1
|
Feng M, Cui H, Li S, Li L, Zhou C, Chen L, Cao Y, Gao Y, Li D. Ubiquitin-Activating Enzyme E1 (UBA1) as a Prognostic Biomarker and Therapeutic Target in Breast Cancer: Insights into Immune Infiltration and Functional Implications. Int J Mol Sci 2024; 25:12696. [PMID: 39684409 DOI: 10.3390/ijms252312696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/13/2024] [Accepted: 11/16/2024] [Indexed: 12/18/2024] Open
Abstract
Ubiquitin-Activating Enzyme E1 (UBA1), an E1 enzyme involved in the activation of ubiquitin enzymes, has been involved in the onset and progression of different cancers in humans. Nevertheless, the precise contribution of UBA1 in breast cancer (BC) is still poorly characterized. In this study, a thorough investigation was carried out to elucidate the significance of UBA1 and validate its functionality in BC. Through the analysis of mRNA sequencing data of BC patients, the mRNA expression of UBA1 was observed to be notably enhanced in cancer tissues relative to controls, and high UBA1 expression was linked to worse overall survival (OS), disease-specific survival (DSS), and progress-free survival (PFS). Moreover, UBA1 exhibited potential as an independent prognostic and diagnostic biomarker for individuals with BC. Additionally, functional enrichment analysis revealed the involvement of UBA1 in inflammation-linked pathways, like the TNF-α signaling pathway, the IL-6 signaling pathway, and various immune-related biological processes. Notably, single-sample gene set enrichment analysis (ssGSEA) aided in the identification of a negative link between UBA1 expression and the levels of infiltrating mast cells, Th1 cells, iDC cells, B cells, DC cells, Tem cells, Cytotoxic cells, T cells, CD8T cells, and pDC cells. Finally, this study demonstrated that silencing UBA1 significantly impeded the growth and development of BC cell lines. These findings highlight UBA1 as a potential prognostic biomarker linked to immune infiltration in BC, thereby depicting its potential as a new therapeutic target for individuals with BC.
Collapse
Affiliation(s)
- Mingtao Feng
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Huanhuan Cui
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Sen Li
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Liangdong Li
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Changshuai Zhou
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Lei Chen
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yiqun Cao
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yang Gao
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Deheng Li
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| |
Collapse
|
2
|
VEXAS-like syndrome: a potential new entity? Ann Hematol 2022; 101:1125-1128. [PMID: 35318504 DOI: 10.1007/s00277-022-04818-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/09/2022] [Indexed: 12/27/2022]
|
3
|
Gadhave K, Kumar P, Kapuganti SK, Uversky VN, Giri R. Unstructured Biology of Proteins from Ubiquitin-Proteasome System: Roles in Cancer and Neurodegenerative Diseases. Biomolecules 2020; 10:E796. [PMID: 32455657 PMCID: PMC7278180 DOI: 10.3390/biom10050796] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/17/2020] [Accepted: 05/19/2020] [Indexed: 12/14/2022] Open
Abstract
The 26S proteasome is a large (~2.5 MDa) protein complex consisting of at least 33 different subunits and many other components, which form the ubiquitin proteasomal system (UPS), an ATP-dependent protein degradation system in the cell. UPS serves as an essential component of the cellular protein surveillance machinery, and its dysfunction leads to cancer, neurodegenerative and immunological disorders. Importantly, the functions and regulations of proteins are governed by the combination of ordered regions, intrinsically disordered protein regions (IDPRs) and molecular recognition features (MoRFs). The structure-function relationships of UPS components have not been identified completely; therefore, in this study, we have carried out the functional intrinsic disorder and MoRF analysis for potential neurodegenerative disease and anti-cancer targets of this pathway. Our report represents the presence of significant intrinsic disorder and disorder-based binding regions in several UPS proteins, such as extraproteasomal polyubiquitin receptors (UBQLN1 and UBQLN2), proteasome-associated polyubiquitin receptors (ADRM1 and PSMD4), deubiquitinating enzymes (DUBs) (ATXN3 and USP14), and ubiquitinating enzymes (E2 (UBE2R2) and E3 (STUB1) enzyme). We believe this study will have implications for the conformation-specific roles of different regions of these proteins. This will lead to a better understanding of the molecular basis of UPS-associated diseases.
Collapse
Affiliation(s)
- Kundlik Gadhave
- School of Basic Sciences, Indian Institute of Technology Mandi, VPO Kamand, Himachal Pradesh 175005, India; (K.G.); (P.K.); (S.K.K.)
| | - Prateek Kumar
- School of Basic Sciences, Indian Institute of Technology Mandi, VPO Kamand, Himachal Pradesh 175005, India; (K.G.); (P.K.); (S.K.K.)
| | - Shivani K. Kapuganti
- School of Basic Sciences, Indian Institute of Technology Mandi, VPO Kamand, Himachal Pradesh 175005, India; (K.G.); (P.K.); (S.K.K.)
| | - Vladimir N. Uversky
- Department of Molecular Medicine and Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33620, USA;
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center “Pushchino Cientific Center for Biological Research of the Russian Academy of Sciences”, Pushchino, 142290 Moscow, Russia
| | - Rajanish Giri
- School of Basic Sciences, Indian Institute of Technology Mandi, VPO Kamand, Himachal Pradesh 175005, India; (K.G.); (P.K.); (S.K.K.)
| |
Collapse
|
4
|
Soond SM, Chantry A. How ubiquitination regulates the TGF-β signalling pathway: new insights and new players: new isoforms of ubiquitin-activating enzymes in the E1-E3 families join the game. Bioessays 2012; 33:749-58. [PMID: 21932223 DOI: 10.1002/bies.201100057] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Ubiquitination of protein species in regulating signal transduction pathways is universally accepted as of fundamental importance for normal development, and defects in this process have been implicated in the progression of many human diseases. One pathway that has received much attention in this context is transforming growth factor-beta (TGF-β) signalling, particularly during the regulation of epithelial-mesenchymal transition (EMT) and tumour progression. While E3-ubiquitin ligases offer themselves as potential therapeutic targets, much remains to be unveiled regarding mechanisms that culminate in their regulation. With this in mind, the focus of this review highlights the regulation of the ubiquitination pathway and the significance of a recently described group of NEDD4 E3-ubiquitin ligase isoforms in the context of TGF-β pathway regulation. Moreover, we now broaden these observations to incorporate a growing number of protein isoforms within the ubiquitin ligase superfamily as a whole, and discuss their relevance in defining a new 'iso-ubiquitinome'.
Collapse
Affiliation(s)
- Surinder M Soond
- University of East Anglia, School Of Biological Sciences, Norwich, Norfolk, UK.
| | | |
Collapse
|
5
|
Yi YJ, Zimmerman SW, Manandhar G, Odhiambo JF, Kennedy C, Jonáková V, Maňásková-Postlerová P, Sutovsky M, Park CS, Sutovsky P. Ubiquitin-activating enzyme (UBA1) is required for sperm capacitation, acrosomal exocytosis and sperm-egg coat penetration during porcine fertilization. ACTA ACUST UNITED AC 2011; 35:196-210. [PMID: 21950462 DOI: 10.1111/j.1365-2605.2011.01217.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Protein ubiquitination is a stable, covalent post-translational modification that alters protein activity and/or targets proteins for proteolysis by the 26S proteasome. The E1-type ubiquitin-activating enzyme (UBA1) is responsible for ubiquitin activation, the initial step of ubiquitin-protein ligation. Proteasomal proteolysis of ubiquitinated spermatozoa and oocyte proteins occurs during mammalian fertilization, particularly at the site of sperm acrosome contact with oocyte zona pellucida. However, it is not clear whether the substrates are solely proteins ubiquitinated during gametogenesis or if de novo ubiquitination also occurs during fertilization supported by ubiquitin-activating and -conjugating enzymes present in the sperm acrosome. Along this line of inquiry, UBA1 was detected in boar sperm-acrosomal extracts by Western blotting (WB). Immunofluorescence revealed accumulation of UBA1 in the nuclei of spermatogonia, spermatocytes and spermatids, and in the acrosomal caps of round and elongating spermatids. Thiol ester assays utilizing biotinylated ubiquitin and isolated sperm acrosomes confirmed the enzymatic activity of the resident UBA1. A specific UBA1 inhibitor, PYR-41, altered the remodelling of the outer acrosomal membrane (OAM) during sperm capacitation, monitored using flow cytometry of fluorescein isothiocyanate-conjugated peanut agglutinin (FITC-PNA). Although viable and motile, the spermatozoa capacitated in the presence of PYR-41, showed significantly reduced fertilization rates during in vitro fertilization (IVF; p < 0.05). Similarly, the fertilization rate was lowered by the addition of PYR-41 directly into fertilization medium during IVF. In WB, high Mr bands, suggestive of protein ubiquitination, were detected in non-capacitated spermatozoa by antibodies against ubiquitin; WB with anti-phosphotyrosine antibodies and antibodies against acrosomal proteins SPINK2 (acrosin inhibitor) and AQN1 (spermadhesin) revealed that the capacitation-induced modification of those proteins was altered by PYR-41. In summary, it appears that de novo protein ubiquitination involving UBA1 contributes to sperm capacitation and acrosomal function during fertilization.
Collapse
Affiliation(s)
- Y-J Yi
- Division of Animal Sciences, Gynecology and Women's Health, University of Missouri-Columbia, Columbia, MO, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Bhat KP, Greer SF. Proteolytic and non-proteolytic roles of ubiquitin and the ubiquitin proteasome system in transcriptional regulation. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2010; 1809:150-5. [PMID: 21184853 DOI: 10.1016/j.bbagrm.2010.11.006] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2010] [Revised: 11/29/2010] [Accepted: 11/30/2010] [Indexed: 01/15/2023]
Abstract
The ubiquitin proteasome system (UPS) regulates perhaps the most intriguing balance in all of biology: how cells control protein function and malfunction in order to regulate, and eventually eliminate, the old and error prone while simultaneously synthesizing and orchestrating the new. In light of the growing notion that ubiquitination and the 26S proteasome are central to a multiplicity of diverse cellular functions, we discuss here the proteolytic and non-proteolytic roles of the UPS in regulating pathways ultimately involved in protein synthesis and activity including roles in epigenetics, transcription, and post-translational modifications. This article is part of a Special Issue entitled The 26S Proteasome: When degradation is just not enough!
Collapse
Affiliation(s)
- Kavita P Bhat
- Division of Cellular and Molecular Biology and Phsyiclogy, Department of Biology, Georgia State University, Atlanta, GA 30302, USA
| | | |
Collapse
|
7
|
Franco M, Seyfried NT, Brand AH, Peng J, Mayor U. A novel strategy to isolate ubiquitin conjugates reveals wide role for ubiquitination during neural development. Mol Cell Proteomics 2010; 10:M110.002188. [PMID: 20861518 PMCID: PMC3098581 DOI: 10.1074/mcp.m110.002188] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Ubiquitination has essential roles in neuronal development and function. Ubiquitin proteomics studies on yeast and HeLa cells have proven very informative, but there still is a gap regarding neuronal tissue-specific ubiquitination. In an organism context, direct evidence for the ubiquitination of neuronal proteins is even scarcer. Here, we report a novel proteomics strategy based on the in vivo biotinylation of ubiquitin to isolate ubiquitin conjugates from the neurons of Drosophila melanogaster embryos. We confidently identified 48 neuronal ubiquitin substrates, none of which was yet known to be ubiquitinated. Earlier proteomics and biochemical studies in non-neuronal cell types had identified orthologs to some of those but not to others. The identification here of novel ubiquitin substrates, those with no known ubiquitinated ortholog, suggests that proteomics studies must be performed on neuronal cells to identify ubiquitination pathways not shared by other cell types. Importantly, several of those newly found neuronal ubiquitin substrates are key players in synaptogenesis. Mass spectrometry results were validated by Western blotting to confirm that those proteins are indeed ubiquitinated in the Drosophila embryonic nervous system and to elucidate whether they are mono- or polyubiquitinated. In addition to the ubiquitin substrates, we also identified the ubiquitin carriers that are active during synaptogenesis. Identifying endogenously ubiquitinated proteins in specific cell types, at specific developmental stages, and within the context of a living organism will allow understanding how the tissue-specific function of those proteins is regulated by the ubiquitin system.
Collapse
Affiliation(s)
- Maribel Franco
- CIC Biogune, Bizkaia Teknologi Parkea, 48160 Derio, Spain
| | | | | | | | | |
Collapse
|
8
|
Liu W, Zhou XW, Liu S, Hu K, Wang C, He Q, Li M. Calpain-truncated CRMP-3 and -4 contribute to potassium deprivation-induced apoptosis of cerebellar granule neurons. Proteomics 2009; 9:3712-28. [PMID: 19639589 DOI: 10.1002/pmic.200800979] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Increasing evidence shows that calpain-mediated proteolytic processing of a selective number of proteins plays an important role in neuronal apoptosis. Study of calpain-mediated cleavage events and related functions may contribute to a better understanding of neuronal apoptosis and neurodegenerative diseases. We, therefore, investigated the role of calpain substrates in potassium deprivation-induced apoptosis of cerebellar granule neurons (CGNs). Twelve previously known and seven novel candidates of calpain substrates were identified by 2-D DIGE and MALDI-TOF/TOF MS analysis. Further, the identified novel calpain substrates were validated by Western blot analysis. Moreover, we focused on the collapsin response mediator proteins (CRMP-1, -2, -3 and -4 isoforms) and found that CRMPs were proteolytically processed by calpain but not by caspase, both in vivo and in vitro. To clarify the properties of the calpain-mediated proteolysis of CRMPs, we constructed the deletion mutants of CRMPs for additional biochemical studies. In vitro cleavage assays revealed that CRMP-1, -2 and -4 were truncated by calpain at the C-terminus, whereas CRMP-3 was cleaved at the N-terminus. Finally, we assessed the role of CRMPs in the process of potassium deprivation-triggered neuronal apoptosis by overexpressing the truncated CRMPs in CGNs. Our data clearly showed that the truncated CRMP-3 and -4, but not CRMP-1 and -2, significantly induced neuronal apoptosis. These findings demonstrated that calpain-truncated CRMP-3 and -4 act as pro-apoptotic players when CGNs undergo apoptosis.
Collapse
Affiliation(s)
- Wei Liu
- Proteomics Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, PR China
| | | | | | | | | | | | | |
Collapse
|
9
|
Lehman NL. The ubiquitin proteasome system in neuropathology. Acta Neuropathol 2009; 118:329-47. [PMID: 19597829 PMCID: PMC2716447 DOI: 10.1007/s00401-009-0560-x] [Citation(s) in RCA: 145] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2009] [Revised: 06/10/2009] [Accepted: 06/11/2009] [Indexed: 11/29/2022]
Abstract
The ubiquitin proteasome system (UPS) orchestrates the turnover of innumerable cellular proteins. In the process of ubiquitination the small protein ubiquitin is attached to a target protein by a peptide bond. The ubiquitinated target protein is subsequently shuttled to a protease complex known as the 26S proteasome and subjected to degradative proteolysis. The UPS facilitates the turnover of proteins in several settings. It targets oxidized, mutant or misfolded proteins for general proteolytic destruction, and allows for the tightly controlled and specific destruction of proteins involved in development and differentiation, cell cycle progression, circadian rhythms, apoptosis, and other biological processes. In neuropathology, alteration of the UPS, or mutations in UPS target proteins may result in signaling abnormalities leading to the initiation or progression of tumors such as astrocytomas, hemangioblastomas, craniopharyngiomas, pituitary adenomas, and medulloblastomas. Dysregulation of the UPS may also contribute to tumor progression by perturbation of DNA replication and mitotic control mechanisms, leading to genomic instability. In neurodegenerative diseases caused by the expression of mutant proteins, the cellular accumulation of these proteins may overload the UPS, indirectly contributing to the disease process, e.g., sporadic Parkinsonism and prion diseases. In other cases, mutation of UPS components may directly cause pathological accumulation of proteins, e.g., autosomal recessive Parkinsonism and spinocerebellar ataxias. Defects or dysfunction of the UPS may also underlie cognitive disorders such as Angelman syndrome, Rett syndrome and autism, and muscle and nerve diseases, e.g., inclusion body myopathy and giant axon neuropathy. This paper describes the basic biochemical mechanisms comprising the UPS and reviews both its theoretical and proven involvement in neuropathological diseases. The potential for the UPS as a target of pharmacological therapy is also discussed.
Collapse
Affiliation(s)
- Norman L Lehman
- Department of Pathology and Laboratory Medicine, Hermelin Brain Tumor Center, Henry Ford Health System, Detroit, MI 48202, USA.
| |
Collapse
|
10
|
Expression, purification and characterization of human ubiquitin-activating enzyme, UBE1. Mol Biol Rep 2009; 37:1413-9. [PMID: 19343538 DOI: 10.1007/s11033-009-9525-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2008] [Accepted: 03/20/2009] [Indexed: 01/25/2023]
Abstract
UBE1 plays an important role in the first step of ubiquitin-proteasome pathway to activate ubiquitin. Both the structure and biochemical property research of human UBE1 protein, and the activity analysis of those enzymes which are related with ubiquitination pathway, are based on high purity of UBE1 protein. To obtain human UBE1 protein, the full length of human UBE1 was expressed in E. coli and purified by Ni-NTA superflow sepharose and strep-tactin sepharose which based on UB-UBE1 high-energy thioester bonded intermediate complex. It was demonstrated that purified UBE1 could activate and conjugate UB to ubiquitin-conjugating enzyme E2s. The purified large amount of UBE1 could be used for in vitro studies of ubiquitin pathway and structural studies.
Collapse
|
11
|
Abstract
Critical cellular processes are regulated, in part, by maintaining the appropriate intracellular levels of proteins. Whereas de novo protein synthesis is a comparatively slow process, proteins are rapidly degraded at a rate compatible with the control of cell cycle transitions and cell death induction. A major pathway for protein degradation is initiated by the addition of multiple 76-amino acid ubiquitin monomers via a three-step process of ubiquitin activation and substrate recognition. Polyubiquitination targets proteins for recognition and processing by the 26S proteasome, a cylindrical organelle that recognizes ubiquitinated proteins, degrades the proteins, and recycles ubiquitin. The critical roles played by ubiquitin-mediated protein turnover in cell cycle regulation makes this process a target for oncogenic mutations. Oncogenes of several common malignancies, for example colon and renal cell cancer, code for ubiquitin ligase components. Cervical oncogenesis by human papillomavirus is also mediated by alteration of ubiquitin ligase pathways. Protein degradation pathways are also targets for cancer therapy, as shown by the successful introduction of bortezomib, an inhibitor of the 26S proteasome. Further work in this area holds great promise toward our understanding and treatment of a wide range of cancers.
Collapse
Affiliation(s)
- Aparna Mani
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, 3800 Reservoir Rd NW, Washington, DC 20007-2197, USA
| | | |
Collapse
|
12
|
Abstract
The ubiquitin E1 enzyme is an ATP-dependent enzyme that activates ubiquitin for use in all ubiquitin conjugation pathways. This chapter describes the expression and purification of human E1 enzyme for use in in vitro ubiquitination reactions.
Collapse
Affiliation(s)
- Sylvie Beaudenon
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712-1095, USA
| | | |
Collapse
|
13
|
Døskeland AP, Flatmark T. Ubiquitination of soluble and membrane-bound tyrosine hydroxylase and degradation of the soluble form. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:1561-9. [PMID: 11874472 DOI: 10.1046/j.1432-1033.2002.02808.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Tyrosine hydroxylase (TH) demonstrates by two-dimensional electrophoresis a microheterogeneity both as a soluble recombinant human TH (hTH1) and as a membrane-bound bovine TH (bTHmem). Part of the heterogeneity is likely due to deamidation of labile asparagine residues. Wild-type (wt)-hTH1 was found to be a substrate for the ubiquitin (Ub) conjugating enzyme system in a reconstituted in vitro system. When wt-hTH1 was expressed in a coupled transcription-translation TnT(R)-T7 reticulolysate system 35S-labelled polypeptides of the expected molecular mass of native enzyme as well as both higher and lower molecular mass forms were observed. The amount of high-molecular-mass forms increased by time and was enhanced in the presence of Ub and clasto-lactacystin beta-lactone. In pulse-chase experiments the amount of full-length hTH1 decreased by first-order kinetics with a half-time of 7.4 h and 2.1 h in the absence and presence of an ATP-regenerating system, respectively. The ATP-dependent degradation was inhibited by clasto-lactacystin beta-lactone. Our findings support the conclusion that hTH1 is ubiquitinated and at least partially degraded by the proteasomes in the reticulocyte lysate system. Finally, it is shown that the integral TH of the bovine adrenal chromaffin granule membrane (bTHmem) is ubiquitinated, most likely monoubiquitinated. Additional Ub-conjugates of this membrane, detected by Western blot analysis, have not yet been identified.
Collapse
Affiliation(s)
- Anne P Døskeland
- Department of Biochemistry and Molecular Biology, University of Bergen, Norway
| | | |
Collapse
|
14
|
Døskeland AP, Flatmark T. Conjugation of phenylalanine hydroxylase with polyubiquitin chains catalysed by rat liver enzymes. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1547:379-86. [PMID: 11410294 DOI: 10.1016/s0167-4838(01)00206-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Phenylalanine hydroxylase (PAH, EC 1.14.16.1) is a highly regulated liver enzyme which catalyses the conversion of L-phenylalanine to L-tyrosine, the rate-limiting step in the catabolic pathway of this amino acid. Among the approx. 400 different mutations of human (h) PAH, frequently associated with the metabolic disease phenylketonuria, a low stability is a characteristic property when expressed in eucaryotic cells. In this study, the pathway of hPAH degradation is addressed with focus on its conjugation with polyubiquitin chains catalysed by the ubiquitin-conjugating enzyme system (E1, E2, E3) isolated from rat liver by covalent affinity chromatography on ubiquitin-Sepharose. In the reconstituted in vitro ubiquitination assay, the enzyme system catalysed both the formation of free polyubiquitin chains and the polyubiquitination of wild-type (wt) hPAH and its 'catalytic domain' (DeltaN102/DeltaC24-hPAH) as visualized by two-dimensional electrophoresis. The ubiquitination of wt-PAH may play a role in the degradation of this liver enzyme notably of its many unstable disease-associated mutant forms. The present approach may also have a more general application in the study of liver proteins as possible targets for ubiquitination.
Collapse
Affiliation(s)
- A P Døskeland
- Department of Biochemistry and Molecular Biology, University of Bergen, Arstadveien 19, N-5009, Bergen, Norway
| | | |
Collapse
|
15
|
Sommer T, Jarosch E, Lenk U. Compartment-specific functions of the ubiquitin-proteasome pathway. Rev Physiol Biochem Pharmacol 2001; 142:97-160. [PMID: 11190579 DOI: 10.1007/bfb0117492] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- T Sommer
- Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Strasse 10, 13092 Berlin, Germany
| | | | | |
Collapse
|
16
|
Wilkinson KD. Cellular Regulation by Ubiquitin-Dependent Processes. INTRACELLULAR PROTEIN DECRADATION 1998. [DOI: 10.1016/s1569-2558(08)60458-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
17
|
Stephen AG, Trausch-Azar JS, Handley-Gearhart PM, Ciechanover A, Schwartz AL. Identification of a region within the ubiquitin-activating enzyme required for nuclear targeting and phosphorylation. J Biol Chem 1997; 272:10895-903. [PMID: 9099746 DOI: 10.1074/jbc.272.16.10895] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The ubiquitin-activating enzyme exists as two isoforms: E1a, localized predominantly in the nucleus, and E1b, localized in the cytoplasm. Previously we generated hemagglutinin (HA) epitope-tagged cDNA constructs, HA1-E1 (epitope tag placed after the first methionine) and HA2-E1 (epitope tag placed after the second methionine) (Handley-Gearhart, P. M., Stephen, A. G., Trausch-Azar, J. S., Ciechanover, A., and Schwartz, A. L. (1994) J. Biol. Chem. 269, 33171-33178), which represent the native isoforms. HA1-E1 is exclusively nuclear, whereas HA2-E1 is found predominantly in the cytoplasm. Using high resolution isoelectric focusing and SDS-polyacrylamide gel electrophoresis, we confirm that these epitope-tagged constructs HA1-E1 and HA2-E1 represent the two isoforms E1a and E1b. HA1-E1/E1a exists as one non-phosphorylated and four phosphorylated forms, and HA2-E1/E1b exists as one predominant non-phosphorylated form and two minor phosphorylated forms. We demonstrate that the first 11 amino acids are essential for phosphorylation and exclusive nuclear localization of HA1-E1. Within this region are four serine residues and a putative nuclear localization sequence (NLS; 5PLSKKRR). Removal of these four serine residues reduced phosphorylation levels by 60% but had no effect on nuclear localization of HA1-E1. Each serine residue was independently mutated to an alanine and analyzed by two-dimensional electrophoresis; only serine 4 was phosphorylated. Disruption of the basic amino acids within the NLS resulted in loss of exclusive nuclear localization and a 90-95% decrease in the phosphorylation of HA1-E1. This putative NLS was able to confer nuclear import on a non-nuclear protein in digitonin-permeabilized cells in a temperature- and ATP-dependent manner. Thus the predominant requirement for efficient phosphorylation of HA1-E1/E1a is a functional NLS, suggesting that E1a may be phosphorylated within the nucleus.
Collapse
Affiliation(s)
- A G Stephen
- Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | |
Collapse
|
18
|
Stephen AG, Trausch-Azar JS, Ciechanover A, Schwartz AL. The ubiquitin-activating enzyme E1 is phosphorylated and localized to the nucleus in a cell cycle-dependent manner. J Biol Chem 1996; 271:15608-14. [PMID: 8663123 DOI: 10.1074/jbc.271.26.15608] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The ubiquitin-activating enzyme E1 exists as two isoforms, E1a (117 kDa) and E1b (110 kDa). E1a is phosphorylated, whereas E1b is not. In the present study we have demonstrated the cell cycle dependence of E1a phosphorylation: a 2-fold increase in the specific phosphorylation of E1a in G2 compared with the basal level of phosphorylation in the other stages of the cell cycle. Two-dimensional gel electrophoresis resolved E1 into the two isoforms E1a and E1b; E1a resolved further as three phosphorylated forms and one nonphosphorylated form, while E1b resolved as one nonphosphorylated form. E1a is found predominantly in the phosphorylated forms. However, the distribution of E1a among these different phosphorylated forms was not cell cycle-dependent. We next evaluated the enzymatic activity of E1 as well as its subcellular localization throughout the cell cycle. 32P-Pyrophosphate exchange activity of E1 did not vary along the cell cycle; however, the amount of ubiquitin-protein conjugates decreased by 50% in G2. Nuclear and cytosolic fractionation of cells revealed the nuclear to cytosolic ratio of phosphorylated E1a was 3-fold greater in G2 compared with the other stages of the cell cycle. Finally, purified nuclear extracts supported E1-dependent ubiquitin conjugation of exogenous substrates as did purified cytosol. However, in nuclear extracts but not in cytosol the amount of E1 activity was rate-limiting. Thus we establish nuclear E1-dependent protein ubiquitination and propose that an increase in phosphorylation of E1a in G2 functions to increase the import and/or retention of E1a in the nucleus and may modulate nuclear protein ubiquitination.
Collapse
Affiliation(s)
- A G Stephen
- Edward Mallincrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|
19
|
Abstract
Contrary to widespread belief, the regulation and mechanism of degradation for the mass of intracellular proteins (i.e. differential, selective protein turnover) in vertebrate tissues is still a major biological enigma. There is no evidence for the conclusion that ubiquitin plays any role in these processes. The primary function of the ubiquitin-dependent protein degradation pathway appears to lie in the removal of abnormal, misfolded, denatured or foreign proteins in some eukaryotic cells. ATP/ubiquitin-dependent proteolysis probably also plays a role in the degradation of some so-called 'short-lived' proteins. Evidence obtained from the covalent modification of such natural substrates as calmodulin, histones (H2A, H2B) and some cell membrane receptors with ubiquitin indicates that the reversible interconversion of proteins with ubiquitin followed by concomitant functional changes may be of prime importance.
Collapse
Affiliation(s)
- H P Jennissen
- Institut für Physiologische Chemie, Universität-GHS-Essen, Germany
| |
Collapse
|
20
|
Nagai Y, Kaneda S, Nomura K, Yasuda H, Seno T, Yamao F. Ubiquitin-activating enzyme, E1, is phosphorylated in mammalian cells by the protein kinase Cdc2. J Cell Sci 1995; 108 ( Pt 6):2145-52. [PMID: 7673335 DOI: 10.1242/jcs.108.6.2145] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ubiquitin-activating enzyme (E1) is the first enzyme in the pathway leading to formation of ubiquitin-protein conjugates. E1 was found to be phosphorylated in cells of a mouse mammary carcinoma cell line, FM3A. Peptide mapping of trypsin digests of labeled E1 indicated that two oligopeptides were mainly phosphorylated in vivo. The same oligopeptides were also labeled in vitro on Cdc2 kinase-mediated phosphorylation of E1, affinity-purified from the same cell line. The Cdc2 kinase is a key enzyme playing a pivotal role in G2/M transition in the cell cycle. The phosphorylation of one of the two oligopeptides was prominent at the G2/M phase of the cell cycle, and dependent upon the Cdc2 kinase activity in vivo since it was significantly reduced in tsFT210, a mutant cell line deficient in Cdc2 kinase. Mutation analysis indicated that the serine residue at the fourth position of the E1 enzyme was a phosphorylation site of Cdc2 kinase. These findings suggest that E1 is a target of Cdc2 kinase in the cell, implying that the ubiquitin system may be dynamically involved in cell cycle control through phosphorylation of this key enzyme.
Collapse
Affiliation(s)
- Y Nagai
- National Institute of Genetics, Shizuoka-ken, Japan
| | | | | | | | | | | |
Collapse
|
21
|
Human ubiquitin-activating enzyme, E1. Indication of potential nuclear and cytoplasmic subpopulations using epitope-tagged cDNA constructs. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(20)30113-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
22
|
Pickart C, Kasperek E, Beal R, Kim A. Substrate properties of site-specific mutant ubiquitin protein (G76A) reveal unexpected mechanistic features of ubiquitin-activating enzyme (E1). J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)37255-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|