1
|
|
2
|
|
3
|
Cogez V, Gak E, Puskas A, Kaplan S, Bohin JP. The opgGIH and opgC genes of Rhodobacter sphaeroides form an operon that controls backbone synthesis and succinylation of osmoregulated periplasmic glucans. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:2473-84. [PMID: 12027885 DOI: 10.1046/j.1432-1033.2002.02907.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Osmoregulated periplasmic glucans (OPGs) of Rhodobacter sphaeroides are anionic cyclic molecules that accumulate in large amounts in the periplasmic space in response to low osmolarity of the medium. Their anionic character is provided by the substitution of the glucosidic backbone by succinyl residues. A wild-type strain was subject to transposon mutagenesis, and putative mutant clones were screened for changes in OPGs by thin layer chromatography. One mutant deficient in succinyl substitution of the OPGs was obtained and the gene inactivated in this mutant was characterized and named opgC. opgC is located downstream of three ORFs, opgGIH, two of which are similar to the Escherichia coli operon, mdoGH, governing OPG backbone synthesis. Inactivation of opgG, opgI or opgH abolished OPG production and complementation analysis indicated that the three genes are necessary for backbone synthesis. In contrast, inactivation of a gene similar to ndvB, encoding the OPG-glucosyl transferase in Sinorhizobium meliloti, had no consequence on OPG synthesis in Rhodobacter sphaeroides. Cassette insertions in opgH had a polar effect on glucan substitution, indicating that opgC is in the same transcription unit. Expression of opgIHC in E. coli mdoB/mdoC and mdoH mutants allowed the production of slightly anionic and abnormally long linear glucans.
Collapse
Affiliation(s)
- Virginie Cogez
- Unité de Glycobiologie Structurale et Fonctionnelle, CNRS UMR8576, Université des Sciences et Technologies de Lille, France
| | | | | | | | | |
Collapse
|
4
|
Abstract
As part of an effort to determine the mechanisms employed by Caulobacter crescentus to regulate gene expression, the ilvBN genes encoding the two subunits of an acetohydroxy acid synthase (AHAS) have been characterized. Analysis of the DNA sequences indicated that the C. crescentus AHAS was highly homologous to AHAS isozymes from other organisms. S1 nuclease and primer extension studies demonstrated that transcription initiation occurred 172 bp upstream of the AHAS coding region. The region between the AHAS coding region and the transcription initiation site was shown to have the properties of a transcription attenuator. Deletion analysis of the region containing the stem-loop structure of the proposed attenuator resulted in the derepression of ilvBN expression. Thus, it appears that C. crescentus uses attenuation to regulate the expression of the ilvBN operon.
Collapse
Affiliation(s)
- J C Tarleton
- Department of Biological Sciences, University of South Carolina, Columbia 29208
| | | | | |
Collapse
|
5
|
Dierstein R, Gad'on N. Expression study with the Escherichia coli lep gene for leader peptidase in phototrophic purple bacteria. Arch Microbiol 1993; 159:101-8. [PMID: 8439231 DOI: 10.1007/bf00250267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Synthesis and assembly of leader peptidase of Escherichia coli (signal peptidase I), was studied by heterologous expression of its lep gene in three species of phototrophic purple bacteria. Cell extracts of the recipient species showed neither cross reaction with antibodies against E. coli leader peptidase nor cleavage of the model substrate M13-procoat in vitro. The lep gene was transferred via conjugation using the plasmid expression vector for phototrophic bacteria pJAJ9. Plasmid-borne leader peptidase enzyme was identified by immunochemical means. However, extracts of transconjugant cells showed no cleavage function. Trypsin digestion studies revealed that the enzyme was not properly integrated across the host membranes. The data suggest that cleaving enzymes for protein export and/or their assembly pathway in purple bacteria differ from the E. coli type.
Collapse
Affiliation(s)
- R Dierstein
- Institut für Biologie 2-Mikrobiologie, Albert-Ludwigs-Universität, Freiburg, Federal Republic of Germany
| | | |
Collapse
|
6
|
Pemberton JM, Penfold RJ. High-frequency electroporation and maintenance of pUC- and pBR-based cloning vectors inPseudomonas stutzeri. Curr Microbiol 1992; 25:25-9. [PMID: 1369188 DOI: 10.1007/bf01570078] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
A number of Escherichia coli cloning vectors, based on ColE1-like replicons, were shown to be maintained in Pseudomonas stutzeri ATCC 17588. A restrictionless mutant of P. stutzeri was isolated, and this strain was used to develop an efficient electroporation system. With the E. coli cloning vector pHSG298, transformation frequencies of up to 2 x 10(7) transformants/micrograms DNA were achieved. This frequency is comparable to that obtained for CaCl2-mediated transformation of E. coli; thus, direct cloning of DNA into P. stutzeri is feasible. As will be discussed, this may prove useful for cloning DNA from high mol% G + C genera in cases in which E. coli is not a suitable heterologous cloning host.
Collapse
Affiliation(s)
- J M Pemberton
- Microbiology Department, University of Queensland, St. Lucia, Brisbane, Australia
| | | |
Collapse
|
7
|
Caffrey M, Davidson E, Cusanovich M, Daldal F. Cytochrome c2 mutants of Rhodobacter capsulatus. Arch Biochem Biophys 1992; 292:419-26. [PMID: 1309972 DOI: 10.1016/0003-9861(92)90011-k] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Although structurally related to other members of the class I c-type cytochromes, the cytochromes c2 have little amino acid sequence homology to the eukaryotic cytochromes c. Moreover, the cytochromes c2 exhibit distinct properties such as redox potential and an isoelectric point. In an effort to understand the differences between the cytochromes c2 and the other class I c-type cytochromes, we have developed a genetic system to study Rhodobacter capsulatus cytochrome c2 by site-directed mutagenesis. We describe here overproduction of R. capsulatus wild-type cytochrome c2 in cytochrome c2-minus strains of R. capsulatus and Rhodobacter sphaeroides. We demonstrate that R. capsulatus wild-type cytochrome c2 can transcomplement for photosynthetic growth in R. sphaeroides. Further, we describe the generation, expression, and in vivo functionality properties of nine R. capsulatus site-directed mutants. We show that mutants K12D, K14E, K32E, K14E/K32E, P35A, W67Y, and Y75F are overproduced and functional in vivo. In contrast, mutants Y75C and Y75S are expressed at low levels and exhibit poor functionality in vivo. These findings establish an effective system for the production of R. capsulatus site-directed mutants and demonstrate that interspecies complementation can be used to detect defective cytochrome c2 mutants.
Collapse
Affiliation(s)
- M Caffrey
- Department of Biochemistry, University of Arizona, Tucson 85721
| | | | | | | |
Collapse
|
8
|
Lehman LJ, Roberts GP. Identification of an alternative nitrogenase system in Rhodospirillum rubrum. J Bacteriol 1991; 173:5705-11. [PMID: 1909322 PMCID: PMC208301 DOI: 10.1128/jb.173.18.5705-5711.1991] [Citation(s) in RCA: 83] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
A second nitrogenase activity has been demonstrated in Rhodospirillum rubrum. This nitrogenase is expressed whenever a strain lacks an active Mo nitrogenase because of physiological or genetic inactivation. The alternative nitrogenase is able to support growth on N2 in the absence of fixed N. V does not stimulate, nor does Mo or W inhibit, growth or activity under the conditions tested. The proteins responsible for this activity were identified by electrophoretic and immunological properties. The synthesis of these proteins was repressed by NH4+. The alternative nitrogenase reductase is ADP ribosylated in response to darkness by the system that regulates the activity of the Mo nitrogenase. The genes for the alternative nitrogenase have been cloned, and the alternative nitrogenase reductase has been expressed in an in vitro transcription-translation system.
Collapse
Affiliation(s)
- L J Lehman
- Department of Bacteriology, University of Wisconsin-Madison 53706
| | | |
Collapse
|
9
|
|
10
|
Davidson E, Prince RC, Haith CE, Daldal F. The cytochrome bc1 complex of Rhodobacter sphaeroides can restore cytochrome c2-independent photosynthetic growth to a Rhodobacter capsulatus mutant lacking cytochrome bc1. J Bacteriol 1989; 171:6059-68. [PMID: 2553670 PMCID: PMC210472 DOI: 10.1128/jb.171.11.6059-6068.1989] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Plasmids encoding the structural genes for the Rhodobacter capsulatus and Rhodobacter sphaeroides cytochrome (cyt) bc1 complexes were introduced into strains of R. capsulatus lacking the cyt bc1 complex, with and without cyt c2. The R. capsulatus merodiploids contained higher than wild-type levels of cyt bc1 complex, as evidenced by immunological and spectroscopic analyses. On the other hand, the R. sphaeroides-R. capsulatus hybrid merodiploids produced only barely detectable amounts of R. sphaeroides cyt bc1 complex in R. capsulatus. Nonetheless, when they contained cyt c2, they were capable of photosynthetic growth, as judged by the sensitivity of this growth to specific inhibitors of the photochemical reaction center and the cyt bc1 complex, such as atrazine, myxothiazol, and stigmatellin. Interestingly, in the absence of cyt c2, although the R. sphaeroides cyt bc1 complex was able to support the photosynthetic growth of a cyt bc1-less mutant of R. capsulatus in rich medium, it was unable to do so when C4 dicarboxylic acids, such as malate and succinate, were used as the sole carbon source. Even this conditional ability of R. sphaeroides cyt bc1 complex to replace that of R. capsulatus for photosynthetic growth suggests that in the latter species the cyt c2-independent rereduction of the reaction center is not due to a structural property unique to the R. capsulatus cyt bc1 complex. Similarly, the inability of R. sphaeroides to exhibit a similar pathway is not due to some inherent property of its cyt bc1 complex.
Collapse
Affiliation(s)
- E Davidson
- Department of Biology, University of Pennsylvania, Philadelphia 19104
| | | | | | | |
Collapse
|
11
|
Tai TN, Moore MD, Kaplan S. Cloning and characterization of the 5-aminolevulinate synthase gene(s) from Rhodobacter sphaeroides. Gene 1988; 70:139-51. [PMID: 3266489 DOI: 10.1016/0378-1119(88)90112-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The 5-aminolevulinate synthase gene (hemA) from Rhizobium meliloti was used to probe a genomic lambda bank derived from Rhodobacter sphaeroides DNA. Two phage clones were found to bear homology to the Rhizobium probe. Southern hybridization analysis of the two lambda phage clones, which we designated lambda Hem 10 and lambda Hem 12, showed that the homology to the Rhizobium hemA gene was localized to a 3.1-kb SalI fragment derived from lambda Hem 10 and a 7.0-kb SalI fragment derived from lambda Hem 12. Each of the SalI fragments was subsequently cloned into the multiple cloning site of pUC19 in both orientations relative to the lac promoter. Restriction analysis confirmed that each SalI fragment was unique. It was also shown from Southern hybridization analysis that the regions of homology within each of the R. sphaeroides restriction fragments and the Rhizobium probe were different. Further, we have tentatively concluded that each R. sphaeroides hemA gene shows a relatively low degree of homology to the other. Data obtained from in vitro transcription-translation studies in a homologous R. sphaeroides cell-free system, and complementation of hemA mutations of both Escherichia coli and R. sphaeroides by either of the putative hemA clones suggested the presence of a gene encoding 5-aminolevulinate synthase on each DNA sequence. The fact that 5-aminolevulinate synthase activity could be demonstrated in mutant strains complemented in trans with either cloned DNA fragment further supported this conclusion.
Collapse
Affiliation(s)
- T N Tai
- Department of Microbiology, University of Illinois, Urbana-Champaign 61801
| | | | | |
Collapse
|
12
|
McFadden BA, Small CL. Cloning, expression and directed mutagenesis of the genes for ribulose bisphosphate carboxylase/oxygenase. PHOTOSYNTHESIS RESEARCH 1988; 18:245-260. [PMID: 24425168 DOI: 10.1007/bf00042987] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/1987] [Accepted: 12/21/1987] [Indexed: 06/03/2023]
Abstract
The dominant natural form of ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) is composed of large (L) 55-kDa and small (S) 15-kDa subunits. This enzyme (as the L8S8 form) is widely distributed among oxygenic photosynthetic species and among chemosynthetic bacteria. Another form lacking small subunits is found as an L2 dimer in Rhodospirillum rubrum or an L oligomer of uncertain aggregation state from Rhodopseudomonas spharoides. The present article reviews two basically different approaches in cloning the R. rubrum gene for RuBisCO. One results in high level expression of this gene product fused with a limited aminoterminal stretch of β-galactosidase and the other results in expression of wild-type enzyme in Escherichia coli. Also reviewed are a number of reports of cloning and assembly of the L8S8 enzyme in using E. coli L and S subunit genes from Anacystis nidulans, Anabaena 7120, Chromatium vinosum and Rps. sphaeroides.In vitro oligonucleotide-directed mutagenesis has been applied to the gene for RuBisCO from R. rubrum. In terms of contributing new information to our understanding of the catalytic mechanism for RuBisCO, the most significant replacement has been of lys 166 by a number of neutral amino acids or by arg or his. Results establish that lys 166 is a catalytically essential residue and illustrate the power of directed mutagenesis in understanding structure-function correlates for RuBisCO.Oligonucleotide-directed mutagenesis has also been applied to the first and second conserved regions of the S subunit gene for RuBisCO from A. nidulans. In the latter region, corresponding amino acid changes of trp 55 and trp 58 to phe, singly or together, had little or no effect upon enzyme activity. In contrast, mutagenesis in the first conserved region leading to the following pairs of substitutions: arg10 arg 11 to gly 10 gly11; thr14 phe 15 ser 16 to ala 14 phe 15 ala 16; ser 16 tyr 17 to ala 16 asp 17; or pro 19 pro 20 to ala 19 ala 20, are all deleterious.Advances are anticpated in the introduction and expression of interesting modifications of S (and L) subunit genes in plants. A new method of introducing and expressing foreign genes in isolated etiochloroplasts is identified.
Collapse
Affiliation(s)
- B A McFadden
- Biochemistry/Biophysics Program, Washington State University, 99164-4660, Pullman, WA, USA
| | | |
Collapse
|
13
|
Leustek T, Hartwig R, Weissbach H, Brot N. Regulation of ribulose bisphosphate carboxylase expression in Rhodospirillum rubrum: characteristics of mRNA synthesized in vivo and in vitro. J Bacteriol 1988; 170:4065-71. [PMID: 2842301 PMCID: PMC211410 DOI: 10.1128/jb.170.9.4065-4071.1988] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The synthesis of ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBPCase) in Rhodospirillum rubrum was regulated by the CO2 concentration in the culture medium. The specific activity of RuBPCase in cells grown photolithotrophically in low concentrations of CO2 (1.5%) was five to ten times higher than that in cultures grown at high concentrations of CO2 (10%). Increased enzyme activity was reflected by an increase in both RuBPCase mRNA and RuBPCase protein. RuBPCase expression was also studied in vitro with a plasmid-borne genomic clone (pRR117) as the template in a partially defined Escherichia coli system containing either E. coli or R. rubrum RNA polymerase. With both enzymes there was excellent synthesis of RuBPCase mRNA, but no significant synthesis of RuBPCase was detected. The promoter region of the RuBPCase gene was sequenced, and mRNA start sites were mapped. A single major in vivo transcriptional start site was detected in RuBPCase mRNA extracted from R. rubrum. However, transcripts synthesized from pRR117 in vitro or from E. coli transformed with pRR117 started at upstream sites that were different from the in vivo transcription site. Two major features of the RuBPCase promoter region are three 6-base-pair direct repeats and a 31-base-pair region of dyad symmetry.
Collapse
Affiliation(s)
- T Leustek
- Roche Institute of Molecular Biology, Roche Research Center, Nutley, New Jersey 07110
| | | | | | | |
Collapse
|
14
|
Green GN, Fang H, Lin RJ, Newton G, Mather M, Georgiou CD, Gennis RB. The nucleotide sequence of the cyd locus encoding the two subunits of the cytochrome d terminal oxidase complex of Escherichia coli. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(18)37682-8] [Citation(s) in RCA: 85] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
15
|
Gabellini N. Organization and structure of the genes for the cytochrome b/c1 complex in purple photosynthetic bacteria. A phylogenetic study describing the homology of the b/c1 subunits between prokaryotes, mitochondria, and chloroplasts. J Bioenerg Biomembr 1988; 20:59-83. [PMID: 2831186 DOI: 10.1007/bf00762138] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The cytochrome b/c1 complex is an ubiquitous energy transducing enzyme, part of the electron transport chain of prokaryotes, mitochondria, and chloroplasts (b6/f). In the ancient purple photosynthetic bacteria, the b/c1 complex occupies a central metabolic role, being part of their photosynthetic and respiratory electron transport chain. In Rhodobacter the three subunits of the b/c1 complex are FeS protein, cytochrome b, and cytochrome c1, and they are encoded by a constitutively expressed operon named fbc. The organization of the genes for the cytochrome b/c1 complex, the modality of transcription, and the biogenesis of the encoded polypeptides will be described. The Rhodobacter species used to isolate the fbc genes, previously reported as R. sphaeroides was identified as R. capsulatus. Further biochemical characterization of the prokaryotic b/c1 complex indicated that the three polypeptides encoded by the fbc operon comprise the entire catalytic structure: ubiquinol-cytochrome-c reductase. The amino acid sequences of the three b/c1 subunits from the photosynthetic bacterium Rhodobacter capsulatus were compared with the corresponding sequences from yeast mitochondria and spinach chloroplasts. The high homology found between the sequences of all three redox polypeptides from R. capsulatus and yeast mitochondria (cytochrome b 41%, FeS protein 46%, cytochrome c1 31%) provided further evidence that mitochondria arose from the phylogenetic line of purple bacteria. The structure of cytochrome b also exhibited considerable homology to chloroplast cytochrome b6 plus subunit IV (26%). The amino acid sequence of the Rieske FeS protein from R. capsulatus and chloroplasts were found to be conserved only in the C-terminal part (14% total identity), whereas the homology between cytochrome c1 and cytochrome f is very weak (12%), despite similar topology of the two polypeptides. Analysis of the homology suggested that the catalytic sites quinol oxidase (Q0) and quinone reductase (Qi) arose monophonetically, whereas cytochrome c and plastocyanin reductase sites are not homologous and could derive from diverse ancestral genes by convergent evolution.
Collapse
Affiliation(s)
- N Gabellini
- Max-Planck-Institut für Biochemie, München, West Germany
| |
Collapse
|
16
|
Abstract
The DNA sequences of the Caulobacter crescentus trpF, trpB, and trpA genes were determined, along with 500 base pairs (bp) of 5'-flanking sequence and 320 bp of 3'-flanking sequence. An open reading frame, designated usg, occurs upstream of trpF and encodes a polypeptide of 89 amino acids which seems to be expressed in a coupled transcription-translation system. Interestingly, the usg polypeptide is not homologous to any known tryptophan biosynthetic enzyme. S1 nuclease mapping of in vivo transcripts indicated that usg, trpF, trpB, and trpA are arranged into a single operon, with the transcription initiation site located 30 bp upstream from the start of usg. Sequences centered at -30 and -6 bp upstream from the transcription initiation site are somewhat homologous to the Escherichia coli promoter consensus sequence and are homologous to sequences found upstream of genes from several organisms which are evolutionarily related to C. crescentus. Furthermore, the trpFBA operon promoter sequence lacks homology to promoter sequences identified for certain developmentally regulated C. crescentus genes. The structures of the C. crescentus usg, trpF, trpB, and trpA genes were further analyzed in terms of codon usage, G+C content, and genetic signals and were related to genetic signals previously identified in C. crescentus and other bacteria. Taken together, these results are relevant to the analysis of gene expression in C. crescentus and the study of trp gene structure and regulation.
Collapse
Affiliation(s)
- C M Ross
- Department of Molecular Biology, Northwestern University Medical School, Chicago, Illinois 60611
| | | |
Collapse
|
17
|
|
18
|
Donohue TJ, Kiley PJ, Kaplan S. The puf operon region of Rhodobacter sphaeroides. PHOTOSYNTHESIS RESEARCH 1988; 19:39-61. [PMID: 24425367 DOI: 10.1007/bf00114568] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/1987] [Accepted: 03/11/1988] [Indexed: 06/03/2023]
Abstract
The puf operon of the purple nonsulfur photosynthetic bacterium, Rhodobacter sphaeroides, contains structural gene information for at least two functionally distinct bacteriochlorophyll-protein complexes (light harvesting and reaction center) which are present in a fixed ratio within the photosynthetic intracytoplasmic membrane. Two proximal genes (pufBA) specify subunits of a long wavelength absorbing (i.e., 875 nm) light harvesting complex which are present in the photosynthetic membrane in ≃15 fold excess relative to the reaction center subunits which are encoded by the pufLM genes. This review summarizes recent studies aimed at determining how expression of the R. sphaeroides puf operon region relates to the ratio of individual bacteriochlorophyll-protein complexes found within the photosynthetic membrane. These experiments indicate that puf operon expression may be regulated at the transcriptional, post-transcriptional, translation and post-translational levels. In addition, this review discusses the possible role(s) of newly identified loci upstream of pufB which may be involved in regulating either synthesis or assembly of individual bacteriochrlorophyll-protein complexes as well as the pufX gene, the most distal genetic element within the puf operon whose function is still unknown.
Collapse
Affiliation(s)
- T J Donohue
- Bactoriology Department, University of Wisconsin, 1550 Linden Drive, 53706, Madison, WI, USA
| | | | | |
Collapse
|
19
|
Harms N, de Vries GE, Maurer K, Hoogendijk J, Stouthamer AH. Isolation and nucleotide sequence of the methanol dehydrogenase structural gene from Paracoccus denitrificans. J Bacteriol 1987; 169:3969-75. [PMID: 3114231 PMCID: PMC213695 DOI: 10.1128/jb.169.9.3969-3975.1987] [Citation(s) in RCA: 92] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
A genomic clone bank of Paracoccus denitrificans DNA has been constructed in the expression vector set pEX1, pEX2, and pEX3. Screening of this clone bank with antibodies raised against P. denitrificans methanol dehydrogenase resulted in the isolation of a clone, pNH3, that synthesized methanol dehydrogenase cross-reactive proteins. The nucleotide sequence of the P. denitrificans DNA fragment inserted in this clone has been determined and shown to contain the full methanol dehydrogenase structural gene. DNA cross-hybridization was found with DNA fragments which have been reported to contain the methanol dehydrogenase structural genes from Methylobacterium sp. strain AM1 and Methylobacterium organophilum.
Collapse
|
20
|
Hallenbeck PL, Kaplan S. Cloning of the gene for phosphoribulokinase activity from Rhodobacter sphaeroides and its expression in Escherichia coli. J Bacteriol 1987; 169:3669-78. [PMID: 3038847 PMCID: PMC212449 DOI: 10.1128/jb.169.8.3669-3678.1987] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
A 3.4-kilobase EcoRI restriction endonuclease fragment has been cloned from the facultatively photoheterotrophic bacterium Rhodobacter sphaeroides and shown to contain the structural gene (prkA) for phosphoribulokinase (PRK) activity. The PRK activity was characterized in Escherichia coli, and the product of the reaction was identified. The prkA gene was localized to a 1,565-base-pair EcoRI-PstI restriction endonuclease fragment and gave rise to a 33-kilodalton polypeptide both in vivo and in vitro. The gene product produced in E. coli was shown to be identical to the gene product produced in R. sphaeroides. The amino acid sequence for the amino-terminal region deduced from the DNA sequence confirmed that derived for partially purified PRK derived from both E. coli and R. sphaeroides. In addition, the 3.4-kilobase EcoRI restriction endonuclease fragment coded for a 37-kilodalton polypeptide of unknown function, and preliminary evidence indicates that this DNA fragment is linked to genes coding for other activities significant in photosynthetic carbon assimilation. The genetic organization and proposed operon structure of this DNA fragment are discussed.
Collapse
|
21
|
Kiley PJ, Kaplan S. Cloning, DNA sequence, and expression of the Rhodobacter sphaeroides light-harvesting B800-850-alpha and B800-850-beta genes. J Bacteriol 1987; 169:3268-75. [PMID: 3036782 PMCID: PMC212379 DOI: 10.1128/jb.169.7.3268-3275.1987] [Citation(s) in RCA: 74] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Two deoxyoligonucleotide probes were synthesized in accordance with the available amino acid sequence of the B800-850-beta polypeptide from Rhodobacter sphaeroides and were used to isolate a 2.6-kilobase PstI fragment from R. sphaeroides 2.4.1 chromosomal DNA. Identification of the B800-850-beta and B800-850-alpha structural genes, pucB and pucA, was confirmed by DNA sequencing. Northern (RNA) blot analysis, using restriction endonuclease fragments from the cloned genes as probes, revealed a single puc-operon-specific, highly stable transcript of approximately 640 bases present in photosynthetically grown cells. In vitro transcription-translation analysis of the puc operon revealed that the maximum synthesis of the puc operon gene products was achieved when the entire 2.6-kilobase PstI fragment was used as the template, although a 537-base-pair XmaIII fragment was sufficient to direct the synthesis of pucB and pucA fusion product.
Collapse
|
22
|
Georgiou CD, Fang H, Gennis RB. Identification of the cydC locus required for expression of the functional form of the cytochrome d terminal oxidase complex in Escherichia coli. J Bacteriol 1987; 169:2107-12. [PMID: 3032907 PMCID: PMC212105 DOI: 10.1128/jb.169.5.2107-2112.1987] [Citation(s) in RCA: 64] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The aerobic respiratory chain of Escherichia coli contains two terminal oxidases which are differentially regulated. The cytochrome o complex predominates under growth conditions of high aeration, whereas the cytochrome d complex predominates when the oxygen tension is low. Either terminal oxidase will support aerobic growth. The goal of the work presented in this paper was to identify genes required for the expression of the functional form of the cytochrome d complex, other than the genes encoding the polypeptide components of the oxidase complex (cyd locus). A strain lacking the cytochrome o complex (cyo mutant strain) was mutagenized by using a lambda-Mu hybrid hopper bacteriophage, lambda placMu53, which inserts randomly into the chromosome and carries a kanamycin resistance marker. Strains were isolated and examined which were unable to grow aerobically, i.e., which lacked functional cytochrome d complex, and which could not be complemented by introduction of the cyd gene on F-prime episomes. One strain was selected for characterization. The phage insert was mapped to min 18.9 on the genetic linkage map, defining a new genetic locus, cydC. Evidence described in the text suggests that the gene product is probably required for the synthesis of the unique heme d component of the cytochrome d complex.
Collapse
|
23
|
Lynn SP, Burton WS, Donohue TJ, Gould RM, Gumport RI, Gardner JF. Specificity of the attenuation response of the threonine operon of Escherichia coli is determined by the threonine and isoleucine codons in the leader transcript. J Mol Biol 1987; 194:59-69. [PMID: 3112412 DOI: 10.1016/0022-2836(87)90715-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Expression of the threonine (thr) operon enzymes of Escherichia coli is regulated by an attenuation mechanism. The regulatory portion of the operon contains a region coding for a leader peptide that contains consecutive threonine and isoleucine codons. It is thought that translation of the leader peptide controls the frequency of transcription termination at the attenuator site. Using oligonucleotide-directed site-specific mutagenesis we have altered the putative control codons of the leader peptide coding region. In two of the mutants the threonine and isoleucine codons were changed to produce peptides containing histidine and tyrosine codons. Both mutants showed loss of regulation by threonine and isoleucine. A hisT mutation, which leads to an undermodification of tRNA(His), increased thr operon expression in the mutants threefold but did not affect expression of the wild-type thr operon. Two other mutants were constructed that contained two histidine codons early in the leader peptide. Expression in both of these mutants was unaltered by the presence of the hisT allele or by the addition of threonine and isoleucine to the growth medium. In addition, a wild-type strain containing a temperature-sensitive threonyl-tRNA synthetase mutation showed increased thr operon expression at the non-permissive temperature, whereas none of the mutants showed any change. Taken together these data indicate that the specificity of the attenuation response is effected by specific control codons within the thr leader peptide coding region. We have also directly demonstrated thr leader peptide synthesis in vitro using a plasmid encoding the wild-type thr leader region to direct the synthesis of a peptide of the appropriate molecular weight when labeled with [3H]threonine but not with [3H]histidine or [3H]tyrosine. Conversely, when extracts were incubated with templates containing the mutated DNAs, peptides were labeled that showed patterns consistent with the expected amino acid compositions. These data indicate that the thr leader RNA is translated into the predicted leader peptide.
Collapse
|
24
|
Kiley PJ, Donohue TJ, Havelka WA, Kaplan S. DNA sequence and in vitro expression of the B875 light-harvesting polypeptides of Rhodobacter sphaeroides. J Bacteriol 1987; 169:742-50. [PMID: 3027044 PMCID: PMC211842 DOI: 10.1128/jb.169.2.742-750.1987] [Citation(s) in RCA: 63] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The genes for the Rhodobacter sphaeroides light-harvesting B875-beta, and B875-alpha polypeptides (pufB and pufA) are closely linked to the genes for the reaction center L and reaction center M polypeptides (pufL and pufM) on what has been termed the puf operon (gene order, pufB, A, L, M). The DNA sequence of the pufB and pufA structural genes from wild-type R. sphaeroides 2.4.1 was determined and aligned with the available amino acid sequence of the wild-type B875-beta and B875-alpha polypeptides. The relative levels of the B875-beta and B875-alpha and the reaction center L and reaction center M polypeptides synthesized in a homologous cell-free transcription-translation system were compared with those found in vivo. Analysis of the gene products produced in vitro with plasmids containing deletions upstream of the pufB structural gene identified a region of DNA required for expression of the B875-beta and B875-alpha polypeptides. These results support the hypothesis that the mapped 5' termini of the large and small puf operon transcripts represent transcription initiation sites.
Collapse
|
25
|
Donohue TJ, McEwan AG, Kaplan S. Cloning, DNA sequence, and expression of the Rhodobacter sphaeroides cytochrome c2 gene. J Bacteriol 1986; 168:962-72. [PMID: 3023293 PMCID: PMC213578 DOI: 10.1128/jb.168.2.962-972.1986] [Citation(s) in RCA: 133] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The Rhodobacter sphaeroides cytochrome c2 functions as a mobile electron carrier in both aerobic and photosynthetic electron transport chains. Synthetic deoxyoligonucleotide probes, based on the known amino acid sequence of this protein (Mr 14,000), were used to identify and clone the cytochrome c2 structural gene (cycA). DNA sequence analysis of the cycA gene indicated the presence of a typical procaryotic 21-residue signal sequence, suggesting that this periplasmic protein is synthesized in vivo as a precursor. Synthesis of an immunoreactive cytochrome c2 precursor protein (Mr 15,500) was observed in vitro when plasmids containing the cycA gene were used as templates in an R. sphaeroides coupled transcription-translation system. Approximately 500 base pairs of DNA upstream of the cycA gene was sufficient to allow expression of this gene product in vitro. Northern blot analysis with an internal cycA-specific probe identified at least two possibly monocistronic transcripts present in both different cellular levels and relative stoichiometries in steady-state cells grown under different physiological conditions. The ratio of the small (740-nucleotide) and large (920-nucleotide) cycA-specific mRNA species was dependent on cultural conditions but was not affected by light intensity under photosynthetic conditions. Our results suggest that the increase in the cellular level of the cytochrome c2 protein found in photosynthetic cells was due, in part, to increased transcription of the single-copy cyc operon.
Collapse
|
26
|
Donohue TJ, Hoger JH, Kaplan S. Cloning and expression of the Rhodobacter sphaeroides reaction center H gene. J Bacteriol 1986; 168:953-61. [PMID: 3023292 PMCID: PMC213577 DOI: 10.1128/jb.168.2.953-961.1986] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The Rhodobacter sphaeroides structural gene (puhA) for the reaction center H polypeptide has been identified and cloned by using restriction fragements specific for the analogous Rhodobacter capsulatus gene as a heterologous hybridization probe. The presence of puhA on a 1.45-kilobase BamHI restriction fragment was confirmed by partial DNA sequence analysis and by the synthesis of an immunoreactive Mr-28,000 reaction center H polypeptide in an R. sphaeroides coupled transcription-translation system. Approximately 450 base pairs of DNA upstream of the puhA gene were sufficient for expression of this protein in vitro. Northern RNA-DNA blot analysis with an internal puhA-specific probe identified at least two, apparently monocistronic, transcripts present at different cellular levels under physiological conditions known to affect the cellular content of both reaction center complexes and photosynthetic membrane. Northern blot analysis with specific upstream restriction fragment probes revealed that the 1,400-nucleotide puhA-specific mRNA had a 5' terminus upstream of the 1,130-nucleotide transcript. Both puhA-specific mRNA and immunoreactive reaction center H protein were detectable in chemoheterotrophically grown cells which lacked detectable bacteriochlorophyll and photosynthetic membrane.
Collapse
|
27
|
Dusha I, Schröder J, Putnoky P, Bánfalvi Z, Kondorosi A. A cell-free system from Rhizobium meliloti to study the specific expression of nodulation genes. EUROPEAN JOURNAL OF BIOCHEMISTRY 1986; 160:69-75. [PMID: 3533532 DOI: 10.1111/j.1432-1033.1986.tb09941.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
An in vitro transcription-translation system was developed using cell-free extracts from the symbiotic nitrogen-fixing bacterium Rhizobium meliloti strain 41. Conditions for preparation of the 30,000 X g supernatant extract and for measurement of protein-synthesizing activity were determined and compared to the activity of an Escherichia coli cell-free system. Genes expressed in the free-living or in the symbiotic state were studied. The product of a recA-like gene (41-kDa protein) was synthesized both in R. meliloti and E. coli extracts, although less efficiently in the heterologous system. In agreement with earlier results obtained in E. coli minicells, three proteins (44, 28.5 and 23 kDa) were synthesized from a cloned 3.3 X 10(3)-base DNA region carrying genes for nodulation (nod). However, differences in the transcription-translation of nod and host specificity (hsn) genes were observed when protein expression was compared in R. meliloti and E. coli cell-free extracts, and the possible explanations of these findings are discussed.
Collapse
|
28
|
Johnson JA, Wong WK, Beatty JT. Expression of cellulase genes in Rhodobacter capsulatus by use of plasmid expression vectors. J Bacteriol 1986; 167:604-10. [PMID: 3090019 PMCID: PMC212932 DOI: 10.1128/jb.167.2.604-610.1986] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Broad-host-range plasmid vectors were constructed for expression of heterologous genes in the photosynthetic bacterium Rhodobacter capsulatus. These plasmids utilize an RK2-derived replicon for maintenance and conjugative transfer and the R. capsulatus rxcA promoter to obtain transcription of genes within appropriately positioned DNA fragments. The expression vectors were used to obtain synthesis of endoglucanase and exoglucanase in R. capsulatus from cellulase genes present on exogenously derived DNA fragments. The cellulase genes were expressed either by use of their native translation initiation signals or by in-frame fusion with the rxcA B870 beta gene translation initiation signals to form a hybrid protein. The level of cellulase gene expression was found to be modulated in response to the extent of aeration of plasmid host cultures.
Collapse
|
29
|
Seay T, Lueking DR. Purification and properties of acyl coenzyme A thioesterase II from Rhodopseudomonas sphaeroides. Biochemistry 1986; 25:2480-5. [PMID: 2872920 DOI: 10.1021/bi00357a029] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A high molecular weight acyl coenzyme A (acyl-CoA) thioesterase, designated thioesterase II, has been purified 5300-fold from photoheterotrophically grown cells of Rhodopseudomonas sphaeroides. In contrast to R. sphaeroides acyl-CoA thioesterase I [Boyce, S.G., & Lueking, D.R. (1984) Biochemistry 23, 141-147], thioesterase II has a native molecular mass (Mr) of 120,000, is capable of hydrolyzing saturated and unsaturated acyl-CoA substrates with acyl chain lengths ranging from C4 to C18, and is completely insensitive to the serine esterase inhibitor diisopropyl fluorophosphate. Palmitoyl-CoA and stearoyl-CoA are the preferred (lowest Km) saturated acyl-CoA substrates and vaccenoyl-CoA is the preferred unsaturated substrate. However, comparable Vmax values were obtained with a variety of acyl-CoA substrates. Unlike a similar thioesterase present in cells of Escherichia coli [Bonner, W.M., & Bloch, K. (1972) J. Biol. Chem. 247, 3123-3133], R. sphaeroides thioesterase II displays a high ratio of decanoyl-CoA to palmitoyl-CoA activities and exhibits little ability to hydrolyze 3-hydroxyacyl-CoA substrates. Only 3-hydroxydodecanoyl-CoA supported a measurable rate of enzyme activity. With the purification of thioesterase II, the enzymes responsible for greater than 90% of the acyl-CoA thioesterase activity present in cell-free extracts of R. sphaeroides have now been identified.
Collapse
|
30
|
Nunn DN, Lidstrom ME. Isolation and complementation analysis of 10 methanol oxidation mutant classes and identification of the methanol dehydrogenase structural gene of Methylobacterium sp. strain AM1. J Bacteriol 1986; 166:581-90. [PMID: 3009411 PMCID: PMC214644 DOI: 10.1128/jb.166.2.581-590.1986] [Citation(s) in RCA: 120] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
A method has been developed for the direct selection of methanol oxidation mutants of the facultative methylotroph Methylobacterium sp. strain AM1 (formerly Pseudomonas sp. strain AM1). Using this direct selection technique, we have isolated mutants of Methylobacterium sp. strain AM1 that are no longer capable of growth on methanol but retain the ability to grow on methylamine. These methanol oxidation (Mox) mutants were complemented with a genomic clone bank of this organism constructed in the broad-host-range cosmid pVK100, and subcloning and Tn5 mutagenesis experiments have assigned the Mox mutants to 10 distinct complementation groups. Using an open reading frame beta-galactosidase fusion vector and antibodies specific for Methylobacterium sp. strain AM1 methanol dehydrogenase, we have identified the methanol dehydrogenase structural gene and determined the direction of transcription. The results suggest that the synthesis and utilization of an active methanol dehydrogenase in this organism requires at least 10 different gene functions.
Collapse
|
31
|
Hoger JH, Chory J, Kaplan S. In vitro biosynthesis and membrane association of photosynthetic reaction center subunits from Rhodopseudomonas sphaeroides. J Bacteriol 1986; 165:942-50. [PMID: 3512531 PMCID: PMC214520 DOI: 10.1128/jb.165.3.942-950.1986] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The reaction center of Rhodopseudomonas sphaeroides is an integral membrane protein complex responsible for primary photochemical charge separation in photosynthesis. We report the synthesis of two of the three subunits of the photosynthetic reaction center using a DNA-directed in vitro transcription-translation system prepared from R. sphaeroides. The in vitro-synthesized polypeptides, as resolved by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, had apparent Mrs of 24,000 and 21,000 and were shown to be synthesized in equimolar amounts. This corresponds precisely to the in vivo reaction center subunits M and L, respectively. The in vitro-synthesized polypeptides were immunoprecipitated with antibody prepared against whole native reaction centers. In addition, the identity of the in vitro-synthesized polypeptides as L and M was verified by comparing the protease digestion products of in vivo- with in vitro-synthesized reaction center subunits. Both of the in vitro-synthesized polypeptides were also found to partition with the particulate material in the transcription-translation system and to associate with added membranes.
Collapse
|
32
|
Bélanger G, Bérard J, Gingras G. Isolation and partial characterization of the messenger RNA encoding the B880 holochrome protein of Rhodospirillum rubrum. EUROPEAN JOURNAL OF BIOCHEMISTRY 1985; 153:477-84. [PMID: 2416565 DOI: 10.1111/j.1432-1033.1985.tb09326.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The B880 holochrome messenger RNA was extracted from cultures of the photosynthetic bacterium Rhodospirillum rubrum. It was purified by chromatography on Sepharose 4B followed by sucrose density gradient centrifugation. The purified fractions were shown to program an Escherichia coli cell-free system into synthesizing both the alpha and the beta polypeptides of the holochrome. The translation products were identified by immunoprecipitation with specific antibodies raised against these polypeptides. The latter are effective competitors with the translation products for antigen-antibody complex formation. The purest mRNA preparations contained approximately 33% holochrome messenger RNA activity. Its most probable size, as determined by agarose gel electrophoresis in the presence of 6 M urea or methylmercuric hydroxide, is approximately 620 nucleotides. Since the combined sizes of the alpha and beta polypeptides add up to only 106 amino acid residues, we conclude that the holochrome mRNA is most probably polycistronic.
Collapse
|
33
|
Guthrie EP, Shoemaker NB, Salyers AA. Cloning and expression in Escherichia coli of a gene coding for a chondroitin lyase from Bacteroides thetaiotaomicron. J Bacteriol 1985; 164:510-5. [PMID: 2997114 PMCID: PMC214281 DOI: 10.1128/jb.164.2.510-515.1985] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
We cloned the gene for one of the two chondroitin lyases of Bacteroides thetaiotaomicron into the cosmid vector pHC79 and subcloned it into pBR328. No proteins the size of B. thetaiotaomicron chondroitin lyase I or II (104 to 108 kilodaltons) were detectable in maxicell or in vitro transcription-translation preparations. However, partial purification of the chondroitin lyase activity from the Escherichia coli subclone showed that its properties were similar to those of the B. thetaiotaomicron chondroitin lyases. Antibodies to the chondroitin lyase that was produced in E. coli cross-reacted with the B. thetaiotaomicron chondroitin lyase II but not with chondroitin lyase I. The molecular weight of the enzyme produced in E. coli, as measured by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and by gel filtration, was slightly lower than those of the two chondroitin lyases from B. thetaiotaomicron; the enzyme had a higher affinity for bacterial membranes and for heparin-agarose, and cyanogen bromide digestion products of the chondroitin lyase produced in E. coli differed slightly from those of B. thetaiotaomicron chondroitin lyase II. gamma delta mutagenesis was used to locate the chondroitin lyase gene on the subcloned 7.8-kilobase EcoRI fragment. The size of the gene was approximately 3.3 kilobases, as expected for a protein with a molecular weight of 104,000.
Collapse
|
34
|
Zhu YS, Kaplan S. Effects of light, oxygen, and substrates on steady-state levels of mRNA coding for ribulose-1,5-bisphosphate carboxylase and light-harvesting and reaction center polypeptides in Rhodopseudomonas sphaeroides. J Bacteriol 1985; 162:925-32. [PMID: 2581935 PMCID: PMC215864 DOI: 10.1128/jb.162.3.925-932.1985] [Citation(s) in RCA: 105] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The mRNA levels specific for ribulose-1,5-bisphosphate carboxylase, light-harvesting I polypeptides alpha and beta, and reaction center polypeptides L and M were assayed by use of a series of DNA probes specific for each cognate mRNA. Both the steady-state amounts and sizes of the specific mRNAs were measured as a function of the light intensity incident to the culture, the presence or absence of oxygen, and the type of substrate present in the growth medium. Northern hybridization revealed at least two and possibly three transcripts for ribulose-1,5-bisphosphate carboxylase. The cellular level of mRNA specific for ribulose-1,5-bisphosphate carboxylase increased in consort with enzyme activity as a function of both light intensity and reducing state of the substrate. Neither mRNA nor enzyme activity was detectable in aerobically grown cells. For the light-harvesting I and reaction center polypeptides there exist two transcripts, the larger of which appears to be a polycistronic mRNA possessing information for all four polypeptides and a smaller transcript specific for only the alpha and beta polypeptides of the light-harvesting I complex. The regulation of each of these mRNAs was affected by light and oxygen, but was not significantly affected by the oxidation-reduction state of the substrate.
Collapse
|
35
|
Chory J, Muller ED, Kaplan S. DNA-directed in vitro synthesis and assembly of the form II D-ribulose-1,5-bisphosphate carboxylase/oxygenase from Rhodopseudomonas sphaeroides. J Bacteriol 1985; 161:307-13. [PMID: 3918003 PMCID: PMC214872 DOI: 10.1128/jb.161.1.307-313.1985] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
A biochemical analysis of the in vitro assembly of the form II ribulose-1,5-bisphosphate carboxylase/oxygenase from Rhodopseudomonas sphaeroides after transcription and translation from cloned DNA is presented. The predominant enzymatically active oligomeric forms of the in vitro-synthesized and -assembled ribulose-1,5-bisphosphate carboxylase are tetramers and hexamers. Assembly of the monomeric subunits to form active enzyme appears to be dependent on the presence of a minimum number of subunits in the cell extract. Assembly of ribulose-1,5-bisphosphate carboxylase also was observed when the protein-synthesizing extracts were prepared from cells which were partially derepressed for ribulose-1,5-bisphosphate carboxylase expression.
Collapse
|
36
|
Muller ED, Chory J, Kaplan S. Cloning and characterization of the gene product of the form II ribulose-1,5-bisphosphate carboxylase gene of Rhodopseudomonas sphaeroides. J Bacteriol 1985; 161:469-72. [PMID: 3881398 PMCID: PMC214901 DOI: 10.1128/jb.161.1.469-472.1985] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
We report the cloning and characterization of the gene product of the gene for the form II ribulose bisphosphate carboxylase from Rhodopseudomonas sphaeroides. We present evidence that the form II enzyme is encoded by a single gene in R. sphaeroides; however, this gene does hybridize to a second chromosomal locus.
Collapse
|
37
|
Green GN, Kranz JE, Gennis RB. Cloning the cyd gene locus coding for the cytochrome d complex of Escherichia coli. Gene 1984; 32:99-106. [PMID: 6099317 DOI: 10.1016/0378-1119(84)90037-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Two plasmids containing the two structural genes for the inner-membrane-bound cytochrome d complex (Cyd) have been isolated from the Clarke and Carbon Escherichia coli DNA bank. A 5.4-kb DNA fragment from one plasmid was subcloned in both orientations into pBR322. The promoter(s) and both genes must have been present within this fragment since the two orientations yielded similar levels of Cyd. Recombination and transduction studies indicated that the cyd gene locus had been isolated. These results demonstrate that cyd contains all the structural information for the complex. Overproduction of Cyd has yielded a visual screening procedure for plasmids bearing cyd that is unique to colored proteins like cytochromes. Colonies of E. coli bearing the cloned cyd gene are yellow-green. The cyd gene can, therefore, be used as a vehicle for detection of inserted DNA fragments.
Collapse
|
38
|
Quivey RG, Tabita FR. Cloning and expression in Escherichia coli of the form II ribulose 1,5-bisphosphate carboxylase/oxygenase gene from Rhodopseudomonas sphaeroides. Gene 1984; 31:91-101. [PMID: 6396166 DOI: 10.1016/0378-1119(84)90198-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The gene encoding the form II ribulose 1,5-bisphosphate carboxylase/oxygenase (RuBPC/O) from Rhodopseudomonas (R.) sphaeroides has been identified on a 3-kb EcoRI fragment and cloned into a broad-host-range, high-copy-number plasmid, using the gene from Rhodospirillum (Rs.) rubrum as a hybridization probe. Subclones of the gene from R. sphaeroides in pBR322 and pUC8 show substantial levels of expression and enzymatic activity in whole cells and crude cell extracts of Escherichia coli. This enzymatic activity has been shown to be similar in many respects to that of the protein purified from R. sphaeroides.
Collapse
|
39
|
Tybulewicz VL, Falk G, Walker JE. Rhodopseudomonas blastica atp operon. Nucleotide sequence and transcription. J Mol Biol 1984; 179:185-214. [PMID: 6209404 DOI: 10.1016/0022-2836(84)90465-0] [Citation(s) in RCA: 110] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The nucleotide sequence has been determined of a 12,368 base-pair region of DNA cloned from the non-sulphur photosynthetic bacterium Rhodopseudomonas blastica. It contains a cluster of six genes of which five encode the subunits of F1-ATPase; the sixth codes for an unknown protein. The genes are arranged in the same order as in the Escherichia coli unc operon, except that the unknown gene is placed between those for gamma and beta subunits. Neither the genes for F0 subunits, nor a homologue of the E. coli uncI gene is associated with this locus. The six genes are transcribed from a single promoter and we have designated this region the R. blastica atp operon. The two distal genes, beta and epsilon, may also be transcribed from a second promoter. Initiation and termination points for transcription have been identified by primer extensions and S1 nuclease mapping experiments. Signals involved in initiation of translation (Shine and Dalgarno sequences) and termination of transcription in the photosynthetic bacterium resemble those in E. coli. However, no common features can be identified in these two bacteria between 5' regions adjacent to sites of initiation of transcription. The sequence also contains a gene that encodes a protein homologous to discoidin, a cell surface lectin of Dictyostelium discoideum thought to be involved in cell--cell aggregation. Seven other reading frames have not been identified.
Collapse
|
40
|
Chory J, Donohue TJ, Varga AR, Staehelin LA, Kaplan S. Induction of the photosynthetic membranes of Rhodopseudomonas sphaeroides: biochemical and morphological studies. J Bacteriol 1984; 159:540-54. [PMID: 6611335 PMCID: PMC215678 DOI: 10.1128/jb.159.2.540-554.1984] [Citation(s) in RCA: 108] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Cells of Rhodopseudomonas sphaeroides grown in a 25% O2 atmosphere were rapidly subjected to total anaerobiosis in the presence of light to study the progression of events associated with the de novo synthesis of the inducible intracytoplasmic membrane (ICM). This abrupt change in physiological conditions resulted in the immediate cessation of cell growth and whole cell protein, DNA, and phospholipid accumulation. Detectable cell growth and whole cell protein accumulation resumed ca. 12 h later. Bulk phospholipid accumulation paralleled cell growth, but the synthesis of individual phospholipid species during the adaptation period suggested the existence of a specific regulatory site in phospholipid synthesis at the level of the phosphatidylethanolamine methyltransferase system. Freeze-fracture electron microscopy showed that aerobic cells contain small indentations within the cell membrane that appear to be converted into discrete ICM invaginations within 1 h after the imposition of anaerobiosis. Microscopic examination also revealed a series of morphological changes in ICM structure and organization during the lag period before the initiation of photosynthetic growth. Bacteriochlorophyll synthesis and the formation of the two light-harvesting bacteriochlorophyll-protein complexes of R. sphaeroides (B800-850 and B875) occurred coordinately within 2 h after the shift to anaerobic conditions. Using antibodies prepared against various ICM-specific polypeptides, the synthesis of reaction center proteins and the polypeptides associated with the B800-850 complex was monitored. The reaction center H polypeptide was immunochemically detected at low levels in the cell membrane of aerobic cells, which contained no detectable ICM or bacteriochlorophyll. The results are discussed in terms of the oxygen-dependent regulation of gene expression in R. sphaeroides and the possible role of the reaction center H polypeptide and the cell membrane indentations in the site-specific assembly of ICM pigment-protein complexes during the de novo synthesis of the ICM.
Collapse
|
41
|
Dierstein R. Synthesis of pigment-binding protein in toluene-treated Rhodopseudomonas capsulata and in cell-free systems. EUROPEAN JOURNAL OF BIOCHEMISTRY 1984; 138:509-18. [PMID: 6363074 DOI: 10.1111/j.1432-1033.1984.tb07945.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Pigment-binding protein of the facultatively phototrophic bacterium Rhodospeudomonas capsulata could be selectively synthesized in toluene-treated cells as well as in homologous and heterologous cell-free translation systems by isolated polysomes. It is shown that the pigment-binding polypeptides of the light-harvesting complexes are encoded by messenger RNA of extreme longevity. The dependence of their synthesis on the concomitant synthesis of tetrapyrroles was demonstrated in the toluene-treated cells. The large Mr-28 000 polypeptide of the reaction center and the Mr-10 000 pigment-binding polypeptide of the light-harvesting complex II were found to be synthesized by free (water-soluble) polysomes without a cleavable 'leader' or 'signal' peptide [reviewed by W. Wickner (1979) Annu. Rev. Biochem. 48, 23-45]. The Mr-10 000 polypeptide, as synthesized in vitro, was studied in more detail. Unlike the membrane-assembled polypeptide in vivo it was insoluble in an organic solvent mixture (chloroform/methanol 1:1, v/v). After detergent denaturation in the presence of membrane isolated from the organism it became organic-solvent-soluble. Obviously the polypeptide could be induced to assume alternative conformations in which its apolar residues were either exposed to the solvent or buried within. These findings, in agreement with Wickner's hypothesis, indicate that the Mr-10 000 polypeptide may enter the lipid bilayer by a 'membrane-triggered' conformational change.
Collapse
|
42
|
Fornari CS, Kaplan S. Identification of nitrogenase and carboxylase genes in the photosynthetic bacteria and cloning of a carboxylase gene from Rhodopseudomonas sphaeroides. Gene 1983; 25:291-9. [PMID: 6319239 DOI: 10.1016/0378-1119(83)90233-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The presumptive genes for the ribulose 1,5-bisphosphate carboxylase large subunit and for nitrogenase-specific components from Rhodopseudomonas sphaeroides and several other photosynthetic bacteria were identified and located by interspecific probing. Restriction digests of R. sphaeroides genomic DNA were hybridized under stringent conditions to cloned DNA from Rhodospirillum rubrum (plasmid pRR2119 carrying the carboxylase gene) and Klebsiella pneumoniae (pSA30 carrying the nitrogenase genes). The nitrogenase probe hybridized with different signal intensities to several distinct HindIII, BglII, EcoRI, BamHI and PvuII fragments of R. sphaeroides 2.4.1.DNA. The carboxylase probe hybridized to only single R. sphaeroides 2.4.1.DNA fragments produced with all five restriction enzymes. A 3000-bp EcoRI-BamHI R. sphaeroides 2.4.1.DNA fragment carrying the presumptive gene for the large subunit of ribulose 1,5-bisphosphate carboxylase was cloned into pBR322 and positively identified by probing with a 32P-labeled internal PstI fragment of the Rhodospirillum carboxylase gene.
Collapse
|