1
|
Zhang Y, Gao Y, Wang Y, Jiang Y, Xiang Y, Wang X, Wang Z, Ding Y, Chen H, Rui B, Huai W, Cai B, Ren X, Ma F, Xu S, Zhan Z, Liu X. RBM25 is required to restrain inflammation via ACLY RNA splicing-dependent metabolism rewiring. Cell Mol Immunol 2024; 21:1231-1250. [PMID: 39251781 PMCID: PMC11527992 DOI: 10.1038/s41423-024-01212-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 08/21/2024] [Indexed: 09/11/2024] Open
Abstract
Spliceosome dysfunction and aberrant RNA splicing underline unresolved inflammation and immunopathogenesis. Here, we revealed the misregulation of mRNA splicing via the spliceosome in the pathogenesis of rheumatoid arthritis (RA). Among them, decreased expression of RNA binding motif protein 25 (RBM25) was identified as a major pathogenic factor in RA patients and experimental arthritis mice through increased proinflammatory mediator production and increased hyperinflammation in macrophages. Multiomics analyses of macrophages from RBM25-deficient mice revealed that the transcriptional enhancement of proinflammatory genes (including Il1b, Il6, and Cxcl10) was coupled with histone 3 lysine 9 acetylation (H3K9ac) and H3K27ac modifications as well as hypoxia inducible factor-1α (HIF-1α) activity. Furthermore, RBM25 directly bound to and mediated the 14th exon skipping of ATP citrate lyase (Acly) pre-mRNA, resulting in two distinct Acly isoforms, Acly Long (Acly L) and Acly Short (Acly S). In proinflammatory macrophages, Acly L was subjected to protein lactylation on lysine 918/995, whereas Acly S did not, which influenced its affinity for metabolic substrates and subsequent metabolic activity. RBM25 deficiency overwhelmingly increased the expression of the Acly S isoform, enhancing glycolysis and acetyl-CoA production for epigenetic remodeling, macrophage overactivation and tissue inflammatory injury. Finally, macrophage-specific deletion of RBM25 led to inflammaging, including spontaneous arthritis in various joints of mice and inflammation in multiple organs, which could be relieved by pharmacological inhibition of Acly. Overall, targeting the RBM25-Acly splicing axis represents a potential strategy for modulating macrophage responses in autoimmune arthritis and aging-associated inflammation.
Collapse
MESH Headings
- Animals
- Inflammation/pathology
- Inflammation/genetics
- RNA-Binding Proteins/metabolism
- RNA-Binding Proteins/genetics
- Mice
- RNA Splicing/genetics
- Arthritis, Rheumatoid/pathology
- Arthritis, Rheumatoid/metabolism
- Arthritis, Rheumatoid/genetics
- Arthritis, Rheumatoid/immunology
- Macrophages/metabolism
- Macrophages/immunology
- Humans
- ATP Citrate (pro-S)-Lyase/metabolism
- ATP Citrate (pro-S)-Lyase/genetics
- Mice, Inbred C57BL
- Mice, Knockout
- Spliceosomes/metabolism
- Arthritis, Experimental/pathology
- Arthritis, Experimental/immunology
- Arthritis, Experimental/genetics
- Arthritis, Experimental/metabolism
Collapse
Affiliation(s)
- Yunkai Zhang
- Naval Medical Center, Naval Medical University, Shanghai, 200433, China
- National Key Laboratory of Immunity & Inflammation, Naval Medical University, Shanghai, 200433, China
- Department of Pathogen Biology, Naval Medical University, Shanghai, 200433, China
| | - Ying Gao
- Department of Rheumatology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Yujia Wang
- Department of Immunology, Center for Immunotherapy, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Yuyu Jiang
- Department of Pathogen Biology, Naval Medical University, Shanghai, 200433, China
| | - Yan Xiang
- Department of Pathogen Biology, Naval Medical University, Shanghai, 200433, China
| | - Xiaohui Wang
- Department of Pathogen Biology, Naval Medical University, Shanghai, 200433, China
| | - Zeting Wang
- Department of Pathogen Biology, Naval Medical University, Shanghai, 200433, China
| | - Yingying Ding
- National Key Laboratory of Immunity & Inflammation, Naval Medical University, Shanghai, 200433, China
- Department of Pathogen Biology, Naval Medical University, Shanghai, 200433, China
| | - Huiying Chen
- National Key Laboratory of Immunity & Inflammation, Naval Medical University, Shanghai, 200433, China
- Department of Pathogen Biology, Naval Medical University, Shanghai, 200433, China
| | - Bing Rui
- National Key Laboratory of Immunity & Inflammation, Naval Medical University, Shanghai, 200433, China
- Department of Pathogen Biology, Naval Medical University, Shanghai, 200433, China
| | - Wanwan Huai
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Boyu Cai
- Department of Otolaryngology, Changzheng Hospital, Naval Medical University, Shanghai, 200003, China
| | - Xiaomeng Ren
- Naval Medical Center, Naval Medical University, Shanghai, 200433, China
| | - Feng Ma
- Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, 215123, China
| | - Sheng Xu
- National Key Laboratory of Immunity & Inflammation, Naval Medical University, Shanghai, 200433, China
| | - Zhenzhen Zhan
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China.
- Shanghai Institute of Transplantation, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
| | - Xingguang Liu
- National Key Laboratory of Immunity & Inflammation, Naval Medical University, Shanghai, 200433, China.
- Department of Pathogen Biology, Naval Medical University, Shanghai, 200433, China.
- Key Laboratory of Biological Defense, Ministry of Education, Shanghai, 200433, China.
| |
Collapse
|
2
|
Sharma V, Panjgotra S, Sharma N, Abrol V, Goutam U, Jaglan S. Epigenetic modifiers as inducer of bioactive secondary metabolites in fungi. Biotechnol Lett 2024; 46:297-314. [PMID: 38607602 DOI: 10.1007/s10529-024-03478-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 01/16/2024] [Accepted: 03/10/2024] [Indexed: 04/13/2024]
Abstract
Scientists are making efforts to search for new metabolites as they are essential lead molecules for the drug discovery, much required due to the evolution of multi drug resistance and new diseases. Moreover, higher production of known drugs is required because of the ever growing population. Microorganisms offer a vast collection of chemically distinct compounds that exhibit various biological functions. They play a crucial role in safeguarding crops, agriculture, and combating several infectious ailments and cancer. Research on fungi have grabbed a lot of attention after the discovery of penicillin, most of the compounds produced by fungi under normal cultivation conditions are discovered and now rarely new compounds are discovered. Treatment of fungi with the epigenetic modifiers has been becoming very popular since the last few years to boost the discovery of new molecules and enhance the production of already known molecules. Epigenetic literally means above genetics that actually does not alter the genome but alter its expression by altering the state of chromatin from heterochromatin to euchromatin. Chromatin in heterochromatin state usually doesn't express because it is closely packed by histones in this state. Epigenetic modifiers loosen the packing of chromatin by inhibiting DNA methylation and histone deacetylation and thus permit the expression of genes that usually remain dormant. This study delves into the possibility of utilizing epigenetic modifying agents to generate pharmacologically significant secondary metabolites from fungi.
Collapse
Affiliation(s)
- Vishal Sharma
- Fermentation & Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shivali Panjgotra
- Department of Environment Studies, Panjab University, Chandigarh, 160014, India
| | - Nisha Sharma
- Fermentation & Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, 180001, India
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Vidushi Abrol
- Fermentation & Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, 180001, India
| | - Umesh Goutam
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Sundeep Jaglan
- Fermentation & Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, 180001, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
3
|
Kinyamu HK, Bennett BD, Ward JM, Archer TK. Proteasome Inhibition Reprograms Chromatin Landscape in Breast Cancer. CANCER RESEARCH COMMUNICATIONS 2024; 4:1082-1099. [PMID: 38625038 PMCID: PMC11019832 DOI: 10.1158/2767-9764.crc-23-0476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/26/2024] [Accepted: 03/22/2024] [Indexed: 04/17/2024]
Abstract
The 26S proteasome is the major protein degradation machinery in cells. Cancer cells use the proteasome to modulate gene expression networks that promote tumor growth. Proteasome inhibitors have emerged as effective cancer therapeutics, but how they work mechanistically remains unclear. Here, using integrative genomic analysis, we discovered unexpected reprogramming of the chromatin landscape and RNA polymerase II (RNAPII) transcription initiation in breast cancer cells treated with the proteasome inhibitor MG132. The cells acquired dynamic changes in chromatin accessibility at specific genomic loci termed differentially open chromatin regions (DOCR). DOCRs with decreased accessibility were promoter proximal and exhibited unique chromatin architecture associated with divergent RNAPII transcription. Conversely, DOCRs with increased accessibility were primarily distal to transcription start sites and enriched in oncogenic superenhancers predominantly accessible in non-basal breast tumor subtypes. These findings describe the mechanisms by which the proteasome modulates the expression of gene networks intrinsic to breast cancer biology. SIGNIFICANCE Our study provides a strong basis for understanding the mechanisms by which proteasome inhibitors exert anticancer effects. We find open chromatin regions that change during proteasome inhibition, are typically accessible in non-basal breast cancers.
Collapse
Affiliation(s)
- H. Karimi Kinyamu
- Chromatin and Gene Expression Section, National Institute of Environmental Health Sciences, Durham, North Carolina
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Durham, North Carolina
- National Institute of Environmental Health Sciences, Durham, North Carolina
| | - Brian D. Bennett
- National Institute of Environmental Health Sciences, Durham, North Carolina
- Integrative Bioinformatics Group, National Institute of Environmental Health Sciences, Durham, North Carolina
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Durham, North Carolina
| | - James M. Ward
- National Institute of Environmental Health Sciences, Durham, North Carolina
- Integrative Bioinformatics Group, National Institute of Environmental Health Sciences, Durham, North Carolina
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Durham, North Carolina
| | - Trevor K. Archer
- Chromatin and Gene Expression Section, National Institute of Environmental Health Sciences, Durham, North Carolina
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Durham, North Carolina
- National Institute of Environmental Health Sciences, Durham, North Carolina
| |
Collapse
|
4
|
van Dijk AD, Hoff FW, Qiu Y, Hubner SE, Go RL, Ruvolo VR, Leonti AR, Gerbing RB, Gamis AS, Aplenc R, Kolb EA, Alonzo TA, Meshinchi S, de Bont ESJM, Horton TM, Kornblau SM. Chromatin Profiles Are Prognostic of Clinical Response to Bortezomib-Containing Chemotherapy in Pediatric Acute Myeloid Leukemia: Results from the COG AAML1031 Trial. Cancers (Basel) 2024; 16:1448. [PMID: 38672531 PMCID: PMC11048007 DOI: 10.3390/cancers16081448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
The addition of the proteasome inhibitor bortezomib to standard chemotherapy did not improve survival in pediatric acute myeloid leukemia (AML) when all patients were analyzed as a group in the Children's Oncology Group phase 3 trial AAML1031 (NCT01371981). Proteasome inhibition influences the chromatin landscape and proteostasis, and we hypothesized that baseline proteomic analysis of histone- and chromatin-modifying enzymes (HMEs) would identify AML subgroups that benefitted from bortezomib addition. A proteomic profile of 483 patients treated with AAML1031 chemotherapy was generated using a reverse-phase protein array. A relatively high expression of 16 HME was associated with lower EFS and higher 3-year relapse risk after AML standard treatment compared to low expressions (52% vs. 29%, p = 0.005). The high-HME profile correlated with more transposase-accessible chromatin, as demonstrated via ATAC-sequencing, and the bortezomib addition improved the 3-year overall survival compared with standard therapy (62% vs. 75%, p = 0.033). These data suggest that there are pediatric AML populations that respond well to bortezomib-containing chemotherapy.
Collapse
Affiliation(s)
- Anneke D. van Dijk
- Division of Pediatric Oncology and Hematology, Department of Pediatrics, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (F.W.H.)
- Department of Leukemia, M.D. Anderson Cancer Center, The University of Texas, Houston, TX 78712, USA
| | - Fieke W. Hoff
- Division of Pediatric Oncology and Hematology, Department of Pediatrics, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (F.W.H.)
- Department of Leukemia, M.D. Anderson Cancer Center, The University of Texas, Houston, TX 78712, USA
| | - Yihua Qiu
- Department of Leukemia, M.D. Anderson Cancer Center, The University of Texas, Houston, TX 78712, USA
| | - Stefan E. Hubner
- Department of Leukemia, M.D. Anderson Cancer Center, The University of Texas, Houston, TX 78712, USA
| | - Robin L. Go
- Department of Leukemia, M.D. Anderson Cancer Center, The University of Texas, Houston, TX 78712, USA
| | - Vivian R. Ruvolo
- Department of Molecular Therapy and Hematology, M.D. Anderson Cancer Center, The University of Texas, Houston, TX 78712, USA
| | - Amanda R. Leonti
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | | - Alan S. Gamis
- Department of Hematology-Oncology, Children’s Mercy Hospitals and Clinics, Kansas City, MO 64108, USA
| | - Richard Aplenc
- Division of Pediatric Oncology and Stem Cell Transplant, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Edward A. Kolb
- Nemours Center for Cancer and Blood Disorders, Alfred I. DuPont Hospital for Children, Wilmington, DE 19803, USA
| | - Todd A. Alonzo
- COG Statistics and Data Center, Monrovia, CA 91016, USA
- Keck School of Medicine, University of Southern California, Los Angeles, CA 90007, USA
| | - Soheil Meshinchi
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Eveline S. J. M. de Bont
- Division of Pediatric Oncology and Hematology, Department of Pediatrics, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (F.W.H.)
| | - Terzah M. Horton
- Texas Children’s Cancer and Hematology Centers, Baylor College of Medicine, Houston, TX 77030, USA
| | - Steven M. Kornblau
- Department of Leukemia, M.D. Anderson Cancer Center, The University of Texas, Houston, TX 78712, USA
| |
Collapse
|
5
|
Coxon M, Dennis MA, Dananberg A, Collins C, Wilson H, Meekma J, Savenkova M, Ng D, Osbron C, Mertz T, Goodman A, Duttke S, Maciejowski J, Roberts S. An impaired ubiquitin-proteasome system increases APOBEC3A abundance. NAR Cancer 2023; 5:zcad058. [PMID: 38155930 PMCID: PMC10753533 DOI: 10.1093/narcan/zcad058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 11/21/2023] [Accepted: 12/08/2023] [Indexed: 12/30/2023] Open
Abstract
Apolipoprotein B messenger RNA (mRNA) editing enzyme, catalytic polypeptide-like (APOBEC) cytidine deaminases cause genetic instability during cancer development. Elevated APOBEC3A (A3A) levels result in APOBEC signature mutations; however, mechanisms regulating A3A abundance in breast cancer are unknown. Here, we show that dysregulating the ubiquitin-proteasome system with proteasome inhibitors, including Food and Drug Administration-approved anticancer drugs, increased A3A abundance in breast cancer and multiple myeloma cell lines. Unexpectedly, elevated A3A occurs via an ∼100-fold increase in A3A mRNA levels, indicating that proteasome inhibition triggers a transcriptional response as opposed to or in addition to blocking A3A degradation. This transcriptional regulation is mediated in part through FBXO22, a protein that functions in SKP1-cullin-F-box ubiquitin ligase complexes and becomes dysregulated during carcinogenesis. Proteasome inhibitors increased cellular cytidine deaminase activity, decreased cellular proliferation and increased genomic DNA damage in an A3A-dependent manner. Our findings suggest that proteasome dysfunction, either acquired during cancer development or induced therapeutically, could increase A3A-induced genetic heterogeneity and thereby influence therapeutic responses in patients.
Collapse
Affiliation(s)
- Margo Coxon
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164-7520, USA
| | - Madeline A Dennis
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164-7520, USA
| | - Alexandra Dananberg
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Christopher D Collins
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164-7520, USA
| | - Hannah E Wilson
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164-7520, USA
| | - Jordyn Meekma
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164-7520, USA
| | - Marina I Savenkova
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164-7520, USA
| | - Daniel Ng
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164-7520, USA
| | - Chelsea A Osbron
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164-7520, USA
| | - Tony M Mertz
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164-7520, USA
- Department of Microbiology and Molecular Genetics, University of Vermont Cancer Center, University of Vermont, Burlington, VT 05405, USA
| | - Alan G Goodman
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164-7520, USA
| | - Sascha H Duttke
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164-7520, USA
| | - John Maciejowski
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Steven A Roberts
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164-7520, USA
- Department of Microbiology and Molecular Genetics, University of Vermont Cancer Center, University of Vermont, Burlington, VT 05405, USA
| |
Collapse
|
6
|
Lee H, Kim S, Lee D. The versatility of the proteasome in gene expression and silencing: Unraveling proteolytic and non-proteolytic functions. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194978. [PMID: 37633648 DOI: 10.1016/j.bbagrm.2023.194978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 08/02/2023] [Accepted: 08/21/2023] [Indexed: 08/28/2023]
Abstract
The 26S proteasome consists of a 20S core particle and a 19S regulatory particle and critically regulates gene expression and silencing through both proteolytic and non-proteolytic functions. The 20S core particle mediates proteolysis, while the 19S regulatory particle performs non-proteolytic functions. The proteasome plays a role in regulating gene expression in euchromatin by modifying histones, activating transcription, initiating and terminating transcription, mRNA export, and maintaining transcriptome integrity. In gene silencing, the proteasome modulates the heterochromatin formation, spreading, and subtelomere silencing by degrading specific proteins and interacting with anti-silencing factors such as Epe1, Mst2, and Leo1. This review discusses the proteolytic and non-proteolytic functions of the proteasome in regulating gene expression and gene silencing-related heterochromatin formation. This article is part of a special issue on the regulation of gene expression and genome integrity by the ubiquitin-proteasome system.
Collapse
Affiliation(s)
- Hyesu Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
| | - Sungwook Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
| | - Daeyoup Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea.
| |
Collapse
|
7
|
Wang H, Wu T, Huang Z, Huang J, Geng Z, Cui B, Yan Y, Zhang Y, Wang Y. Channel HCN4 mutation R666Q associated with sporadic arrhythmia decreases channel electrophysiological function and increases protein degradation. J Biol Chem 2022; 298:102599. [PMID: 36244448 PMCID: PMC9663530 DOI: 10.1016/j.jbc.2022.102599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 10/06/2022] [Accepted: 10/10/2022] [Indexed: 11/07/2022] Open
Abstract
Mutations in the hyperpolarization-activated nucleotide-gated channel 4 (HCN4) are known to be associated with arrhythmias in which QT prolongation (delayed ventricular repolarization) is rare. Here, we identified a HCN4 mutation, HCN4-R666Q, in two sporadic arrhythmia patients with sinus bradycardia, QT prolongation, and short bursts of ventricular tachycardia. To determine the functional effect of the mutation, we conducted clinical, genetic, and functional analyses using whole-cell voltage-clamp, qPCR, Western blot, confocal microscopy, and co-immunoprecipitation. The mean current density of HEK293T cells transfected with HCN4-R666Q was lower in 24 to 36 h after transfection and was much lower in 36 to 48 h after transfection relative to cells transfected with wildtype HCN4. Additionally, we determined that the HCN4-R666Q mutant was more susceptible to ubiquitin-proteasome system–mediated protein degradation than wildtype HCN4. This decreased current density for HCN4-R666Q could be partly rescued by treatment with a proteasome inhibitor. Therefore, we conclude that HCN4-R666Q had an effect on HCN4 function in two aspects, including decreasing the current density of the channel as a biophysical effect and weakening its protein stability. Our findings provide new insights into the pathogenesis of the HCN4-R666Q mutation.
Collapse
|
8
|
Cáceres-Gutiérrez RE, Andonegui MA, Oliva-Rico DA, González-Barrios R, Luna F, Arriaga-Canon C, López-Saavedra A, Prada D, Castro C, Parmentier L, Díaz-Chávez J, Alfaro-Mora Y, Navarro-Delgado EI, Fabian-Morales E, Tran B, Shetty J, Zhao Y, Alcaraz N, De la Rosa C, Reyes JL, Hédouin S, Hubé F, Francastel C, Herrera LA. Proteasome inhibition alters mitotic progression through the upregulation of centromeric α-Satellite RNAs. FEBS J 2021; 289:1858-1875. [PMID: 34739170 PMCID: PMC9299679 DOI: 10.1111/febs.16261] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 09/19/2021] [Accepted: 11/03/2021] [Indexed: 12/14/2022]
Abstract
Cell cycle progression requires control of the abundance of several proteins and RNAs over space and time to properly transit from one phase to the next and to ensure faithful genomic inheritance in daughter cells. The proteasome, the main protein degradation system of the cell, facilitates the establishment of a proteome specific to each phase of the cell cycle. Its activity also strongly influences transcription. Here, we detected the upregulation of repetitive RNAs upon proteasome inhibition in human cancer cells using RNA‐seq. The effect of proteasome inhibition on centromeres was remarkable, especially on α‐Satellite RNAs. We showed that α‐Satellite RNAs fluctuate along the cell cycle and interact with members of the cohesin ring, suggesting that these transcripts may take part in the regulation of mitotic progression. Next, we forced exogenous overexpression and used gapmer oligonucleotide targeting to demonstrate that α‐Sat RNAs have regulatory roles in mitosis. Finally, we explored the transcriptional regulation of α‐Satellite DNA. Through in silico analyses, we detected the presence of CCAAT transcription factor‐binding motifs within α‐Satellite centromeric arrays. Using high‐resolution three‐dimensional immuno‐FISH and ChIP‐qPCR, we showed an association between the α‐Satellite upregulation and the recruitment of the transcription factor NFY‐A to the centromere upon MG132‐induced proteasome inhibition. Together, our results show that the proteasome controls α‐Satellite RNAs associated with the regulation of mitosis.
Collapse
Affiliation(s)
- Rodrigo E Cáceres-Gutiérrez
- Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Unidad de Investigación Biomédica en Cáncer, Mexico City, Mexico
| | - Marco A Andonegui
- Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Unidad de Investigación Biomédica en Cáncer, Mexico City, Mexico
| | - Diego A Oliva-Rico
- Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Unidad de Investigación Biomédica en Cáncer, Mexico City, Mexico
| | - Rodrigo González-Barrios
- Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Unidad de Investigación Biomédica en Cáncer, Mexico City, Mexico
| | - Fernando Luna
- Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Unidad de Investigación Biomédica en Cáncer, Mexico City, Mexico
| | - Cristian Arriaga-Canon
- Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Unidad de Investigación Biomédica en Cáncer, Mexico City, Mexico
| | - Alejandro López-Saavedra
- Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Unidad de Investigación Biomédica en Cáncer, Mexico City, Mexico
| | - Diddier Prada
- Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Unidad de Investigación Biomédica en Cáncer, Mexico City, Mexico.,Departamento de Informática Biomédica, Faculty of Medicine, UNAM, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Clementina Castro
- Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Unidad de Investigación Biomédica en Cáncer, Mexico City, Mexico
| | - Laurent Parmentier
- Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Unidad de Investigación Biomédica en Cáncer, Mexico City, Mexico
| | - José Díaz-Chávez
- Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Unidad de Investigación Biomédica en Cáncer, Mexico City, Mexico
| | - Yair Alfaro-Mora
- Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Unidad de Investigación Biomédica en Cáncer, Mexico City, Mexico
| | - Erick I Navarro-Delgado
- Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Unidad de Investigación Biomédica en Cáncer, Mexico City, Mexico
| | - Eunice Fabian-Morales
- Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Unidad de Investigación Biomédica en Cáncer, Mexico City, Mexico
| | - Bao Tran
- NCI CCR Sequencing Facility, Frederick National Laboratory for Cancer Research, MD, USA
| | - Jyoti Shetty
- NCI CCR Sequencing Facility, Frederick National Laboratory for Cancer Research, MD, USA
| | - Yongmei Zhao
- NCI CCR Sequencing Facility, Frederick National Laboratory for Cancer Research, MD, USA
| | - Nicolas Alcaraz
- The Bioinformatics Centre, University of Copenhagen, Copenhagen, Denmark.,National Institute of Genomic Medicine, Mexico City, Mexico
| | - Carlos De la Rosa
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - José L Reyes
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Sabrine Hédouin
- Epigenetics and Cell Fate, CNRS UMR7216, Université de Paris, Paris, France
| | - Florent Hubé
- Epigenetics and Cell Fate, CNRS UMR7216, Université de Paris, Paris, France
| | - Claire Francastel
- Epigenetics and Cell Fate, CNRS UMR7216, Université de Paris, Paris, France
| | - Luis A Herrera
- Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Unidad de Investigación Biomédica en Cáncer, Mexico City, Mexico.,Dirección General, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| |
Collapse
|
9
|
Beacon TH, Delcuve GP, López C, Nardocci G, Kovalchuk I, van Wijnen AJ, Davie JR. The dynamic broad epigenetic (H3K4me3, H3K27ac) domain as a mark of essential genes. Clin Epigenetics 2021; 13:138. [PMID: 34238359 PMCID: PMC8264473 DOI: 10.1186/s13148-021-01126-1] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 06/30/2021] [Indexed: 02/06/2023] Open
Abstract
Transcriptionally active chromatin is marked by tri-methylation of histone H3 at lysine 4 (H3K4me3) located after first exons and around transcription start sites. This epigenetic mark is typically restricted to narrow regions at the 5`end of the gene body, though a small subset of genes have a broad H3K4me3 domain which extensively covers the coding region. Although most studies focus on the H3K4me3 mark, the broad H3K4me3 domain is associated with a plethora of histone modifications (e.g., H3 acetylated at K27) and is therein termed broad epigenetic domain. Genes marked with the broad epigenetic domain are involved in cell identity and essential cell functions and have clinical potential as biomarkers for patient stratification. Reducing expression of genes with the broad epigenetic domain may increase the metastatic potential of cancer cells. Enhancers and super-enhancers interact with the broad epigenetic domain marked genes forming a hub of interactions involving nucleosome-depleted regions. Together, the regulatory elements coalesce with transcription factors, chromatin modifying/remodeling enzymes, coactivators, and the Mediator and/or Integrator complex into a transcription factory which may be analogous to a liquid–liquid phase-separated condensate. The broad epigenetic domain has a dynamic chromatin structure which supports frequent transcription bursts. In this review, we present the current knowledge of broad epigenetic domains.
Collapse
Affiliation(s)
- Tasnim H Beacon
- CancerCare Manitoba Research Institute, CancerCare Manitoba, Winnipeg, MB, R3E 0V9, Canada.,Department of Biochemistry and Medical Genetics, University of Manitoba, 745 Bannatyne Avenue, Room 333A, Winnipeg, MB, Canada
| | - Geneviève P Delcuve
- Department of Biochemistry and Medical Genetics, University of Manitoba, 745 Bannatyne Avenue, Room 333A, Winnipeg, MB, Canada
| | - Camila López
- CancerCare Manitoba Research Institute, CancerCare Manitoba, Winnipeg, MB, R3E 0V9, Canada.,Department of Biochemistry and Medical Genetics, University of Manitoba, 745 Bannatyne Avenue, Room 333A, Winnipeg, MB, Canada
| | - Gino Nardocci
- Faculty of Medicine, Universidad de Los Andes, Santiago, Chile.,Molecular Biology and Bioinformatics Lab, Program in Molecular Biology and Bioinformatics, Center for Biomedical Research and Innovation (CIIB), Universidad de Los Andes, Santiago, Chile
| | - Igor Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, Canada
| | - Andre J van Wijnen
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA.,Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - James R Davie
- CancerCare Manitoba Research Institute, CancerCare Manitoba, Winnipeg, MB, R3E 0V9, Canada. .,Department of Biochemistry and Medical Genetics, University of Manitoba, 745 Bannatyne Avenue, Room 333A, Winnipeg, MB, Canada.
| |
Collapse
|
10
|
Peck Justice SA, Barron MP, Qi GD, Wijeratne HRS, Victorino JF, Simpson ER, Vilseck JZ, Wijeratne AB, Mosley AL. Mutant thermal proteome profiling for characterization of missense protein variants and their associated phenotypes within the proteome. J Biol Chem 2020; 295:16219-16238. [PMID: 32878984 PMCID: PMC7705321 DOI: 10.1074/jbc.ra120.014576] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/17/2020] [Indexed: 12/20/2022] Open
Abstract
Temperature-sensitive (TS) missense mutants have been foundational for characterization of essential gene function. However, an unbiased approach for analysis of biochemical and biophysical changes in TS missense mutants within the context of their functional proteomes is lacking. We applied MS-based thermal proteome profiling (TPP) to investigate the proteome-wide effects of missense mutations in an application that we refer to as mutant thermal proteome profiling (mTPP). This study characterized global impacts of temperature sensitivity-inducing missense mutations in two different subunits of the 26S proteasome. The majority of alterations identified by RNA-Seq and global proteomics were similar between the mutants, which could suggest that a similar functional disruption is occurring in both missense variants. Results from mTPP, however, provide unique insights into the mechanisms that contribute to the TS phenotype in each mutant, revealing distinct changes that were not obtained using only steady-state transcriptome and proteome analyses. Computationally, multisite λ-dynamics simulations add clear support for mTPP experimental findings. This work shows that mTPP is a precise approach to measure changes in missense mutant-containing proteomes without the requirement for large amounts of starting material, specific antibodies against proteins of interest, and/or genetic manipulation of the biological system. Although experiments were performed under permissive conditions, mTPP provided insights into the underlying protein stability changes that cause dramatic cellular phenotypes observed at nonpermissive temperatures. Overall, mTPP provides unique mechanistic insights into missense mutation dysfunction and connection of genotype to phenotype in a rapid, nonbiased fashion.
Collapse
Affiliation(s)
- Sarah A Peck Justice
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Monica P Barron
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA; Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Guihong D Qi
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - H R Sagara Wijeratne
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - José F Victorino
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Ed R Simpson
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana, USA; Department of BioHealth Informatics, School of Informatics and Computing, Indiana University-Purdue University, Indianapolis, Indiana, USA; Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Jonah Z Vilseck
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA; Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Aruna B Wijeratne
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA.
| | - Amber L Mosley
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA; Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana, USA.
| |
Collapse
|
11
|
Bisogno LS, Yang J, Bennett BD, Ward JM, Mackey LC, Annab LA, Bushel PR, Singhal S, Schurman SH, Byun JS, Nápoles AM, Pérez-Stable EJ, Fargo DC, Gardner K, Archer TK. Ancestry-dependent gene expression correlates with reprogramming to pluripotency and multiple dynamic biological processes. SCIENCE ADVANCES 2020; 6:6/47/eabc3851. [PMID: 33219026 PMCID: PMC7679169 DOI: 10.1126/sciadv.abc3851] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 10/02/2020] [Indexed: 05/10/2023]
Abstract
Induced pluripotent stem cells (iPSCs) can be derived from differentiated cells, enabling the generation of personalized disease models by differentiating patient-derived iPSCs into disease-relevant cell lines. While genetic variability between different iPSC lines affects differentiation potential, how this variability in somatic cells affects pluripotent potential is less understood. We generated and compared transcriptomic data from 72 dermal fibroblast-iPSC pairs with consistent variation in reprogramming efficiency. By considering equal numbers of samples from self-reported African Americans and White Americans, we identified both ancestry-dependent and ancestry-independent transcripts associated with reprogramming efficiency, suggesting that transcriptomic heterogeneity can substantially affect reprogramming. Moreover, reprogramming efficiency-associated genes are involved in diverse dynamic biological processes, including cancer and wound healing, and are predictive of 5-year breast cancer survival in an independent cohort. Candidate genes may provide insight into mechanisms of ancestry-dependent regulation of cell fate transitions and motivate additional studies for improvement of reprogramming.
Collapse
Affiliation(s)
- Laura S Bisogno
- Chromatin and Gene Expression Section, Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Jun Yang
- Chromatin and Gene Expression Section, Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Brian D Bennett
- Integrative Bioinformatics, Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - James M Ward
- Integrative Bioinformatics, Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Lantz C Mackey
- Chromatin and Gene Expression Section, Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Lois A Annab
- Chromatin and Gene Expression Section, Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Pierre R Bushel
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Sandeep Singhal
- Department of Pathology, Department of Computer Science, University of North Dakota, Grand Forks, ND, USA
| | - Shepherd H Schurman
- Clinical Research Unit, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Jung S Byun
- Division of Intramural Research, Office of the Scientific Director, National Institute on Minority Health and Health Disparities, Bethesda, MD, USA
| | - Anna María Nápoles
- Division of Intramural Research, Office of the Scientific Director, National Institute on Minority Health and Health Disparities, Bethesda, MD, USA
| | - Eliseo J Pérez-Stable
- Division of Intramural Research, Office of the Scientific Director, National Institute on Minority Health and Health Disparities, Bethesda, MD, USA
- Division of Intramural Research, National Heart, Lung and Blood Institute, Bethesda, MD, USA
| | - David C Fargo
- Office of Scientific Computing, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Kevin Gardner
- Division of Intramural Research, Office of the Scientific Director, National Institute on Minority Health and Health Disparities, Bethesda, MD, USA
- Department of Pathology and Cell Biology, Columbia University Medical Center, Columbia University, New York, NY, USA
| | - Trevor K Archer
- Chromatin and Gene Expression Section, Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA.
| |
Collapse
|