1
|
Naider F, Becker JM. A Paradigm for Peptide Hormone-GPCR Analyses. Molecules 2020; 25:E4272. [PMID: 32961885 PMCID: PMC7570734 DOI: 10.3390/molecules25184272] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 01/14/2023] Open
Abstract
Work from our laboratories over the last 35 years that has focused on Ste2p, a G protein-coupled receptor (GPCR), and its tridecapeptide ligand α-factor is reviewed. Our work utilized the yeast Saccharomyces cerevisiae as a model system for understanding peptide-GPCR interactions. It explored the structure and function of synthetic α-factor analogs and biosynthetic receptor domains, as well as designed mutations of Ste2p. The results and conclusions are described using the nuclear magnetic resonance interrogation of synthetic Ste2p transmembrane domains (TMs), the fluorescence interrogation of agonist and antagonist binding, the biochemical crosslinking of peptide analogs to Ste2p, and the phenotypes of receptor mutants. We identified the ligand-binding domain in Ste2p, the functional assemblies of TMs, unexpected and interesting ligand analogs; gained insights into the bound α-factor structure; and unraveled the function and structures of various Ste2p domains, including the N-terminus, TMs, loops connecting the TMs, and the C-terminus. Our studies showed interactions between specific residues of Ste2p in an active state, but not resting state, and the effect of ligand activation on the dimerization of Ste2p. We show that, using a battery of different biochemical and genetic approaches, deep insight can be gained into the structure and conformational dynamics of GPCR-peptide interactions in the absence of a crystal structure.
Collapse
Affiliation(s)
- Fred Naider
- Department of Chemistry, College of Staten Island, CUNY, 2800 Victory Blvd, Staten Island, NY 10314, USA
| | - Jeffrey M. Becker
- Department of Microbiology, University of Tennessee, 610 Ken and Blaire Mossman Building, 1311 Cumberland Avenue, Knoxville, TN 37996, USA
| |
Collapse
|
2
|
The directed evolution of ligand specificity in a GPCR and the unequal contributions of efficacy and affinity. Sci Rep 2017; 7:16012. [PMID: 29167562 PMCID: PMC5700115 DOI: 10.1038/s41598-017-16332-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 11/08/2017] [Indexed: 11/26/2022] Open
Abstract
G protein-coupled receptors (GPCRs) must discriminate between hundreds of related signal molecules. In order to better understand how GPCR specificity can arise from a common promiscuous ancestor, we used laboratory evolution to invert the specificity of the Saccharomyces cerevisiae mating receptor Ste2. This GPCR normally responds weakly to the pheromone of the related species Kluyveromyces lactis, though we previously showed that mutation N216S is sufficient to make this receptor promiscuous. Here, we found that three additional substitutions, A265T, Y266F and P290Q, can act together to confer a novel specificity for K. lactis pheromone. Unlike wild-type Ste2, this new variant does not rely on differences in binding affinity to discriminate against its non-preferred ligand. Instead, the mutation P290Q is critical for suppressing the efficacy of the native pheromone. These two alternative methods of ligand discrimination were mapped to specific amino acid positions on the peptide pheromones. Our work demonstrates that changes in ligand efficacy can drive changes in GPCR specificity, thus obviating the need for extensive binding pocket re-modeling.
Collapse
|
3
|
The N-terminus of the yeast G protein-coupled receptor Ste2p plays critical roles in surface expression, signaling, and negative regulation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1858:715-24. [PMID: 26707753 DOI: 10.1016/j.bbamem.2015.12.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 11/18/2015] [Accepted: 12/15/2015] [Indexed: 12/23/2022]
Abstract
G protein-coupled receptors (GPCRs) are found in all eukaryotic cells examined to date where they function as membrane-bound proteins that bind a multitude of extracellular ligands to initiate intracellular signal transduction systems controlling cellular physiology. GPCRs have seven heptahelical membrane spanning domains connected by extracellular and intracellular loops with an extracellular N-terminus and an intracellular C-terminus. The N-terminus has been the least studied domain of most GPCRs. The yeast Ste2p protein, the receptor for the thirteen amino acid peptide pheromone α-factor, has been used extensively as a model to study GPCR structure and function. In this study we constructed a number of deletions of the Ste2p N-terminus and uncovered an unexpected function as a negative regulatory domain. We examined the role of the N-terminus in expression, signaling function and ligand-binding properties and found that the residues 11-30 play a critical role in receptor expression on the cell surface. The studies also indicated that residues 2-10 of the N-terminus are involved in negative regulation of signaling as shown by the observation that deletion of these residues enhanced mating and gene induction. Furthermore, our results indicated that the residues 21-30 are essential for optimal signaling. Overall, we propose that the N-terminus of Ste2p plays multiple regulatory roles in controlling receptor function.
Collapse
|
4
|
Rymer JK, Hauser M, Bourdon AK, Campagna SR, Naider F, Becker JM. Novobiocin and peptide analogs of α-factor are positive allosteric modulators of the yeast G protein-coupled receptor Ste2p. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:916-24. [PMID: 25576192 DOI: 10.1016/j.bbamem.2014.12.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 12/23/2014] [Accepted: 12/30/2014] [Indexed: 10/24/2022]
Abstract
G protein-coupled receptors (GPCRs) are the target of many drugs prescribed for human medicine and are therefore the subject of intense study. It has been recognized that compounds called allosteric modulators can regulate GPCR activity by binding to the receptor at sites distinct from, or overlapping with, that occupied by the orthosteric ligand. The purpose of this study was to investigate the nature of the interaction between putative allosteric modulators and Ste2p, a model GPCR expressed in the yeast Saccharomyces cerevisiae that binds the tridecapeptide mating pheromone α-factor. Biological assays demonstrated that an eleven amino acid α-factor analog and the antibiotic novobiocin were positive allosteric modulators of Ste2p. Both compounds enhanced the biological activity of α-factor, but did not compete with α-factor binding to Ste2p. To determine if novobiocin and the 11-mer shared a common allosteric binding site, a biologically-active analog of the 11-mer peptide ([Bio-DOPA]11-mer) was chemically cross-linked to Ste2p in the presence and absence of novobiocin. Immunoblots probing for the Ste2p-[Bio-DOPA]11-mer complex revealed that novobiocin markedly decreased cross-linking of the [Bio-DOPA]11-mer to the receptor, but cross-linking of the α-factor analog [Bio-DOPA]13-mer, which interacts with the orthosteric binding site of the receptor, was minimally altered. This finding suggests that both novobiocin and [Bio-DOPA]11-mer compete for an allosteric binding site on the receptor. These results indicate that Ste2p may provide an excellent model system for studying allostery in a GPCR.
Collapse
Affiliation(s)
- Jeffrey K Rymer
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, United States
| | - Melinda Hauser
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, United States
| | - Allen K Bourdon
- Department of Chemistry, University of Tennessee, Knoxville, TN 37996, United States
| | - Shawn R Campagna
- Department of Chemistry, University of Tennessee, Knoxville, TN 37996, United States
| | - Fred Naider
- Department of Chemistry and Macromolecular Assemblies Institute, College of Staten Island, CUNY, New York, NY 10314, United States; Graduate School and University Center, CUNY, New York, NY 10314, United States
| | - Jeffrey M Becker
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, United States.
| |
Collapse
|
5
|
Willhite DG, Brigati JR, Selcer KE, Denny JE, Duck ZA, Wright SE. Pheromone responsiveness is regulated by components of the Gpr1p-mediated glucose sensing pathway inSaccharomyces cerevisiae. Yeast 2014; 31:361-74. [DOI: 10.1002/yea.3030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 06/24/2014] [Accepted: 07/03/2014] [Indexed: 11/10/2022] Open
|
6
|
Uddin MS, Kim H, Deyo A, Naider F, Becker JM. Identification of residues involved in homodimer formation located within a β-strand region of the N-terminus of a Yeast G protein-coupled receptor. J Recept Signal Transduct Res 2012; 32:65-75. [PMID: 22268895 DOI: 10.3109/10799893.2011.647352] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
G protein-coupled receptors (GPCRs) are members of a superfamily of cell surface signaling proteins that play critical roles in many physiological functions; malfunction of these proteins is associated with multiple diseases. Understanding the structure-function relationships of these proteins is important, therefore, for GPCR-based drug discovery. The yeast Saccharomyces cerevisiae tridecapeptide pheromone α-factor receptor Ste2p has been studied as a model to explore the structure-function relationships of this important class of cell surface receptors. Although transmembrane domains of GPCRs have been examined extensively, the extracellular N-terminus and loop regions have received less attention. We have used substituted cysteine accessibility method to probe the solvent accessibility of single cysteine residues engineered to replace residues Gly20 through Gly33 of the N-terminus of Ste2p. Unexpectedly, our analyses revealed that the residues Ser22, Ile24, Tyr26, and Ser28 in the N-terminus were solvent inaccessible, whereas all other residues of the targeted region were solvent accessible. The periodicity of accessibility from residues Ser22-Ser28 is indicative of an underlying structure consistent with a β-strand that was predicted computationally in this region. Moreover, a number of these Cys-substituted Ste2p receptors (G20C, S22C, I24C, Y26C, S28C and Y30C) were found to form increased dimers compared to the Cys-less Ste2p. Based on these data, we propose that part of the N-terminus of Ste2p is structured and that this structure forms a dimer interface for Ste2p molecules. Dimerization mediated by the N-terminus was affected by ligand binding, indicating an unanticipated conformational change in the N-terminus upon receptor activation.
Collapse
Affiliation(s)
- M Seraj Uddin
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, USA
| | | | | | | | | |
Collapse
|
7
|
Kim KM, Lee YH, Akal-Strader A, Uddin MS, Hauser M, Naider F, Becker JM. Multiple regulatory roles of the carboxy terminus of Ste2p a yeast GPCR. Pharmacol Res 2011; 65:31-40. [PMID: 22100461 DOI: 10.1016/j.phrs.2011.11.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Revised: 11/01/2011] [Accepted: 11/01/2011] [Indexed: 11/25/2022]
Abstract
Signaling and internalization of Ste2p, a model G protein-coupled receptor (GPCR) from the yeast Saccharomyces cerevisiae, are reported to be regulated by phosphorylation status of serine (S) and threonine (T) residues located in the cytoplasmic C-terminus. Although the functional roles of S/T residues located in certain C-terminus regions are relatively well characterized, systemic analyses have not been conducted for all the S/T residues that are spread throughout the C-terminus. A point mutation to alanine was introduced into the S/T residues located within three intracellular loops and the C-terminus individually or in combination. A series of functional assays such as internalization, FUS1-lacZ induction, and growth arrest were conducted in comparison between WT- and mutant Ste2p. The Ste2p in which all S/T residues in the C-terminus were mutated to alanine was more sensitive to α-factor, suggesting that phosphorylation in the C-terminus exerts negative regulatory activities on the Ste2p signaling. C-terminal S/T residues proximal to the seventh transmembrane domain were important for ligand-induced G protein coupling but not for receptor internalization. Sites on the central region of the C-terminus regulated both constitutive and ligand-induced internalization. Residues on the distal part were important for constitutive desensitization and modulated the G protein signaling mediated through the proximal part of the C-terminus. This study demonstrated that the C-terminus contains multiple functional domains with differential and interdependent roles in regulating Ste2p function in which the S/T residues located in each domain play critical roles.
Collapse
Affiliation(s)
- Kyeong-Man Kim
- Department of Pharmacology, College of Pharmacy, Chonnam National University, Kwang-Ju 500-757, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
8
|
Kim H, Lee BK, Naider F, Becker JM. Identification of specific transmembrane residues and ligand-induced interface changes involved in homo-dimer formation of a yeast G protein-coupled receptor. Biochemistry 2009; 48:10976-87. [PMID: 19839649 DOI: 10.1021/bi901291c] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The Saccharomyces cerevisiae alpha-factor pheromone receptor, Ste2p, has been studied as a model for G protein-coupled receptor (GPCR) structure and function. Dimerization has been demonstrated for many GPCRs, although the role(s) of dimerization in receptor function is disputed. Transmembrane domains one (TM1) and four (TM4) of Ste2p were shown previously to play a role in dimerization. In this study, single cysteine substitutions were introduced into a Cys-less Ste2p, and disulfide-mediated dimerization was assessed. Six residues in TM1 (L64 to M69) that had not been previously investigated and 19 residues in TM7 (T278 to A296) of which 15 were not previously investigated were mutated to create 25 single Cys-containing Ste2p molecules. Ste2p mutants V68C in TM1 and nine mutants in TM7 (cysteine substituted into residues 278, 285, 289, and 291 to 296) showed increased dimerization upon addition of an oxidizing agent in comparison to the background dimers formed by the Cys-less receptor. The formation of dimers was decreased for TM7 mutant receptors in the presence of alpha-factor indicating that ligand binding resulted in a conformational change that influenced dimerization. The effect of ligand on dimer formation suggests that dimers are formed in the resting state and the activated state of the receptor by different TM interactions.
Collapse
Affiliation(s)
- Heejung Kim
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee 37996, USA
| | | | | | | |
Collapse
|
9
|
Neumoin A, Cohen LS, Arshava B, Tantry S, Becker JM, Zerbe O, Naider F. Structure of a double transmembrane fragment of a G-protein-coupled receptor in micelles. Biophys J 2009; 96:3187-96. [PMID: 19383463 DOI: 10.1016/j.bpj.2009.01.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2008] [Revised: 01/08/2009] [Accepted: 01/13/2009] [Indexed: 11/29/2022] Open
Abstract
The structure and dynamic properties of an 80-residue fragment of Ste2p, the G-protein-coupled receptor for alpha-factor of Saccharomyces cerevisiae, was studied in LPPG micelles with the use of solution NMR spectroscopy. The fragment Ste2p(G31-T110) (TM1-TM2) consisted of 19 residues from the N-terminal domain, the first TM helix (TM1), the first cytoplasmic loop, the second TM helix (TM2), and seven residues from the first extracellular loop. Multidimensional NMR experiments on [(15)N], [(15)N, (13)C], [(15)N, (13)C, (2)H]-labeled TM1-TM2 and on protein fragments selectively labeled at specific amino acid residues or protonated at selected methyl groups resulted in >95% assignment of backbone and side-chain nuclei. The NMR investigation revealed the secondary structure of specific residues of TM1-TM2. TALOS constraints and NOE connectivities were used to calculate a structure for TM1-TM2 that was highlighted by the presence of three alpha-helices encompassing residues 39-47, 49-72, and 80-103, with higher flexibility around the internal Arg(58) site of TM1. RMSD values of individually superimposed helical segments 39-47, 49-72, and 80-103 were 0.25 +/- 0.10 A, 0.40 +/- 0.13 A, and 0.57 +/- 0.19 A, respectively. Several long-range interhelical connectivities supported the folding of TM1-TM2 into a tertiary structure typified by a crossed helix that splays apart toward the extracellular regions and contains considerable flexibility in the G(56)VRSG(60) region. (15)N-relaxation and hydrogen-deuterium exchange data support a stable fold for the TM parts of TM1-TM2, whereas the solvent-exposed segments are more flexible. The NMR structure is consistent with the results of biochemical experiments that identified the ligand-binding site within this region of the receptor.
Collapse
Affiliation(s)
- Alexey Neumoin
- Institute of Organic Chemistry, University of Zurich, Zurich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
10
|
Niculita-Hirzel H, Labbé J, Kohler A, Le Tacon F, Martin F, Sanders IR, Kües U. Gene organization of the mating type regions in the ectomycorrhizal fungus Laccaria bicolor reveals distinct evolution between the two mating type loci. THE NEW PHYTOLOGIST 2008; 180:329-342. [PMID: 18557817 DOI: 10.1111/j.1469-8137.2008.02525.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
In natural conditions, basidiomycete ectomycorrhizal fungi such as Laccaria bicolor are typically in the dikaryotic state when forming symbioses with trees, meaning that two genetically different individuals have to fuse or 'mate'. Nevertheless, nothing is known about the molecular mechanisms of mating in these ecologically important fungi. Here, advantage was taken of the first sequenced genome of the ectomycorrhizal fungus, Laccaria bicolor, to determine the genes that govern the establishment of cell-type identity and orchestrate mating. The L. bicolor mating type loci were identified through genomic screening. The evolutionary history of the genomic regions that contained them was determined by genome-wide comparison of L. bicolor sequences with those of known tetrapolar and bipolar basidiomycete species, and by phylogenetic reconstruction of gene family history. It is shown that the genes of the two mating type loci, A and B, are conserved across the Agaricales, but they are contained in regions of the genome with different evolutionary histories. The A locus is in a region where the gene order is under strong selection across the Agaricales. By contrast, the B locus is in a region where the gene order is likely under a low selection pressure but where gene duplication, translocation and transposon insertion are frequent.
Collapse
Affiliation(s)
- Hélène Niculita-Hirzel
- Department of Ecology and Evolution, University of Lausanne, Biophore Building, CH-1015 Lausanne, Switzerland
| | - Jessy Labbé
- UMR 1136, Interactions Arbres/Microorganismes, INRA-Nancy, F-54280 Champenoux, France
| | - Annegret Kohler
- UMR 1136, Interactions Arbres/Microorganismes, INRA-Nancy, F-54280 Champenoux, France
| | - François Le Tacon
- UMR 1136, Interactions Arbres/Microorganismes, INRA-Nancy, F-54280 Champenoux, France
| | - Francis Martin
- UMR 1136, Interactions Arbres/Microorganismes, INRA-Nancy, F-54280 Champenoux, France
| | - Ian R Sanders
- Department of Ecology and Evolution, University of Lausanne, Biophore Building, CH-1015 Lausanne, Switzerland
| | - Ursula Kües
- Molecular Wood Biotechnology and Technical Mycology, Büsgen-Institute, Georg-August-University Göttingen, D-37077 Göttingen, Germany
| |
Collapse
|
11
|
Huang LY, Umanah G, Hauser M, Son C, Arshava B, Naider F, Becker JM. Unnatural Amino Acid Replacement in a Yeast G Protein-Coupled Receptor in Its Native Environment. Biochemistry 2008; 47:5638-48. [DOI: 10.1021/bi701866e] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Li-Yin Huang
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee 37996, Department of Chemistry and Macromolecular Assemblies Institute, College of Staten Island, City University of New York (CUNY), New York City, New York 10314, and Graduate School and University Center, City University of New York (CUNY), New York City, New York 10314
| | - George Umanah
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee 37996, Department of Chemistry and Macromolecular Assemblies Institute, College of Staten Island, City University of New York (CUNY), New York City, New York 10314, and Graduate School and University Center, City University of New York (CUNY), New York City, New York 10314
| | - Melinda Hauser
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee 37996, Department of Chemistry and Macromolecular Assemblies Institute, College of Staten Island, City University of New York (CUNY), New York City, New York 10314, and Graduate School and University Center, City University of New York (CUNY), New York City, New York 10314
| | - Cagdas Son
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee 37996, Department of Chemistry and Macromolecular Assemblies Institute, College of Staten Island, City University of New York (CUNY), New York City, New York 10314, and Graduate School and University Center, City University of New York (CUNY), New York City, New York 10314
| | - Boris Arshava
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee 37996, Department of Chemistry and Macromolecular Assemblies Institute, College of Staten Island, City University of New York (CUNY), New York City, New York 10314, and Graduate School and University Center, City University of New York (CUNY), New York City, New York 10314
| | - Fred Naider
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee 37996, Department of Chemistry and Macromolecular Assemblies Institute, College of Staten Island, City University of New York (CUNY), New York City, New York 10314, and Graduate School and University Center, City University of New York (CUNY), New York City, New York 10314
| | - Jeffrey M. Becker
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee 37996, Department of Chemistry and Macromolecular Assemblies Institute, College of Staten Island, City University of New York (CUNY), New York City, New York 10314, and Graduate School and University Center, City University of New York (CUNY), New York City, New York 10314
| |
Collapse
|
12
|
Lee BK, Jung KS, Son C, Kim H, VerBerkmoes NC, Arshava B, Naider F, Becker JM. Affinity purification and characterization of a G-protein coupled receptor, Saccharomyces cerevisiae Ste2p. Protein Expr Purif 2007; 56:62-71. [PMID: 17646109 PMCID: PMC2065862 DOI: 10.1016/j.pep.2007.06.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2007] [Revised: 06/01/2007] [Accepted: 06/10/2007] [Indexed: 11/28/2022]
Abstract
We present an example of expression and purification of a biologically active G-protein coupled receptor (GPCR) from yeast. An expression vector was constructed to encode the Saccharomyces cerevisiae GPCR alpha-factor receptor (Ste2p, the STE2 gene product) containing a 9-amino acid sequence of rhodopsin that served as an epitope/affinity tag. In the construct, two glycosylation sites and two cysteine residues were removed to aid future structural and functional studies. The receptor was expressed in yeast cells and was detected as a single band in a western blot indicating the absence of glycosylation. Ligand binding and signaling assays of the epitope-tagged, mutated receptor showed it maintained the full wild-type biological activity. For extraction of Ste2p, yeast membranes were solubilized with 0.5% n-dodecyl maltoside (DM). Approximately 120 microg of purified alpha-factor receptor was obtained per liter of culture by single-step affinity chromatography using a monoclonal antibody to the rhodopsin epitope. The binding affinity (K(d)) of the purified alpha-factor receptor in DM micelles was 28 nM as compared to K(d)=12.7 nM for Ste2p in cell membranes, and approximately 40% of the purified receptor was correctly folded as judged by ligand saturation binding. About 50% of the receptor sequence was retrieved from MALDI-TOF and nanospray mass spectrometry after CNBr digestion of the purified receptor. The methods described will enable structural studies of the alpha-factor receptor and may provide an efficient technique to purify other GPCRs that have been functionally expressed in yeast.
Collapse
Affiliation(s)
- Byung-Kwon Lee
- Department of Microbiology, University of Tennessee, Knoxville, TN, 37996 USA
| | - Kyung-Sik Jung
- Department of Microbiology, University of Tennessee, Knoxville, TN, 37996 USA
| | - Cagdas Son
- Department of Microbiology, University of Tennessee, Knoxville, TN, 37996 USA
| | - Heejung Kim
- Department of Microbiology, University of Tennessee, Knoxville, TN, 37996 USA
| | | | - Boris Arshava
- Department of Chemistry, College of Staten Island, CUNY, Staten Island, NY 10301 USA
| | - Fred Naider
- Department of Chemistry, College of Staten Island, CUNY, Staten Island, NY 10301 USA
- The Leonard and Esther Term Professor at the College of Staten Island
| | - Jeffrey M. Becker
- Department of Microbiology, University of Tennessee, Knoxville, TN, 37996 USA
| |
Collapse
|
13
|
Barak LS, Gilchrist J, Becker JM, Kim KM. Relationship between the G protein signaling and homologous desensitization of G protein-coupled receptors. Biochem Biophys Res Commun 2006; 339:695-700. [PMID: 16325780 DOI: 10.1016/j.bbrc.2005.11.070] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2005] [Accepted: 11/14/2005] [Indexed: 11/29/2022]
Abstract
Signaling and desensitization of G protein-coupled receptor are intimately related, and measuring them separately requires certain parameters that represent desensitization independently of signaling. In this study, we tested whether desensitization requires signaling in three different receptors, beta2-adrenergic receptor (beta2AR) in S49 lymphoma cells, alpha-factor pheromone receptor (Ste2p) in Saccharomyces cerevisiae LM102 cells, and dopamine D3 receptor (D3R) in HEK-293 cells. Agonist-induced beta-arrestin translocation to the plasma membrane or receptor sequestration was measured to estimate homologous desensitization. To separate the signaling and desensitization of beta2AR, which mediates stimulation of adenylyl cyclase, S49 lymphoma cys- cells that lack the alpha subunit of Gs were used. Stimulation of beta2AR in these cells failed to increase intracellular cAMP, but beta-arrestin translocation still occurred, suggesting that feedback from beta2AR signaling is not required for homologous desensitization to occur. Agonist-induced sequestration of the yeast Ste2p-L236R, which showed reduced signaling through G protein, was not different from that of wildtype Ste2p, suggesting that the receptor signaling and sequestration are not directly linked cellular events. Both G protein coupling and D3R signaling, measured as inhibition of cAMP production, were greatly enhanced by co-expression of exogenous alpha subunit of Go (Goalpha) or adenylyl cyclase type 5 (AC5), respectively. However, agonist-induced beta-arrestin translocation, receptor phosphorylation, and sequestration were not affected by co-expression of Galphao and AC5, suggesting that the extent of signaling does not determine desensitization intensity. Taken together, our results consistently suggest that G protein signaling and homologous desensitization are independent cellular processes.
Collapse
MESH Headings
- Animals
- Cell Line
- Chlorocebus aethiops
- Heterotrimeric GTP-Binding Proteins/metabolism
- Humans
- Ligands
- Receptors, Adrenergic, beta-2/genetics
- Receptors, Adrenergic, beta-2/metabolism
- Receptors, Dopamine D3/genetics
- Receptors, Dopamine D3/metabolism
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/metabolism
- Receptors, Mating Factor/genetics
- Receptors, Mating Factor/metabolism
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/metabolism
- Signal Transduction
Collapse
Affiliation(s)
- Larry S Barak
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | |
Collapse
|
14
|
Lee YH, Naider F, Becker JM. Interacting Residues in an Activated State of a G Protein-coupled Receptor. J Biol Chem 2006; 281:2263-72. [PMID: 16314417 DOI: 10.1074/jbc.m509987200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ste2p, the G protein-coupled receptor (GPCR) for the tridecapeptide pheromone alpha-factor of Saccharomyces cerevisiae, was used as a model GPCR to investigate the role of specific residues in the resting and activated states of the receptor. Using a series of biological and biochemical analyses of wild-type and site-directed mutant receptors, we identified Asn(205) as a potential interacting partner with the Tyr(266) residue. An N205H/Y266H double mutant showed pH-dependent functional activity, whereas the N205H receptor was non-functional and the Y266H receptor was partially active indicating that the histidine 205 and 266 residues interact in an activated state of the receptor. The introduction of N205K or Y266D mutations into the P258L/S259L constitutively active receptor suppressed the constitutive activity; in contrast, the N205K/Y266D/P258L/S259L quadruple mutant was fully constitutively active, again indicating an interaction between residues at the 205 and 206 positions in the receptor-active state. To further test this interaction, we introduced the N205C/Y266C, F204C/Y266C, and N205C/A265C double mutations into wild-type and P258L/S259L constitutively active receptors. After trypsin digestion, we found that a disulfide-cross-linked product, with the molecular weight expected for a receptor fragment with a cross-link between N205C and Y266C, formed only in the N205C/Y266C constitutively activated receptor. This study represents the first experimental demonstration of an interaction between specific residues in an active state, but not the resting state, of Ste2p. The information gained from this study should contribute to an understanding of the conformational differences between resting and active states in GPCRs.
Collapse
MESH Headings
- Alanine/chemistry
- Asparagine/chemistry
- Biological Assay
- Cross-Linking Reagents/pharmacology
- Disulfides/chemistry
- Dose-Response Relationship, Drug
- Genes, Dominant
- Genes, Reporter
- Histidine/chemistry
- Hydrogen-Ion Concentration
- Immunoblotting
- Kinetics
- Lac Operon
- Models, Biological
- Models, Molecular
- Mutagenesis, Site-Directed
- Mutation
- Phenotype
- Pheromones/chemistry
- Protein Binding
- Protein Conformation
- Protein Structure, Secondary
- Receptors, G-Protein-Coupled/chemistry
- Receptors, G-Protein-Coupled/metabolism
- Receptors, Mating Factor/chemistry
- Saccharomyces cerevisiae/metabolism
- Saccharomyces cerevisiae Proteins/chemistry
- Signal Transduction
- Trypsin/pharmacology
- Tyrosine/chemistry
Collapse
Affiliation(s)
- Yong-Hun Lee
- Department of Microbiology, University of Tennessee, Nashville, TN 37996, USA
| | | | | |
Collapse
|
15
|
Naider F, Khare S, Arshava B, Severino B, Russo J, Becker JM. Synthetic peptides as probes for conformational preferences of domains of membrane receptors. Biopolymers 2005; 80:199-213. [PMID: 15622547 DOI: 10.1002/bip.20183] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Peptide models have been widely used to investigate conformational aspects of domains of proteins since the early 1950s. A pioneer in this field was Dr. Murray Goodman, who applied a battery of methodologies to study the onset of structure in homooligopeptides. This article reviews some of Dr. Goodman's contributions, and reports recent studies using linear and constrained peptides corresponding to the first extracellular loop and linear peptides corresponding to the sixth transmembrane domain of a G-protein coupled receptor from the yeast Saccharomyces cerevisiae. Peptides containing 30-40 residues were synthesized using solid-phase methods and purified to near homogeneity by reversed phase high performance liquid chromatography. CD and NMR analyses indicated that the first extracellular loop peptides were mostly flexible in water, and assumed some helical structure near the N-terminus in trifluoroethanol and in the presence of micelles. Comparison of oligolysines with native loop residues revealed that three lysines at each terminus of a peptide corresponding to the sixth transmembrane domain of the alpha-factor receptor resulted in better aqueous solubility and greater helicity than the native loop residues.
Collapse
Affiliation(s)
- Fred Naider
- Department of Chemistry, College of Staten Island, and Institute for Macromolecular Assemblies, City University of New York, Staten Island, NY 10314, USA.
| | | | | | | | | | | |
Collapse
|
16
|
Naider F, Becker JM. The alpha-factor mating pheromone of Saccharomyces cerevisiae: a model for studying the interaction of peptide hormones and G protein-coupled receptors. Peptides 2004; 25:1441-63. [PMID: 15374647 DOI: 10.1016/j.peptides.2003.11.028] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2003] [Accepted: 11/25/2003] [Indexed: 10/26/2022]
Abstract
Mating in Saccharomyces cerevisiae is initiated by the secretion of diffusible peptide pheromones that are recognized by G protein-coupled receptors (GPCR). This review summarizes the use of the alpha-factor (WHWLQLKPGQPMY)--GPCR (Ste2p) interaction as a paradigm to understand the recognition between medium-sized peptide hormones and their cognate receptors. Studies over the past 15 years have indicated that the alpha-factor is bent around the center of the pheromone and that residues near the amine terminus play a central role in triggering signal transduction. The bend in the center appears not to be rigid and this flexibility is likely necessary for conformational changes that occur as the receptor switches from the inactive to active state. The results of synthetic, biological, biochemical, molecular biological, and biophysical analyses have led to a preliminary model for the structure of the peptide bound to its receptor. Antagonists for Ste2p have changes near the N-terminus of alpha-factor, and mutated forms of Ste2p were discovered that appear to favor binding of these antagonists relative to agonists. Many features of this yeast recognition system are relevant to and have counterparts in mammalian cells.
Collapse
Affiliation(s)
- Fred Naider
- Department of Chemistry, College of Staten Island and Institute for Macromolecular Assemblies of The City University of New York, Staten Island, NY 10314, USA.
| | | |
Collapse
|
17
|
Lin JC, Duell K, Konopka JB. A microdomain formed by the extracellular ends of the transmembrane domains promotes activation of the G protein-coupled alpha-factor receptor. Mol Cell Biol 2004; 24:2041-51. [PMID: 14966283 PMCID: PMC350546 DOI: 10.1128/mcb.24.5.2041-2051.2004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The alpha-factor receptor (Ste2p) that promotes mating in Saccharomyces cerevisiae is similar to other G protein-coupled receptors (GPCRs) in that it contains seven transmembrane domains. Previous studies suggested that the extracellular ends of the transmembrane domains are important for Ste2p function, so a systematic scanning mutagenesis was carried out in which 46 residues near the ends of transmembrane domains 1, 2, 3, 4, and 7 were replaced with cysteine. These mutants complement mutations constructed previously near the ends of transmembrane domains 5 and 6 to analyze all the extracellular ends. Eight new mutants created in this study were partially defective in signaling (V45C, N46C, T50C, A52C, L102C, N105C, L277C, and A281C). Treatment with 2-([biotinoyl] amino) ethyl methanethiosulfonate, a thiol-specific reagent that reacts with accessible cysteine residues but not membrane-embedded cysteines, identified a drop in the level of reactivity over a consecutive series of residues that was inferred to be the membrane boundary. An unusual prolonged zone of intermediate reactivity near the extracellular end of transmembrane domain 2 suggests that this region may adopt a special structure. Interestingly, residues implicated in ligand binding were mainly accessible, whereas residues involved in the subsequent step of promoting receptor activation were mainly inaccessible. These results define a receptor microdomain that provides an important framework for interpreting the mechanisms by which functionally important residues contribute to ligand binding and activation of Ste2p and other GPCRs.
Collapse
MESH Headings
- Amino Acid Sequence
- Binding Sites
- Biotin/chemistry
- Biotin/metabolism
- Cell Division/physiology
- Cysteine/metabolism
- Genes, Reporter
- Ligands
- Mesylates/chemistry
- Mesylates/metabolism
- Models, Molecular
- Mutation
- Phenotype
- Pheromones/metabolism
- Protein Binding
- Protein Structure, Secondary
- Receptors, G-Protein-Coupled/chemistry
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/metabolism
- Receptors, Mating Factor
- Receptors, Peptide/chemistry
- Receptors, Peptide/genetics
- Receptors, Peptide/metabolism
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/metabolism
- Saccharomyces cerevisiae Proteins/chemistry
- Saccharomyces cerevisiae Proteins/genetics
- Saccharomyces cerevisiae Proteins/metabolism
- Signal Transduction/physiology
- Transcription Factors
Collapse
Affiliation(s)
- Jennifer C Lin
- Graduate Program in Molecular and Cellular Biology, State University of New York, Stony Brook, New York 11794-5222, USA
| | | | | |
Collapse
|
18
|
Akal-Strader A, Khare S, Xu D, Naider F, Becker JM. Residues in the first extracellular loop of a G protein-coupled receptor play a role in signal transduction. J Biol Chem 2002; 277:30581-90. [PMID: 12058045 DOI: 10.1074/jbc.m204089200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Saccharomyces cerevisiae pheromone, alpha-factor (WHWLQLKPGQPMY), and Ste2p, its G protein-coupled receptor, were used as a model system to study ligand-receptor interaction. Cys-scanning mutagenesis on each residue of EL1, the first extracellular loop of Ste2p, was used to generate a library of 36 mutants with a single Cys residue substitution. Mutation of most residues of EL1 had only negligible effects on ligand affinity and biological activity of the mutant receptors. However, five mutants were identified that were either partially (L102C and T114C) or severely (N105C, S108C, and Y111C) compromised in signaling but retained binding affinities similar to those of wild-type receptor. Three-dimensional modeling, secondary structure predictions, and subsequent circular dichroism studies on a synthetic peptide with amino acid sequence corresponding to EL1 suggested the presence of a helix corresponding to EL1 residues 106 to 114 followed by two short beta-strands (residues 126 to 135). The distinctive periodicity of the five residues with a signal-deficient phenotype combined with biophysical studies suggested a functional involvement in receptor activation of a face on a 3(10) helix in this region of EL1. These studies indicate that EL1 plays an important role in the conformational switch that activates the Ste2p receptor to initiate the mating pheromone signal transduction pathway.
Collapse
Affiliation(s)
- Ayça Akal-Strader
- Department of Biochemistry, Cellular and Molecular Biology, M407 Walters Life Sciences Building, University of Tennessee, Knoxville, TN 37996, USA
| | | | | | | | | |
Collapse
|
19
|
Parrish W, Eilers M, Ying W, Konopka JB. The cytoplasmic end of transmembrane domain 3 regulates the activity of the Saccharomyces cerevisiae G-protein-coupled alpha-factor receptor. Genetics 2002; 160:429-43. [PMID: 11861550 PMCID: PMC1461982 DOI: 10.1093/genetics/160.2.429] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The binding of alpha-factor to its receptor (Ste2p) activates a G-protein-signaling pathway leading to conjugation of MATa cells of the budding yeast S. cerevisiae. We conducted a genetic screen to identify constitutively activating mutations in the N-terminal region of the alpha-factor receptor that includes transmembrane domains 1-5. This approach identified 12 unique constitutively activating mutations, the strongest of which affected polar residues at the cytoplasmic ends of transmembrane domains 2 and 3 (Asn84 and Gln149, respectively) that are conserved in the alpha-factor receptors of divergent yeast species. Targeted mutagenesis, in combination with molecular modeling studies, suggested that Gln149 is oriented toward the core of the transmembrane helix bundle where it may be involved in mediating an interaction with Asn84. These residues appear to play specific roles in maintaining the inactive conformation of the protein since a variety of mutations at either position cause constitutive receptor signaling. Interestingly, the activity of many mammalian G-protein-coupled receptors is also regulated by conserved polar residues (the E/DRY motif) at the cytoplasmic end of transmembrane domain 3. Altogether, the results of this study suggest a conserved role for the cytoplasmic end of transmembrane domain 3 in regulating the activity of divergent G-protein-coupled receptors.
Collapse
Affiliation(s)
- William Parrish
- Department of Molecular Genetics and Microbiology, Center for Structural Biology, State University of New York, Stony Brook, New York 11794-5222, USA
| | | | | | | |
Collapse
|
20
|
Lee BK, Khare S, Naider F, Becker JM. Identification of residues of the Saccharomyces cerevisiae G protein-coupled receptor contributing to alpha-factor pheromone binding. J Biol Chem 2001; 276:37950-61. [PMID: 11495900 DOI: 10.1074/jbc.m103579200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Saccharomyces cerevisiae pheromone, alpha-factor (WHWLQLKPGQPMY), and Ste2p, its G protein-coupled receptor, were studied as a model for peptide ligand-receptor interaction. The affinities and activities of various synthetic position-10 alpha-factor analogs with Ste2p expressing mutations at residues Ser47 and Thr48 were investigated. All mutant receptors were expressed at a similar level in the cytoplasmic membrane, and their efficacies of signal transduction were similar to that of the wild-type receptor. Mutant receptors differed in binding affinity (Kd) and potency (EC50) for gene induction by alpha-factor. One mutant receptor (S47K,T48K) had dramatically reduced affinity and activity for [Lys10]- and [Orn10]alpha-factor, whereas the affinity for Saccharomyces kluyveri alpha-factor (WHWLSFSKGEPMY) was increased over 20-fold compared with that of wild-type receptor. In contrast, the affinity of [Lys10]- and [Orn10]alpha-factor was increased greatly in a S47E,T48E mutant receptor, whereas the binding of the S. kluyveri alpha-factor was abolished. The affinity of [Lys10]- and [Orn10]alpha-factor for the S47E,T48E receptor dropped 4-6-fold in the presence of 1 m NaCl, whereas the affinity of alpha-factor was not affected by this treatment. These results demonstrate that when bound to its receptor the 10th residue (Gln) of the S. cerevisiae alpha-factor is adjacent to Ser47 and Thr48 residues in the receptor and that the 10th residue of alpha-factors from two Saccharomyces species is responsible for the ligand selectivity to their cognate receptors. Based on these data, we have developed a two-dimensional model of alpha-factor binding to its receptor.
Collapse
Affiliation(s)
- B K Lee
- Department of Microbiology, University of Tennessee, Knoxville, 37996, USA
| | | | | | | |
Collapse
|
21
|
Dube P, DeCostanzo A, Konopka JB. Interaction between transmembrane domains five and six of the alpha -factor receptor. J Biol Chem 2000; 275:26492-9. [PMID: 10846179 DOI: 10.1074/jbc.m002767200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The alpha-factor pheromone receptor (STE2) activates a G protein signal pathway that induces conjugation of the yeast Saccharomyces cerevisiae. Previous studies implicated the third intracellular loop of this receptor in G protein activation. Therefore, the roles of transmembrane domains five and six (TMD5 and -6) that bracket the third intracellular loop were analyzed by scanning mutagenesis in which each residue was substituted with cysteine. Out of 42 mutants examined, four constitutive mutants and two strong loss-of-function mutants were identified. Double mutants combining Cys substitutions in TMD5 and TMD6 gave a broader range of phenotypes. Interestingly, a V223C mutation in TMD5 caused constitutive activity when combined with the L247C, L248C, or S251C mutations in TMD6. Also, the L226C mutation in TMD5 caused constitutive activity when combined with either the M250C or S251C mutations in TMD6. The residues affected by these mutations are predicted to fall on one side of their respective helices, suggesting that they may interact. In support of this, cysteines substituted at position 223 in TMD5 and position 247 in TMD6 formed a disulfide bond, providing the first direct evidence of an interaction between these transmembrane domains in the alpha-factor receptor. Altogether, these results identify an important region of interaction between conserved hydrophobic regions at the base of TMD5 and TMD6 that is required for the proper regulation of receptor signaling.
Collapse
Affiliation(s)
- P Dube
- Program in Molecular and Cellular Biology and the Department of Molecular Genetics and Microbiology, State University of New York, Stony Brook, New York 11794-5222, USA
| | | | | |
Collapse
|
22
|
Liu S, Henry LK, Lee BK, Wang SH, Arshava B, Becker JM, Naider F. Position 13 analogs of the tridecapeptide mating pheromone from Saccharomyces cerevisiae: design of an iodinatable ligand for receptor binding. THE JOURNAL OF PEPTIDE RESEARCH : OFFICIAL JOURNAL OF THE AMERICAN PEPTIDE SOCIETY 2000; 56:24-34. [PMID: 10917454 DOI: 10.1034/j.1399-3011.2000.00730.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Analogs of the alpha-factor tridecapeptide mating pheromone (WHWLQLKPGQPMY) from Saccharomyces cerevisiae in which Tyr13 was replaced with Phe, p-F-Phe, m-F-Phe, p-NO2-Phe, p-NH2-Phe or Ser were synthesized and purified to >99% homogeneity. These analogs were bioassayed using a growth arrest assay and a gene induction assay and evaluated for their ability to compete with binding of tritiated alpha-factor to its receptor Ste2p. The results showed that the phenolic OH of Tyr13 is not required for either biological activity or receptor recognition. Analogs containing fluorine, amino, nitro or a hydrogen in place of OH had 80-120% of the biological activity of the parent pheromone in the gene induction assay and had receptor affinities from nearly equal to 6-fold lower than that of alpha-factor. In contrast, substitution of Ser or Ala at position 13 resulted in a >100-fold decrease in receptor affinity suggesting that the aromatic ring is involved in binding to the receptor. The lack of a strict requirement for Tyr13 allowed the design of several multiple replacement analogs in which Phe or p-F-Phe were substituted at position 13 and Tyr was placed in other positions of the peptide. These analogs could then be iodinated and used in the development of a highly sensitive receptor-binding assay. One potential receptor ligand [Tyr(125I)1,Nle12, Phe13] alpha-factor exhibited saturable binding with a KD of 81 nM and was competed by alpha-factor for binding in a whole-cell assay. Thus a new family of radioactive ligands for the alpha-factor receptor has been revealed. These ligands should be extremely useful in defining active site residues during mutagenesis and cross-linking studies.
Collapse
Affiliation(s)
- S Liu
- Department of Chemistry, The College of Staten Island and The Graduate School of The City University of New York, 10314, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Fujimura H. Cell-cell recognition and pheromone response of the yeast Saccharomyces globosus. FEMS Microbiol Lett 1999; 173:63-8. [PMID: 10220882 DOI: 10.1111/j.1574-6968.1999.tb13485.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Sexual agglutination and pheromone interaction between cells of two mating types, a and alpha, in the yeast Saccharomyces globosus were studied. S. globosus was shown to produce mating-type-specific factors analogs to a- and alpha-mating pheromones of Saccharomyces cerevisiae and to undergo the sexual agglutination reaction between cells of two mating types. While the sexual agglutination of cells of different species was not observed, mating type a cells of each species were shown to respond to alpha-factors produced by the other species. Thus, the mating response of S. globosus was shown to be identical to what has been observed in two other species of the same genera: S. cerevisiae and Saccharomyces kluyveri.
Collapse
|
24
|
Dube P, Konopka JB. Identification of a polar region in transmembrane domain 6 that regulates the function of the G protein-coupled alpha-factor receptor. Mol Cell Biol 1998; 18:7205-15. [PMID: 9819407 PMCID: PMC109302 DOI: 10.1128/mcb.18.12.7205] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/1998] [Accepted: 09/10/1998] [Indexed: 11/20/2022] Open
Abstract
The alpha-factor pheromone receptor (Ste2p) of the yeast Saccharomyces cerevisiae belongs to the family of G protein-coupled receptors that contain seven transmembrane domains (TMDs). Because polar residues can influence receptor structure by forming intramolecular contacts between TMDs, we tested the role of the five polar amino acids in TMD6 of the alpha-factor receptor by mutating these residues to nonpolar leucine. Interestingly, a subset of these mutants showed increased affinity for ligand and constitutive receptor activity. The mutation of the most polar residue, Q253L, resulted in 25-fold increased affinity and a 5-fold-higher basal level of signaling that was equal to about 19% of the alpha-factor induced maximum signal. Mutation of the adjacent residue, S254L, caused weaker constitutive activity and a 5-fold increase in affinity. Comparison of nine different mutations affecting Ser254 showed that an S254F mutation caused higher constitutive activity, suggesting that a large hydrophobic amino acid residue at position 254 alters transmembrane helix packing. Thus, these studies indicate that Gln253 and Ser254 are likely to be involved in intramolecular interactions with other TMDs. Furthermore, Gln253 and Ser254 fall on one side of the transmembrane helix that is on the opposite side from residues that do not cause constitutive activity when mutated. These results suggest that Gln253 and Ser254 face inward toward the other TMDs and thus provide the first experimental evidence to suggest the orientation of a TMD in this receptor. Consistent with this, we identified two residues in TMD7 (Ser288 and Ser292) that are potential contact residues for Gln253 because mutations affecting these residues also cause constitutive activity. Altogether, these results identify a new domain of the alpha-factor receptor that regulates its ability to enter the activated conformation.
Collapse
Affiliation(s)
- P Dube
- Program in Molecular and Cellular Biology, State University of New York, Stony Brook, New York 11794-5222, USA
| | | |
Collapse
|
25
|
Abel MG, Lee BK, Naider F, Becker JM. Mutations affecting ligand specificity of the G-protein-coupled receptor for the Saccharomyces cerevisiae tridecapeptide pheromone. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1448:12-26. [PMID: 9824658 DOI: 10.1016/s0167-4889(98)00109-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Random mutations were generated in the G-protein-coupled receptor (Ste2p) for the tridecapeptide pheromone (alpha-factor) of Saccharomyces cerevisiae. These mutants were screened for variants that responded to antagonists. Because multiple mutations were detected in each mutant receptor recovered from the screen, site-directed mutagenesis was used to create single-site mutant receptors. Three receptors containing mutations F55V, S219P, and S259P were analyzed for their biological responses to various alpha-factor analogs and for their ligand binding profiles. Cells expressing each of the mutant receptors responded to alpha-factor as well as or better than wild-type cells in a growth arrest assay. In contrast, the binding of alpha-factor to the F55V and S219P mutant receptors was at least 10-fold reduced in comparison to wild-type receptor indicating a complex non-linear correlation between binding affinity and biological activity. Cells expressing mutant receptors responded to some normally inactive analogs in biological assays, despite the fact that these analogs had a low affinity for Ste2p. The analysis of these mutant receptors confirms previous findings that the first and sixth transmembrane regions of Ste2p are important for ligand interaction, ligand specificity, and/or receptor activation to initiate the signal transduction pathway. Changes in binding affinity of pheromone analogs to wild-type and mutant receptors indicate that residue 55 of Ste2p is involved with both ligand binding and signal transduction.
Collapse
Affiliation(s)
- M G Abel
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, USA
| | | | | | | |
Collapse
|
26
|
Arshava B, Liu SF, Jiang H, Breslav M, Becker JM, Naider F. Structure of segments of a G protein-coupled receptor: CD and NMR analysis of the Saccharomyces cerevisiae tridecapeptide pheromone receptor. Biopolymers 1998; 46:343-57. [PMID: 9798427 DOI: 10.1002/(sici)1097-0282(199811)46:6<343::aid-bip1>3.0.co;2-l] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Peptides representing both loop and the sixth transmembrane regions of the alpha-factor receptor of Saccharomyces cerevisiae were synthesized by solid-phase procedures and purified to near homogeneity. CD, nmr, and modeling analysis indicated that in aqueous media the first extracellular loop peptide E1(107-125), the third intracellular loop peptide I3(231-243), and the carboxyl terminus peptide I4(350-372) were mostly disordered. In contrast, the second extracellular loop peptide E2(191-206) assumed a well-defined structure in aqueous medium and the sixth transmembrane domain peptide receptor M6(252-269, C252A) was highly helical in trifluoroethanol/water (4:1), exhibiting a kink at Pro258. A synthetic peptide containing a sequence similar to that of the sixth transmembrane domain of a constitutively active alpha-factor receptor M6(252-269, C252A, P258L) in which Leu replaces Pro258 exhibited significantly different biophysical properties than the wild-type sequence. In particular, this peptide had very low solubility and gave CD resembling that of a beta-sheet structure in hexafluoroacetone/water (1:1) whereas the wild-type peptide was partially helical under identical conditions. These results would be consistent with the hypothesis that the constitutive activity of the mutant receptor is linked to a conformational change in the sixth transmembrane domain. The study of the receptor segments also indicate that peptides corresponding to loops of the alpha-factor receptor do not appear to assume turn structures.
Collapse
Affiliation(s)
- B Arshava
- College of Staten Island of the City University of New York 10314, USA
| | | | | | | | | | | |
Collapse
|
27
|
Dosil M, Giot L, Davis C, Konopka JB. Dominant-negative mutations in the G-protein-coupled alpha-factor receptor map to the extracellular ends of the transmembrane segments. Mol Cell Biol 1998; 18:5981-91. [PMID: 9742115 PMCID: PMC109184 DOI: 10.1128/mcb.18.10.5981] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/1998] [Accepted: 06/30/1998] [Indexed: 11/20/2022] Open
Abstract
G-protein-coupled receptors (GPCRs) transduce the signals for a wide range of hormonal and sensory stimuli by activating a heterotrimeric guanine nucleotide-binding protein (G protein). The analysis of loss-of-function and constitutively active receptor mutants has helped to reveal the functional properties of GPCRs and their role in human diseases. Here we describe the identification of a new class of mutants, dominant-negative mutants, for the yeast G-protein-coupled alpha-factor receptor (Ste2p). Sixteen dominant-negative receptor mutants were isolated based on their ability to inhibit the response to mating pheromone in cells that also express wild-type receptors. Detailed analysis of two of the strongest mutant receptors showed that, unlike other GPCR interfering mutants, they were properly localized at the plasma membrane and did not alter the stability or localization of wild-type receptors. Furthermore, their dominant-negative effect was inversely proportional to the relative amount of wild-type receptors and was reversed by overexpressing the G-protein subunits, suggesting that these mutants compete with the wild-type receptors for the G protein. Interestingly, the dominant-negative mutations are all located at the extracellular ends of the transmembrane segments, defining a novel region of the receptor that is important for receptor signaling. Altogether, our results identify residues of the alpha-factor receptor specifically involved in ligand binding and receptor activation and define a new mechanism by which GPCRs can be inactivated that has important implications for the evaluation of receptor mutations in other G-protein-coupled receptors.
Collapse
Affiliation(s)
- M Dosil
- Department of Molecular Genetics and Microbiology, State University of New York, Stony Brook, New York 11794-5222, USA
| | | | | | | |
Collapse
|
28
|
Casselton LA, Olesnicky NS. Molecular genetics of mating recognition in basidiomycete fungi. Microbiol Mol Biol Rev 1998; 62:55-70. [PMID: 9529887 PMCID: PMC98906 DOI: 10.1128/mmbr.62.1.55-70.1998] [Citation(s) in RCA: 215] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The recognition of compatible mating partners in the basidiomycete fungi requires the coordinated activities of two gene complexes defined as the mating-type genes. One complex encodes members of the homeobox family of transcription factors, which heterodimerize on mating to generate an active transcription regulator. The other complex encodes peptide pheromones and 7-transmembrane receptors that permit intercellular signalling. Remarkably, a single species may have many thousands of cross-compatible mating types because the mating-type genes are multiallelic. Different alleles of both sets of genes are necessary for mating compatibility, and they trigger the initial stages of sexual development--the formation of a specialized filamentous mycelium termed the dikaryon, in which the haploid nuclei remain closely associated in each cell but do not fuse. Three species have been taken as models to describe the molecular structure and organization of the mating-type loci and the genes sequestered within them: the pathogenic smut fungus Ustilago maydis and the mushrooms Coprinus cinereus and Schizophyllum commune. Topics addressed in this review are the roles of the mating-type gene products in regulating sexual development, the molecular basis for multiple mating types, and the molecular interactions that permit different allelic products of the mating type genes to be discriminated. Attention is drawn to the remarkable conservation in the mechanisms that regulate sexual development in basidiomycetes and unicellular ascomycete yeasts, Saccharomyces cerevisiae and Schizosaccharomyces pombe, a theme which is developed in the general conclusion to include the filamentous ascomycetes Neurospora crassa and Podospora anserina.
Collapse
Affiliation(s)
- L A Casselton
- Department of Plant Sciences, University of Oxford, United Kingdom.
| | | |
Collapse
|
29
|
Zhang YL, Lu HF, Becker JM, Naider F. Position one analogs of the Saccharomyces cerevisiae tridecapeptide pheromone. THE JOURNAL OF PEPTIDE RESEARCH : OFFICIAL JOURNAL OF THE AMERICAN PEPTIDE SOCIETY 1997; 50:319-28. [PMID: 9401915 DOI: 10.1111/j.1399-3011.1997.tb01190.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Analogs of the Saccharomyces cerevisiae alpha-mating factor [WHWLQLKPGQPMY], in which a variety of residues replaced Trp1 were synthesized and assayed for biological activity and receptor affinity. Analogs containing Gly or Leu or many different aromatic residues in position 1 of the peptide exhibited bioactivity in a growth arrest assay slightly greater than, or equal to, that of the parent pheromone, whereas the Glu1 and Lys1 analogs exhibited significantly lower bioactivity. Analogs with an aromatic replacement at position 1 had 3- to 6-fold lower receptor affinity than the parent peptide, whereas analogs with a hydrophilic residue at the N-terminus exhibited large reductions in receptor affinity with the peptide with Glu in position 1 showing a 120-fold reduction. N alpha-Acetylation had little effect on bioactivity but lowered receptor affinity by 20- to 40-fold. Amidation of the carboxyl terminus resulted in a 10-fold decrease in activity and a 160-fold decrease in receptor affinity. These results indicate that the alpha-factor receptor has a large hydrophobic binding pocket, possibly containing a negatively charged side-chain, which interacts with the N-terminus of alpha-factor. The lack of correlation between activity and binding and several analogs suggests that small residues near the N-terminus of alpha-factor may be very efficient in triggering isomerization of the receptor to its activated state in the first step of the signal transduction pathway.
Collapse
Affiliation(s)
- Y L Zhang
- Department of Chemistry, College of Staten Island of the City University of New York, USA
| | | | | | | |
Collapse
|
30
|
Sommers CM, Dumont ME. Genetic interactions among the transmembrane segments of the G protein coupled receptor encoded by the yeast STE2 gene. J Mol Biol 1997; 266:559-75. [PMID: 9067610 DOI: 10.1006/jmbi.1996.0816] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
G protein coupled receptors (GPCRs) are integral membrane proteins that mediate cellular responses to a wide variety of extracellular signals. However, the structural basis for activation of this class of receptors by ligand binding is not well understood. We report here the use of a systematic genetic protocol for identifying interactions among the seven transmembrane helices of the GPCR responsible for cellular responses to the alpha-mating pheromone of the yeast Saccharomyces cerevisiae. Random mutations were introduced into the region of the STE2 gene encoding the third transmembrane segment of the alpha-factor receptor, followed by screening for loss of signaling. The limited spectrum of non-conservative mutations recovered, including removal of the only negatively charged side-chain in the transmembrane region, indicates that most substitutions in the third transmembrane segment do not affect receptor function. Three second-site intragenic suppressors of these initial mutations were isolated following mutagenesis of the remaining six transmembrane segments. One of these suppressors, Y266C in the sixth transmembrane segment, is allele specific and shows non-additivity of phenotypes indicative of a physical interaction between the third and sixth transmembrane regions of the receptor. A second suppressor, M218T in the fifth transmembrane segment, exhibits only partial allele specificity. A third suppressor, R58G, in the first transmembrane segment, suppresses a variety of starting alleles and appears to cause global stabilization of the receptor. Analysis of these suppressors and additional alleles can provide a database for modeling GPCR structure.
Collapse
Affiliation(s)
- C M Sommers
- Department of Biochemistry, University of Rochester School of Medicine and Dentistry, NY 14642, USA
| | | |
Collapse
|