in cut roses, mimicking ethylene-treated flowers. Among the five floral organs, dehydration substantially elevated ethylene production in the sepals, whilst rehydration caused rapid and elevated ethylene levels in the gynoecia and sepals. Among the five ethylene biosynthetic enzyme genes (RhACS1-5), expression of RhACS1 and RhACS2 was induced by dehydration and rehydration in the two floral organs. Silencing both RhACS1 and RhACS2 significantly suppressed dehydration- and rehydration-induced ethylene in the sepals and gynoecia. This weakened the inhibitory effect of dehydration on petal cell expansion. β-glucuronidase activity driven by both the RhACS1 and RhACS2 promoters was dramatically induced in the sepals, pistil, and stamens, but not in the petals of transgenic Arabidopsis. This further supports the organ-specific induction of these two genes. Among the five rose ethylene receptor genes (RhETR1-5), expression of RhETR3 was predominantly induced by dehydration and rehydration in the petals. RhETR3 silencing clearly aggravated the inhibitory effect of dehydration on petal cell expansion. However, no significant difference in the effect between RhETR3-silenced flowers and RhETR-genes-silenced flowers was observed. Furthermore, RhETR-genes silencing extensively altered the expression of 21 cell expansion-related downstream genes in response to ethylene. These results suggest that induction of ethylene biosynthesis by dehydration proceeds in an organ-specific manner, indicating that ethylene can function as a mediator in dehydration-caused inhibition of cell expansion in rose petals.
Collapse
Affiliation(s)
- Daofeng Liu
- Department of Ornamental Horticulture, China Agricultural University, Beijing 100193, PR China
- College of Horticulture and Landscape, Southwest University, Chongqing 400715, PR China
- * These authors contributed equally to this work
| | - Xiaojing Liu
- Department of Ornamental Horticulture, China Agricultural University, Beijing 100193, PR China
- Flower Research and Development Center, Zhejiang Academy of Agricultural Sciences, Hangzhou 311202, PR China
- * These authors contributed equally to this work
| | - Yonglu Meng
- Department of Ornamental Horticulture, China Agricultural University, Beijing 100193, PR China
| | - Cuihui Sun
- Department of Ornamental Horticulture, China Agricultural University, Beijing 100193, PR China
| | - Hongshu Tang
- Department of Ornamental Horticulture, China Agricultural University, Beijing 100193, PR China
| | - Yudong Jiang
- Department of Ornamental Horticulture, China Agricultural University, Beijing 100193, PR China
| | - Muhammad Ali Khan
- Department of Ornamental Horticulture, China Agricultural University, Beijing 100193, PR China
| | - Jingqi Xue
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Nan Ma
- Department of Ornamental Horticulture, China Agricultural University, Beijing 100193, PR China
| | - Junping Gao
- Department of Ornamental Horticulture, China Agricultural University, Beijing 100193, PR China
- To whom correspondence should be addressed.
| |
Collapse
|
6
|
Xia X. Position weight matrix, gibbs sampler, and the associated significance tests in motif characterization and prediction. SCIENTIFICA 2012; 2012:917540. [PMID: 24278755 PMCID: PMC3820676 DOI: 10.6064/2012/917540] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Accepted: 10/11/2012] [Indexed: 05/31/2023]
Abstract
Position weight matrix (PWM) is not only one of the most widely used bioinformatic methods, but also a key component in more advanced computational algorithms (e.g., Gibbs sampler) for characterizing and discovering motifs in nucleotide or amino acid sequences. However, few generally applicable statistical tests are available for evaluating the significance of site patterns, PWM, and PWM scores (PWMS) of putative motifs. Statistical significance tests of the PWM output, that is, site-specific frequencies, PWM itself, and PWMS, are in disparate sources and have never been collected in a single paper, with the consequence that many implementations of PWM do not include any significance test. Here I review PWM-based methods used in motif characterization and prediction (including a detailed illustration of the Gibbs sampler for de novo motif discovery), present statistical and probabilistic rationales behind statistical significance tests relevant to PWM, and illustrate their application with real data. The multiple comparison problem associated with the test of site-specific frequencies is best handled by false discovery rate methods. The test of PWM, due to the use of pseudocounts, is best done by resampling methods. The test of individual PWMS for each sequence segment should be based on the extreme value distribution.
Collapse
Affiliation(s)
- Xuhua Xia
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON, Canada K1N 6N5
| |
Collapse
|
7
|
Wang Z, Zhang Y. Predicted structural change in erythropoietin of plateau zokors--adaptation to high altitude. Gene 2012; 501:206-12. [PMID: 22425647 DOI: 10.1016/j.gene.2012.02.045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Revised: 02/19/2012] [Accepted: 02/21/2012] [Indexed: 10/28/2022]
Abstract
Erythropoietin (EPO) is a glycoprotein hormone, expressed mainly in fetus liver and adult kidneys. EPO plays an important role in enhancing red blood cell formation in bone marrow under hypoxia. Plateau zokor (Myospalax baileyi), an subterranean burrowing endemic rodent inhabiting areas of 2 800-4 200 m above sea level on Qinghai-Tibet Plateau, is a typical high hypoxia tolerant mammal with high ratio of oxygen utilization in adaptation to the harsh plateau environment. To investigate the possible mechanisms of adaptation of plateau zokor EPO to high altitude, the complete cDNA and amino acid sequences of plateau zokor EPO have been described. Phylogenetic tree of Epo showed the convergence of the Spalax and Myospalax, indicating that, the convergent evolution was driven by similar hypoxic ecological niches. Our results showed that some common sites under positive selection in zokor (116M and 144A) and Spalax (102R, 116M, 144A and 152P) are the important sites for Epo biological activity. This study thus reports a gene level observation which may be involved in adaptation to underground life at high altitude.
Collapse
Affiliation(s)
- Zhenlong Wang
- Department of Bioengineering, Zhengzhou University, Zhengzhou, 450001, Hennan, PR China
| | | |
Collapse
|
8
|
Okazaki M, Maeda G, Chiba T, Doi T, Imai K. Identification of GATA3 binding sites in Jurkat cells. Gene 2009; 445:17-25. [PMID: 19559773 DOI: 10.1016/j.gene.2009.06.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2009] [Revised: 05/27/2009] [Accepted: 06/16/2009] [Indexed: 01/25/2023]
Abstract
Determining binding sites of transcription factors is important for understanding the transcriptional control of target genes. Although a transcription factor GATA3 plays a pivotal role in Th2 lymphocyte development, its physiological role is not clearly defined because the target genes remain largely unknown. In this study, we modified chromatin immunoprecipitation (ChIP), and isolated 121 GATA3 binding sites and 83 different annotated target genes. Re-ChIP analysis using anti-GATA3 and anti-RNA polymerase II mAbs and chromosome conformation capture assay demonstrate that GATA3-bound fragments interact with basal transcriptional units of target genes. GATA3 regulation of target genes under the control of binding fragments was confirmed by reporter assay and quantification of target gene mRNA expression in the presence of GATA inhibitor or short interfering RNA against GATA3. These data demonstrate that GATA3 binds to regulatory elements and controls target gene expression through physical interaction with core promoter regions.
Collapse
Affiliation(s)
- Masahiro Okazaki
- Department of Biochemistry, School of Life Dentistry at Tokyo, The Nippon Dental University, 1-9-20 Fujimi, Chiyoda-ku, Tokyo 102-8159, Japan
| | | | | | | | | |
Collapse
|
9
|
Pietrzak M, Puzianowska-Kuznicka M. p53-dependent repression of the human MCL-1 gene encoding an anti-apoptotic member of the BCL-2 family: the role of Sp1 and of basic transcription factor binding sites in the MCL-1 promoter. Biol Chem 2008; 389:383-93. [PMID: 18208354 DOI: 10.1515/bc.2008.039] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
p53 regulates transcription of one anti-apoptotic and four pro-apoptotic members of the BCL-2 family, but nothing is known about the regulation of MCL-1, another antiapoptotic member of this family, by p53. Confocal microscopic analysis of COS1, HEK 293 and HeLa cells transfected with a p53 expression plasmid demonstrated a decrease in the signal of endogenous MCL-1 compared to neighboring non-transfected cells. Transcription regulation assays showed that the 1826 bp human MCL-1 promoter fragment was repressed up to 30-fold by wild-type p53 in a dose-dependent manner. As shown by electrophoretic mobility shift assays, Sp1 binding to the sites located in the -295 to +16 MCL-1 promoter fragment was decreased in the presence of p53. However, the MCL-1 promoter devoid of all Sp1 binding sites was still repressed by p53, albeit 2-fold weaker than the wild-type promoter. Overexpression of Sp1 reduced p53-dependent repression of the MCL-1 promoter only up to 2.2-fold. Transcription regulation assays performed with MCL-1 promoter deletion mutants showed that most of the p53 inhibitory effect was mediated by the -41 to +16 bp promoter fragment containing binding sites only for TATA-binding protein and other basal transcription factors. We propose a novel, promoter-based mechanism by which p53 down-regulates expression of the antiapoptotic MCL-1 protein.
Collapse
Affiliation(s)
- Maciej Pietrzak
- Department of Endocrinology, Medical Research Center, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | | |
Collapse
|
10
|
Abstract
In response to anemia, erythropoietin (Epo) gene transcription is markedly induced in the kidney and liver. To elucidate how Epo gene expression is regulated in vivo, we established transgenic mouse lines expressing green fluorescent protein (GFP) under the control of a 180-kb mouse Epo gene locus. GFP expression was induced by anemia or hypoxia specifically in peritubular interstitial cells of the kidney and hepatocytes surrounding the central vein. Surprisingly, renal Epo-producing cells had a neuronlike morphology and expressed neuronal marker genes. Furthermore, the regulatory mechanisms of Epo gene expression were explored using transgenes containing mutations in the GATA motif of the promoter region. A single nucleotide mutation in this motif resulted in constitutive ectopic expression of transgenic GFP in renal distal tubules, collecting ducts, and certain populations of epithelial cells in other tissues. Since both GATA-2 and GATA-3 bind to the GATA box in distal tubular cells, both factors are likely to repress constitutively ectopic Epo gene expression in these cells. Thus, GATA-based repression is essential for the inducible and cell type-specific expression of the Epo gene.
Collapse
|
11
|
Keys JR, Tallack MR, Hodge DJ, Cridland SO, David R, Perkins AC. Genomic organisation and regulation of murine alpha haemoglobin stabilising protein by erythroid Kruppel-like factor. Br J Haematol 2006; 136:150-7. [PMID: 17069580 DOI: 10.1111/j.1365-2141.2006.06381.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Alpha haemoglobin stabilising protein (AHSP) binds free alpha-globin chains and plays an important role in the protection of red cells, particularly during beta-thalassaemia. Murine ASHP was discovered as a GATA-1 target gene and human AHSP is directly regulated by GATA-1. More recently, AHSP was rediscovered as a highly erythroid Kruppel-like factor (EKLF) -dependent transcript. We have determined the organisation of the murine AHSP gene and compared it to orthologs. There are two CACC box elements in the proximal promoter. The proximal element is absolutely conserved, but does not bind EKLF as it is not a canonical binding site. In rodents, the distal element contains a 3 bp insertion that disrupts the typical EKLF binding consensus region. Nevertheless, EKLF binds this atypical site by gel mobility shift assay, specifically occupies the AHSP promoter in vivo in a chromatin immunoprecipitation assay, and transactivates AHSP through this CACC site in promoter-reporter assays. Our results suggest EKLF can occupy CACC elements in vivo that are not predictable from the consensus binding site inferred from structural studies. We also propose that absence of AHSP in EKLF-null red cells exacerbates the toxicity of free alpha-globin chains, which exist because of the defect in beta-globin gene activation.
Collapse
Affiliation(s)
- Janelle R Keys
- Institute for Molecular Bioscience, University of Queensland, St Lucia, Qld, Australia
| | | | | | | | | | | |
Collapse
|
12
|
Sobocki T, Sobocka MB, Babinska A, Ehrlich YH, Banerjee P, Kornecki E. Genomic structure, organization and promoter analysis of the human F11R/F11 receptor/junctional adhesion molecule-1/JAM-A. Gene 2006; 366:128-44. [PMID: 16337094 DOI: 10.1016/j.gene.2005.08.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2005] [Revised: 08/11/2005] [Accepted: 08/25/2005] [Indexed: 11/23/2022]
Abstract
The F11-receptor (F11R) (a.k.a. JAM-1, JAM-A, CD321) is a cell adhesion molecule of the immunoglobulin superfamily involved in platelet adhesion, secretion and aggregation. In addition, the F11R plays a critical role in the function of endothelial cells and in platelet adhesion to inflamed endothelium. In the present study, we used partial sequences of the human F11R gene, F11R cDNAs, and information in unannotated human genome databases, to delineate the F11R gene. We found that the F11R gene is composed of 13 exons (E1a, 1b, 1c, E1-E10) encoding two groups of mRNAs differing in length and sequence at their 5' UTRs, referred to as type 1 and type 2 messages. Type 1 cDNAs are shorter at the 5' end and contain a region not found within type 2 messages. Type 1 mRNAs are present in endothelial cells (EC), platelets, white blood cells and in the cell lines CMK, HeLa, K562, HOG and A549, while type 2 messages are limited to EC. Type 1 messages contain exons E1-E10 whereas type 2 messages usually contain exons E1a, 1c, part of E1 and E2-E10. The translation start site is localized in the 3' end of E1, common for both type 1 and type 2 messages. Expression of these messages is regulated by two alternative promoters, P1 and P2. P1 is a TATA-less promoter containing an initiator element, multiple transcription start sites, several GC and CCAAT boxes, and GATA, NF-kappaB and ets consensus sequences. The cloned P1 drives efficient expression of the luciferase reporter gene. A high level of similarity between human P1 and its rat and mouse counterparts was observed. Promoter P2, located upstream of P1, contains a TATA box, GC boxes, a CCAAT box and GATA and ets consensus sequences. 3' RACE provided evidence for variability in the 3' UTR due to the presence of two polyadenylation signals. The finding of multiple regulatory sites in the promoters supplements the biochemical evidence that the F11R has several different roles in the functional repertoire of endothelial cells, platelets and other cells. In particular, the presence of NF-kappaB provides additional evidence to the significance of the F11R function in the initiation of inflammatory thrombosis.
Collapse
Affiliation(s)
- T Sobocki
- Program in Neuroscience and Department of Chemistry, College of Staten Island, CUNY, 2800 Victory Blvd., 6S-326, Staten Island, NY 10314, USA.
| | | | | | | | | | | |
Collapse
|
13
|
Abstract
Megakaryocytes are the hematopoietic precursors of platelets, which play an essential role in thrombosis and hemostasis. Platelet factor 4 (PF4) is expressed exclusively in megakaryocytes and platelets and serves as a lineage-specific marker of megakaryocytic differentiation. We previously characterized a number of upstream enhancer and repressor elements and demonstrated that GATA-1 and ETS-1 are important for PF4 gene expression. Recently, we have determined the novel regulatory element termed "TME" in the PF4 promoter and identified a group of binding proteins from megakaryocytic HEL cells. Here we review the function of these proteins in PF4 gene expression and discuss megakaryocyte-specific gene expression and megakaryocytepoiesis.
Collapse
Affiliation(s)
- Takefumi Doi
- Graduate School of Pharmaceutical Sciences, Osaka University, Yamadaoka, Suita, Japan.
| |
Collapse
|
14
|
Abstract
The regulated catabolism of hyaluronan is critical to the function of many connective tissues. In cartilage, hyaluronan catabolism occurs locally by resident chondrocytes. To determine whether the expression of lysosomal hyaluronidases contributes to this regulation, the promoter elements associated with HYAL-2 gene expression were characterized. Human articular chondrocytes were found to express all three lysosomal hyaluronidases, HYAL-1, HYAL-2, and HYAL-3. HYAL-2 was the predominant gene product. Using 5' RACE (rapid amplification of cDNA ends) analysis, multiple transcription initiation sites were identified including a novel initiation site located within intron 1 of the gene expressed by human articular chondrocytes. The presence of multiple transcriptional initiation sites is a typical feature of TATA-less promoter regions, such as those of HYAL-2. Approximately 4000 bp of 5' flanking sequence of the HYAL-2 gene was characterized. Transient transfection of C-28/I2 cells with various 5' deletion constructs indicated that the region between +959 to +1158 (within intron 1) contains the basal promoter for HYAL-2 in chondrocytes. In addition, the region +224 to +958 contained a negative modulator that could control the basal expression level of HYAL-2. Treatment of human articular chondrocytes or C-28/I2 cells with various catabolic cytokines did not alter HYAL-2 mRNA expression, luciferase promoter expression, or hyaluronidase enzymatic activity. Thus, in chondrocytes HYAL-2 appears to be constitutively expressed and not inducibly regulated by catabolic agents. As such, it appears that the expression of lysosomal hyaluronidase participates little in the overall regulation of hyaluronan catabolism.
Collapse
Affiliation(s)
- Geraldine Chow
- Department of Biochemistry, Rush Medical College, Rush University Medical Center, 1735 West Harrison Street, Chicago, IL 60612
| | - Warren Knudson
- Department of Biochemistry, Rush Medical College, Rush University Medical Center, 1735 West Harrison Street, Chicago, IL 60612
- Address all correspondence and reprint requests to: Warren Knudson, Ph.D., Department of Biochemistry, Rush Medical College Rush University Medical Center, 1735 West Harrison Street, Chicago, IL 60612, Telephone (312) 942-7837; FAX (312) 942-3053;
| |
Collapse
|
15
|
Mura C, Le Gac G, Jacolot S, Férec C. Transcriptional regulation of the human HFE gene indicates high liver expression and erythropoiesis coregulation. FASEB J 2004; 18:1922-4. [PMID: 15467009 DOI: 10.1096/fj.04-2520fje] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The human HFE gene is clearly involved in hereditary hemochromatosis, a common autosomal recessive genetic disorder of iron homeostasis. However, the precise role of the HFE protein is still undefined. Here, to obtain new insight, we analyzed the transcriptional regulation of HFE gene and defined the functional organization of the HFE promoter. Both in vitro transcription and reporter gene assay in transient transfection evidenced a high liver expression of the HFE mRNA. The 5' end analysis of mRNA showed two major initiation sites localized at -265 and -195 directed by TATA-like sequences and a window of initiation within the -120 to -10 GC-rich region upstream of the first coding nucleotide. Positive cis-regulating elements were characterized within the -1057/-8 region, and a negative one extending upstream (-1485/-1057) was identified. DNase I footprinting analysis and gel shift assay revealed several protein binding sites, and subsequent functional analysis evidenced transactivation of HFE by liver-enriched C/EBPalpha, erythropoietic-specific GATA-1, and ubiquitous Sp1 transcription factors. These data bring some evidence of a role of HFE in the liver and a coregulation with erythropoiesis as other genes involved in iron homeostasis.
Collapse
Affiliation(s)
- Catherine Mura
- INSERM U613, Génétique Moléculaire et Génétique Epidémiologique, UBO, 46 rue Félix Le Dantec, Brest 29200, France.
| | | | | | | |
Collapse
|
16
|
Okada Y, Matsuura E, Tozuka Z, Nagai R, Watanabe A, Matsumoto K, Yasui K, Jackman RW, Nakano T, Doi T. Upstream stimulatory factors stimulate transcription through E-box motifs in the PF4 gene in megakaryocytes. Blood 2004; 104:2027-34. [PMID: 15187018 DOI: 10.1182/blood-2003-09-3107] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Platelet factor 4 (PF4) is expressed during megakaryocytic differentiation. We previously demonstrated that the homeodomain proteins (myeloid ecotropic integration site 1 [MEIS1], Pbx-regulating protein 1 [PREP1], and pre-B-cell leukemia transcription factors [PBXs]) bind to the novel regulatory element tandem repeat of MEIS1 binding element [TME] and transactivate the rat PF4 promoter. In the present study, we investigated and identified other TME binding proteins in megakaryocytic HEL cells using mass spectrometry. Among identified proteins, we focused on upstream stimulatory factor (USF1) and USF2 and investigated their effects on the PF4 promoter. USF1 and 2 bound to the E-box motif in the TME and strongly transactivated the PF4 promoter. Furthermore, physiologic bindings of USF1 and 2 to the TME in rat megakaryocytes were demonstrated by the chromatin immunoprecipitation (ChIP) assay. Interestingly, the E-box motif in the TME was conserved in TME-like sequences of both the human and mouse PF4 promoters. USF1 and 2 also bound to the human TME-like sequence and transactivated the human PF4 promoter. Expressions of USF1 and 2 were detected by reverse-transcriptase-polymerase chain reaction (RT-PCR) in the human megakaryocytes derived from CD34+ cells. Thus, these studies demonstrate that the novel TME binding transcription factors, USF1 and 2, transactivate rat and human PF4 promoters and may play an important role in megakaryocytic gene expression.
Collapse
Affiliation(s)
- Yoshiaki Okada
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Minami T, Murakami T, Horiuchi K, Miura M, Noguchi T, Miyazaki JI, Hamakubo T, Aird WC, Kodama T. Interaction between hex and GATA transcription factors in vascular endothelial cells inhibits flk-1/KDR-mediated vascular endothelial growth factor signaling. J Biol Chem 2004; 279:20626-35. [PMID: 15016828 DOI: 10.1074/jbc.m308730200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recent evidence supports a role for GATA transcription factors as important signal intermediates in differentiated endothelial cells. The goal of this study was to identify proteins that interact with endothelial-derived GATA transcription factors. Using yeast two-hybrid screening, we identified hematopoietically expressed homeobox (Hex) as a GATA-binding partner in endothelial cells. The physical association between Hex and GATA was confirmed with immunoprecipitation in cultured cells. Hex overexpression resulted in decreased flk-1/KDR expression, both at the level of the promoter and the endogenous gene, and attenuated vascular endothelial growth factor-mediated tube formation in primary endothelial cell cultures. In electrophoretic mobility shift assays, Hex inhibited the binding of GATA-2 to the flk-1/KDR 5'-untranslated region GATA motif. Finally, in RNase protection assays, transforming growth factor beta1, which has been previously shown to decrease flk-1 expression by interfering with GATA binding activity, was shown to increase Hex expression in endothelial cells. Taken together, the present study provides evidence for a novel association between Hex and GATA and suggests that transforming growth factor beta-mediated repression of flk-1/KDR and vascular endothelial growth factor signaling involves the inducible formation of inhibitory Hex-GATA complexes.
Collapse
Affiliation(s)
- Takashi Minami
- Research Center for Advanced Science and Technology, University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8904, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Dame C, Sola MC, Lim KC, Leach KM, Fandrey J, Ma Y, Knöpfle G, Engel JD, Bungert J. Hepatic erythropoietin gene regulation by GATA-4. J Biol Chem 2003; 279:2955-61. [PMID: 14583613 DOI: 10.1074/jbc.m310404200] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Erythropoietin production switches from fetal liver to adult kidney during development. GATA transcription factors 2 and 3 could be involved in modulating this switch, because they were shown to negatively regulate erythropoietin gene transcription through a promoter proximal GATA site. Herein, we analyzed the role of several GATA factors in the regulation of the erythropoietin gene in human liver and in hepatoma cells. Although GATA-3 expression in hepatocytes increases during human development, erythropoietin mRNA accumulation is unaltered in mutant mice lacking GATA-3. We found that GATA-2, -3, -4, and -6 are all expressed in human hepatocytes and that GATA-4 exhibits the most prominent Epo promoter binding activity in vitro and in vivo. Inhibition of GATA-4 expression by RNA interference leads to a dramatic reduction in Epo gene transcription in Hep3B cells. Moreover, GATA-4 expression is high and limited to hepatocytes in the fetal liver, whereas GATA-4 expression in the adult liver is low and restricted to epithelial cells surrounding the biliary ducts. Thus, GATA-4 is critical for transcription of the Epo gene in hepatocytes and may contribute to the switch in the site of Epo gene expression from the fetal liver to the adult kidney.
Collapse
Affiliation(s)
- Christof Dame
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida 32610, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Okada Y, Nagai R, Sato T, Matsuura E, Minami T, Morita I, Doi T. Homeodomain proteins MEIS1 and PBXs regulate the lineage-specific transcription of the platelet factor 4 gene. Blood 2003; 101:4748-56. [PMID: 12609849 DOI: 10.1182/blood-2002-02-0380] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Platelet factor 4 (PF4) is expressed during megakaryocytic differentiation. We previously reported that GATA-1 and ETS-1 regulate the rat PF4 promoter and transactivate the PF4 gene. For the present study, we investigated the regulatory elements and their transcription factors responsible for the lineage-specific expression of the PF4 gene. The promoter activities of deletion constructs were evaluated, and a novel regulatory element termed TME (tandem repeat of MEIS1 binding element) (-219 to -182) was defined. Binding proteins to TME were strongly detected in HEL nuclear extracts by electrophoresis mobility shift assay (EMSA), and they were purified by DNA affinity chromatography. By performing Western blottings and supershift assays, the binding proteins were identified as homeodomain proteins, MEIS1, PBX1B, and PBX2. These factors are expressed in megakaryocytes differentiated from CD34+ cells in human cord blood. MEIS1 and PBXs bind to the TME as MEIS1/PBX complexes and activate the PF4 promoter. In nonmegakaryocytic HepG2 cells, GATA-1 and ETS-1 activate the PF4 promoter approximately 10-fold. Surprisingly, we found that additional expression of both MEIS1 and PBX2 multiplied this major activation another 2-fold. This activation was not observed when MEIS1 binding sites in the TME were disrupted. Furthermore, inhibition of the binding of endogenous MEIS1/PBX complexes to the TME decreased the promoter activity by almost one half, in megakaryocytic HEL cells. Thus, these studies demonstrate that the homeodomain proteins, MEIS1, PBX1B, and PBX2, play an important role in megakaryocytic gene expression.
Collapse
Affiliation(s)
- Yoshiaki Okada
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Japan
| | | | | | | | | | | | | |
Collapse
|
20
|
Okada Y, Matsuura E, Nagai R, Sato T, Watanabe A, Morita I, Doi T. PREP1, MEIS1 homolog protein, regulates PF4 gene expression. Biochem Biophys Res Commun 2003; 305:155-9. [PMID: 12732210 DOI: 10.1016/s0006-291x(03)00718-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We have previously demonstrated that homeodomain proteins, MEIS1 and PBXs, transactivate the PF4 gene through the novel regulatory element termed TME. This study focuses on Pbx regulating protein 1 (PREP1), a MEIS1 homolog protein, for its transcriptional activity in the PF4 promoter. PREP1 binds to the TME in HEL cells. PREP1 was expressed in human megakaryocytes that differentiated from CD34(+) cells. EMSA shows that either PREP1 by itself or PREP1/PBX complexes bind to the two TGACAG motifs in the TME and activate the PF4 promoter. Furthermore, PREP1 and PREP1/PBX complexes synergistically activate the PF4 promoter with GATA-1 and ETS-1. These data demonstrate that PREP1 is also an important transcription factor that regulates PF4 gene expression such as MEIS1. Additionally, these data imply functional similarities and differences between PREP1 and MEIS1 in the regulation of PF4 gene expression.
Collapse
Affiliation(s)
- Yoshiaki Okada
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | |
Collapse
|
21
|
Xia T, Gao L, Yu RK, Zeng G. Characterization of the promoter and the transcription factors for the mouse UDP-Gal:betaGlcNAc beta1,3-galactosyltransferase gene. Gene 2003; 309:117-23. [PMID: 12758127 DOI: 10.1016/s0378-1119(03)00496-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Galbeta1-3Gal-NAcbeta1-4Gal(3-2alphaNeuAc)beta1-4Glcbeta1-1Cer (GM1) is one of the most extensively investigated gangliosides that plays critical roles in the development and functions of the nervous system. UDP-Gal:betaGlcNAc beta1,3-galactosyltransferase (Gal-T-II) is responsible for synthesis of ganglioside GM1 in the ganglioside biosynthetic pathway. To understand the transcriptional regulation of Gal-T-II gene expression, we cloned a 1448 bp 5'-flanking fragment from the mouse Gal-T-II gene. The transcriptional activity of the fragment was demonstrated in mouse Neuro-2a cells by a luciferase assay. The proximal 550 bp fragment showed the highest transcriptional activity as determined by a series of 5'-truncated constructs of the promoter. One negative regulatory region was also identified. Primer extension assay revealed a transcription initiation site approximately 242 bp upstream from the ATG translation start codon. Analysis of the promoter sequence revealed a number of potential binding sites for known transcription factors. To determine which transcription factors bind to the promoter, we carried out a systematic search for the binding proteins using the 1142 bp Gal-T-II promoter fragment containing both positive and negative regulatory regions in a combination of DNA pull-down assay and transcription factor array analysis. Twenty-seven transcription factors bound to consensus sites in the promoter region. In addition, four other factors without consensus binding sites in this region were also recruited, possibly as components of transcription factor complexes. These data indicate that the basal regulation of Gal-T-II gene transcription involves multiple transcription factors, some of which may be present in complexes.
Collapse
Affiliation(s)
- Tian Xia
- Institute of Molecular Medicine and Genetics, Medical College of Georgia, 1120 15th Street, Augusta, GA 30912, USA
| | | | | | | |
Collapse
|
22
|
Bartůnek P, Králová J, Blendinger G, Dvorák M, Zenke M. GATA-1 and c-myb crosstalk during red blood cell differentiation through GATA-1 binding sites in the c-myb promoter. Oncogene 2003; 22:1927-35. [PMID: 12673198 DOI: 10.1038/sj.onc.1206281] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
GATA-1 and c-Myb transcription factors represent key regulators of red blood cell development. GATA-1 is upregulated and c-myb proto-oncogene expression is downregulated when red cell progenitors differentiate into erythrocytes. Here we have employed a culture system, that faithfully recapitulates red blood cell differentiation in vitro, to follow the kinetics of GATA-1 and c-myb expression. We show that c-myb proto-oncogene expression is high in progenitors and effectively downregulated at the time when nuclear GATA-1 accumulates and cells differentiate into erythrocytes. Additionally, we identified two GATA-1 binding sites within the c-myb promoter and demonstrate that GATA-1 protein binds to these sites in vitro. Furthermore, GATA-1 represses c-myb expression through one of the GATA-1 binding sites in transient transfection experiments and this requires FOG-1. Thus, our study provides evidence for a direct molecular link between GATA-1 activity and c-myb proto-oncogene expression during terminal red cell differentiation.
Collapse
Affiliation(s)
- Petr Bartůnek
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | | | | | | | | |
Collapse
|
23
|
Abstract
Cytochrome P450 4Fs are required for metabolizing arachidonic acid derivatives such as lipoxins, prostaglandins, hydroxyeicosatetraenoic acids and, most importantly, leukotriene B(4), an inflammatory mediator involved in leukocyte attraction and blood vessel permeability regulation. CYP4F5 is one of the rat 4F subfamily members expressed in liver, kidney and brain. To understand the mechanism of gene regulation of CYP4F5, genomic clones for CYP4F5 were isolated and characterized. The gene organization reveals that CYP4F5 gene spans 15.5 kb, and contains 13 exons ranging from 54 to 964 bp. The positions of intron-exon junctions are similar to those of human 4F genes. The transcription start site was determined by 5' rapid amplification of DNA complementary to RNA (cDNA) end-polymerase chain reaction, and is located 10 bp upstream of the first nucleotide of cDNA identified originally by Kawashima and Strobel (Biochem. Biophys. Res. Commun. 217 (1995) 1137), and results in 83 bp of 5' untranslated region. The 4 kb 5' flanking region was sequenced and analyzed using TRANSFAC program for potential transcription factor binding sites. No TATA box was observed, but a CCAAT box was identified, and one Sp1 site is located on each side of the CCAAT box. The elements likely for nuclear receptors retinoic acid receptor, retinoic acid X receptor, hepatocyte nuclear factor-3, glucocorticoid receptor, nuclear factor-kappaB and activator protein-1 were also found. However no binding site for peroxisome poliferator-activated receptor was present in the 4 kb region analyzed. Transfection of deletion constructs of the 5' flanking region of CYP4F5/luciferase reporter gene identified that the first 134 bp of flanking region contained essential promoter sequences for constitutive expression of the CYP4F5 gene. Two negative regulatory regions were also identified. These studies provide insight into the mechanism of CYP4F subfamily gene regulation.
Collapse
Affiliation(s)
- Xiaoming Cui
- Department of Biochemistry and Molecular Biology, University of Texas Medical School at Houston, P.O. Box 20708, Houston, TX 77030, USA
| | | |
Collapse
|
24
|
Fadilah SAW, Cheong SK, Roslan H, Rozie-Hanisa M, Yen GK. GATA-1 and GATA-2 gene expression is related to the severity of dysplasia in myelodysplastic syndrome. Leukemia 2002; 16:1563-5. [PMID: 12145700 DOI: 10.1038/sj.leu.2402517] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2001] [Accepted: 02/06/2002] [Indexed: 11/08/2022]
|
25
|
Imagawa S, Suzuki N, Ohmine K, Obara N, Mukai HY, Ozawa K, Yamamoto M, Nagasawa T. GATA suppresses erythropoietin gene expression through GATA site in mouse erythropoietin gene promoter. Int J Hematol 2002; 75:376-81. [PMID: 12041667 DOI: 10.1007/bf02982127] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The promoter and enhancer elements of the mouse erythropoietin (mEpo) gene, which have high homology with those of the human erythropoietin (hEpo) gene, were fused with luciferase. The construct was transfected into erythropoietin-producing hepatoma cell line (Hep3B) cells by lipofectin with lacZ as an internal standard. The wild type (TGATA) showed a 39.5-fold increase in induction by hypoxia. Mouse GATA-2 inhibited the hypoxic induction of the wild-type (m3), promoterluciferase construct but not the hypoxic induction of the mutant (m4, 5) promoter-luciferase constructs. N(G)-monomethyl L-arginine (L-NMMA) inhibited the hypoxic induction of the m3 promoter-luciferase construct, but this inhibition was recovered by L-arginine. H2O2 also inhibited the hypoxic induction of the m3 promoter-luciferase construct, but this inhibition was recovered by catalase. Gel shift assays performed on nuclear extracts of 293 cells overexpressing mGATA-1, -2, and -3 revealed that mGATA-1, -2, and -3 bind to the TGATA element of the mEpo promoter. These results indicate that mGATA binds to the TGATA site of the mEpo promoter and negatively regulates mEpo gene expression. Negative regulation of mEpo gene by GATA transcriptional factors is discussed.
Collapse
Affiliation(s)
- Shigehiko Imagawa
- Division of Hematology, Institute of Clinical Medicine, University of Tsukuba, Ibaraki, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Minami T, Aird WC. Thrombin stimulation of the vascular cell adhesion molecule-1 promoter in endothelial cells is mediated by tandem nuclear factor-kappa B and GATA motifs. J Biol Chem 2001; 276:47632-41. [PMID: 11590177 DOI: 10.1074/jbc.m108363200] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The goal of this study was to delineate the transcriptional mechanisms underlying thrombin-mediated induction of vascular adhesion molecule-1 (VCAM-1). Treatment of human umbilical vein endothelial cells with thrombin resulted in a 3.3-fold increase in VCAM-1 promoter activity. The upstream promoter region of VCAM-1 contains a thrombin response element, two nuclear factor kappaB (NF-kappaB) motifs, and a tandem GATA motif. In transient transfection assays, mutation of the thrombin response element had no effect on thrombin induction. In contrast, mutation of either NF-kappaB site resulted in a complete loss of induction, whereas a mutation of the two GATA motifs resulted in a significant reduction in thrombin stimulation. In electrophoretic mobility shift assays, nuclear extracts from thrombin-treated endothelial cells displayed markedly increased binding to the tandem NF-kappaB and GATA motifs. The NF-kappaB complex was supershifted with anti-p65 antibodies, but not with antibodies to RelB, c-Rel, p50, or p52. The GATA complex was supershifted with antibodies to GATA-2, but not GATA-3 or GATA-6. A construct containing tandem copies of the VCAM-1 GATA motifs linked to a minimal thymidine kinase promoter was induced 2.4-fold by thrombin. Taken together, these results suggest that thrombin stimulation of VCAM-1 in endothelial cells is mediated by the coordinate action of NF-kappaB and GATA transcription factors.
Collapse
Affiliation(s)
- T Minami
- Department of Molecular Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | | |
Collapse
|
27
|
Abstract
The existence of proteoglycans in hematopoietic cells has been recognized for many years. However, elucidation of the structure and function of these molecules has only begun to be explored in recent years. This paper reviews the current status of knowledge of the structure, function and metabolism of the serglycin proteoglycan in megakaryocytes and megakaryocytic tumor cells. We have identified complex metabolic patterns of the serglycin proteoglycan in terms of regulation of overall hydrodynamic size, glycosaminoglycan chain length and disaccharide composition, and processing of the core protein in control cells or in the presence of phorbol 12-myristate 13-acetate or dimethylsulfoxide. We are currently studying the regulation of synthesis of this protein by analysis of promoter constructs in megakaryocytic and non-megakaryocytic hematopoietic cells. We have also tentatively identified a second proteoglycan, betaglycan, which is known also as the Type III transforming growth factor beta receptor. We have identified this molecule in human erythroleukemia and CHRF 288-11 cells by the presence of characteristic core proteins between 92-120 kDa, by its ability to adhere to Octyl Sepharose and by detection of mRNA. We hope to apply studies of proteoglycan metabolism in these cells to understanding the development of alpha granules and membrane elements in megakaryocytes.
Collapse
Affiliation(s)
- B P Schick
- Cardeza Foundation for Hematologic Research, Jefferson Medical College of Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| |
Collapse
|
28
|
Cheng KW, Leung PCK. The expression, regulation and signal transduction pathways of the mammalian gonadotropin-releasing hormone receptor. Can J Physiol Pharmacol 2000. [DOI: 10.1139/y00-096] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Normal mammalian sexual maturation and reproductive functions require the integration and precise coordination of hormones at the hypothalamic, pituitary, and gonadal levels. Hypothalamic gonadotropin-releasing hormone (GnRH) is a key regulator in this system; after binding to its receptor (GnRHR), it stimulates de novo synthesis and release of gonadotropins in anterior pituitary gonadotropes. Since the isolation of the GnRHR cDNA, the expression of GnRHR mRNA has been detected not only in the pituitary, but also in extrapituitary tissues, including the ovary and placenta. It has been shown that change in GnRHR mRNA is one of the mechanisms for regulating the expression of the GnRHR. To help understand the molecular mechanism(s) involved in transcriptional regulation of the GnRHR gene, the 5' flanking region of the GnRHR gene has recently been isolated. Initial characterization studies have identified several DNA regions in the GnRHR 5' flanking region which are responsible for both basal expression and GnRH-mediated homologous regulation of this gene in pituitary cells. The mammalian GnRHR lacks a C-terminus and possesses a relatively short third intracellular loop; both features are important in desensitization of many others G-protein coupled receptors (GPCRs), Homologous desensitization of GnRHR has been shown to be regulated by various serine-threonine protein kinases including protein kinase A (PKA) and protein kinase C (PKC), as well as by G-protein coupled receptor kinases (GRKs). Furthermore, GnRHR was demonstrated to couple with multiple G proteins (Gq/11, Gs, and Gi), and to activate cascades that involved the PKC, PKA, and mitogen-activator protein kinases. These results suggest the diversity of GnRHR-G protein coupling and signal transduction systems. The identification of second form of GnRH (GnRH-II) in mammals adds to the complexity of the GnRH-GnRHR system. This review summaries our recent progress in understanding the regulation of GnRHR gene expression and the GnRHR signal transduction pathways.Key words: gonadotropin-releasing hormone receptor, transcriptional regulation, desensitization, signal transduction.
Collapse
|
29
|
Spier AD, de Lecea L. Cortistatin: a member of the somatostatin neuropeptide family with distinct physiological functions. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 2000; 33:228-41. [PMID: 11011067 DOI: 10.1016/s0165-0173(00)00031-x] [Citation(s) in RCA: 142] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cortistatin is a recently discovered neuropeptide relative of somatostatin named after its predominantly cortical expression and ability to depress cortical activity. Cortistatin-14 shares 11 of the 14 amino acids of somatostatin-14 yet their nucleotide sequences and chromosomal localization clearly indicate they are products of separate genes. Now cloned from human, mouse and rat sources, cortistatin is known to bind all five cloned somatostatin receptors and share many pharmacological and functional properties with somatostatin including the depression of neuronal activity. However, cortistatin also has many properties distinct from somatostatin including induction of slow-wave sleep, apparently by antagonism of the excitatory effects of acetylcholine on the cortex, reduction of locomotor activity, and activation of cation selective currents not responsive to somatostatin. Expression of mRNA encoding cortistatin follows a circadian rhythm and is upregulated on deprivation of sleep, suggesting cortistatin is a sleep modulatory factor. This review summarizes recent advances in our understanding of the neurobiology of cortistatin, examines the similarities and differences between cortistatin and somatostatin, and asks the question: does cortistatin bind to a cortistatin-specific receptor?
Collapse
Affiliation(s)
- A D Spier
- Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, 92037, La Jolla, CA, USA
| | | |
Collapse
|
30
|
Sato N, Kiyokawa N, Taguchi T, Suzuki T, Sekino T, Ohmi K, Itagaki M, Sato T, Lepage A, Lanza F, Fujimoto J. Functional conservation of platelet glycoprotein V promoter between mouse and human megakaryocytes. Exp Hematol 2000; 28:802-14. [PMID: 10907642 DOI: 10.1016/s0301-472x(00)00176-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
OBJECTIVE In an attempt to clarify the megakaryo-specific regulatory mechanism of GPV gene transcription, we characterized the 5'-flanking region of the mouse GPV gene. MATERIALS AND METHODS The promotor activity of a -481/+22 5'-fragment of the mouse GPV gene was examined in normal mouse bone marrow cells (BMC) and various human cell lines using two distinct reporter gene assay systems, luciferase and green fluorescence protein (GFP). RESULTS When a DNA construct consisting of this fragment and a GFP reporter gene were transiently expressed in thrombopoietin-supported mouse BMC culture, GFP was identified only in megakaryocytes. The same construct expressed high levels of GFP in the human megakaryocytic Dami line. When assessed by dual luciferase assay, the full -481/+22 fragment could drive variable promoter activity in human as well as mouse megakaryocytic lines but did not work in non-megakaryocytic cells. Sufficient transcriptional activation of this fragment was restricted to the cells expressing apparent GPV mRNA. A deletion and point mutation study indicated that GATA and Ets motifs, typical cis-acting elements for platelet-specific genes, located of -75 and -46, respectively, were essential for promoter function. CONCLUSION The GPV promoter has the general characteristics found in platelet-specific genes, and the mechanism for megakaryocyte-specific, maturation-dependent regulation of GPV gene transcription is highly conserved between mouse and human. Analysis of GPV transcription mechanism utilizing human lines as well as BMC should provide new information on the final maturational process of megakaryocytes.
Collapse
Affiliation(s)
- N Sato
- Department of Pathology, National Children's Medical Research Center, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Martin-Soudant N, Drachman JG, Kaushansky K, Nepveu A. CDP/Cut DNA binding activity is down-modulated in granulocytes, macrophages and erythrocytes but remains elevated in differentiating megakaryocytes. Leukemia 2000; 14:863-73. [PMID: 10803519 DOI: 10.1038/sj.leu.2401764] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
DNA binding by the CCAAT-displacement protein, the mammalian homologue of the Drosophila melanogaster Cut protein, was previously found to increase sharply in S phase, suggesting a role for CDP/Cut in cell cycle progression. Genetic studies in Drosophila indicated that cut plays an important role in cell-type specification in several tissues. In the present study, we have investigated CDP/Cut expression and activity in a panel of multipotent hematopoietic cell lines that can be induced to differentiate in vitro into distinct cell types. While CDP/Cut DNA binding activity declined in the pathways leading to macrophages, granulocytes and erythrocytes, it remained elevated in megakaryocytes. CDP/Cut was also highly expressed in primary megakaryocytes isolated from mouse, and some DNA binding activity could be detected. Altogether, these results raise the possibility that CDP/Cut may be a determinant of cell type identity downstream of the myelo-erythroid precursor cell. Another possibility, which does not exclude a role in lineage identity, is that CDP/Cut activity in megakaryocytes is linked to endomitosis. Indeed, elevated CDP/Cut activity in differentiating megakaryocytes and during the S phase of the cell cycle suggests that it may be required for DNA replication.
Collapse
Affiliation(s)
- N Martin-Soudant
- Molecular Oncology Group, McGill University, Royal Victoria Hospital, Montreal, Quebec
| | | | | | | |
Collapse
|
32
|
|
33
|
|
34
|
Calbet M, Guadaño-Ferraz A, Spier AD, Maj M, Sutcliffe JG, Przewłocki R, de Lecea L. Cortistatin and somatostatin mRNAs are differentially regulated in response to kainate. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1999; 72:55-64. [PMID: 10521599 DOI: 10.1016/s0169-328x(99)00220-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Cortistatin (CST) is a presumptive neuropeptide that shares 11 of its 14 amino acids with somatostatin (SST). CST and SST are expressed in partially overlapping but distinct populations of cortical interneurons. In the hippocampal formation, most CST-positive cells are also positive for SST. In contrast to SST, administration of CST into the rat brain ventricles reduces locomotor activity and specifically enhances slow wave sleep. Intracerebroventricular injection of CST or SST has been shown to protect against the neurotoxic effects of kainic acid. Here, we show that CST and SST mRNAs respond differently to kainate-induced seizures. Furthermore, comparison of the upstream sequences from the CST and SST precursor genes reveal that they contain binding motifs for different transcriptional regulatory factors. Our data demonstrate that CST and SST, which are often co-expressed in the same neurons, are regulated by different stimuli.
Collapse
Affiliation(s)
- M Calbet
- Department of Molecular Biology, MB-10, The Scripps Research Institute, 10550 North Torrey Pines Rd., La Jolla, CA, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Karacay B, Chang LS. Induction of erythrocyte protein 4.2 gene expression during differentiation of murine erythroleukemia cells. Genomics 1999; 59:6-17. [PMID: 10395794 DOI: 10.1006/geno.1999.5846] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Protein 4.2 (P4.2) is an important component in the erythrocyte membrane skeletal network that regulates the stability and flexibility of erythrocytes. Recently, we provided the evidence for specific P4.2 expression in erythroid cells during development (L. Zhu et al., 1998, Blood 91, 695-705). Using dimethyl sulfoxide (DMSO)-induced differentiation of murine erythroleukemia (MEL) cells as a model, transcription of the P4.2 gene was found to be induced during erythroid differentiation. To examine the mechanism for this induction, we isolated the mouse P4.2 genomic DNA containing the 5' flanking sequence and defined the location of the P4.2 promoter. Transcription of the mouse P4.2 gene initiates at multiple sites, with the major initiation site mapped at 174 nucleotides upstream of the ATG start codon. The mouse P4.2 promoter is TATA-less and contains multiple potential binding sites for erythroid transcription factors GATA-1, NF-E2, EKLF, and tal-1/SCL. Transient transfection experiments demonstrated that a 1.7-kb mouse P4.2 promoter fused with the luciferase coding regions was induced in DMSO-treated MEL cells. Deletion analysis showed that a 259-bp P4.2 promoter DNA (nucleotide position -88 to +171 relative to the major transcription initiation site designated +1), containing a GATA-binding site at position -29 to -24, could still respond to the induction in differentiated MEL cells. Importantly, mutations in the -29/-24 GATA motif rendered the promoter unresponsive to DMSO induction. Electrophoretic mobility shift assay revealed that GATA-1 could bind to the -29/-24 GATA motif and this was confirmed by the observation that the nuclear protein bound to the motif was supershifted by an anti-GATA-1 monoclonal antibody. Taken together, these results suggest that the erythroid transcription factor GATA-1 plays an important role in the induction of P4.2 gene expression during erythroid cell differentiation.
Collapse
Affiliation(s)
- B Karacay
- Department of Pediatrics, Children's Hospital and The Ohio State University, Columbus, Ohio 43205-2696, USA
| | | |
Collapse
|
36
|
Cloning of the Promoter Region of Human Endoglin, the Target Gene for Hereditary Hemorrhagic Telangiectasia Type 1. Blood 1998. [DOI: 10.1182/blood.v92.12.4677] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractEndoglin (CD105) is a cell surface component of the transforming growth factor-β (TGF-β) receptor complex highly expressed by endothelial cells. Mutations in the endoglin gene are responsible for the hereditary hemorrhagic telangiectasia type 1 (HHT1), also known as Osler-Weber-Rendu syndrome (OMIM 187300). This is an autosomal dominant vascular disorder probably caused by a haploinsufficiency mechanism displaying low levels of the normal protein. To understand the mechanisms underlying the regulated expression of endoglin, a genomic DNA clone containing 3.3 kb of the 5′-flanking sequence of the human endoglin gene has been isolated. The 5′-flanking region of the endoglin gene lacks consensus TATA and CAAT boxes, but contains two GC-rich regions and consensus motifs for Sp1, ets, GATA, AP-2, NFκB, and Mad, as well as TGF-β–, glucocorticoid-, vitamin D-, and estrogen-responsive elements. As determined by primer extension and 5′ RACE experiments, a cluster of transcriptional start sites was found to be located 350 bp upstream from the translation initiation codon. To analyze the endoglin promoter activity, the upstream −400/+341 fragment was fused to the luciferase gene and transient transfections were conducted in several cell types. This construct displayed a tissue-specific activity in human and bovine endothelial cells. Analysis of various deletion constructs showed the existence of a basal promoter region within the −81/+350 fragment as well as major transcriptional regulatory elements within the −400/−141 fragment. Electrophoretic mobility shift assays demonstrated the specific interaction of a member of the ets family with a consensus motif located at position −68. A promoter construct mutated at this ets sequence showed a much reduced activity as compared with the wild-type construct, supporting the involvement of this ets motif in the basal activity of the promoter. The endoglin promoter exhibited inducibility in the presence of TGF-β1, suggesting possible therapeutic treatments in HHT1 patients, in which the expression level of the normal endoglin allele might not reach the threshold required for its function. Isolation and characterization of the human endoglin promoter represents an initial step in elucidating the controlled expression of the endoglin gene.
Collapse
|
37
|
Cloning of the Promoter Region of Human Endoglin, the Target Gene for Hereditary Hemorrhagic Telangiectasia Type 1. Blood 1998. [DOI: 10.1182/blood.v92.12.4677.424a33_4677_4690] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Endoglin (CD105) is a cell surface component of the transforming growth factor-β (TGF-β) receptor complex highly expressed by endothelial cells. Mutations in the endoglin gene are responsible for the hereditary hemorrhagic telangiectasia type 1 (HHT1), also known as Osler-Weber-Rendu syndrome (OMIM 187300). This is an autosomal dominant vascular disorder probably caused by a haploinsufficiency mechanism displaying low levels of the normal protein. To understand the mechanisms underlying the regulated expression of endoglin, a genomic DNA clone containing 3.3 kb of the 5′-flanking sequence of the human endoglin gene has been isolated. The 5′-flanking region of the endoglin gene lacks consensus TATA and CAAT boxes, but contains two GC-rich regions and consensus motifs for Sp1, ets, GATA, AP-2, NFκB, and Mad, as well as TGF-β–, glucocorticoid-, vitamin D-, and estrogen-responsive elements. As determined by primer extension and 5′ RACE experiments, a cluster of transcriptional start sites was found to be located 350 bp upstream from the translation initiation codon. To analyze the endoglin promoter activity, the upstream −400/+341 fragment was fused to the luciferase gene and transient transfections were conducted in several cell types. This construct displayed a tissue-specific activity in human and bovine endothelial cells. Analysis of various deletion constructs showed the existence of a basal promoter region within the −81/+350 fragment as well as major transcriptional regulatory elements within the −400/−141 fragment. Electrophoretic mobility shift assays demonstrated the specific interaction of a member of the ets family with a consensus motif located at position −68. A promoter construct mutated at this ets sequence showed a much reduced activity as compared with the wild-type construct, supporting the involvement of this ets motif in the basal activity of the promoter. The endoglin promoter exhibited inducibility in the presence of TGF-β1, suggesting possible therapeutic treatments in HHT1 patients, in which the expression level of the normal endoglin allele might not reach the threshold required for its function. Isolation and characterization of the human endoglin promoter represents an initial step in elucidating the controlled expression of the endoglin gene.
Collapse
|
38
|
Sadat MA, Kumatori A, Suzuki S, Yamaguchi Y, Tsuji Y, Nakamura M. GATA-3 represses gp91phox gene expression in eosinophil-committed HL-60-C15 cells. FEBS Lett 1998; 436:390-4. [PMID: 9801155 DOI: 10.1016/s0014-5793(98)01182-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
To study the regulatory mechanism of gp91phox gene expression in eosinophils, we transiently transfected eosinophil-committed HL-60-C15 cells with gp91phox promoter constructs, and identified a negative element from bp -267 to -246 of the gp91phox gene, the deletion of which caused an 83% increase in promoter activity. Electrophoresis mobility shift assays demonstrated GATA-3 binds to the GATA consensus site from bp -256 to -250. An 81% increment in promoter activity was obtained when a mutation was introduced in the GATA-3 binding site of the bp -267 to +12 construct, which is comparable to that of the bp -245 to +12 construct. We therefore conclude that GATA-3 specifically binding to the GATA site negatively regulates the expression of the gene in HL-60-C15 cells.
Collapse
Affiliation(s)
- M A Sadat
- Department of Pediatrics, Nagasaki University School of Medicine, Sakamoto, Japan.
| | | | | | | | | | | |
Collapse
|
39
|
Pincas H, Forraï Z, Chauvin S, Laverrière JN, Counis R. Multiple elements in the distal part of the 1.2 kb 5'-flanking region of the rat GnRH receptor gene regulate gonadotrope-specific expression conferred by proximal domain. Mol Cell Endocrinol 1998; 144:95-108. [PMID: 9863630 DOI: 10.1016/s0303-7207(98)00149-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Several lines of evidence indicate that the number of GnRH receptors (GnRH-R) and therefore, gonadotrope responsiveness to GnRH, is highly dependent upon the level of GnRH-R mRNA. To explore this aspect of regulation, we have isolated a 3.3 kb fragment encompassing the promoter region of the rat GnRH-R gene. Primer extension and RNase protection assays allowed the identification of five major transcriptional start sites located within the 110 bp region upstream of the translation start codon. Transfection experiments using the CAT reporter gene demonstrated that the 1261 bp 5' flanking region is required to direct high efficient expression in the gonadotrope-derived alphaT3-1 cell line thus contrasting with mouse in which the only 500 bp proximal sequence appeared to be sufficient. Another difference between rat and mouse was apparent in the 183 bp region of the rat promoter which induced a 3-fold stimulation of thymidine kinase promoter activity in both alphaT3-1 and CHO cells. Subsequent deletion analysis of the region residing between -1261 and -519 revealed the presence of multiple regulatory domains that contributed to the cell-specific activity. However, despite this efficiency in the context of the wild-type promoter, they failed to induce the activity of the minimal thymidine kinase (TK) promoter in the absence of the proximal 600 bp promoter region. Accordingly, a composite TK promoter containing the entire 1.2 kb promoter induced a 10-fold increase in the activity of the TK promoter in alphaT3-1 cells. Taken together these data suggest that distal regulatory regions are critical and require cooperation with proximal specific-promoter elements for activating basal R-GnRH gene expression in gonadotrope cells.
Collapse
Affiliation(s)
- H Pincas
- Endocrinologie Cellulaire et Moléculaire de la Reproduction, Université Pierre et Marie Curie, Centre National de la Recherche Scientifique-URA 1449, Paris, France
| | | | | | | | | |
Collapse
|
40
|
Pan J, Xia L, McEver RP. Comparison of promoters for the murine and human P-selectin genes suggests species-specific and conserved mechanisms for transcriptional regulation in endothelial cells. J Biol Chem 1998; 273:10058-67. [PMID: 9545353 DOI: 10.1074/jbc.273.16.10058] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
P-selectin, an adhesion receptor for leukocytes, is constitutively expressed in megakaryocytes and endothelial cells. Tumor necrosis factor-alpha (TNF-alpha) or lipopolysaccharide (LPS) increases synthesis of P-selectin in murine but not in human endothelial cells. To identify potential species-specific and conserved mechanisms for regulation of expression of P-selectin, we cloned the 5'-flanking region of the murine P-selectin gene and compared its features with those previously reported for the human gene. The murine and human genes shared conserved Stat-like, Hox, Ets, GATA, and GT-IIC elements. In the murine gene, a conserved GATA element bound to GATA-2 and functioned as a positive regulatory element, whereas a conserved Ets element bound to GA-binding protein and functioned as a negative regulatory element. Significantly, the murine P-selectin gene had several features not found in the human gene. These included an insertion from -987 to -649 that contained tandem GATA and tandem AP1-like sequences, which resembled enhancers in beta-globin locus control regions. Both tandem elements bound specifically to nuclear proteins. The murine gene lacked the unique kappaB site specific for p50 or p52 homodimers found in the human gene. Instead, it contained two tandem kappaB elements and a variant activating transcription factor/cAMP response element site, which closely resembled sites in the E-selectin gene that are required for TNF-alpha- or LPS-inducible expression. TNF-alpha or LPS augmented expression of a reporter gene driven by the murine, but not the human, P-selectin promoter in transfected endothelial cells. Deletional analysis of the murine 5'-flanking region revealed several sequences that were required for either constitutive or inducible expression. These data suggest that both species-specific and conserved mechanisms regulate transcription of the human and murine P-selectin genes.
Collapse
Affiliation(s)
- J Pan
- Department of Medicine, W. K. Warren Medical Research Institute, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| | | | | |
Collapse
|
41
|
−245 bp of 5′-Flanking Region From the Human Platelet Factor 4 Gene Is Sufficient to Drive Megakaryocyte-Specific Expression In Vivo. Blood 1998. [DOI: 10.1182/blood.v91.7.2326.2326_2326_2333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Platelet factor 4 (PF4) serves as a lineage-specific marker of megakaryocyte development. We previously identified two positively acting sequences in the human platelet factor 4 (hPF4) gene promoter that synergized to drive high-level luciferase reporter gene expression in vitro. Using portions of the hPF4 5′-flanking region linked to the lacZ reporter gene, we observed in this investigation that constructs with −245 bp of 5′-flanking region were more active than constructs with −2 kb of 5′-flanking region in vitro. We created two independent transgenic mouse lines with a −245-bp hPF4/lacZ construct. Cells from these mice were tested for β-galactosidase (β-gal) expression at the mRNA level by Northern blot and semiquantitative reverse transcription polymerase chain reaction (RT-PCR) and at the protein level by immunohistochemistry assay. Mice from one line showed β-gal expression specifically in all megakaryocytes of all ploidy classes from bone marrow and in platelets. Expression level was comparable to that driven by the 1.1-kb rat PF4 promoter in other transgenic mouse lines. Those in the second line showed no β-gal expression in megakaryocytes, platelets, or any of the eight organs tested. The −245-bp hPF4 promoter is capable of driving reporter gene expression in a megakaryocyte-specific manner in transgenic mice. The small size of this megakaryocyte-specific promoter is compatible with that required in some viral vectors and may provide a model for targeting gene expression to megakaryocytes.
Collapse
|
42
|
−245 bp of 5′-Flanking Region From the Human Platelet Factor 4 Gene Is Sufficient to Drive Megakaryocyte-Specific Expression In Vivo. Blood 1998. [DOI: 10.1182/blood.v91.7.2326] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractPlatelet factor 4 (PF4) serves as a lineage-specific marker of megakaryocyte development. We previously identified two positively acting sequences in the human platelet factor 4 (hPF4) gene promoter that synergized to drive high-level luciferase reporter gene expression in vitro. Using portions of the hPF4 5′-flanking region linked to the lacZ reporter gene, we observed in this investigation that constructs with −245 bp of 5′-flanking region were more active than constructs with −2 kb of 5′-flanking region in vitro. We created two independent transgenic mouse lines with a −245-bp hPF4/lacZ construct. Cells from these mice were tested for β-galactosidase (β-gal) expression at the mRNA level by Northern blot and semiquantitative reverse transcription polymerase chain reaction (RT-PCR) and at the protein level by immunohistochemistry assay. Mice from one line showed β-gal expression specifically in all megakaryocytes of all ploidy classes from bone marrow and in platelets. Expression level was comparable to that driven by the 1.1-kb rat PF4 promoter in other transgenic mouse lines. Those in the second line showed no β-gal expression in megakaryocytes, platelets, or any of the eight organs tested. The −245-bp hPF4 promoter is capable of driving reporter gene expression in a megakaryocyte-specific manner in transgenic mice. The small size of this megakaryocyte-specific promoter is compatible with that required in some viral vectors and may provide a model for targeting gene expression to megakaryocytes.
Collapse
|
43
|
Feng ZM, Wu AZ, Chen CL. Testicular GATA-1 factor up-regulates the promoter activity of rat inhibin alpha-subunit gene in MA-10 Leydig tumor cells. Mol Endocrinol 1998; 12:378-90. [PMID: 9514155 DOI: 10.1210/mend.12.3.0079] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
We have previously demonstrated that the basal transcription of rat inhibin alpha-subunit gene in a mouse testicular Leydig tumor cell line, MA-10, depends upon a 67-bp DNA fragment at the position of -163 to -97. Within this promoter region two GATA motifs were observed. In this study, we investigated the possible role of GATA-binding proteins in the regulation of inhibin alpha-subunit gene transcription in testicular cells. Northern blot and RT-PCR analyses showed that mRNAs encoding GATA-binding proteins, GATA-1 and GATA-4, were detected in mouse and rat testis and in MA-10 and rat Sertoli cells. Testis-specific GATA-1 mRNA, which is transcribed from a promoter 8 kb upstream to the erythroid exon I of mouse GATA-1 gene, was also identified in MA-10 cells. Mutations of GATA sequences in alpha-subunit promoter markedly decreased the transcriptional activity of alpha-subunit gene when measured by their ability of transient expression of a bacterial reporter gene, chloramphenicol acetyltransferase (CAT), in MA-10 cells. Cotransfection of alphaCAT chimeric construct with cDNA expression plasmid coding for mouse GATA-1 or GATA-4 protein revealed that GATA-1 but not GATA-4 can transactivate alpha-subunit promoter in a dose-dependent manner. The transactivation by GATA-1 was inhibited if GATA sequences in alpha-subunit promoter were mutated. Furthermore, electrophoretic mobility shift assay demonstrated that GATA-binding proteins present in nuclear extracts of MA-10 cells and rat testis interacted with the GATA motifs in alpha-subunit promoter, and the GATA-1 in these nuclear extracts formed a supershifted immunocomplex with antibody raised against mouse GATA-1 protein. We therefore concluded that the basal transcription of inhibin alpha-subunit gene in testicular MA-10 cells is up-regulated by testicular GATA-1 but not GATA-4 through its interaction with the GATA motifs in alpha-subunit promoter. In summary, we have provided the first evidence of the functional role of a GATA-binding protein in the regulation of testicular gene expression.
Collapse
Affiliation(s)
- Z M Feng
- Population Council, New York, New York 10021, USA
| | | | | |
Collapse
|
44
|
Du H, Duanmu M, Rosa LR. Mouse lysosomal acid lipase: characterization of the gene and analysis of promoter activity. Gene X 1998; 208:285-95. [PMID: 9524282 DOI: 10.1016/s0378-1119(98)00019-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Lysosomal acid lipase (LAL) is required for the hydrolysis of intracellular cholesteryl esters and triglycerides that are delivered to lysosomes by low density lipoprotein (LDL) receptor-mediated endocytosis. To understand that the expression of LAL mRNA and protein is tissue and cell specifically regulated in mice, genomic clones for the mouse lysosomal acid lipase (mLAL) gene were isolated and characterized. The 6.8 kb of the mLAL gene 5'-flanking region was sequenced. Comparisons of mouse and human LAL genes organization revealed identical intron/exon boundaries, except for intron 1 of the mouse gene, and identical exonic length of exons 3-9. The transcription start sites and exon 1 of mLAL were characterized by 5'-RACE-PCR and S1 nuclease mapping. Transfection of 5' flanking deletions of mLAL luciferase reporter gene construct identified positive and negative regulatory elements that varied with cell type. Transfection of three progressively smaller pieces of intron 1 inserted into an SV40 promoter and luciferase reporter gene revealed an enhancer-like activity in intron 1 that is also cell type specific. These studies provide insight into the basis for regulation of this critical enzyme in lipid metabolism.
Collapse
Affiliation(s)
- H Du
- Division of Human Genetics, Children's Hospital Research Foundation, Children's Hospital Medical Center, Cincinnati, OH, USA.
| | | | | |
Collapse
|
45
|
Moritz KM, Lim GB, Wintour EM. Developmental regulation of erythropoietin and erythropoiesis. THE AMERICAN JOURNAL OF PHYSIOLOGY 1997; 273:R1829-44. [PMID: 9435635 DOI: 10.1152/ajpregu.1997.273.6.r1829] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
It is well established that erythropoiesis occurs first in the yolk sac, then in the liver, subsequently moving to the bone marrow and, in rodents, the spleen during development. The origin of the erythropoietic precursors and some factors suggested to be important for the changing location of erythropoiesis are discussed in this review. Until recently, the major site of erythropoietin (Epo) production in the fetus was thought to be the liver, but studies have shown now that the Epo gene is expressed strongly in the fetal kidney, even in the temporary mesonephros. The metanephric Epo mRNA is upregulated by anemia, downregulated by glucocorticoids, and contributes substantially to circulating hormone levels in hemorrhaged ovine fetuses. Other sites of Epo and Epo receptor production, likely to have important actions during development, are the placenta and the brain.
Collapse
Affiliation(s)
- K M Moritz
- Howard Florey Institute of Experimental Physiology and Medicine, University of Melbourne, Parkville, Victoria, Australia
| | | | | |
Collapse
|
46
|
Doi T, Minami T, Itoh M, Aburatani H, Kawabe Y, Kodama T, Kondo N, Satoh Y, Asayama T, Imanishi T. An alternative form of nucleolysin binds to a T-cluster DNA in the silencer element of platelet factor 4 gene. Biochem Biophys Res Commun 1997; 235:625-30. [PMID: 9207209 DOI: 10.1006/bbrc.1997.6817] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The cDNA of a T-cluster binding protein (TCBP) has been cloned using the Southwestern method. The cDNA sequence of TCBP reveals that it has 78% homology to that of nucleolysin, a factor involved in apoptosis in cytolytic lymphocyte target cells. In particular, the 0.8kb sequences of the 5'-half of both cDNAs were identical. However, nucleolysin has a lysosome-targeting motif at the carboxy terminus, while TCBP has a hydrophobic sequence instead. Southern blot experiments have revealed that both cDNA sequences existed in the same YAC clone derived from chromosome 10. This strongly suggests that the TCBP cDNA is an alternatively spliced product of the nucleolysin/TCBP gene. The TCBP mRNA is ubiquitously expressed, not only in megakaryocytic cells but also in other hematopoietic cells. However, when HEL cells were induced to differentiate to megakaryocytes by DMSO, TCBP mRNA was reduced, while PF4 gene expression increased simultaneously. Gel mobility shift analysis demonstrated that recombinant TCBP specifically bound to the T-cluster and the proximal T-rich region of the PF4 promoter. Co-transfection experiments showed that TCBP reduced the gene expression from the PF4 promoter. On the other hand, TCBP did not affect expression from the PF4 promoter in which the T-cluster and the T-rich region had been removed. These results indicate that TCBP may participate in the regulation of PF4 gene expression by binding to the T-cluster and the T-rich sequence.
Collapse
Affiliation(s)
- T Doi
- Faculty of Pharmaceutical Sciences, Osaka University, Suita, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Murakami Y, Ikeda U, Shimada K, Kawakami K. Promoter of the Na,K-ATPase alpha3 subunit gene is composed of cis elements to which NF-Y and Sp1/Sp3 bind in rat cardiocytes. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1352:311-24. [PMID: 9224955 DOI: 10.1016/s0167-4781(97)00032-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Na,K-ATPase alpha subunit has three isoforms whose expression is regulated developmentally and hormonally. Na,K-ATPase alpha3 subunit gene (Atpla3) is expressed only in brain and neonatal heart in a rat. The purpose of this study is to analyze cis-acting elements and trans-acting factors regulating the transcription of Atpla3 in cultured neonatal rat cardiocytes. Transient transfection assays with Atpla3-luciferase chimeric construct and a series of 5' sequential deletion mutations revealed the existence of positive regulatory elements from -74 to -59 and from -59 to -39. A factor was identified to bind across -59 by gel retardation assay. Methylation interference and DNase I footprinting analyses revealed the binding region from -74 to -53 (positive regulatory element (PRE) 1). The binding factor was identified to be NF-Y by gel retardation assay using specific antibody. Gel retardation and methylation interference analyses revealed that factors bind to two other elements from -54 to -43 (PRE2) and from -25 to -13 (PRE3). The binding factors were identified to be Sp1/Sp3 using specific antibodies. The functions of above-mentioned three elements were examined by transient transfection assay with various combinations of mutations. They all regulated the transcription positively and a synergistic enhancement of it was observed. Roles of NF-Y in the transcriptional activation and synergy are discussed.
Collapse
Affiliation(s)
- Y Murakami
- Department of Biology, Jichi Medical School, Kawachi, Tochigi, Japan
| | | | | | | |
Collapse
|
48
|
Reinhart J, Xiao S, Arora KK, Catt KJ. Structural organization and characterization of the promoter region of the rat gonadotropin-releasing hormone receptor gene. Mol Cell Endocrinol 1997; 130:1-12. [PMID: 9220016 DOI: 10.1016/s0303-7207(97)00064-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The gene encoding the rat gonadotropin-releasing hormone (GnRH) receptor was isolated, and its structural organization and promoter region were characterized. The gene was found to consist of three exons that encode the receptor protein, and spanned about 20 kb. Of two genomic clones analyzed, one contained the 5'-untranslated region and the first exon, and the other contained the second and third exons. The sizes of the first, second, and third exons are 625, 217, and 1476 nt, respectively. The first intron is at least 12 kb in length and is located between nucleotides 522 and 523 of the cDNA reading frame, in the middle of the fourth transmembrane domain. The second intron is about 2.5 kb and is also located in the reading frame between nucleotides 739 and 740, separating the fifth and sixth transmembrane domains. Genomic blots in combination with cloning and sequencing suggested that a single GnRH receptor gene is present in the rat genome. Primer extension indicated that the transcription start site is located 103 nt upstream of the translational start codon. A putative TATA box is positioned 23 nt in front of the transcription initiation site. The 1.8 kb 5' flanking sequence contains an SF-1 site, an AP-1 site, CCAAT sequences, a Pit-1 binding site, and a potential CRE-like sequence. To evaluate promoter activity, the 1.8 kb and two 5' deleted fragments of 1.2 and 0.6 kb were fused to the luciferase reporter gene and transiently expressed in immortalized pituitary gonadotrophs (alphaT3-1 cells) and hypothalamic neurons (GT1-7 cells), and in nonpituitary (COS-7) cells. Luciferase gene expression was significantly increased by all three fragments in pituitary and hypothalamic cells, but not in COS-7 cells. The promoter activity of the 1.2 kb fragment was higher than that of the other fragments. Forskolin and cAMP analogs increased luciferase gene expression in both alphaT3-1 and GT1-7 cells, but activation of protein kinase C by phorbol myristate acetate had no effect. These studies indicate that positive and negative regulatory elements are present within the 1.8 kb 5' flanking sequence of the GnRH receptor. Knowledge of the genomic organization and analysis of the promoter region of the rat GnRH receptor gene will facilitate the elucidation of its transcriptional control in pituitary gonadotrophs and hypothalamic neurons.
Collapse
Affiliation(s)
- J Reinhart
- Endocrinology and Reproduction Research Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
49
|
Vandoolaeghe P, Rousseau GG. C/EBP binds over the TATA box and can activate the M promoter of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase. Biochem Biophys Res Commun 1997; 232:247-50. [PMID: 9125141 DOI: 10.1006/bbrc.1997.6266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The gene A coding for 6-phosphofructo-2-kinase gives rise to three mRNA that originate from distinct promoters called F (fetal), M (muscle) and L (liver). The regulation of the M promoter is ill-understood and its TATA box region binds an unidentified factor. The aim of this work was to identify this factor and to investigate its activity. In vitro protein-DNA binding assays and transfection experiments showed that this factor is C/EBP and that C/EBP can stimulate the M promoter despite its potential interference with TFIID binding. The effect of C/EBP was abolished by a dominant negative variant of C/EBP. These data and other work lead to the conclusion that C/EBP may participate to the regulation of promoter switching in 6-phosphofructo-2-kinase gene A.
Collapse
Affiliation(s)
- P Vandoolaeghe
- Hormone and Metabolic Research Unit, International Institute of Cellular and Molecular Pathology, Brussels, Belgium
| | | |
Collapse
|
50
|
Characterization of the Human Platelet/Endothelial Cell Adhesion Molecule-1 Promoter: Identification of a GATA-2 Binding Element Required for Optimal Transcriptional Activity. Blood 1997. [DOI: 10.1182/blood.v89.4.1260] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractPlatelet/endothelial cell adhesion molecule-1 (PECAM-1) is a 130-kD member of the Ig gene superfamily that is expressed on platelets, endothelial cells, and certain leukocyte subsets. To examine the factors controlling vascular-specific expression of PECAM-1, we cloned the 5′-flanking region of the PECAM-1 gene and analyzed its transcriptional activity. 5′-Rapid amplification of cDNA ends (5′-RACE) analysis showed that transcription initiation occurred at several closely spaced nearby sites originating approximately 204 bp upstream from the translation start site. Analysis of the sequence immediately upstream from the transcription initiation site (TIS) showed no canonical TATA or CAAT elements, however an initiator element commonly found in TATA-less promoters encompassed the TIS. 5′-serially truncated PECAM-1 promoter segments cloned in front of a luciferase reporter drove transcription in both a lineage- and orientation-specific manner. Putative cis-acting control elements present within a 300-bp core promoter included two ets sites, an Sp1 site, tandem E-box domains, two GATA-associated sites (CACCC), an AP-2 binding site, and a GATA element at −24. Mutational analysis showed that optimal transcriptional activity required the GATA sequence at position −24, and gel-shift assays further showed that the GATA-2 transcription factor, but not GATA-1, bound to this region of the PECAM-1 promoter. Understanding the cis- and trans-acting factors that regulate the tissue-specific expression of PECAM-1 should increase our understanding of the mechanisms by which vascular-specific gene expression is achieved.
Collapse
|