1
|
Kimura T, Kimura AK, Epand RM. Systematic crosstalk in plasmalogen and diacyl lipid biosynthesis for their differential yet concerted molecular functions in the cell. Prog Lipid Res 2023; 91:101234. [PMID: 37169310 DOI: 10.1016/j.plipres.2023.101234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/29/2023] [Accepted: 05/05/2023] [Indexed: 05/13/2023]
Abstract
Plasmalogen is a major phospholipid of mammalian cell membranes. Recently it is becoming evident that the sn-1 vinyl-ether linkage in plasmalogen, contrasting to the ester linkage in the counterpart diacyl glycerophospholipid, yields differential molecular characteristics for these lipids especially related to hydrocarbon-chain order, so as to concertedly regulate biological membrane processes. A role played by NMR in gaining information in this respect, ranging from molecular to tissue levels, draws particular attention. We note here that a broad range of enzymes in de novo synthesis pathway of plasmalogen commonly constitute that of diacyl glycerophospholipid. This fact forms the basis for systematic crosstalk that not only controls a quantitative balance between these lipids, but also senses a defect causing loss of lipid in either pathway for compensation by increase of the counterpart lipid. However, this inherent counterbalancing mechanism paradoxically amplifies imbalance in differential effects of these lipids in a diseased state on membrane processes. While sharing of enzymes has been recognized, it is now possible to overview the crosstalk with growing information for specific enzymes involved. The overview provides a fundamental clue to consider cell and tissue type-dependent schemes in regulating membrane processes by plasmalogen and diacyl glycerophospholipid in health and disease.
Collapse
Affiliation(s)
- Tomohiro Kimura
- Department of Chemistry & Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506, USA.
| | - Atsuko K Kimura
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - Richard M Epand
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| |
Collapse
|
2
|
Abstract
Enzymes containing flavin cofactors are predominantly involved in redox reactions in numerous cellular processes where the protein environment modulates the chemical reactivity of the flavin to either transfer one or two electrons. Some flavoenzymes catalyze reactions with no net redox change. In these reactions, the protein environment modulates the reactivity of the flavin to perform novel chemistries. Recent mechanistic and structural data supporting novel flavin functionalities in reactions catalyzed by chorismate synthase, type II isopentenyl diphosphate isomerase, UDP-galactopyranose mutase, and alkyl-dihydroxyacetonephosphate synthase are presented in this review. In these enzymes, the flavin plays either a direct role in acid/base reactions or as a nucleophile or electrophile. In addition, the flavin cofactor is proposed to function as a "molecular scaffold" in the formation of UDP-galactofuranose and alkyl-dihydroxyacetonephosphate by forming a covalent adduct with reaction intermediates.
Collapse
Affiliation(s)
- Pablo Sobrado
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA.
| |
Collapse
|
3
|
Precursor of ether phospholipids is synthesized by a flavoenzyme through covalent catalysis. Proc Natl Acad Sci U S A 2012; 109:18791-6. [PMID: 23112191 DOI: 10.1073/pnas.1215128109] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The precursor of the essential ether phospholipids is synthesized by a peroxisomal enzyme that uses a flavin cofactor to catalyze a reaction that does not alter the redox state of the substrates. The enzyme crystal structure reveals a V-shaped active site with a narrow constriction in front of the prosthetic group. Mutations causing inborn ether phospholipid deficiency, a very severe genetic disease, target residues that are part of the catalytic center. Biochemical analysis using substrate and flavin analogs, absorbance spectroscopy, mutagenesis, and mass spectrometry provide compelling evidence supporting an unusual mechanism of covalent catalysis. The flavin functions as a chemical trap that promotes exchange of an acyl with an alkyl group, generating the characteristic ether bond. Structural comparisons show that the covalent versus noncovalent mechanistic distinction in flavoenzyme catalysis and evolution relies on subtle factors rather than on gross modifications of the cofactor environment.
Collapse
|
4
|
Razeto A, Mattiroli F, Carpanelli E, Aliverti A, Pandini V, Coda A, Mattevi A. The crucial step in ether phospholipid biosynthesis: structural basis of a noncanonical reaction associated with a peroxisomal disorder. Structure 2007; 15:683-92. [PMID: 17562315 DOI: 10.1016/j.str.2007.04.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2007] [Revised: 04/13/2007] [Accepted: 04/13/2007] [Indexed: 01/17/2023]
Abstract
Ether phospholipids are essential constituents of eukaryotic cell membranes. Rhizomelic chondrodysplasia punctata type 3 is a severe peroxisomal disorder caused by inborn deficiency of alkyldihydroxyacetonephosphate synthase (ADPS). The enzyme carries out the most characteristic step in ether phospholipid biosynthesis: formation of the ether bond. The crystal structure of ADPS from Dictyostelium discoideum shows a fatty-alcohol molecule bound in a narrow hydrophobic tunnel, specific for aliphatic chains of 16 carbons. Access to the tunnel is controlled by a flexible loop and a gating helix at the protein-membrane interface. Structural and mutagenesis investigations identify a cluster of hydrophilic catalytic residues, including an essential tyrosine, possibly involved in substrate proton abstraction, and the arginine that is mutated in ADPS-deficient patients. We propose that ether bond formation might be orchestrated through a covalent imine intermediate with the flavin, accounting for the noncanonical employment of a flavin cofactor in a nonredox reaction.
Collapse
MESH Headings
- Alkyl and Aryl Transferases/chemistry
- Alkyl and Aryl Transferases/genetics
- Alkyl and Aryl Transferases/metabolism
- Amino Acid Sequence
- Amino Acid Substitution
- Animals
- Binding Sites
- Catalysis
- Chondrodysplasia Punctata, Rhizomelic/enzymology
- Chondrodysplasia Punctata, Rhizomelic/metabolism
- Chondrodysplasia Punctata, Rhizomelic/pathology
- Conserved Sequence
- Crystallography, X-Ray
- Dictyostelium/enzymology
- Dimerization
- Flavin-Adenine Dinucleotide/chemistry
- Flavin-Adenine Dinucleotide/metabolism
- Histidine/metabolism
- Humans
- Hydrogen Bonding
- Lipid Metabolism, Inborn Errors
- Models, Biological
- Models, Chemical
- Models, Molecular
- Molecular Sequence Data
- Molecular Structure
- Peroxisomal Disorders/enzymology
- Peroxisomal Disorders/genetics
- Phenylalanine/metabolism
- Phospholipid Ethers/chemistry
- Phospholipid Ethers/metabolism
- Protein Binding
- Protein Conformation
- Protein Structure, Secondary
- Protein Structure, Tertiary
- Recombinant Proteins/chemistry
- Recombinant Proteins/metabolism
- Sequence Homology, Amino Acid
- Spectrum Analysis, Raman
- Substrate Specificity
- Tyrosine/metabolism
Collapse
Affiliation(s)
- Adelia Razeto
- Dipartimento di Genetica e Microbiologia, Università di Pavia, via Ferrata 1, 27100 Pavia, Italy
| | | | | | | | | | | | | |
Collapse
|
5
|
Razeto A, Mattiroli F, Bossi R, Coda A, Mattevi A. Identifying a recombinant alkyldihydroxyacetonephosphate synthase suited for crystallographic studies. Protein Expr Purif 2007; 55:343-51. [PMID: 17601746 DOI: 10.1016/j.pep.2007.05.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2007] [Revised: 05/04/2007] [Accepted: 05/08/2007] [Indexed: 11/20/2022]
Abstract
Alkyldihydroxyacetonephosphate is the building block for the biosynthesis of ether phospholipids, which are essential components of eukaryotic cell membranes and are involved in a variety of signaling processes. The metabolite is synthesized by alkyldihydroxyacetonephosphate synthase (ADPS), a peroxisomal flavoenzyme. Deficiency in ADPS activity causes rhizomelic chondrodysplasia punctata type 3, a very severe genetic disease. ADPS is unusual in that it uses a typical redox cofactor such as FAD to catalyze a non-redox reaction. With the goal of undertaking a structural investigation of the enzyme, we have characterized recombinant ADPS from different sources: Cavia porcellus, Drosophila melanogaster, Homo sapiens, Archaeoglobus fulgidus, and Dictyostelium discoideum. The protein from D. discoideum was found to be the best candidate for structural studies. We describe a protocol for expression and purification of large amounts of pure and stable enzyme in its holo (FAD-bound) form. A search of deletion mutants identified a protein variant that forms crystals diffracting up to 2A resolution.
Collapse
Affiliation(s)
- Adelia Razeto
- Dipartimento di Genetica e Microbiologia, Università di Pavia, via Ferrata 1, 27100 Pavia, Italy
| | | | | | | | | |
Collapse
|
6
|
Metzler DE, Metzler CM, Sauke DJ. Specific Aspects of Lipid Metabolism. Biochemistry 2001. [DOI: 10.1016/b978-012492543-4/50024-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
7
|
de Vet EC, van den Bosch H. Characterization of recombinant guinea pig alkyl-dihydroxyacetonephosphate synthase expressed in Escherichia coli. Kinetics, chemical modification and mutagenesis. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1436:299-306. [PMID: 9989261 DOI: 10.1016/s0005-2760(98)00118-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
A recombinant form of guinea pig alkyl-dihydroxyacetonephosphate synthase, a key enzyme in the biosynthesis of ether phospholipids, was characterized. Kinetic analysis yielded evidence that the enzyme operates by a ping-pong rather than a sequential mechanism. Enzyme activity was irreversibly inhibited by N-ethylmaleimide, p-bromophenacylbromide and 2,4-dinitrofluorobenzene. The enzyme could be protected against the inactivation by either of these three compounds by the presence of saturating amounts of the substrate palmitoyl-dihydroxyacetonephosphate. The rate of inactivation of the enzyme by p-bromophenacylbromide was strongly pH dependent and the highest at alkaline conditions. Collectively, these results are indicative of cysteine, histidine and lysine residues, respectively, at or close to the active site. The divalent cations Mg2+, Zn2+ and Mn2+ were found to be inhibitors of enzymatic activity, whereas Ca2+ had no effect. Mutational analysis showed that histidine 617 is an essential amino acid for enzymatic activity: replacement of this residue by alanine resulted in complete loss of enzymatic activity. A recombinant enzyme with the C-terminal five amino acids deleted was shown to be inactive, indicating an important role of the C-terminus for catalytic activity.
Collapse
Affiliation(s)
- E C de Vet
- Centre for Biomembranes and Lipid Enzymology, Utrecht University, The Netherlands
| | | |
Collapse
|
8
|
Affiliation(s)
- F Snyder
- Oak Ridge Associated Universities, TN 37830, USA
| |
Collapse
|
9
|
Abstract
The history, biological, and medical aspects of glyceryl ethers, as well as their chemical syntheses, biosynthesis, and their chemical and physical properties are briefly reviewed as background information for appreciating the importance of the enzyme glyceryl-ether monooxygenase, and for embarking on new studies of this enzyme. The occurrence, isolation and general properties of the microsomal, membrane-bound, glyceryl-ether monooxygenase from rat liver are described. Radiometric, nonradiometric, and coupled and direct spectrophotometric assays for this enzyme are detailed. The effects of detergents on the kinetics of this enzyme are described together with the stoichiometry and the effects of inhibitors. The structure-activity relationships of pterin cofactors and of ether lipid substrates, including their stereospecificities, have been summarized from enzyme kinetic data which are also tabulated. The mechanism of enzymic hydroxylation of glyceryl ethers and a model for the active site of glyceryl-ether monooxygenase are proposed from these apparent kinetic data. Notes on useful future studies of this monooxygenase have been made.
Collapse
Affiliation(s)
- H Taguchi
- Department of Natural Science, Kyoto Women's University, Japan
| | | |
Collapse
|
10
|
Horie S, Das AK, Hajra AK. Alkyldihydroxyacetonephosphate synthase from guinea pig liver peroxisomes. Methods Enzymol 1992; 209:385-90. [PMID: 1495419 DOI: 10.1016/0076-6879(92)09047-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
11
|
|
12
|
Friedberg SJ, Satsangi N, Weintraub ST. Stereochemistry of the acyl dihydroxyacetone phosphate acyl exchange reaction. J Lipid Res 1991. [DOI: 10.1016/s0022-2275(20)42087-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
13
|
Gunawan J, Rabert U, Völkl A, Debuch H. Kinetic studies of alkyl-dihydroxyacetone-phosphate (alkyl-glycerone-phosphate) synthase in peroxisomes of rat liver. BIOLOGICAL CHEMISTRY HOPPE-SEYLER 1990; 371:339-44. [PMID: 2340111 DOI: 10.1515/bchm3.1990.371.1.339] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The properties of peroxisomal enzyme alkylglycerone-phosphate synthase were studied in highly purified peroxisome fractions of rat liver. The requirements for optimal enzyme activity: pH and composition of the reaction mixture, incubation time, and enzyme concentration were investigated, and kinetic studies performed employing both different long-chain fatty alcohols and acyl dihydroxyacetone phosphates as substrates. Activities of the synthase considerably higher as reported before were found in the peroxisome preparation, with alkylglycerone (alkyldihydroxyacetone) phosphate as the sole product of the exchange reaction. The kinetic studies revealed divergent properties of peroxisomal synthase with respect to the substrates involved. Whereas the substrate concentration versus reaction velocity plot for the fatty alcohols reflects Michaelis-Menten kinetic behavior, it displays a maximum followed by inhibition with regard to the acylglycerone phosphate. The enzyme accepts different acylglycerone phosphates without much specificity but it is most active with 9-cis-octadecenol.
Collapse
Affiliation(s)
- J Gunawan
- Institut für Biochemie, Medizinische Fakultät der Universität Köln
| | | | | | | |
Collapse
|
14
|
Peterson DM, Martinez RA, Satsangi N, Weintraub ST, Stotter PL, Friedberg SJ. Synthesis of regiospecifically labeled [18O]glycolic acid and [18O]acyldihydroxyacetone phosphate. J Lipid Res 1988. [DOI: 10.1016/s0022-2275(20)38569-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
15
|
Friedberg SJ, Weintraub ST, Peterson D, Satsangi N. O-alkyl lipid synthesis: the mechanism of the acyl dihydroxyacetone phosphate fatty acid exchange reaction. Biochem Biophys Res Commun 1987; 145:1177-84. [PMID: 3606600 DOI: 10.1016/0006-291x(87)91561-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
We have previously provided evidence for a mechanism by which acyl DHAP is converted enzymatically to O-alkyl DHAP. This mechanism involves, in part, the formation of an endiol of acyl DHAP, loss of the fatty acid by splitting of the DHAP carbon-1 to oxygen bond and the gain of a long chain fatty alcohol. It has been shown that acyl DHAP can exchange its fatty acid for one in the medium, presumably by the mediation of O-alkyl DHAP synthase. In the present investigation we have shown that the fatty acid which is gained by acyl DHAP in the exchange process retains both carboxyl oxygens, as predicted by our postulated mechanism. This reaction is exceptional because the usual action of acyl hydrolases is to cleave at the oxygen to acyl bond.
Collapse
|
16
|
Mead JF, Alfin-Slater RB, Howton DR, Popják G. Phosphoglyceride Metabolism. Lipids 1986. [DOI: 10.1007/978-1-4613-2107-1_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Friedberg SJ, Halpert M, Barnwell GM. The rate of formation of surface membrane ether lipids in Ehrlich ascites tumor cells: kinetic considerations. Arch Biochem Biophys 1985; 243:504-14. [PMID: 3909969 DOI: 10.1016/0003-9861(85)90527-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A previous investigation has shown that O-alkyl phospholipids are present in the surface membrane of Ehrlich ascites tumor cells. In the present investigation it was shown that 90% or more of [1-3H]hexadecanol injected intraperitoneally into mice bearing Ehrlich ascites tumors is taken up by the neoplastic cells in less than 15 min. Near maximum formation of surface membrane O-alkyl phospholipids requires approximately 8 h. The rate of accumulation of O-alkyl phospholipids is very similar both for the whole cell and for the surface membrane. Further examination of the data revealed that the conversion of hexadecanol into O-alkyl glycerophospholipids can be described by a simple model in which O-alkyl lipids appear at a single rate constant of 0.25 to 0.35 per hour and disappear at a rate of 0.02 per hour or less. These rate constants were obtained initially by stochastic analysis and validated both by deterministic methods and by compartmental analysis using the SAAM computer program. The method of kinetic analysis described may find broader application in providing comparative rate constants for the in vivo turnover of O-alkyl lipids in both normal and neoplastic tissues. The advantage of a stochastic approach is that kinetic data may be obtained with fewer assumptions relating to pool structure or specific models.
Collapse
|
18
|
Schrakamp G, Roosenboom CF, Schutgens RB, Wanders RJ, Heymans HS, Tager JM, van den Bosch H. Alkyl dihydroxyacetone phosphate synthase in human fibroblasts and its deficiency in Zellweger syndrome. J Lipid Res 1985. [DOI: 10.1016/s0022-2275(20)34317-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
19
|
Snyder F. Chemical and biochemical aspects of platelet activating factor: a novel class of acetylated ether-linked choline-phospholipids. Med Res Rev 1985; 5:107-40. [PMID: 2984489 DOI: 10.1002/med.2610050105] [Citation(s) in RCA: 317] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
20
|
Takahashi N, Saito T, Tomita K. Purification and properties of an NADPH-linked aldehyde reductase from rat kidney. BIOCHIMICA ET BIOPHYSICA ACTA 1983; 748:444-52. [PMID: 6416297 DOI: 10.1016/0167-4838(83)90191-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Rat kidney was shown to contain two NADPH-linked aldehyde reductases (alcohol:NADP+) oxidoreductase, EC 1.1.1.2) with different substrate affinities. The high-Km aldehyde reductase, which was purified to apparent homogeneity, had a molecular weight of 32 000 as determined by Sephadex G-100 gel filtration, and of 37 000 by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. The purified enzyme reduced various aliphatic aldehydes of different carbon-chain lengths besides many chemicals containing aldehyde groups. The Km values for n-hexadecanal and n-octadecanal were 8 microM and 4 microM, respectively. Bovine serum albumin (1.8 mM) stimulated the reduction of n-hexadecanal and n-octadecanal, and increased the Vmax values by about 15-fold without changing the Km values. The kidney enzyme was not distinguishable from the brain and liver high-Km aldehyde reductases in mobility on polyacrylamide gel electrophoresis, immunological properties, peptide maps or substrate specificity.
Collapse
|
21
|
7 Synthesis of Phospholipids in Animal Cells. ACTA ACUST UNITED AC 1983. [DOI: 10.1016/s1874-6047(08)60305-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|