1
|
Sakato-Antoku M, Patel-King RS, Inaba K, Balsbaugh JL, King SM. Isoform-specific phosphorylation of axonemal dynein heavy chains. Mol Biol Cell 2025; 36:ar67. [PMID: 40266815 DOI: 10.1091/mbc.e25-03-0116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2025] Open
Abstract
Axonemal dyneins power ciliary motility and phosphorylation of key intermediate and light chain components affects the regulation and properties of these motors in very distantly related organisms. It is also known that many axonemal dynein heavy chains are subject to this posttranslational modification although this has been little studied. Here we examine axonemal dynein heavy chains from a broad range of ciliated eukaryotes and identify phosphorylated sites embedded within various kinase recognition motifs such as those for protein kinase A, protein kinase C, and casein kinase II. Mapping these sites onto discrete heavy chain types reveals class-specific locations apparently mediated by different kinases. For example, we find that all Chlamydomonas α heavy chain phosphorylation sites are in an extended loop derived from AAA5 that arches over the coiled-coil buttress which in turn interacts with the microtubule-binding stalk. In contrast, most sites in the monomeric inner arm dyneins occur very close to the N-terminus and may be involved in assembly processes. In Chlamydomonas, the two cilia (termed cis and trans) exhibit different intrinsic beat frequencies and we identify cilium-specific phosphorylation patterns on both the α heavy chain and outer arm docking complex consistent with differential regulation of these motors in the two organelles.
Collapse
Affiliation(s)
- Miho Sakato-Antoku
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT 06030-3305
| | - Ramila S Patel-King
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT 06030-3305
| | - Kazuo Inaba
- Shimoda Marine Research Center, University of Tsukuba, Shizuoka, Japan
| | - Jeremy L Balsbaugh
- Proteomics and Metabolomics Facility, Center for Open Research Resources and Equipment, University of Connecticut, Storrs, CT 06269
| | - Stephen M King
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT 06030-3305
| |
Collapse
|
2
|
Lesich KA, Kelsch CB, Ponichter KL, Dionne BJ, Dang L, Lindemann CB. The Calcium Response of Mouse Sperm Flagella: Role of Calcium Ions in the Regulation of Dynein Activity1. Biol Reprod 2012; 86:105. [DOI: 10.1095/biolreprod.111.094953] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
3
|
Wilkes DE, Rajagopalan V, Chan CWC, Kniazeva E, Wiedeman AE, Asai DJ. Dynein light chain family in Tetrahymena thermophila. ACTA ACUST UNITED AC 2007; 64:82-96. [PMID: 17009324 DOI: 10.1002/cm.20165] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Dyneins are large protein complexes that produce directed movement on microtubules. In situ, dyneins comprise combinations of heavy, intermediate, light-intermediate, and light chains. The light chains regulate the locations and activities of dyneins but their functions are not completely understood. We have searched the recently sequenced Tetrahymena thermophila macronuclear genome to describe the entire family of dynein light chains expressed in this organism. We identified fourteen genes encoding putative dynein light chains and seven genes encoding light chain-like proteins. RNA-directed PCR revealed that all 21 genes were expressed. Quantitative real time reverse transcription PCR showed that many of these genes were upregulated after deciliation, indicating that these proteins are present in cilia. Using the nomenclature developed in Chlamydomonas, Tetrahymena expresses two isoforms each of LC2, LC4, LC7, and Tctex1, three isoforms of p28, and six LC8/LC8-like isoforms. Tetrahymena also expresses two LC3-like genes. No Tetrahymena orthologue was found for Chlamydomonas LC5 or LC6. This study provides a complete description of the different genes and isoforms of the dynein light chains that are expressed in Tetrahymena, a model organism in which the targeted manipulation of genes is straightforward.
Collapse
Affiliation(s)
- David E Wilkes
- Department of Biology, Harvey Mudd College, Claremont, California 91711-5990, USA
| | | | | | | | | | | |
Collapse
|
4
|
Toba S, Gibson TM, Shiroguchi K, Toyoshima YY, Asai DJ. Properties of the full-length heavy chains of Tetrahymena ciliary outer arm dynein separated by urea treatment. ACTA ACUST UNITED AC 2004; 58:30-8. [PMID: 14983522 DOI: 10.1002/cm.10174] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
An important challenge is to understand the functional specialization of dynein heavy chains. The ciliary outer arm dynein from Tetrahymena thermophila is a heterotrimer of three heavy chains, called alpha, beta and gamma. In order to dissect the contributions of the individual heavy chains, we used controlled urea treatment to dissociate Tetrahymena outer arm dynein into a 19S beta/gamma dimer and a 14S alpha heavy chain. The three heavy chains remained full-length and retained MgATPase activity. The beta/gamma dimer bound microtubules in an ATP-sensitive fashion. The isolated alpha heavy chain also bound microtubules, but this binding was not reversed by ATP. The 19S beta/gamma dimer and the 14S alpha heavy chain could be reconstituted into 22S dynein. The intact 22S dynein, the 19S beta/gamma dimer, and the reconstituted dynein all produced microtubule gliding motility. In contrast, the separated alpha heavy chain did not produce movement under a variety of conditions. The intact 22S dynein produced movement that was discontinuous and slower than the movement produced by the 19S dimer. We conclude that the three heavy chains of Tetrahymena outer arm dynein are functionally specialized. The alpha heavy chain may be responsible for the structural binding of dynein to the outer doublet A-tubule and/or the positioning of the beta/gamma motor domains near the surface of the microtubule track.
Collapse
Affiliation(s)
- Shiori Toba
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Japan
| | | | | | | | | |
Collapse
|
5
|
Kultgen PL, Byrd SK, Ostrowski LE, Milgram SL. Characterization of an A-kinase anchoring protein in human ciliary axonemes. Mol Biol Cell 2002; 13:4156-66. [PMID: 12475942 PMCID: PMC138623 DOI: 10.1091/mbc.e02-07-0391] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Although protein kinase A (PKA) activation is known to increase ciliary beat frequency in humans the molecular mechanisms involved are unknown. We demonstrate that PKA is associated with ciliary axonemes where it specifically phosphorylates a 23-kDa protein. Because PKA is often localized to subcellular compartments in proximity to its substrate(s) via interactions with A-kinase-anchoring proteins (AKAPs), we investigated whether an AKAP was also associated with ciliary axonemes. This study has identified a novel 28 kDa AKAP (AKAP28)that is highly enriched in airway axonemes. The mRNA for AKAP28 is up-regulated as primary airway cells differentiate and is specifically expressed in tissues containing cilia and/or flagella. Additionally, both Western blot and immunostaining data show that AKAP28 is enriched in airway cilia. These data demonstrate that we have identified the first human axonemal AKAP, a protein that likely plays a role in the signaling necessary for efficient modulation of ciliary beat frequency.
Collapse
Affiliation(s)
- Patricia L Kultgen
- Department of Cell and Developmental Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | | | | | | |
Collapse
|
6
|
Christensen ST, Guerra C, Wada Y, Valentin T, Angeletti RH, Satir P, Hamasaki T. A regulatory light chain of ciliary outer arm dynein in Tetrahymena thermophila. J Biol Chem 2001; 276:20048-54. [PMID: 11274140 DOI: 10.1074/jbc.m008412200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ciliary beat frequency is primarily regulated by outer arm dyneins (22 S dynein). Chilcote and Johnson (Chilcote, T. J., and Johnson, K. A. (1990) J. Biol. Chem. 256, 17257-17266) previously studied isolated Tetrahymena 22 S dynein, identifying a protein p34, which showed cAMP-dependent phosphorylation. Here, we characterize the molecular biochemistry of p34 further, demonstrating that it is the functional ortholog of the 22 S dynein regulatory light chain, p29, in Paramecium. p34, thiophosphorylated in isolated axonemes in the presence of cAMP, co-purified with 22 S dynein and not with inner arm dynein (14 S dynein). Isolated 22 S dynein containing phosphorylated p34 showed approximately 70% increase in in vitro microtubule translocation velocity compared with its unphosphorylated counterpart. Extracted p34 rebound to isolated 22 S dynein from either Tetrahymena or Paramecium but not to 14 S dynein from either ciliate. Binding of radiolabeled p34 to 22 S dynein was competitive with p29. Phosphorylated p34 was not present in axonemes isolated from a mutant lacking outer arms. Two-dimensional gel electrophoresis followed by phosphorimaging revealed at least five phosphorylated p34-related spots, consistent with multiple phosphorylation sites in p34 or perhaps multiple isoforms of p34. These new features suggest that a class of outer arm dynein light chains including p34 regulates microtubule sliding velocity and consequently ciliary beat frequency through phosphorylation.
Collapse
Affiliation(s)
- S T Christensen
- Departments of Anatomy and Structural Biology and Developmental and Molecular Biology, Albert Einstein College of Medicine of Yeshiva University, Bronx, New York 10461, USA
| | | | | | | | | | | | | |
Collapse
|
7
|
Affiliation(s)
- J Frankel
- Department of Biological Sciences, University of Iowa, Iowa City 52242, USA
| |
Collapse
|
8
|
Inaba K, Kagami O, Ogawa K. Tctex2-related outer arm dynein light chain is phosphorylated at activation of sperm motility. Biochem Biophys Res Commun 1999; 256:177-83. [PMID: 10066443 DOI: 10.1006/bbrc.1999.0309] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
When the motility of sperm is activated, only one light chain of flagellar outer arm dynein is phosphorylated in many organisms. We show here that the light chain to be phosphorylated was shown to be light chain 2 (LC2) in rainbow trout and chum salmon sperm and LC1 in sea urchin sperm. Molecular analyses of the phosphorylated light chains from sperm flagella of the salmonid fishes and sea urchin revealed that the light chains are homologs of the mouse t complex-encoded protein Tctex2, which is one of the putative t complex distorters. These results suggest that mouse Tctex2 might also be a light chain of flagellar outer arm dynein and that the abortive phosphorylation of Tctex2/outer arm dynein light chain might be related to the less progressive movement of sperm.
Collapse
Affiliation(s)
- K Inaba
- Asamushi Marine Biological Station, Tohoku University, Asamushi, Aomori, Aomori, 039-3501, Japan.
| | | | | |
Collapse
|
9
|
Inaba K, Morisawa S, Morisawa M. Proteasomes regulate the motility of salmonid fish sperm through modulation of cAMP-dependent phosphorylation of an outer arm dynein light chain. J Cell Sci 1998; 111 ( Pt 8):1105-15. [PMID: 9512506 DOI: 10.1242/jcs.111.8.1105] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Proteasomes are involved in ATP-dependent regulation of sperm motility in salmonid fish. We have demonstrated here by immunoelectron microscopy that proteasomes are located at the structure of the chum salmon sperm flagellum that attaches at the base of the outer arm dynein and extends toward the plasma membrane. Furthermore, substrates and inhibitors of proteasome inhibit the cAMP-dependent phosphorylation of a 22 kDa axonemal protein in chum salmon sperm. The 22 kDa phosphoprotein was solubilized by treatment of the axoneme with a high salt solution and subsequent sucrose density gradient centrifugation of the extract revealed that it cosedimented with 19 S outer arm dynein, indicating that it is a dynein light chain. These results suggest that proteasomes modulate the activity of outer arm dynein by regulating cAMP-dependent phosphorylation of the 22 kDa dynein light chain.
Collapse
Affiliation(s)
- K Inaba
- Misaki Marine Biological Station, Graduate School of Science, University of Tokyo, Miura, Kanagawa, Japan
| | | | | |
Collapse
|
10
|
Thaler CD, Haimo LT. Microtubules and microtubule motors: mechanisms of regulation. INTERNATIONAL REVIEW OF CYTOLOGY 1996; 164:269-327. [PMID: 8575892 DOI: 10.1016/s0074-7696(08)62388-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Microtubule-based motility is precisely regulated, and the targets of regulation may be the motor proteins, the microtubules, or both components of this intricately controlled system. Regulation of microtubule behavior can be mediated by cell cycle-dependent changes in centrosomal microtubule nucleating ability and by cell-specific, microtubule-associated proteins (MAPs). Changes in microtubule organization and dynamics have been correlated with changes in phosphorylation. Regulation of motor proteins may be required both to initiate movement and to dictate its direction. Axonemal and cytoplasmic dyneins as well as kinesin can be phosphorylated and this modification may affect the motor activities of these enzymes or their ability to interact with organelles. A more complete understanding of how motors can be modulated by phosphorylation, either of the motor proteins or of other associated substrates, will be necessary in order to understand how bidirectional transport is regulated.
Collapse
Affiliation(s)
- C D Thaler
- Department of Biology, University of California, Riverside, USA
| | | |
Collapse
|
11
|
Rupp G, Hard R. Outer arm dynein from Newt lung respiratory cilia: purification and polypeptide composition. CELL MOTILITY AND THE CYTOSKELETON 1995; 31:22-33. [PMID: 7553899 DOI: 10.1002/cm.970310104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Dyneins are multimeric ATPases that comprise the inner and outer arms of cilia and flagella. It previously has been shown that salt extraction of newt lung axonemes selectively removes > 95% of the outer arm dynein (OAD), and that the beat frequency of OAD-depleted axonemes cannot be activated as compared to controls [Hard et al., 1992: Cell Motil. Cytoskeleton 21:199-209]. Therefore, expression of the activated state appears to require the presence of outer dynein arms. The present study was undertaken to ascertain basic information on the structure and molecular composition of newt OAD. Populations of demembranated axonemes were extracted with 0.375 M salt. Each lung released approximately 1.4 x 10(7) axonemes during isolation, yielding approximately 120 ng of salt extractable OAD. Electron microscopy of negatively stained samples revealed that newt OAD consisted of two globular heads joined together by a Y-shaped stem, similar to sea urchin and trout sperm OAD. Each head appeared to be roughly spherical in shape, measuring approximately 17 nm in diameter. Electrophoretic analysis of whole axonemes revealed more than six dynein heavy chains when resolved in silver stained 0-8 M urea, 3-5% acrylamide gradients. Extracted OAD, either crude in high salt or purified by alloaffinity, was composed of two heavy chains. UV-induced (366 nm) photolytic cleavage at the V1 site, performed in the presence of Mg2+, vanadate, and ATP, produced four new polypeptides (M(r) 234, 232, 197, and 189 kD). Photolysis was supported by Mg2+ and Ca2+, but did not occur in the presence of Mn2+. The apparent M(r) of the dynein heavy chains was determined to lie between 430-420 kD. Eight discrete polypeptides (putative intermediate chains, IC1-IC8, M(r), 175-56 kD) copurified with the alpha- and beta-heavy chains by microtubule-alloaffinity. Based on its extraction characteristics, polypeptide composition in purified and crude samples, and structure, we conclude that this two-headed particle represents the entire newt respiratory outer arm dynein.
Collapse
Affiliation(s)
- G Rupp
- Department of Anatomy and Cell Biology, University at Buffalo, New York, USA
| | | |
Collapse
|
12
|
Hamasaki T, Barkalow K, Satir P. Regulation of ciliary beat frequency by a dynein light chain. CELL MOTILITY AND THE CYTOSKELETON 1995; 32:121-4. [PMID: 8681392 DOI: 10.1002/cm.970320210] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- T Hamasaki
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, N.Y. 10461, USA
| | | | | |
Collapse
|
13
|
Multiple sites of phosphorylation within the alpha heavy chain of Chlamydomonas outer arm dynein. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)37707-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
14
|
Walczak CE, Nelson DL. Regulation of dynein-driven motility in cilia and flagella. CELL MOTILITY AND THE CYTOSKELETON 1994; 27:101-7. [PMID: 8162618 DOI: 10.1002/cm.970270202] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- C E Walczak
- Department of Biochemistry, College of Agricultural and Life Sciences, University of Wisconsin-Madison 53706-1569
| | | |
Collapse
|
15
|
Walczak CE, Nelson DL. In vitro phosphorylation of ciliary dyneins by protein kinases from Paramecium. J Cell Sci 1993; 106 ( Pt 4):1369-76. [PMID: 8126114 DOI: 10.1242/jcs.106.4.1369] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Paramecium dyneins were tested as substrates for phosphorylation by cAMP-dependent protein kinase, cGMP-dependent protein kinase, and two Ca(2+)-dependent protein kinases that were partially purified from Paramecium extracts. Only cAMP-dependent protein kinase caused significant phosphorylation. The major phosphorylated species was a 29 kDa protein that was present in both 22 S and 12 S dyneins; its phosphate-accepting activity peaked with 22 S dynein. In vitro phosphorylation was maximal at five minutes, then decreased. This decrease in phosphorylation was inhibited by the addition of vanadate or NaF. The 29 kDa protein was not phosphorylated by a heterologous cAMP-dependent protein kinase, the bovine catalytic subunit. Phosphorylation of dynein did not change its ATPase activity. In sucrose gradient fractions from the last step of dynein purification, phosphorylation by an endogenous kinase occurred. This phosphorylation could not be attributed to the small amounts of cAMP- and cGMP-dependent protein kinases known to be present, nor was it Ca(2+)-dependent. This previously uncharacterized ciliary protein kinase used casein as an in vitro substrate.
Collapse
Affiliation(s)
- C E Walczak
- Department of Biochemistry, College of Agricultural and Life Sciences, University of Wisconsin-Madison
| | | |
Collapse
|
16
|
Abstract
The microtubule-based motor protein kinesin is thought to drive anterograde organelle transport in axons, but nothing is known about how its force-generating activity or organelle-binding properties are regulated. Studies in other motility systems suggest that protein phosphorylation is a reasonable candidate for this function. I report here that the kinesin heavy chain (HC) and light chain (LC), as well as the 160-kDa kinesin-associated protein kinectin, are phosphorylated in vivo in cultures of chick sympathetic neurons and PC12 cells labeled metabolically with 32P. In neurons, both kinesin chains are phosphorylated exclusively on serine residues, and limiting tryptic digestion demonstrated that the phosphorylation sites are clustered in a region of < or = 5 kDa for the HC and < or = 14 kDa for the LC. Partial tryptic digestion of 32P-labeled HC followed by immunoblotting with SUK4 monoclonal anti-HC and fluorography showed that the sites of HC phosphorylation are outside the globular N-terminal head region where kinesin's microtubule-binding and mechanochemical activities reside. Treatment of metabolically labeled neurons with forskolin, phorbol esters, or calcium ionophore did not alter the extent of phosphorylation, the phosphoamino acid composition, or the V8 protease phosphopeptide maps of the HC, LC, and 160-kDa protein, with one exception: treatment with calcium ionophore reduced the specific activity of the LC. In addition, when kinesin from PC12 cells was compared with that from PC12-derived cell lines lacking protein kinase A activity, neither the extent of phosphorylation nor the phosphopeptide maps were altered for either chain. Phosphopeptide mapping experiments also showed that postlysis kinase activity can phosphorylate both the neuronal HC and LC at sites not phosphorylated in vivo.
Collapse
Affiliation(s)
- P J Hollenbeck
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
17
|
Morris RL, Hollenbeck PJ. The regulation of bidirectional mitochondrial transport is coordinated with axonal outgrowth. J Cell Sci 1993; 104 ( Pt 3):917-27. [PMID: 8314882 DOI: 10.1242/jcs.104.3.917] [Citation(s) in RCA: 257] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although small molecules such as ATP diffuse freely in the cytosol, many types of cells nonetheless position their mitochondria in regions of intense ATP consumption. We reasoned that in the highly elongated axonal processes of growing neurons in culture, the active growth cone would form a focus of ATP consumption so distant from the cell body as to require the positioning of mitochondria nearby via regulated axonal transport. To test this hypothesis, we quantified the distribution and transport behavior of mitochondria in live, aerobically respiring chick sympathetic neurons. We found that in the distal region of actively growing axons, the distribution of mitochondria was highly skewed toward the growth cone, with a sevenfold higher density in the region immediately adjacent to the growth cone than in the region 100 microns away. When axonal outgrowth was blocked by substratum-associated barriers or mild cytochalasin E treatment, the gradient of mitochondrial distribution collapsed as mitochondria exited retrogradely from the distal region, becoming uniformly distributed along the axon within one hour. Analysis of individual mitochondrial behaviors revealed that mitochondrial movement everywhere was bidirectional but balanced so that net transport was anterograde in growing axons and retrograde in blocked axons. This reversal in net transport derived from two separate modulations of mitochondrial movement. First, moving mitochondria underwent a transition to a persistently stationary state in the region of active growth cones that was reversed when growth cone activity was halted. Second, the fraction of time that mitochondria spent moving anterogradely was sharply reduced in non-growing axons. Together, these could account for the formation of gradients of mitochondria in growing axons and their dissipation when outgrowth was blocked. This regulated transport behavior was not dependent upon the ability of mitochondria to produce ATP. Our data indicate that mitochondria possess distinct motor activities for both directions of movement and that mitochondrial transport in axons is regulated by both recruitment between stationary and moving states, and direct regulation of the anterograde motor.
Collapse
Affiliation(s)
- R L Morris
- Department of Anatomy and Cellular Biology, Harvard Medical School, Boston, MA 02115
| | | |
Collapse
|
18
|
Stephens RE, Prior G. Dynein from serotonin-activated cilia and flagella: extraction characteristics and distinct sites for cAMP-dependent protein phosphorylation. J Cell Sci 1992; 103 ( Pt 4):999-1012. [PMID: 1487508 DOI: 10.1242/jcs.103.4.999] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Serotonin, an activator of adenylate cyclase, stimulates motility in molluscan gill cilia and sperm flagella. To determine and compare potential targets of cAMP action, dynein was prepared from the lateral gill.cilia and sperm flagella of the mussel Mytilus edulis and the clam Spisula solidissima. In the flagella of both species, high-salt extraction removes about half of the ATPase activity, half of the alpha and beta heavy chains, and the outer arms. The dynein from both species sediments at 18–20 S, contains two or three intermediate chains, and three light chains. High-salt plus detergent removes most of the remaining dynein ATPase, alpha and beta heavy chains, and inner arms, also yielding a stable 18–20 S particle. In gill cilia of both species, high-salt extraction removes only 12–18% of the ATPase, up to 1/3 of the alpha heavy chains, an equivalent amount of beta heavy chain, and a subset of the outer arms. The dynein sediments at 18–20 S and, in Spisula, the heavy, intermediate, and light chains precisely co-sediment. High-salt plus detergent removes another 1/3 of the alpha heavy chains, an equivalent amount of beta heavy chain, and the remaining outer arms. The ATPase sediments mainly as a 13–14 S form showing considerable dissociation of co-sedimenting intermediate and light chains. The inner arms and at least half of the ciliary dynein ATPase activity remain unextractable, corresponding in mass mainly to an apparent beta heavy chain that is vanadate-cleavable. Cyclic AMP-dependent, calcium-independent phosphorylation takes place on specific dynein light chains in cilia but on only the dynein alpha heavy chain in flagella. Pre-activation of the flagella prevents subsequent addition of labeled phosphate. Phosphorylation has no effect on the steady-state ATPase properties. The single phosphate added to the flagellar alpha chain is located within the LUV1 vanadate photocleavage fragment. Considering the probable locus of the light chains and the site of the alpha heavy chain phosphorylation, both beyond the active site and toward the base of the molecule, these distinct phosphorylations may regulate dynein action by modulating arm flexibility or interaction.
Collapse
Affiliation(s)
- R E Stephens
- Marine Biological Laboratory, Woods Hole, MA 02543
| | | |
Collapse
|