1
|
Balduit A, Agostinis C, Bulla R. Beyond the Norm: The emerging interplay of complement system and extracellular matrix in the tumor microenvironment. Semin Immunol 2025; 77:101929. [PMID: 39793258 DOI: 10.1016/j.smim.2025.101929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/20/2024] [Accepted: 01/02/2025] [Indexed: 01/13/2025]
Abstract
Ground-breaking awareness has been reached about the intricate and dynamic connection between developing tumors and the host immune system. Being a powerful arm of innate immunity and a functional bridge with adaptive immunity, the complement system (C) has also emerged as a pivotal player in the tumor microenvironment (TME). Its "double-edged sword" role in cancer can find an explanation in the controversial relationship between C capability to mediate tumor cell cytolysis or, conversely, to sustain chronic inflammation and tumor progression by enhancing cell invasion, angiogenesis, and metastasis to distant organs. However, comprehensive knowledge about the actual role of C in cancer progression is impaired by several limitations of the currently available studies. In the current review, we aim to bring a fresh eye to the controversial role of C in cancer by analyzing the interplay between C and extracellular matrix (ECM) components as potential orchestrators of the TME. The interaction of C components with specific ECM components can determine C activation or inhibition and promote specific non-canonical functions, which can, in the tumor context, favor or limit progression based on the cancer setting. An in-depth and tumor-specific characterization of TME composition in terms of C components and ECM proteins could be essential to determine their potential interactions and become a key element for improving drug development, prognosis, and therapy response prediction in solid tumors.
Collapse
Affiliation(s)
- Andrea Balduit
- Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", Trieste, Italy
| | - Chiara Agostinis
- Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", Trieste, Italy
| | - Roberta Bulla
- Department of Life Sciences, University of Trieste, Trieste, Italy.
| |
Collapse
|
2
|
Große-Berkenbusch K, Avci-Adali M, Arnold M, Cahalan L, Cahalan P, Velic A, Maček B, Schlensak C, Wendel HP, Stoppelkamp S. Profiling of time-dependent human plasma protein adsorption on non-coated and heparin-coated oxygenator membranes. BIOMATERIALS ADVANCES 2022; 139:213014. [PMID: 35882160 DOI: 10.1016/j.bioadv.2022.213014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/02/2022] [Accepted: 06/30/2022] [Indexed: 01/07/2023]
Abstract
Patients with severe lung diseases are highly dependent on lung support systems. Despite many improvements, long-term use is not possible, mainly because of the strong body defence reactions (e.g. coagulation, complement system, inflammation and cell activation). The systematic characterization of adsorbed proteins on the gas exchange membrane of the lung system over time can provide insights into the course of various defence reactions and identify possible targets for surface modifications. Using comprehensive mass spectrometry analyses of desorbed proteins, we were able to identify for the first time binding profiles of over 500 proteins over a period of six hours on non-coated and heparin-coated PMP hollow fiber membranes. We observed a higher degree of remodeling of the protein layer on the non-coated membrane than on the coated membrane. In general, there was a higher protein binding on the coated membrane with exception of proteins with a heparin-binding site. Focusing on the most important pathways showed that almost all coagulation factors bound in higher amounts to the non-coated membranes. Furthermore, we could show that the initiator proteins of the complement system bound stronger to the heparinized membranes, but the subsequently activated proteins bound stronger to the non-coated membranes, thus complement activation on heparinized surfaces is mainly due to the alternative complement pathway. Our results provide a comprehensive insight into plasma protein adsorption on oxygenator membranes over time and point to new ways to better understand the processes on the membranes and to develop new specific surface modifications.
Collapse
Affiliation(s)
- Katharina Große-Berkenbusch
- Clinical Research Laboratory, Department of Thoracic and Cardiovascular Surgery, University Hospital Tübingen, University of Tübingen, Calwerstr. 7/1, 72076 Tübingen, Germany
| | - Meltem Avci-Adali
- Clinical Research Laboratory, Department of Thoracic and Cardiovascular Surgery, University Hospital Tübingen, University of Tübingen, Calwerstr. 7/1, 72076 Tübingen, Germany
| | - Madeleine Arnold
- Clinical Research Laboratory, Department of Thoracic and Cardiovascular Surgery, University Hospital Tübingen, University of Tübingen, Calwerstr. 7/1, 72076 Tübingen, Germany
| | - Linda Cahalan
- Ension Inc, 508 Pittsburg Road, Butler, PA 16002, United States of America
| | - Patrick Cahalan
- Ension Inc, 508 Pittsburg Road, Butler, PA 16002, United States of America
| | - Ana Velic
- Proteome Center Tübingen, Interfaculty Institute for Cell Biology, University of Tübingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany
| | - Boris Maček
- Proteome Center Tübingen, Interfaculty Institute for Cell Biology, University of Tübingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany
| | - Christian Schlensak
- Clinical Research Laboratory, Department of Thoracic and Cardiovascular Surgery, University Hospital Tübingen, University of Tübingen, Calwerstr. 7/1, 72076 Tübingen, Germany
| | - Hans Peter Wendel
- Clinical Research Laboratory, Department of Thoracic and Cardiovascular Surgery, University Hospital Tübingen, University of Tübingen, Calwerstr. 7/1, 72076 Tübingen, Germany
| | - Sandra Stoppelkamp
- Clinical Research Laboratory, Department of Thoracic and Cardiovascular Surgery, University Hospital Tübingen, University of Tübingen, Calwerstr. 7/1, 72076 Tübingen, Germany.
| |
Collapse
|
3
|
Hu Z, Sun J, Jin L, Zong T, Duan Y, Zhou H, Zhou W, Li G. Acetylation Modification, Characterization, and Anticomplementary Activity of Polysaccharides from Rhododendron dauricum Leaves. Polymers (Basel) 2022; 14:polym14153130. [PMID: 35956644 PMCID: PMC9370847 DOI: 10.3390/polym14153130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 11/16/2022] Open
Abstract
This study focuses on the acetylation modification of polysaccharides from Rhododendron dauricum leaves (RDPs) with a high degree of substitution (DS) and then discusses their characterization and biological activity. The optimum acetylation conditions of RDPs were optimized by response surface methodology, which were reaction time 3 h, reaction temperature 50 °C, and the liquid-solid ratio 16 mL/g. Under the optima schemes, two eco-friendly acetylated polysaccharides from R. dauricum leaves (AcRDP-1 with DS of 0.439 ± 0.025 and AcRDP-2 with DS of 0.445 ± 0.022) were prepared. The results of structural characterization showed that the AcRDP-1 (9.3525 × 103 kDa) and AcRDP-2 (4.7016 × 103 kDa) were composed of mannose, glucose, galactose, and arabinose with molar ratios of 1.00:5.01:1.17:0.15 and 1.00:4.47:2.39:0.88, respectively. Compared with unmodified polysaccharides, the arabinose content and molecular weight of the two acetylated polysaccharides decreased, and their triple helix conformation disappeared, and further improved their anticomplementary activity. The two acetylated polysaccharides showed stronger a complement inhibition effect than the positive drug by blocking C2, C3, C4, C5, C9, and factor B targets in the classical and alternative pathways. This research indicated that acetylation modification could effectively enhance the anticomplementary activity of RDPs, which is beneficial for the development and utilization of R. dauricum leaves.
Collapse
Affiliation(s)
- Zhengyu Hu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji 133000, China; (Z.H.); (J.S.); (L.J.); (T.Z.); (Y.D.)
| | - Jinfeng Sun
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji 133000, China; (Z.H.); (J.S.); (L.J.); (T.Z.); (Y.D.)
| | - Long Jin
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji 133000, China; (Z.H.); (J.S.); (L.J.); (T.Z.); (Y.D.)
| | - Tieqiang Zong
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji 133000, China; (Z.H.); (J.S.); (L.J.); (T.Z.); (Y.D.)
| | - Yuanqi Duan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji 133000, China; (Z.H.); (J.S.); (L.J.); (T.Z.); (Y.D.)
| | - Hongli Zhou
- Engineering Research Center for Agricultural Resources and Comprehensive Utilization of Jilin Provence, Jilin Institute of Chemical Technology, Jilin 132022, China
- Correspondence: (H.Z.); (W.Z.); (G.L.); Tel.: +86-433-243600 (G.L.)
| | - Wei Zhou
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji 133000, China; (Z.H.); (J.S.); (L.J.); (T.Z.); (Y.D.)
- Correspondence: (H.Z.); (W.Z.); (G.L.); Tel.: +86-433-243600 (G.L.)
| | - Gao Li
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji 133000, China; (Z.H.); (J.S.); (L.J.); (T.Z.); (Y.D.)
- Correspondence: (H.Z.); (W.Z.); (G.L.); Tel.: +86-433-243600 (G.L.)
| |
Collapse
|
4
|
Fouët G, Gout E, Wicker-Planquart C, Bally I, De Nardis C, Dedieu S, Chouquet A, Gaboriaud C, Thielens NM, Kleman JP, Rossi V. Complement C1q Interacts With LRP1 Clusters II and IV Through a Site Close but Different From the Binding Site of Its C1r and C1s-Associated Proteases. Front Immunol 2020; 11:583754. [PMID: 33193398 PMCID: PMC7609443 DOI: 10.3389/fimmu.2020.583754] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/28/2020] [Indexed: 11/13/2022] Open
Abstract
LRP1 is a large endocytic modular receptor that plays a crucial role in the scavenging of apoptotic material through binding to pattern-recognition molecules. It is a membrane anchored receptor of the LDL receptor family with 4 extracellular clusters of ligand binding modules called cysteine rich complement-type repeats that are involved in the interaction of LRP1 with its numerous ligands. Complement C1q was shown to interact with LRP1 and to be implicated in the phagocytosis of apoptotic cells. The present work aimed at exploring how these two large molecules interact at the molecular level using a dissection strategy. For that purpose, recombinant LRP1 clusters II, III and IV were produced in mammalian HEK293F cells and their binding properties were investigated. Clusters II and IV were found to interact specifically and efficiently with C1q with KDs in the nanomolar range. The use of truncated C1q fragments and recombinant mutated C1q allowed to localize more precisely the binding site for LRP1 on the collagen-like regions of C1q (CLRs), nearby the site that is implicated in the interaction with the cognate protease tetramer C1r2s2. This site could be a common anchorage for other ligands of C1q CLRs such as sulfated proteoglycans and Complement receptor type 1. The use of a cellular model, consisting in CHO LRP1-null cells transfected with full-length LRP1 or a cluster IV minireceptor (mini IV) confirmed that mini IV interacts with C1q at the cell membrane as well as full-length LRP1. Further cellular interaction studies finally highlighted that mini IV can endorse the full-length LRP1 binding efficiency for apoptotic cells and that C1q has no impact on this interaction.
Collapse
Affiliation(s)
| | - Evelyne Gout
- Université Grenoble Alpes, CNRS, CEA, IBS, Grenoble, France
| | | | - Isabelle Bally
- Université Grenoble Alpes, CNRS, CEA, IBS, Grenoble, France
| | - Camilla De Nardis
- Bijvoet Center for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Stéphane Dedieu
- Université de Reims Champagne-Ardenne, UMR CNRS 7369 MEDyC, Reims, France
| | - Anne Chouquet
- Université Grenoble Alpes, CNRS, CEA, IBS, Grenoble, France
| | | | | | | | | |
Collapse
|
5
|
Donat C, Kölm R, Csorba K, Tuncer E, Tsakiris DA, Trendelenburg M. Complement C1q Enhances Primary Hemostasis. Front Immunol 2020; 11:1522. [PMID: 32765527 PMCID: PMC7381122 DOI: 10.3389/fimmu.2020.01522] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 06/09/2020] [Indexed: 12/11/2022] Open
Abstract
The cross-talk between the inflammatory complement system and hemostasis is becoming increasingly recognized. The interaction between complement C1q, initiation molecule of the classical pathway, and von Willebrand factor (vWF), initiator molecule of primary hemostasis, has been shown to induce platelet rolling and adhesion in vitro. As vWF disorders result in prolonged bleeding, a lack of C1q as binding partner for vWF might also lead to an impaired hemostasis. Therefore, this study aimed to investigate the in vivo relevance of C1q-dependent binding of vWF in hemostasis. For this purpose, we analyzed parameters of primary and secondary hemostasis and performed bleeding experiments in wild type (WT) and C1q-deficient (C1qa−/−) mice, with reconstitution experiments of C1q in the latter. Bleeding tendency was examined by quantification of bleeding time and blood loss. First, we found that complete blood counts and plasma vWF levels do not differ between C1qa−/− mice and WT mice. Moreover, platelet aggregation tests indicated that the platelets of both strains of mice are functional. Second, while the prothrombin time was comparable between both groups, the activated partial thromboplastin time was shorter in C1qa−/− mice. In contrast, tail bleeding times of C1qa−/− mice were prolonged accompanied by an increased blood loss. Upon reconstitution of C1qa−/− mice with C1q, parameters of increased bleeding could be reversed. In conclusion, our data indicate that C1q, a molecule of the first-line of immune defense, actively participates in primary hemostasis by promoting arrest of bleeding. This observation might be of relevance for the understanding of thromboembolic complications in inflammatory disorders, where excess of C1q deposition is observed.
Collapse
Affiliation(s)
- Claudia Donat
- Laboratory of Clinical Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Robert Kölm
- Laboratory of Clinical Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Kinga Csorba
- Laboratory of Clinical Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Eylul Tuncer
- Laboratory of Clinical Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Dimitrios A Tsakiris
- Department of Diagnostic Hematology, University Hospital Basel, Basel, Switzerland
| | - Marten Trendelenburg
- Laboratory of Clinical Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland.,Division of Internal Medicine, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
6
|
Wu WJ, Tan Y, Liu XL, Yu F, Zhao MH. C1q A08 Is a Half-Cryptic Epitope of Anti-C1q A08 Antibodies in Lupus Nephritis and Important for the Activation of Complement Classical Pathway. Front Immunol 2020; 11:848. [PMID: 32536911 PMCID: PMC7267003 DOI: 10.3389/fimmu.2020.00848] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 04/14/2020] [Indexed: 11/21/2022] Open
Abstract
To investigate the fine epitope(s) of anti-C1q A08 antibodies and their roles in complement activation in lupus nephritis, C1q A08 and related peptides with various amino acid sequences around A08 were synthesized. Anti-C1q A08 antibodies from 10 lupus nephritis patients were purified from plasmapheresis samples, and four monoclonal antibodies against C1q A08 were screened and identified from mouse hybridoma cells, to study the fine epitope(s) of C1q A08 using ELISA and Biolayer Interferometry (BLI). The biofunction of anti-C1q A08 antibodies for complement classical pathway activation was investigated by C3 activation assay. Anti-C1q A08 antibodies and anti-C1q antibodies were also detected in the sera of female BALB/C mice immunized by C1q A08 peptides. None of the anti-C1q A08 antibodies, which were affinity purified from the 10 lupus nephritis patients, could bind intact C1q coated on microtitre plates, neither could the anti-C1q antibodies bind to C1q A08 peptides coupled on resin, indicating that the human anti-C1q antibodies and anti-C1q A08 antibodies may recognize different epitopes of C1q. One of the four C1q A08 mAbs (32-4) bound to the six amino acids of N-terminus of C1q A08, while another C1q A08 mAb (17-9) bound to eight or 10 amino acids of C-terminus of A08. The third and fourth C1q A08 mAb (1A12 and 4B11) bound to the whole sequence of A08. Only 32-4 mAb bound to the intact C1q coating on an ELISA plate, whereas 17-9 mAb, 1A12 mAb, and 4B11 mAb could not. However, using a BLI assay, 17-9 mAb, 1A12 mAb, and 4B11 mAb, but not 32-4 mAb, could bind to intact C1q. Furthermore, 1A12 mAb and 4B11 mAb, but not 32-4 and 17-9 mAb, could inhibit the activation of complement classical pathway. Anti-C1q A08 antibodies were detected in all the female BALB/C mice in the experimental group but not in the control group. Two out of six in the experimental group developed anti-C1q antibodies. C1q A08 is a half-cryptic epitope of C1q involving N-terminal six amino acids of C1q A08, and this is important to the activation of a complement classical pathway, and some anti-C1q A08 antibodies were able to prevent this process. Epitope spreading of C1q occurred in the mice immunized with C1q A08 peptides.
Collapse
Affiliation(s)
- Wen-Jun Wu
- School of Life Science, Tsinghua University, Beijing, China.,Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China.,Institute of Nephrology, Peking University, Beijing, China.,Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China.,Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Ministry of Education of China, Beijing, China.,Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Ying Tan
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China.,Institute of Nephrology, Peking University, Beijing, China.,Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China.,Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Ministry of Education of China, Beijing, China
| | - Xiao-Ling Liu
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China.,Institute of Nephrology, Peking University, Beijing, China.,Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China.,Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Ministry of Education of China, Beijing, China
| | - Feng Yu
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China.,Institute of Nephrology, Peking University, Beijing, China.,Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China.,Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Ministry of Education of China, Beijing, China.,Department of Nephrology, Peking University International Hospital, Beijing, China
| | - Ming-Hui Zhao
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China.,Institute of Nephrology, Peking University, Beijing, China.,Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China.,Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Ministry of Education of China, Beijing, China.,Tsinghua-Peking Center for Life Sciences, Beijing, China
| |
Collapse
|
7
|
Silberreis K, Niesler N, Rades N, Haag R, Dernedde J. Sulfated Dendritic Polyglycerol Is a Potent Complement Inhibitor. Biomacromolecules 2019; 20:3809-3818. [DOI: 10.1021/acs.biomac.9b00889] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Kim Silberreis
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Laboratory Medicine Clinical Chemistry and Pathobiochemistry, CVK Augustenburger Platz 1, 13353 Berlin, Germany
| | - Nicole Niesler
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Laboratory Medicine Clinical Chemistry and Pathobiochemistry, CVK Augustenburger Platz 1, 13353 Berlin, Germany
| | - Nadine Rades
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
| | - Rainer Haag
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
| | - Jens Dernedde
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Laboratory Medicine Clinical Chemistry and Pathobiochemistry, CVK Augustenburger Platz 1, 13353 Berlin, Germany
| |
Collapse
|
8
|
Barrios AA, Grezzi L, Miles S, Mariconti M, Mourglia-Ettlin G, Seoane PI, Díaz A. Inefficient and abortive classical complement pathway activation by the calcium inositol hexakisphosphate component of the Echinococcus granulosus laminated layer. Immunobiology 2019; 224:710-719. [PMID: 31178241 DOI: 10.1016/j.imbio.2019.05.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 05/20/2019] [Accepted: 05/28/2019] [Indexed: 01/15/2023]
Abstract
Persistent extracellular tissue-dwelling pathogens face the challenge of antibody-dependent activation of the classical complement pathway (CCP). A prime example of this situation is the larva of the cestode Echinococcus granulosus sensu lato, causing cystic echinococcosis. This tissue-dwelling, bladder-like larva is bounded by a cellular layer protected by the outermost acellular "laminated layer" (LL), to which host antibodies bind. The LL is made up of a mucin meshwork and interspersed nano-deposits of calcium inositol hexakisphosphate (calcium InsP6). We previously reported that calcium InsP6 bound C1q, apparently initiating CCP activation. The present work dissects CCP activation on the LL. Most of the C1 binding activity in the LL corresponded to calcium InsP6, and this binding was enhanced by partial proteolysis of the mucin meshwork. The remaining C1 binding activity was attributable to host antibodies, which included CCP-activating IgG isotypes. Calcium InsP6 made only a weak contribution to early CCP activation on the LL, suggesting inefficient C1 complex activation as reported for other polyanions. CCP activation on calcium InsP6 gave rise to a dominant population of C3b deposited onto calcium InsP6 itself that appeared to be quickly inactivated. Apparently as a result of inefficient initiation plus C3b inactivation, calcium InsP6 made no net contribution to C5 activation. We propose that the LL protects the underlying parasite cells from CCP activation through the combined effects of inefficient permeation of C1 through the mucins and C1 retention on calcium InsP6. This mechanism does not result in C5 activation, which is known to drive parasite-damaging inflammation.
Collapse
Affiliation(s)
- Anabella A Barrios
- Área/Cátedra de Inmunología, Departamento de Biociencias (Facultad de Química) and Instituto de Química Biológica (Facultad de Ciencias), Universidad de la República, Montevideo, Uruguay
| | - Leticia Grezzi
- Área/Cátedra de Inmunología, Departamento de Biociencias (Facultad de Química) and Instituto de Química Biológica (Facultad de Ciencias), Universidad de la República, Montevideo, Uruguay
| | - Sebastián Miles
- Área/Cátedra de Inmunología, Departamento de Biociencias (Facultad de Química) and Instituto de Química Biológica (Facultad de Ciencias), Universidad de la República, Montevideo, Uruguay
| | - Mara Mariconti
- Unit of Infectious and Tropical Diseases, San Matteo Hospital Foundation, Pavia, Italy
| | - Gustavo Mourglia-Ettlin
- Área/Cátedra de Inmunología, Departamento de Biociencias (Facultad de Química) and Instituto de Química Biológica (Facultad de Ciencias), Universidad de la República, Montevideo, Uruguay
| | - Paula I Seoane
- Área/Cátedra de Inmunología, Departamento de Biociencias (Facultad de Química) and Instituto de Química Biológica (Facultad de Ciencias), Universidad de la República, Montevideo, Uruguay
| | - Alvaro Díaz
- Área/Cátedra de Inmunología, Departamento de Biociencias (Facultad de Química) and Instituto de Química Biológica (Facultad de Ciencias), Universidad de la República, Montevideo, Uruguay.
| |
Collapse
|
9
|
Keragala CB, Draxler DF, McQuilten ZK, Medcalf RL. Haemostasis and innate immunity - a complementary relationship: A review of the intricate relationship between coagulation and complement pathways. Br J Haematol 2017; 180:782-798. [PMID: 29265338 DOI: 10.1111/bjh.15062] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Coagulation and innate immunity are linked evolutionary processes that orchestrate the host defence against invading pathogens and injury. The complement system is integral to innate immunity and shares numerous interactions with components of the haemostatic pathway, helping to maintain physiological equilibrium. The term 'immunothrombosis' was introduced in 2013 to embrace this process, and has become an area of much recent interest. What is less apparent in the literature however is an appreciation of the clinical manifestations of the coagulation-complement interaction and the consequences of dysregulation of either system, as seen in many inflammatory and thrombotic disease states, such as sepsis, trauma, atherosclerosis, antiphospholipid syndrome (APS), paroxysmal nocturnal haemoglobinuria (PNH) and some thrombotic microangiopathies to name a few. The growing appreciation of this immunothrombotic phenomenon will foster the drive for novel therapies in these disease states, including anticoagulants as immunomodulators and targeted molecular therapies.
Collapse
Affiliation(s)
- Charithani B Keragala
- Molecular Neurotrauma and Haemostasis, Australian Centre for Blood Diseases, Monash University, Melbourne, Vic., Australia
| | - Dominik F Draxler
- Molecular Neurotrauma and Haemostasis, Australian Centre for Blood Diseases, Monash University, Melbourne, Vic., Australia
| | - Zoe K McQuilten
- Transfusion Research Unit and Australian and New Zealand Intensive Care Research Centre, Department of Epidemiology and Preventative Medicine, Monash University, Melbourne, Vic., Australia
| | - Robert L Medcalf
- Molecular Neurotrauma and Haemostasis, Australian Centre for Blood Diseases, Monash University, Melbourne, Vic., Australia
| |
Collapse
|
10
|
Andre GO, Converso TR, Politano WR, Ferraz LFC, Ribeiro ML, Leite LCC, Darrieux M. Role of Streptococcus pneumoniae Proteins in Evasion of Complement-Mediated Immunity. Front Microbiol 2017; 8:224. [PMID: 28265264 PMCID: PMC5316553 DOI: 10.3389/fmicb.2017.00224] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 01/31/2017] [Indexed: 12/14/2022] Open
Abstract
The complement system plays a central role in immune defense against Streptococcus pneumoniae. In order to evade complement attack, pneumococci have evolved a number of mechanisms that limit complement mediated opsonization and subsequent phagocytosis. This review focuses on the strategies employed by pneumococci to circumvent complement mediated immunity, both in vitro and in vivo. At last, since many of the proteins involved in interactions with complement components are vaccine candidates in different stages of validation, we explore the use of these antigens alone or in combination, as potential vaccine approaches that aim at elimination or drastic reduction in the ability of this bacterium to evade complement.
Collapse
Affiliation(s)
- Greiciely O Andre
- Laboratório de Biologia Celular e Molecular de Microrganismos, Universidade São Francisco Bragança Paulista, Brazil
| | - Thiago R Converso
- Centro de Biotecnologia, Instituto ButantanSão Paulo, Brazil; Programa de Pós-graduação Interunidades em Biotecnologia, Universidade de São PauloSão Paulo, Brazil
| | - Walter R Politano
- Laboratório de Biologia Celular e Molecular de Microrganismos, Universidade São Francisco Bragança Paulista, Brazil
| | - Lucio F C Ferraz
- Laboratório de Biologia Celular e Molecular de Microrganismos, Universidade São Francisco Bragança Paulista, Brazil
| | - Marcelo L Ribeiro
- Laboratório de Farmacologia, Universidade São Francisco Bragança Paulista, Brazil
| | | | - Michelle Darrieux
- Laboratório de Biologia Celular e Molecular de Microrganismos, Universidade São Francisco Bragança Paulista, Brazil
| |
Collapse
|
11
|
|
12
|
Role of Complement on Broken Surfaces After Trauma. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 865:43-55. [PMID: 26306442 DOI: 10.1007/978-3-319-18603-0_3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Activation of both the complement and coagulation cascade after trauma and subsequent local and systemic inflammatory response represent a major scientific and clinical problem. After severe tissue injury and bone fracture, exposure of innate immunity to damaged cells and molecular debris is considered a main trigger of the posttraumatic danger response. However, the effects of cellular fragments (e.g., histones) on complement activation remain enigmatic. Furthermore, direct effects of "broken" bone and cartilage surfaces on the fluid phase response of complement and its interaction with key cells of connective tissues are still unknown. Here, we summarize data suggesting direct and indirect complement activation by extracellular and cellular danger associated molecular patterns. In addition, key complement components and the corresponding receptors (such as C3aR, C5aR) have been detected on "exposed surfaces" of the damaged regions. On a cellular level, multiple effects of complement activation products on osteoblasts, osteoclasts, chondrocytes and mesenchymal stem cells have been found.In conclusion, the complement system may be activated by trauma-altered surfaces and is crucially involved in connective tissue healing and posttraumatic systemic inflammatory response.
Collapse
|
13
|
Shen Y, Yang L, Li R. What does complement do in Alzheimer's disease? Old molecules with new insights. Transl Neurodegener 2013; 2:21. [PMID: 24119446 PMCID: PMC3853043 DOI: 10.1186/2047-9158-2-21] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 10/01/2013] [Indexed: 11/25/2022] Open
Abstract
Increasing evidence suggests that inflammatory and immune components in brain are important in Alzheimer's disease (AD) and anti-inflammatory and immunotherapeutic approaches may be amenable to AD treatment. It is known that complement activation occurs in the brain of patients with AD, and contributes to a local inflammatory state development which is correlated with cognitive impairment. In addition to the complement's critical role in the innate immune system recognizing and killing, or targeting for destruction, complement proteins can also interact with cell surface receptors to promote a local inflammatory response and contributes to the protection and healing of the host. On the other hand, complement activation also causes inflammation and cell damage as an essential immune function to eliminate cell debris and potentially toxic protein aggregates. It is the balance of these seemingly competing events that influences the ultimate state of neuronal function. Our mini review will be focusing on the unique molecular interactions happening in the AD development, the functional outcomes of those interactions, as well as the contribution of each element to AD.
Collapse
Affiliation(s)
- Yong Shen
- Center for Advanced Therapeutic Strategies for Brain Disorders, Roskamp Institute, 2040 Whitfield Avenue, Sarasota, USA
- Department of Neurology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Libang Yang
- Department of Pediatrics, School of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | - Rena Li
- Center for Hormones Advanced Science and Education, Roskamp Institute, 2040 Whitfield Avenue, Sarasota, Florida, USA
| |
Collapse
|
14
|
Agarwal V, Ahl J, Riesbeck K, Blom AM. An alternative role of C1q in bacterial infections: facilitating Streptococcus pneumoniae adherence and invasion of host cells. THE JOURNAL OF IMMUNOLOGY 2013; 191:4235-45. [PMID: 24038089 DOI: 10.4049/jimmunol.1300279] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Streptococcus pneumoniae (pneumococcus) is a major human pathogen, which evolved numerous successful strategies to colonize the host. In this study, we report a novel mechanism of pneumococcal-host interaction, whereby pneumococci use a host complement protein C1q, primarily involved in the host-defense mechanism, for colonization and subsequent dissemination. Using cell-culture infection assays and confocal microscopy, we observed that pneumococcal surface-bound C1q significantly enhanced pneumococcal adherence to and invasion of host epithelial and endothelial cells. Flow cytometry demonstrated a direct, Ab-independent binding of purified C1q to various clinical isolates of pneumococci. This interaction was seemingly capsule serotype independent and mediated by the bacterial surface-exposed proteins, as pretreatment of pneumococci with pronase E but not sodium periodate significantly reduced C1q binding. Moreover, similar binding was observed using C1 complex as the source of C1q. Furthermore, our data show that C1q bound to the pneumococcal surface through the globular heads and with the host cell-surface receptor(s)/glycosaminoglycans via its N-terminal collagen-like stalk, as the presence of C1q N-terminal fragment and low m.w. heparin but not the C-terminal globular heads blocked C1q-mediated pneumococcal adherence to host cells. Taken together, we demonstrate for the first time, to our knowledge, a unique function of complement protein C1q, as a molecular bridge between pneumococci and the host, which promotes bacterial cellular adherence and invasion. Nevertheless, in some conditions, this mechanism could be also beneficial for the host as it may result in uptake and clearance of the bacteria.
Collapse
Affiliation(s)
- Vaibhav Agarwal
- Medical Protein Chemistry, Department of Laboratory Medicine Malmö, Lund University, SE-205 02 Malmö, Sweden
| | | | | | | |
Collapse
|
15
|
Agostinis C, Bulla R, Tripodo C, Gismondi A, Stabile H, Bossi F, Guarnotta C, Garlanda C, De Seta F, Spessotto P, Santoni A, Ghebrehiwet B, Girardi G, Tedesco F. An Alternative Role of C1q in Cell Migration and Tissue Remodeling: Contribution to Trophoblast Invasion and Placental Development. THE JOURNAL OF IMMUNOLOGY 2010; 185:4420-9. [DOI: 10.4049/jimmunol.0903215] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
16
|
Garlatti V, Chouquet A, Lunardi T, Vivès R, Païdassi H, Lortat-Jacob H, Thielens NM, Arlaud GJ, Gaboriaud C. Cutting edge: C1q binds deoxyribose and heparan sulfate through neighboring sites of its recognition domain. THE JOURNAL OF IMMUNOLOGY 2010; 185:808-12. [PMID: 20548024 DOI: 10.4049/jimmunol.1000184] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
C1q, the recognition subunit of the C1 complex of complement, is an archetypal pattern recognition molecule with the striking ability to sense a wide variety of targets, including a number of altered self-motifs. The recognition properties of its globular domain were further deciphered by means of x-ray crystallography using deoxy-D-ribose and heparan sulfate as ligands. Highly specific recognition of deoxy-D-ribose, involving interactions with Arg C98, Arg C111, and Asn C113, was observed at 1.2 A resolution. Heparin-derived tetrasaccharide interacted more loosely through Lys C129, Tyr C155, and Trp C190. These data together with previous findings define a unique binding area exhibiting both polyanion and deoxy-D-ribose recognition properties, located on the inner face of C1q. DNA and heparin compete for C1q binding but are poor C1 activators compared with immune complexes. How the location of this binding area in C1q may regulate the level of C1 activation is discussed.
Collapse
Affiliation(s)
- Virginie Garlatti
- Laboratoire de Cristallogenese et Cristallographie des Protéines, Institut de Biologie Structurale Jean-Pierre Ebel, Commissariat à l'Energie Atomique, Centre National de la Recherche Scientifique, Université Joseph Fourier, Grenoble, France
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Low-molecular-weight heparin inhibition in classical complement activation pathway during pregnancy. Thromb Res 2009; 125:e240-5. [PMID: 20035973 DOI: 10.1016/j.thromres.2009.11.030] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2009] [Revised: 11/25/2009] [Accepted: 11/28/2009] [Indexed: 11/23/2022]
Abstract
INTRODUCTION Low-molecular-weight heparin is used clinically for the prevention of pregnancy complications associated with prothrombotic disorders, particularly anti-phospholipid syndrome. Nevertheless, recent studies have suggested that heparin may exert direct effects on the placental trophoblast, independently of its anticoagulant activity. In addition, heparin prevents complement activation in vivo and protects mice from pregnancy complications. MATERIALS AND METHODS The inhibition of the classical complement activation pathway by heparin was analyzed by means of in vitro assays and in pregnant women receiving prophylaxis with therapeutic doses (40 mg/day) of subcutaneous low molecular weight heparin by haemolysis of antibody-sensitized sheep erythrocytes (CH(50) assay). RESULTS The specific interaction between low-molecular-weight heparin and the C1q subunit of the C1 complex of the complement cascade allowed the isolation of a small subpopulation of heparin ( 8.03+/-1.20 microg %), with an anti-activated factor X activity more than four times greater than the starting material. This subpopulation could be responsible for the in vitro inhibition of the classical complement activation pathway evaluated by the total haemolysis of antibody-sensitized sheep erythrocytes. About 60 microg/ml of low molecular weight heparin was needed to achieve 50% of haemolysis. The detection of the classical complement pathway inhibition in pregnant women treated with heparin required a first activation with aggregated human IgG. CONCLUSIONS We concluded that the interaction between low-molecular-weight heparin and C1q could be relevant not only in the complement-dependent, but also in the complement-independent inflammation mechanisms responsible for the prevention of pregnancy loss.
Collapse
|
18
|
Katsel P, Tan W, Haroutunian V. Gain in brain immunity in the oldest-old differentiates cognitively normal from demented individuals. PLoS One 2009; 4:e7642. [PMID: 19865478 PMCID: PMC2764344 DOI: 10.1371/journal.pone.0007642] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Accepted: 10/04/2009] [Indexed: 11/18/2022] Open
Abstract
Background Recent findings suggest that Alzheimer's disease (AD) neuropathological features (neuritic plaques and NFTs) are not strongly associated with dementia in extreme old (over 90 years of age) and compel a search for neurobiological indices of dementia in this rapidly growing segment of the elderly population. We sought to characterize transcriptional and protein profiles of dementia in the oldest-old. Methods and Findings Gene and protein expression changes relative to non-demented age-matched controls were assessed by two microarray platforms, qPCR and Western blot in different regions of the brains of oldest-old and younger old persons who died at mild or severe stages of dementia. Our results indicate that: i) consistent with recent neuropathological findings, gene expression changes associated with cognitive impairment in oldest-old persons are distinct from those in cognitively impaired youngest-old persons; ii) transcripts affected in young-old subjects with dementia participate in biological pathways related to synaptic function and neurotransmission while transcripts affected in oldest-old subjects with dementia are associated with immune/inflammatory function; iii) upregulation of immune response genes in cognitively intact oldest-old subjects and their subsequent downregulation in dementia suggests a potential protective role of the brain immune-associated system against dementia in the oldest-old; iv) consistent with gene expression profiles, protein expression of several selected genes associated with the inflammatory/immune system in inferior temporal cortex is significantly increased in cognitively intact oldest-old persons relative to cognitively intact young-old persons, but impaired in cognitively compromised oldest-old persons relative to cognitively intact oldest-old controls. Conclusions These results suggest that disruption of the robust immune homeostasis that is characteristic of oldest-old individuals who avoided dementia may be directly associated with dementia in the oldest-old and contrast with the synaptic and neurotransmitter system failures that typify dementia in younger old persons.
Collapse
Affiliation(s)
- Pavel Katsel
- Department of Psychiatry, Mount Sinai School of Medicine, New York, New York, USA.
| | | | | |
Collapse
|
19
|
Donev R, Kolev M, Millet B, Thome J. Neuronal death in Alzheimer's disease and therapeutic opportunities. J Cell Mol Med 2009; 13:4329-48. [PMID: 19725918 PMCID: PMC4515050 DOI: 10.1111/j.1582-4934.2009.00889.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Alzheimer’s disease (AD) is an age-related neurodegenerative disease that affects approximately 24 million people worldwide. A number of different risk factors have been implicated in AD; however, neuritic (amyloid) plaques are considered as one of the defining risk factors and pathological hallmarks of the disease. In the past decade, enormous efforts have been devoted to understand the genetics and molecular pathogenesis leading to neuronal death in AD, which has been transferred into extensive experimental approaches aimed at reversing disease progression. Modern medicine is facing an increasing number of treatments available for vascular and neurodegenerative brain diseases, but no causal or neuroprotective treatment has yet been established. Almost all neurological conditions are characterized by progressive neuronal dysfunction, which, regardless of the pathogenetic mechanism, finally leads to neuronal death. The particular emphasis of this review is on risk factors and mechanisms resulting in neuronal loss in AD and current and prospective opportunities for therapeutic interventions. This review discusses these issues with a view to inspiring the development of new agents that could be useful for the treatment of AD.
Collapse
Affiliation(s)
- Rossen Donev
- Department of Medical Biochemistry and Immunology, School of Medicine, Cardiff University, Heath Park, Cardiff, UK
| | | | | | | |
Collapse
|
20
|
Hong Q, Sze CI, Lin SR, Lee MH, He RY, Schultz L, Chang JY, Chen SJ, Boackle RJ, Hsu LJ, Chang NS. Complement C1q activates tumor suppressor WWOX to induce apoptosis in prostate cancer cells. PLoS One 2009; 4:e5755. [PMID: 19484134 PMCID: PMC2685983 DOI: 10.1371/journal.pone.0005755] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2009] [Accepted: 05/05/2009] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Tissue exudates contain low levels of serum complement proteins, and their regulatory effects on prostate cancer progression are largely unknown. We examined specific serum complement components in coordinating the activation of tumor suppressors p53 and WWOX (also named FOR or WOX1) and kinases ERK, JNK1 and STAT3 in human prostate DU145 cells. METHODOLOGY/PRINCIPAL FINDINGS DU145 cells were cultured overnight in 1% normal human serum, or in human serum depleted of an indicated complement protein. Under complement C1q- or C6-free conditions, WOX1 and ERK were mainly present in the cytoplasm without phosphorylation, whereas phosphorylated JNK1 was greatly accumulated in the nuclei. Exogenous C1q rapidly restored the WOX1 activation (with Tyr33 phosphorylation) in less than 2 hr. Without serum complement C9, p53 became activated, and hyaluronan (HA) reversed the effect. Under C6-free conditions, HA induced activation of STAT3, an enhancer of metastasis. Notably, exogenous C1q significantly induced apoptosis of WOX1-overexpressing DU145 cells, but not vehicle-expressing cells. A dominant negative and Y33R mutant of WOX1 blocked the apoptotic effect. C1q did not enhance p53-mediated apoptosis. By total internal reflection fluorescence (TIRF) microscopy, it was determined that C1q destabilized adherence of WOX1-expressing DU145 cells by partial detaching and inducing formation of clustered microvilli for focal adhesion particularly in between cells. These cells then underwent shrinkage, membrane blebbing and death. Remarkably, as determined by immunostaining, benign prostatic hyperplasia and prostate cancer were shown to have a significantly reduced expression of tissue C1q, compared to age-matched normal prostate tissues. CONCLUSIONS/SIGNIFICANCE We conclude that complement C1q may induce apoptosis of prostate cancer cells by activating WOX1 and destabilizing cell adhesion. Downregulation of C1q enhances prostate hyperplasia and cancerous formation due to failure of WOX1 activation.
Collapse
Affiliation(s)
- Qunying Hong
- Guthrie Research Institute, Laboratory of Molecular Immunology, Sayre, Pennsylvania, United States of America
| | - Chun-I Sze
- Department of Pathology, National Cheng Kung University Medical College, Tainan, Taiwan, Republic of China
- Department of Anatomy and Cell Biology, National Cheng Kung University Medical College, Tainan, Taiwan, Republic of China
| | - Sing-Ru Lin
- Institute of Molecular Medicine, National Cheng Kung University Medical College, Tainan, Taiwan, Republic of China
| | - Ming-Hui Lee
- Institute of Molecular Medicine, National Cheng Kung University Medical College, Tainan, Taiwan, Republic of China
| | - Ruei-Yu He
- Department of Engineering Science, National Cheng Kung University, Tainan, Taiwan, Republic of China
| | - Lori Schultz
- Guthrie Research Institute, Laboratory of Molecular Immunology, Sayre, Pennsylvania, United States of America
| | - Jean-Yun Chang
- Institute of Molecular Medicine, National Cheng Kung University Medical College, Tainan, Taiwan, Republic of China
| | - Shean-Jen Chen
- Department of Engineering Science, National Cheng Kung University, Tainan, Taiwan, Republic of China
| | - Robert J. Boackle
- Section of Oral Biology, Department of Stomatology, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Li-Jin Hsu
- Department of Microbiology and Immunology, National Cheng Kung University Medical College, Tainan, Taiwan, Republic of China
- Center for Gene Regulation and Signal Transduction Research, National Cheng Kung University Medical College, Tainan, Taiwan, Republic of China
| | - Nan-Shan Chang
- Guthrie Research Institute, Laboratory of Molecular Immunology, Sayre, Pennsylvania, United States of America
- Institute of Molecular Medicine, National Cheng Kung University Medical College, Tainan, Taiwan, Republic of China
- Center for Gene Regulation and Signal Transduction Research, National Cheng Kung University Medical College, Tainan, Taiwan, Republic of China
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, New York, United States of America
| |
Collapse
|
21
|
|
22
|
Kang YH, Tan LA, Carroll MV, Gentle ME, Sim RB. Target pattern recognition by complement proteins of the classical and alternative pathways. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 653:117-28. [PMID: 19799115 DOI: 10.1007/978-1-4419-0901-5_8] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
The complement system is a major component of the innate defence of animals against invading microorganisms, and is also essential for the recognition and clearance of damaged or structurally-altered host cells or macromolecules. The system is activated by three different pathways, each of which responds, using different recognition molecules, to a very wide range of activators. The recognition protein of the complement classical pathway, C1q is described in detail here, with comparisons to the alternative pathway.
Collapse
Affiliation(s)
- Yu-Hoi Kang
- MRC Immunochemistry Unit, Department of Biochemistry, University of Oxford, Oxford, UK
| | | | | | | | | |
Collapse
|
23
|
Bulla R, Agostinis C, Bossi F, Rizzi L, Debeus A, Tripodo C, Radillo O, De Seta F, Ghebrehiwet B, Tedesco F. Decidual endothelial cells express surface-bound C1q as a molecular bridge between endovascular trophoblast and decidual endothelium. Mol Immunol 2008; 45:2629-40. [PMID: 18295334 DOI: 10.1016/j.molimm.2007.12.025] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2007] [Revised: 12/21/2007] [Accepted: 12/24/2007] [Indexed: 12/20/2022]
Abstract
This study was prompted by the observation that decidual endothelial cells (DECs), unlike endothelial cells (ECs) of blood vessels in normal skin, kidney glomeruli and brain, express surface-bound C1q in physiologic pregnancy. This finding was unexpected, because deposits of C1q are usually observed in pathologic conditions and are associated with complement activation. In the case of DECs, we failed to detect immunoglobulins and C4 co-localized with C1q on the cell surface. Surprisingly, DECs expressed mRNA for the three chains of C1q and secreted detectable level of this component in serum-free medium. The ability to synthesize C1q is acquired by DECs during pregnancy and is not shared by ECs obtained from endometrium and from other sources. Cell-associated C1q has a molecular weight similar to that of secreted C1q and is released from DECs following treatment with heparinase or incubation at low pH. This suggests that C1q binds to DECs and it is not constitutively expressed on the cell surface. C1q is localized at contact sites between endovascular trophoblast and DECs and acts as an intercellular molecular bridge because adhesion of endovascular trophoblast to DECs was inhibited by antibodies to C1q and to a receptor recognizing its globular portion expressed on trophoblast.
Collapse
Affiliation(s)
- Roberta Bulla
- Department of Physiology and Pathology, University of Trieste, via Fleming 22, 34127, Trieste, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Windbichler M, Echtenacher B, Takahashi K, Ezekowitz RAB, Schwaeble WJ, Jenseniuis JC, Männel DN. Investigations on the Involvement of the Lectin Pathway of Complement Activation in Anaphylaxis. Int Arch Allergy Immunol 2006; 141:11-23. [PMID: 16804320 DOI: 10.1159/000094177] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2005] [Accepted: 02/27/2006] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Systemic anaphylaxis is the most severe form of immediate hypersensitivity reaction. The activation of the complement system occurs during anaphylactic shock. The purpose of this study was to determine in a mouse model whether the lectin pathway of complement activation is involved in anaphylaxis. METHODS To see whether the lectin pathway is involved in anaphylactic shock, serum mannan-binding lectin (MBL) levels were measured after passive anaphylaxis. Also MBL expression and binding to potential ligands were investigated. To determine whether complement or mast cell activation is essential for hypothermia in anaphylactic shock, mouse strains deficient in MBL-A and MBL-C, C1q, factors B and C2, C5, C5aR, or mast cells were tested. RESULTS After antigenic challenge a marked drop in body temperature as well as a rapid decrease in serum MBL levels were observed. The decrease of serum MBL levels in shock could not be attributed to MBL binding to immune complexes or tissues, but an interaction of MBL with mast cell-derived proteoglycans was seen. In contrast to mast cell-deficient mice, none of the complement-deficient mouse strains were protected from shock-associated hypothermia. CONCLUSIONS These results indicate that neither MBL nor activation of the complement cascade is crucial for the induction of anaphylaxis. In contrast mast cell activation is associated with the development of hypothermia and possibly the observed decrease in serum MBL levels.
Collapse
Affiliation(s)
- Michaela Windbichler
- Institute of Immunology, University of Regensburg, Regensburg, Germany, and Department of Pediatrics, Laboratory of Developmental Immunology, Massachusetts General Hospital, Boston, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Peake PW, Shen Y, Campbell LV, Charlesworth JA. Human adiponectin binds to bacterial lipopolysaccharide. Biochem Biophys Res Commun 2006; 341:108-15. [PMID: 16431217 DOI: 10.1016/j.bbrc.2005.12.162] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2005] [Accepted: 12/27/2005] [Indexed: 01/21/2023]
Abstract
Adiponectin has anti-inflammatory and anti-atherogenic properties in addition to its acknowledged roles in insulin sensitivity and energy homeostasis. These properties include the suppression of lipopolysaccharide [LPS]-mediated inflammatory events. We demonstrated that both recombinant and native adiponectin directly bind LPS derived from three different bacteria. The interaction occurred at pH 5.0-6.0 and was inhibited by the presence of Ca(2+) and Mg(2+), but enhanced by the sequestration of these cations. Maximal binding occurred at pH 6.0 in the presence of ethylenediaminetetraacetic acid. Lipid A and C1q were not inhibitory, although LPS, heparin, zymosan, and individual sugars all inhibited the reaction. Periodate-mediated deglycosylation of adiponectin, and reduction and alkylation also inhibited binding. Since adiponectin infiltrates into [relatively] acidic sites of inflammation, it may act as a scavenging anti-inflammatory agent in atherosclerosis and vascular damage where LPS [and other pro-inflammatory molecules] are present.
Collapse
Affiliation(s)
- Philip W Peake
- Division of Medicine, Prince of Wales Hospital, Randwick, Australia.
| | | | | | | |
Collapse
|
26
|
Eto N, Kojima I, Uesugi N, Inagi R, Miyata T, Fujita T, Johnson RJ, Shankland SJ, Nangaku M. Protection of endothelial cells by dextran sulfate in rats with thrombotic microangiopathy. J Am Soc Nephrol 2005; 16:2997-3005. [PMID: 16093450 DOI: 10.1681/asn.2005020137] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
The characteristic features of thrombotic microangiopathy (TMA) include glomerular and peritubular capillary endothelial cell injury in association with loss of heparan sulfate proteoglycans on the cell surface and thrombus formation, followed by subsequent ischemic tubulointerstitial damage. It therefore was hypothesized that dextran sulfate (DXS) may protect the kidney against endothelial damage in a model of TMA. TMA was induced in rats by renal artery perfusion of an antiglomerular endothelial antibody, followed by the administration of DXS or vehicle. Renal damage was assessed by histologic analysis and measurements of blood urea nitrogen and creatinine. Whereas control rats developed severe renal failure with extensive glomerular and tubular injury, administration of DXS significantly protected renal function and preserved the glomerular endothelium and peritubular capillaries. The beneficial effect of DXS could be attributed to the ability of DXS to protect endothelial cells from coagulation and complement activation, as demonstrated by the histologic analysis. In addition, binding of the administered DXS to the surface of the glomerular endothelium was confirmed in TMA rats, suggesting that DXS acts as a "repair coat" of injured glomerular endothelium. In conclusion, DXS protects the kidney from experimental TMA. This protection may be mediated by DXS's binding directly to the surface of glomerular endothelium and amelioration of coagulation, complement activation, and cellular matrix loss.
Collapse
Affiliation(s)
- Nobuaki Eto
- Division of Nephrology and Endocrinology, University of Tokyo, School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
The spectrum of inflammatory diseases is nowadays considered to include diverse diseases of the central nervous system (CNS). Current evidence suggests that syndromes such as Alzheimer's disease (AD) have important inflammatory and immune components and may be amenable to treatment by anti-inflammatory and immunotherapeutic approaches. Compelling evidence has been reported that complement activation occurs in the brain with Alzheimer's disease, and that this contributes to the development of a local inflammatory state that is correlated with cognitive dysfunction. The complement system is a critical element of the innate immune system recognizing and killing, or targeting for destruction, otherwise pathogenic organisms. In addition to triggering the generation of a membranolytic complex, complement proteins interact with cell surface receptors to promote a local inflammatory response that contributes to the protection and healing of the host. Complement activation causes inflammation and cell damage, yet it is an essential component in trying to eliminate cell debris and potentially toxic protein aggregates. It is the balance of these seemingly competing events--the "Yin" and the "Yang"--that influences the ultimate state of neuronal function. Knowledge of the unique molecular interactions that occur in the development of Alzheimer's disease, the functional consequences of those interactions, and the proportional contribution of each element to this disorder, should facilitate the design of effective therapeutic strategies for this disease.
Collapse
Affiliation(s)
- Yong Shen
- Haldeman Laboratory of Molecular and Cellular Neurobiology, Sun Health Research Institute, 10515 West Santa Fe Drive, Sun City, AZ 85351, USA.
| | | |
Collapse
|
28
|
Tissot B, Montdargent B, Chevolot L, Varenne A, Descroix S, Gareil P, Daniel R. Interaction of fucoidan with the proteins of the complement classical pathway. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1651:5-16. [PMID: 14499584 DOI: 10.1016/s1570-9639(03)00230-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Fucoidan inhibits complement by mechanisms that so far remain to be unraveled, and the objective of this work was to delineate the mode of inhibition by this sulfated polysaccharide. For that purpose, low molecular weight fractions of algal (Ascophyllum nodosum) fucoidan containing the disaccharide unit [-->3)-alpha-L-Fuc(2SO3(-))-(1-->4)-alpha-L-Fuc(2,3diSO3(-))-(1-->](n) have been studied. Gel co-affinity electrophoresis and a new affinity capillary electrophoresis (ACE) method have been implemented to characterize fucoidan-complement protein complexes. Fucoidan binds C1q, likely to its collagen-like region through interactions involving lysine residues, and then prevents the association of the C1r(2)-C1s(2) subunit, required to form the fully active C1. In addition to C1q, fucoidan forms a complex with the protein C4 as observed by ACE. The fucoidan inhibits the first steps of the classical pathway activation that is of relevance in view of the proinflammatory effects of the subsequent products of the cascade. This study shows that a high level of inhibitory activity can be achieved with low molecular weight carbohydrate molecules and that the potential applicability of fucoidan oligosaccharides for therapeutic complement inhibition is worthy of consideration.
Collapse
Affiliation(s)
- Bérangère Tissot
- Laboratoire Analyse et Environnement, Université d'Evry Val-d'Essonne, Bd. François Mitterrand, 91025 Cedex, Evry, France
| | | | | | | | | | | | | |
Collapse
|
29
|
Schiffer ERC, Reber G, De Moerloose P, Morel DR. Evaluation of unfractionated heparin and recombinant hirudin on survival in a sustained ovine endotoxin shock model. Crit Care Med 2002; 30:2689-99. [PMID: 12483060 DOI: 10.1097/00003246-200212000-00013] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
OBJECTIVE To compare and evaluate the potential benefit of two different anticoagulation regimens during endotoxemia in an ovine model. DESIGN Animal prospective randomized and controlled study following preliminary dose-range study conforming with the Guide for the Care and Use of Laboratory Animals as promulgated by the Council of the American Physiologic Society and reviewed by the Ethical Committee for Animal Research of our institution. SETTING Laboratories of anesthesiological investigations and hemostasis, primary care university medical center. SUBJECTS Twenty-two adult sheep of either sex, weighing 29-42 kg (mean 35.8 kg), surgically instrumented for chronic studies and randomly allocated to receive three different treatment groups: unfractionated heparin (40 units.kg.hr; n = 7), recombinant hirudin (500 units.kg.hr; n = 7), or saline (nonanticoagulated controls; n = 8). INTERVENTIONS Ovine model of severe endotoxin shock induced by a continuous intravenous endotoxin infusion over 72 hrs (10 ng.kg.min ). MEASUREMENTS AND MAIN RESULTS Endotoxin infusion alone produced a progressive hypotensive, hyperdynamic shock state with right ventricle failure leading to the death of all animals of the control group within 44 hrs (median, 12 hrs). Heparin profoundly improved survival rate in this model, whereas effective anticoagulation with hirudin did not significantly increase the survival rate compared with controls. Animals in the control group died from disseminated intravascular coagulation, metabolic acidosis, and hemorrhagic pulmonary edema, whereas sheep treated with hirudin died from severe pulmonary edema (hypoxemia, increased alveoloarterial oxygen gradient associated with an increased wet/dry lung weight ratio) in the absence of disseminated intravascular coagulation. CONCLUSIONS We conclude that systemic anticoagulation with the thrombin inhibitor hirudin is without benefit in this sheep model of lethal endotoxemia, whereas anticoagulation with heparin affords not only effective prevention of endotoxin-induced coagulation disorders but also global protection with prevention of respiratory decompensation and thus markedly improves survival rate in this situation.
Collapse
Affiliation(s)
- Eduardo R C Schiffer
- Division of Anesthesiological Investigations, University Medical Center, Geneva, Switzerland
| | | | | | | |
Collapse
|
30
|
Calabrese GC, Recondo EF, Fernandez de Recondo ME. Antithrombin and first complement protein recognize the same active heparin fraction. Thromb Res 2002; 105:537-41. [PMID: 12091056 DOI: 10.1016/s0049-3848(02)00062-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Antithrombin (AT) high affinity of unfractionated heparin (UFH) resides in a specific pentasaccharide sequence. Heparin also regulates complement activity on the classical and the alternative pathways. Most experimental pieces of evidence accumulated show that these important activities reside in different segments of the heparin molecule. We demonstrated in previous papers that a low ionic strength and the presence of calcium ions are essential to detect specific interactions between glycosaminoglycans and proteins. Then these very strict conditions were used, and we demonstrated that the first protein complex of the human complement cascade recognizes in the UFH a fraction with very high anticoagulant activity. After isolation from the precipitate of the interaction, this fraction of heparin also contained the pentasaccharide sequence responsible for the great affinity with AT: in fact, it was strongly bound to a resin of AT agarose, and to detach it, an ionic strength of 0.6 M sodium chloride was required. In this way, the heparin regions responsible for the anticoagulant activity and also for the effects over the complement system were identified on the same short segment of the heparin molecule, which includes the active fraction of the glycosaminoglycan. The differences with early results could be explained by our experimental conditions of low ionic strength and the presence of calcium ions used for the interaction of the protein and the glycosaminoglycan.
Collapse
Affiliation(s)
- Graciela C Calabrese
- Departamento de Ciencias Biológicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 954/956 Buenos Aires 1110, Argentina.
| | | | | |
Collapse
|
31
|
Zeerleder S, Mauron T, Lämmle B, Wuillemin WA. Effect of low-molecular weight dextran sulfate on coagulation and platelet function tests. Thromb Res 2002; 105:441-6. [PMID: 12062546 DOI: 10.1016/s0049-3848(02)00041-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Low-molecular weight dextran sulfate (DXS 5000, M(r) 5 kDa) was found to control selectively complement activation without affecting contact activation. However, DXS 5000 being a glycosaminoglycan (GAG) may inhibit coagulation, which might bear the risk of bleeding complications and limit its clinical use. We investigated the influence of DXS 5000 on the prothrombin time (PT), the activated partial thromboplastin time (aPTT), the thrombin time (TT), the inhibitory capacity of human plasma against activated factor X (FXa), and on platelet function as assessed by the platelet function analyzer (PFA-100) and by platelet aggregation studies. The PT steadily increased with increasing DXS 5000 concentration, whereas the aPTT was already prolonged (>300 s) at low DXS 5000 concentrations (100 microg/ml). The TT was >120 s at DXS 5000 concentrations of 1000 microg/ml. The inhibitory capacity of human plasma against FXa was dose-dependently increased by DXS 5000. With increasing DXS 5000 concentrations, a prolonged PFA-100 closure time (CT) was observed. Detailed aggregation studies revealed a dose-dependent inhibition of platelet aggregation with ristocetin by DXS 5000, whereas aggregation with ADP, collagen, and arachidonate was unaffected. DXS 5000 induces a disturbance of primary and secondary hemostasis.
Collapse
Affiliation(s)
- Sacha Zeerleder
- Central Hematology Laboratory, University of Bern, Inselspital, CH-3010, Bern, Switzerland
| | | | | | | |
Collapse
|
32
|
Manderson AP, Pickering MC, Botto M, Walport MJ, Parish CR. Continual low-level activation of the classical complement pathway. J Exp Med 2001; 194:747-56. [PMID: 11560991 PMCID: PMC2195964 DOI: 10.1084/jem.194.6.747] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
There is evidence that the classical complement pathway may be activated via a "C1-tickover" mechanism, analogous to the C3-tickover of the alternative pathway. We have quantitated and characterized this pathway of complement activation. Analysis of freshly collected mouse and human plasma revealed that spontaneous C3 activation rapidly occurred with the generation of C3 fragments in the plasma. By the use of complement- and Ig-deficient mice it was found that C1q, C4, C2, and plasma Ig were all required for this spontaneous C3 activation, with the alternative complement pathway further amplifying C3 fragment generation. Study of plasma from a human with C1q deficiency before and after therapeutic C1q infusion confirmed the existence of a similar pathway for complement activation in humans. Elevated levels of plasma C3 were detected in mice deficient in complement components required for activation of either the classical or alternative complement pathways, supporting the hypothesis that there is continuous complement activation and C3 consumption through both these pathways in vivo. Blood stasis was found to stimulate C3 activation by classical pathway tick-over. This antigen-independent mechanism for classical pathway activation may augment activation of the complement system at sites of inflammation and infarction.
Collapse
Affiliation(s)
- Anthony P. Manderson
- Division of Immunology and Cell Biology, John Curtin School of Medical Research, The Australian National University, Canberra ACT 2601, Australia
| | - Matthew C. Pickering
- Rheumatology Section, Division of Medicine, Imperial College School of Medicine, London W12 ONN, UK
| | - Marina Botto
- Rheumatology Section, Division of Medicine, Imperial College School of Medicine, London W12 ONN, UK
| | - Mark J. Walport
- Rheumatology Section, Division of Medicine, Imperial College School of Medicine, London W12 ONN, UK
| | - Christopher R. Parish
- Division of Immunology and Cell Biology, John Curtin School of Medical Research, The Australian National University, Canberra ACT 2601, Australia
| |
Collapse
|
33
|
Amiji MM. Surface modification of chitosan membranes by complexation-interpenetration of anionic polysaccharides for improved blood compatibility in hemodialysis. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 1996; 8:281-98. [PMID: 9041042 DOI: 10.1163/156856296x00309] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Chitosan membrane surface was modified by complexation and interpenetration of anionic polysaccharides--heparin and dextran sulfate--for improved blood compatibility in hemodialysis. Electron spectroscopy for chemical analysis results showed a characteristic sulfur (S) and sodium (Na) peaks after modification with dextran sulfate. The sulfur/carbon (S/C) atomic composition ratio increased from 0.03 to 0.08 when the bulk dextran sulfate concentration used for modification was increased from 2.5 to 10 mg ml-1. The permeability of urea and creatinine did not change significantly upon modification with heparin or dextran sulfate. Surface modification, however, did decrease the permeability coefficients of glucose, vitamin B-2, and vitamin B-12. Unlike Cuprophan, chitosan and surface-modified chitosan membranes did not significantly activate the complement system as measured by the serum iC3b concentration. Compared to forty and sixty fully-activated platelets present on control surfaces, surface modification with heparin and dextran sulfate significantly reduced the number of adherent platelets per 25,000 microns 2 area and the extent of platelet activation. Surface modification with anionic polysaccharides, however, did significantly shorten the plasma recalcification time leading to fibrin clot formation. The results of this study show that chitosan membrane surface can be modified by complexation-interpenetration of anionic modifying agents. The modified membranes do resist complement activation and platelet adhesion and activation.
Collapse
Affiliation(s)
- M M Amiji
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA
| |
Collapse
|
34
|
Breitner S, Störkel S, Reichel W, Loos M. Complement components C1q, C1r/C1s, and C1INH in rheumatoid arthritis. Correlation of in situ hybridization and northern blot results with function and protein concentration in synovium and primary cell cultures. ARTHRITIS AND RHEUMATISM 1995; 38:492-8. [PMID: 7718002 DOI: 10.1002/art.1780380406] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
OBJECTIVE To analyze the synovial site and the cell types expressing C1q, C1r/C1s, and C1-esterase inhibitor (C1INH) and to characterize newly synthesized C1q in patients with rheumatoid arthritis (RA). METHODS Tissue and primary cell cultures of synovium from RA patients were analyzed for C1q, C1r/C1s, and C1INH by Northern blotting, in situ hybridization, and pulse-chase experiments for C1q. RESULTS The de novo synthesis of C1q, C1r/C1s, and C1INH in synovium and primary cell cultures was proven by Northern blot and by antigenic and functional analysis. In in situ hybridization experiments, the synovial lining cell layer was identified as the site of C1q, C1r, and C1INH expression. In contrast, immunohistologic analysis showed that C1q, C1s, and C1INH proteins were present in a thin film covering the synovial lining cells. In situ hybridization performed on primary cell cultures provided evidence that only macrophages were able to express C1q, whereas fibroblasts and stellate cells synthesized C1r. CONCLUSION The synovium is important for the synthesis and secretion of C1q and C1r/C1s, as well as the control protein C1INH, which supports the idea of a locally occurring inflammatory process in RA patients.
Collapse
Affiliation(s)
- S Breitner
- Johannes Gutenberg-University, Mainz, Germany
| | | | | | | |
Collapse
|
35
|
Abstract
The study of the intrinsic regulation of complement has uncovered a broad array of proteins with differing specificities and physicochemical properties. This will allow application of these proteins, native or modified, to the problem of controlling inflammation. The availability of sCR1, as the first such agent, has permitted further definition of those adverse clinical situations which are complement-dependent. The use of sCR1 as a drug might be anticipated in situations of thermal injury, ARDS, septic shock, and ischemia/reperfusion injury, such as myocardial infarction after thrombolytic therapy. sCR1 may also serve as the tool with which to unravel and possibly treat xenograft rejection. It can be anticipated that other such specific inhibitors will become available.
Collapse
Affiliation(s)
- F D Moore
- Department of Surgery, Harvard Medical School, Brigham and Women's Hospital, Boston, Massachusetts 02115
| |
Collapse
|
36
|
Sahu A, Pangburn MK. Identification of multiple sites of interaction between heparin and the complement system. Mol Immunol 1993; 30:679-84. [PMID: 8487783 DOI: 10.1016/0161-5890(93)90079-q] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Many diverse effects of heparin on the complement system have been reported. In only a few cases have the sites or the mechanisms of these effects been identified. In order to understand these results we sought to comprehensively analyze which complement proteins interact with heparin and which do not. Purified components of the classical, alternative and terminal pathways of complement were radiolabeled and their affinity for heparin determined. Affinity chromatography of normal human serum on heparin-agarose allowed a complete analysis of complement proteins and confirmed the results obtained with radiolabeled purified components. Of the 22 complement proteins examined, 13 bound heparin (C1q, C2, C4, C4bp, C1INH, B, D, H, P, C6, C8, C9, and vitronectin) while 9 did not bind heparin (C1r, C1s, C3, Factor I, C5, C7, C3b, Ba and Bb). These observations help explain the many effects heparin has on the complement system and they identify the proteins which need to be examined in order to explain these effects.
Collapse
Affiliation(s)
- A Sahu
- Department of Biochemistry, University of Texas Health Science Center, Tyler 75710
| | | |
Collapse
|
37
|
|
38
|
Hong YQ, Ghebrehiwet B. Effect of Pseudomonas aeruginosa elastase and alkaline protease on serum complement and isolated components C1q and C3. CLINICAL IMMUNOLOGY AND IMMUNOPATHOLOGY 1992; 62:133-8. [PMID: 1730152 DOI: 10.1016/0090-1229(92)90065-v] [Citation(s) in RCA: 103] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The present study was undertaken to examine and compare the direct effect of two Pseudomonas enzymes, elastase and alkaline protease, on the serum hemolytic complement as a whole, and on the two recognition molecules of complement, C1q and C3 in particular. The results of our study show that incubation of serum with 0-50 micrograms/ml elastase or protease (60 min, 37 degrees C) resulted in a dose-dependent depletion of hemolytic complement with the protease being 3-4 times more efficient than elastase. Incubation of highly purified C3 (20 hr, 37 degrees C) with protease (2% w/w) resulted in the conversion of the 190-kDa molecule to a 120-kDa fragment. When analyzed by SDS-PAGE under reducing conditions, the 120-kDa piece yielded three distinct bands: an intact 75-kDa beta-chain and two alpha-chain pieces of approximately 41- and 26-kDa. NH2-terminal end sequence analysis localized the 26-kDa fragment within the cysteine-rich 41-kDa, COOH-terminal piece. This in turn suggests that the 70-kDa fragment which is not accounted for on SDS-PAGE is derived from the NH2-terminal end of the alpha-chain molecule which is completely degraded into small fragments. While the degradation pattern obtained with elastase is similar to that of protease, the latter enzyme was found to be more efficient. Exposure of C1q (0-5 hr, 37 degrees C) to protease or elastase on the other hand appears to reveal preferential sensitivity of the 28-kDa A-chain and 24-kDa C-chain, of the C1q molecule, with the protease being more potent than the elastase. Since both C1q and physiologic fragments of C3 (C3b, iC3b, and C3dg) are important opsonins of varying efficiencies, degradation of these molecules by Pseudomonas enzymes may, in part, facilitate the survival and proliferation of the organism in plasma. Furthermore, degradation of the key recognition molecules of complement, C1q and C3, would enhance the virulence of this organism by aborting complement-mediated bacterial killing. In addition the results imply that during Pseudomonas bacteremia, PaAP may be a much more destructive enzyme than PaE with regards to C3 and C1q but combined, the synergistic effect may overwhelm not only the proteins of the complement system, but other proteins of the humoral immune defense system as well.
Collapse
Affiliation(s)
- Y Q Hong
- Department of Medicine, State University of New York, Stony Brook 11794-8161
| | | |
Collapse
|
39
|
Proteoglycans in Cellular Recognition and Secretory Functions in the Haemopoietic System. ACTA ACUST UNITED AC 1992. [DOI: 10.1007/978-3-642-76829-3_23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
|
40
|
Tanaka T, Tsujinaka T, Kambayashi J, Higashiyama M, Yokota M, Sakon M, Mori T. The effect of heparin on multiple organ failure and disseminated intravascular coagulation in a sepsis model. Thromb Res 1990; 60:321-30. [PMID: 2087691 DOI: 10.1016/0049-3848(90)90110-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In order to elucidate a possible role of hypercoagulability leading to disseminated intravascular coagulation (DIC) in the pathogenesis of multiple organ failure (MOF), unfractionated heparin and the related agents were administered to septic rabbits which manifest DIC and MOF. Administration of heparin resulted in prevention of thrombocytopenia, leukopenia and elevation of plasma bilirubin and creatinine. The morphological hepatic damage was also ameliorated by heparin. Similar favorable effects were obtained by the administration of low molecular weight heparin. Dextran sulfate prevented the hepatic damage to some extent without improvement on other parameters. No significant effect was observed by the administration of a synthetic thrombin inhibitor (MD805). These results indicate that the favorable effect of heparin is due to its anticoagulant property, especially anti-Xa activity. Thereby, it is concluded that the hypercoagulable state leading to DIC is a prerequisite for the occurrence of MOF in sepsis.
Collapse
Affiliation(s)
- T Tanaka
- Second Department of Surgery, Osaka University Medical School, Japan
| | | | | | | | | | | | | |
Collapse
|
41
|
|
42
|
Bernstein H, Yang VC, Lund D, Randhawa M, Harmon W, Langer R. Extracorporeal enzymatic heparin removal: use in a sheep dialysis model. Kidney Int 1987; 32:452-63. [PMID: 3430948 DOI: 10.1038/ki.1987.232] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Extracorporeal medical devices such as the hemodialyzer rely on systemic heparinization to prevent thrombus formation. Heparin, however, can lead to serious hemorrhagic complications. A blood filter containing immobilized heparinase, a heparin specific enzyme, was used to degrade heparin into small fragments which have significantly less anticoagulant activity than the parent compound. The heparinase filter was tested in the extracorporeal circuit during the hemodialysis of adult sheep. At a blood flow of 200 ml/min, the clearance of heparin varied from 50 to 70 ml/min (N = 16) depending on the amount of immobilized heparinase in the filter. Hemolysis was insignificant as measured by the animals' red cell counts, hematocrit, total hemoglobin and a plasma-free hemoglobin value of 89 +/- 33 mg/dl (N = 16) (less than 1% of the total hemoglobin). The white cell counts dropped to 47 +/- 7% (N = 16) of the initial value at 20 minutes and rebounded to 72 +/- 10% (N = 16) after one hour. The platelet counts decreased to 55 +/- 8% (N = 16) of the initial value after one hour. No change in heparin clearance was observed when reactors were used repeatedly in adult sheep over a 10 week period. The red cell counts, white cell counts, platelet counts, total hemoglobin and hematocrit did not change after 10 weeks of exposure to the device. These results suggest that with further study, heparinase may be useful in removing heparin used to anticoagulate blood in extracorporeal circuits.
Collapse
Affiliation(s)
- H Bernstein
- Department of Chemical Engineering, Harvard MIT Division of Health Sciences and Technology, Cambridge, Massachusetts
| | | | | | | | | | | |
Collapse
|
43
|
Lawler J, Connolly JE, Ferro P, Derick LH. Thrombin and chymotrypsin interactions with thrombospondin. Ann N Y Acad Sci 1986; 485:273-87. [PMID: 3471148 DOI: 10.1111/j.1749-6632.1986.tb34589.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
44
|
Comis A, Easterbrook-Smith SB. Binding of complement component C1q by spectrin. BIOCHIMICA ET BIOPHYSICA ACTA 1986; 870:426-31. [PMID: 3486005 DOI: 10.1016/0167-4838(86)90250-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
125I-labelled human C1q was found to bind to human spectrin. Scatchard plots for the binding process were non-linear, indicating the possible presence of multiple classes of binding sites for C1q on spectrin. The binding was ionic-strength-dependent; the extent of binding decreased with increasing ionic strength. Chemical modification of arginine and histidine residues on C1q as well as pretreatment of C1q at pH 4.45 or at 56 degrees C reduced its spectrin binding activity. The amount of 125I-labelled C1q bound to immune complexes was reduced by the presence of spectrin. Spectrin was also able to deplete the complement haemolytic activity of human serum in a dose-dependent manner.
Collapse
|
45
|
Hortin G, Sims H, Strauss AW. Identification of the site of sulfation of the fourth component of human complement. J Biol Chem 1986. [DOI: 10.1016/s0021-9258(17)36009-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
46
|
Chang NS, Boackle RJ. Hyaluronic acid-complement interactions--II. Role of divalent cations and gelatin. Mol Immunol 1985; 22:843-8. [PMID: 4047042 DOI: 10.1016/0161-5890(85)90068-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Native hyaluronic acid (HA) is reported to be a weak anticomplementary agent. However, the normal buffer systems used for complement tests incorporate gelatin, Ca2+ and Mg2+, which may bind to HA, influence its conformation and interfere with its anticomplementary reactions with complement components such as Cl. In this study, metal ions (Ca2+ and Mg2+), gelatin and fibronectin appeared to react with native HA preparations and block their anticomplementary effects on Cl. In previous studies, we obtained evidence for a relationship between reversible heat-induced HA conformational changes and a subsequent reversible increase in anticomplementary activity. The anticomplementary activity of heat-treated HA preparations was also reduced by gelatin.
Collapse
|
47
|
|
48
|
Abstract
The occurrence of hydroxyproline (Hyp) in collagen, C1q and acetylcholineesterase (AChE) raises important questions concerning the role of this unusual imino acid in the structure and function of these proteins. Available data on collagen indicate that Hyp is necessary for the normal secretion of the protein after its synthesis and for the integrity of the triple-helical conformation. Studies from our laboratory have dealt with the structural aspects of the posttranslational conversion of proline to hydroxyproline in collagen mediated by prolyl hydroxylase. We proposed that the beta-turn conformation at the Pro-Gly segments in the nascent procollagen molecule are the sites of the enzymatic hydroxylation and that this conformation changes over to the collagen-like helix as a result of the hydroxylation process. Recently, we have provided additional experimental support to our proposal by a) synthesizing specific beta-turn oligopeptides containing the Pro-Gly as well as Pro-Ala and Pro-DAla sequences and showing that these act as inhibitors of the enzymatic hydroxylation of a synthetic substrate and b) demonstrating, by circular dichroism spectroscopy, the occurrence of a conformational change leading to the triple-helix as a direct consequence of proline hydroxylation in a non-helical polypeptide substrate. We have also observed that the acquisition of hydroxylation results in a significant enhancement of the rate of folding of the polypeptide chain from the unfolded to the triple-helical conformation. We believe that our observations on proline hydroxylation in collagen should also be applicable to C1q and acetylcholineesterase both of which share the general structural and functional properties of collagen in their "tail" regions. Using the techniques employed in collagen studies, one should be able to assess the role of hydroxyproline in the folding, structural stabilities and functions of C1q and AChE. This would also involve the study of the unhydroxylated and hydroxylated precursors of these proteins which may share common structural features with their collagen counterparts. Finally, a systematic study of hydroxyproline-containing peptides and polypeptides has been initiated by us so as to understand the exact manner in which Hyp participates in the formation and stability of the triple-helical conformation in the proteins in which it occurs.
Collapse
Affiliation(s)
- V S Ananthanarayanan
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, Canada
| |
Collapse
|
49
|
Carnitine:acylcarnitine translocase of rat heart mitochondria. Competition for carnitine uptake by carnitine esters. J Biol Chem 1981. [DOI: 10.1016/s0021-9258(19)69245-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|