1
|
Jiang Y, Rex DA, Schuster D, Neely BA, Rosano GL, Volkmar N, Momenzadeh A, Peters-Clarke TM, Egbert SB, Kreimer S, Doud EH, Crook OM, Yadav AK, Vanuopadath M, Hegeman AD, Mayta M, Duboff AG, Riley NM, Moritz RL, Meyer JG. Comprehensive Overview of Bottom-Up Proteomics Using Mass Spectrometry. ACS MEASUREMENT SCIENCE AU 2024; 4:338-417. [PMID: 39193565 PMCID: PMC11348894 DOI: 10.1021/acsmeasuresciau.3c00068] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 05/03/2024] [Accepted: 05/03/2024] [Indexed: 08/29/2024]
Abstract
Proteomics is the large scale study of protein structure and function from biological systems through protein identification and quantification. "Shotgun proteomics" or "bottom-up proteomics" is the prevailing strategy, in which proteins are hydrolyzed into peptides that are analyzed by mass spectrometry. Proteomics studies can be applied to diverse studies ranging from simple protein identification to studies of proteoforms, protein-protein interactions, protein structural alterations, absolute and relative protein quantification, post-translational modifications, and protein stability. To enable this range of different experiments, there are diverse strategies for proteome analysis. The nuances of how proteomic workflows differ may be challenging to understand for new practitioners. Here, we provide a comprehensive overview of different proteomics methods. We cover from biochemistry basics and protein extraction to biological interpretation and orthogonal validation. We expect this Review will serve as a handbook for researchers who are new to the field of bottom-up proteomics.
Collapse
Affiliation(s)
- Yuming Jiang
- Department
of Computational Biomedicine, Cedars Sinai
Medical Center, Los Angeles, California 90048, United States
- Smidt Heart
Institute, Cedars Sinai Medical Center, Los Angeles, California 90048, United States
- Advanced
Clinical Biosystems Research Institute, Cedars Sinai Medical Center, Los
Angeles, California 90048, United States
| | - Devasahayam Arokia
Balaya Rex
- Center for
Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India
| | - Dina Schuster
- Department
of Biology, Institute of Molecular Systems
Biology, ETH Zurich, Zurich 8093, Switzerland
- Department
of Biology, Institute of Molecular Biology
and Biophysics, ETH Zurich, Zurich 8093, Switzerland
- Laboratory
of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institute, Villigen 5232, Switzerland
| | - Benjamin A. Neely
- Chemical
Sciences Division, National Institute of
Standards and Technology, NIST, Charleston, South Carolina 29412, United States
| | - Germán L. Rosano
- Mass
Spectrometry
Unit, Institute of Molecular and Cellular
Biology of Rosario, Rosario, 2000 Argentina
| | - Norbert Volkmar
- Department
of Biology, Institute of Molecular Systems
Biology, ETH Zurich, Zurich 8093, Switzerland
| | - Amanda Momenzadeh
- Department
of Computational Biomedicine, Cedars Sinai
Medical Center, Los Angeles, California 90048, United States
- Smidt Heart
Institute, Cedars Sinai Medical Center, Los Angeles, California 90048, United States
- Advanced
Clinical Biosystems Research Institute, Cedars Sinai Medical Center, Los
Angeles, California 90048, United States
| | - Trenton M. Peters-Clarke
- Department
of Pharmaceutical Chemistry, University
of California—San Francisco, San Francisco, California, 94158, United States
| | - Susan B. Egbert
- Department
of Chemistry, University of Manitoba, Winnipeg, Manitoba, R3T 2N2 Canada
| | - Simion Kreimer
- Smidt Heart
Institute, Cedars Sinai Medical Center, Los Angeles, California 90048, United States
- Advanced
Clinical Biosystems Research Institute, Cedars Sinai Medical Center, Los
Angeles, California 90048, United States
| | - Emma H. Doud
- Center
for Proteome Analysis, Indiana University
School of Medicine, Indianapolis, Indiana, 46202-3082, United States
| | - Oliver M. Crook
- Oxford
Protein Informatics Group, Department of Statistics, University of Oxford, Oxford OX1 3LB, United
Kingdom
| | - Amit Kumar Yadav
- Translational
Health Science and Technology Institute, NCR Biotech Science Cluster 3rd Milestone Faridabad-Gurgaon
Expressway, Faridabad, Haryana 121001, India
| | | | - Adrian D. Hegeman
- Departments
of Horticultural Science and Plant and Microbial Biology, University of Minnesota, Twin Cities, Minnesota 55108, United States
| | - Martín
L. Mayta
- School
of Medicine and Health Sciences, Center for Health Sciences Research, Universidad Adventista del Plata, Libertador San Martin 3103, Argentina
- Molecular
Biology Department, School of Pharmacy and Biochemistry, Universidad Nacional de Rosario, Rosario 2000, Argentina
| | - Anna G. Duboff
- Department
of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Nicholas M. Riley
- Department
of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Robert L. Moritz
- Institute
for Systems biology, Seattle, Washington 98109, United States
| | - Jesse G. Meyer
- Department
of Computational Biomedicine, Cedars Sinai
Medical Center, Los Angeles, California 90048, United States
- Smidt Heart
Institute, Cedars Sinai Medical Center, Los Angeles, California 90048, United States
- Advanced
Clinical Biosystems Research Institute, Cedars Sinai Medical Center, Los
Angeles, California 90048, United States
| |
Collapse
|
2
|
Cianciotto NP. The type II secretion system as an underappreciated and understudied mediator of interbacterial antagonism. Infect Immun 2024; 92:e0020724. [PMID: 38980047 PMCID: PMC11320942 DOI: 10.1128/iai.00207-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024] Open
Abstract
Interbacterial antagonism involves all major phyla, occurs across the full range of ecological niches, and has great significance for the environment, clinical arena, and agricultural and industrial sectors. Though the earliest insight into interbacterial antagonism traces back to the discovery of antibiotics, a paradigm shift happened when it was learned that protein secretion systems (e.g., types VI and IV secretion systems) deliver toxic "effectors" against competitors. However, a link between interbacterial antagonism and the Gram-negative type II secretion system (T2SS), which exists in many pathogens and environmental species, is not evident in prior reviews on bacterial competition or T2SS function. A current examination of the literature revealed four examples of a T2SS or one of its known substrates having a bactericidal activity against a Gram-positive target or another Gram-negative. When further studied, the T2SS effectors proved to be peptidases that target the peptidoglycan of the competitor. There are also reports of various bacteriolytic enzymes occurring in the culture supernatants of some other Gram-negative species, and a link between these bactericidal activities and T2SS is suggested. Thus, a T2SS can be a mediator of interbacterial antagonism, and it is possible that many T2SSs have antibacterial outputs. Yet, at present, the T2SS remains relatively understudied for its role in interbacterial competition. Arguably, there is a need to analyze the T2SSs of a broader range of species for their role in interbacterial antagonism. Such investigation offers, among other things, a possible pathway toward developing new antimicrobials for treating disease.
Collapse
Affiliation(s)
- Nicholas P. Cianciotto
- Department of Microbiology-Immunology, Northwestern University School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
3
|
Afoshin AS, Kudryakova IV, Borovikova AO, Suzina NE, Toropygin IY, Shishkova NA, Vasilyeva NV. Lytic potential of Lysobacter capsici VKM B-2533 T: bacteriolytic enzymes and outer membrane vesicles. Sci Rep 2020; 10:9944. [PMID: 32561806 PMCID: PMC7305183 DOI: 10.1038/s41598-020-67122-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 06/03/2020] [Indexed: 11/10/2022] Open
Abstract
Recent recurrent outbreaks of bacterial resistance to antibiotics have shown the critical need to identify new lytic agents to combat them. The species Lysobacter capsici VKM B-2533T possesses a potent antimicrobial action against a number of bacteria, fungi and yeasts. Its activity can be due to the impact of bacteriolytic enzymes, antibiotics and peptides. This work isolated four homogeneous bacteriolytic enzymes and a mixture of two proteins, which also had a bacteriolytic activity. The isolates included proteins identical to L. enzymogenes α- and β-lytic proteases and lysine-specific protease. The proteases of 26 kDa and 29 kDa and a protein identified as N-acetylglycosaminidase had not been isolated in Lysobacter earlier. The isolated β-lytic protease digested live methicillin-resistant staphylococcal cells with high efficiency (minimal inhibitory concentration, 2.85 μg/mL). This property makes the enzyme deserving special attention. A recombinant β-lytic protease was produced. The antimicrobial potential of the bacterium was contributed to by outer membrane vesicles (OMVs). L. capsici cells were found to form a group of OMVs responsible for antifungal activity. The data are indicative of a significant antimicrobial potential of this bacterium that requires thorough research.
Collapse
Affiliation(s)
- A S Afoshin
- Laboratory of Microbial Cell Surface Biochemistry, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, PSCBR RAS, 5 Prosp. Nauki, Pushchino, Moscow Region, 142290, Russia
| | - I V Kudryakova
- Laboratory of Microbial Cell Surface Biochemistry, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, PSCBR RAS, 5 Prosp. Nauki, Pushchino, Moscow Region, 142290, Russia
| | - A O Borovikova
- Laboratory of Microbial Cell Surface Biochemistry, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, PSCBR RAS, 5 Prosp. Nauki, Pushchino, Moscow Region, 142290, Russia
| | - N E Suzina
- Laboratory of Microbial Cell Surface Biochemistry, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, PSCBR RAS, 5 Prosp. Nauki, Pushchino, Moscow Region, 142290, Russia
| | - I Yu Toropygin
- Department of Proteomics, V.N. Orekhovich Research Institute of Biomedical Chemistry, Russian Academy of Medical Sciences, 10 Pogodinskaja Str., Moscow, 119832, Russia
| | - N A Shishkova
- Laboratory of Anthrax Microbiology, FBIS State Research Center for Applied Microbiology and Biotechnology, Obolensk, Serpukhov District, Moscow Region, 142279, Russia
| | - N V Vasilyeva
- Laboratory of Microbial Cell Surface Biochemistry, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, PSCBR RAS, 5 Prosp. Nauki, Pushchino, Moscow Region, 142290, Russia.
| |
Collapse
|
4
|
Razzaq A, Shamsi S, Ali A, Ali Q, Sajjad M, Malik A, Ashraf M. Microbial Proteases Applications. Front Bioeng Biotechnol 2019; 7:110. [PMID: 31263696 PMCID: PMC6584820 DOI: 10.3389/fbioe.2019.00110] [Citation(s) in RCA: 216] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 05/01/2019] [Indexed: 11/13/2022] Open
Abstract
The use of chemicals around the globe in different industries has increased tremendously, affecting the health of people. The modern world intends to replace these noxious chemicals with environmental friendly products for the betterment of life on the planet. Establishing enzymatic processes in spite of chemical processes has been a prime objective of scientists. Various enzymes, specifically microbial proteases, are the most essentially used in different corporate sectors, such as textile, detergent, leather, feed, waste, and others. Proteases with respect to physiological and commercial roles hold a pivotal position. As they are performing synthetic and degradative functions, proteases are found ubiquitously, such as in plants, animals, and microbes. Among different producers of proteases, Bacillus sp. are mostly commercially exploited microbes for proteases. Proteases are successfully considered as an alternative to chemicals and an eco-friendly indicator for nature or the surroundings. The evolutionary relationship among acidic, neutral, and alkaline proteases has been analyzed based on their protein sequences, but there remains a lack of information that regulates the diversity in their specificity. Researchers are looking for microbial proteases as they can tolerate harsh conditions, ways to prevent autoproteolytic activity, stability in optimum pH, and substrate specificity. The current review focuses on the comparison among different proteases and the current problems faced during production and application at the industrial level. Deciphering these issues would enable us to promote microbial proteases economically and commercially around the world.
Collapse
Affiliation(s)
- Abdul Razzaq
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Sadia Shamsi
- School of Medicine, Medical Sciences and Nutrition, The Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Arfan Ali
- 1-FB, Genetics, Four Brothers Group, Lahore, Pakistan
| | - Qurban Ali
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Muhammad Sajjad
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Arif Malik
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Muhammad Ashraf
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| |
Collapse
|
5
|
Takami H, Toyoda A, Uchiyama I, Itoh T, Takaki Y, Arai W, Nishi S, Kawai M, Shin-Ya K, Ikeda H. Complete genome sequence and expression profile of the commercial lytic enzyme producer Lysobacter enzymogenes M497-1. DNA Res 2018; 24:169-177. [PMID: 28065880 PMCID: PMC5397603 DOI: 10.1093/dnares/dsw055] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 11/19/2016] [Indexed: 11/13/2022] Open
Abstract
Lysobacter enzymogenes M497-1 is a producer of commercialized achromopeptidase and is expected to harbour genes encoding various other antimicrobial enzymes. Here, we present the complete sequence of the genome of M497-1 and the expression profiles of the genes for various antimicrobial enzymes. Of the 117 peptidase-encoding genes found in the 6.1-Mb genome of M497-1, 15 genes (aside from the gene encoding the achromopeptidase) were expressed at a level higher than that of the average ribosomal protein genes in the 24-h culture. Thus, the strain was found more valuable than hitherto considered. In addition, M497-1 harbours 98 genes involved in the biosynthesis of various natural products, 16 of which are M497-1-specific across 4 Lysobacter species. A gene cluster starting at LEN_2603 through LEN_2673 among the 98 genes closely resembled the lysobactin biosynthesis gene cluster of Lysobacter sp. ATCC 53042. It is likely that M497-1 may produce lysobactin or related antibacterial compounds. Furthermore, comparative genomic analysis of M497-1 and four other Lysobacter species revealed that their core genome structure comprises 3,737 orthologous groups. Our findings are expected to advance further biotechnological application of Lysobacter spp. as a promising source of natural bioactive compounds.
Collapse
Affiliation(s)
- Hideto Takami
- Microbial Genome Research Group, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokohama, Kanagawa, Japan
| | - Atsushi Toyoda
- Comparative Genomics Laboratory, National Institute of Genetics, Mishima, Japan
| | - Ikuo Uchiyama
- Laboratory of Genome Informatics, National Institute for Basic Biology, National Institutes of Natural Sciences, Aichi, Japan
| | - Takehiko Itoh
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Meguro-ku, Tokyo, Japan
| | - Yoshihiro Takaki
- Microbial Genome Research Group, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokohama, Kanagawa, Japan
| | - Wataru Arai
- Microbial Genome Research Group, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokohama, Kanagawa, Japan
| | - Shinro Nishi
- Microbial Genome Research Group, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokohama, Kanagawa, Japan
| | - Mikihiko Kawai
- Microbial Genome Research Group, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokohama, Kanagawa, Japan
| | - Kazuo Shin-Ya
- National Institute of Advanced Industrial Science and Technology, Koto-ku, Tokyo, Japan
| | - Haruo Ikeda
- Kitasato Institute for Life Sciences, Kitasato University, Sagamihara, Kanagawa, Japan
| |
Collapse
|
6
|
Pereira JQ, Ambrosini A, Passaglia LMP, Brandelli A. A new cold-adapted serine peptidase from Antarctic Lysobacter sp. A03: Insights about enzyme activity at low temperatures. Int J Biol Macromol 2017; 103:854-862. [PMID: 28552726 DOI: 10.1016/j.ijbiomac.2017.05.142] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 05/16/2017] [Accepted: 05/23/2017] [Indexed: 10/19/2022]
Abstract
Currently, there is a great interest for customized biocatalysts that can supply the ongoing demand of industrial processes, but also deal with the growing concern about the environment. In this scenario, cold-adapted enzymes have features that make them very attractive for industrial and biotechnological purposes. Here, we describe A03Pep1, a new cold-adapted serine peptidase isolated from Lysobacter sp. A03 by screening a genomic library. The enzyme is synthesized as a large inactive prepropeptidase that, after intramolecular processing, gives rise to the active form, of 35kDa. The heterologous expression of A03Pep1 was carried out in E. coli cells harboring the vector pGEX-4T-2-a0301. Its activity was optimal at pH 9.0 and 40°C, in the presence of 25mM Ca2+, which may contribute to the thermal stability of the enzyme. The 3D structure modelling predicted a less deep and more open binding pocket in A03Pep1 than that observed in the crystal structure of its mesophilic homologous AprV2, presumably as a way to enhance the probability of substrate binding at low temperatures. These results provide possible approaches in developing new biotechnologically relevant peptidases active at low to moderate temperatures.
Collapse
Affiliation(s)
- Jamile Queiroz Pereira
- Laboratório de Bioquímica e Microbiologia Aplicada, Instituto de Ciências e Tecnologia de Alimentos, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Adriana Ambrosini
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Luciane Maria Pereira Passaglia
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Adriano Brandelli
- Laboratório de Bioquímica e Microbiologia Aplicada, Instituto de Ciências e Tecnologia de Alimentos, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.
| |
Collapse
|
7
|
Wang TL, Ren YW, Wang HT, Yu H, Zhao YX. Association of Topoisomerase II (TOP2A) and Dual-Specificity Phosphatase 6 (DUSP6) Single Nucleotide Polymorphisms with Radiation Treatment Response and Prognosis of Lung Cancer in Han Chinese. Med Sci Monit 2017; 23:984-993. [PMID: 28231233 PMCID: PMC5335646 DOI: 10.12659/msm.899060] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Background Mutations of DNA topoisomerase II (TOP2A) are associated with chemotherapy resistance, whereas dual-specificity phosphatase 6 (DUSP6) negatively regulates members of the mitogen-activated protein (MAP) kinase superfamily to control cell proliferation. This study assessed TOP2A and DUSP6 single nucleotide polymorphisms (SNPs) in non-small cell lung cancer (NSCLC) patients for association with chemoradiotherapy responses and prognosis. Material/Methods A total of 140 Chinese patients with histologically confirmed NSCLC were enrolled and subjected to genotyping of TOP2A rs471692 and DUSP6 rs2279574 using Taqman PCR. An independent sample t test was used to analyze differences in tumor regression after radiotherapy versus SNP risk factors. Kaplan-Meier curves analyzed overall survival, followed by the log-rank test and Cox proportional hazard models. Results There were no significant associations of TOP2A rs471692 and DUSP6 rs2279574 polymorphisms or clinicopathological variables with response to chemoradiotherapy (p>0.05). Comparing overall survival of 87 patients with stage I–III NSCLC treated with radiotherapy or chemoradiotherapy to clinicopathological variables, the data showed that tumor regression, weight loss, clinical stage, and cigarette smoking were independent prognostic predictors (p=0.009, 0.043, 0.004, and 0.025, respectively). Tumor regression rate >0.34 was associated with patent survival versus tumor regression rate ≤0.34 (p=0.007). Conclusions TOP2A rs471692 and DUSP6 rs2279574 SNPs were not associated with chemoradiotherapy response, whereas tumor regression, weight loss, clinical stage, and cigarette smoking were independent prognostic predictors for these Chinese patients with NSCLC.
Collapse
Affiliation(s)
- Tian-Lu Wang
- Department of Radiotherapy Oncology, The Fourth Hospital of China Medical University, Shenyang, Liaoning, China (mainland).,Department of Radiotherapy Oncology, Liaoning Cancer Hospital
| | - Yang-Wu Ren
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, Liaoning, China (mainland).,Liaoning Provincial Department of Education, The Key Laboratory of Cancer Etiologic and Prevention, The First Hospital of China Medical University, Liaoning, Liaoning, China (mainland)
| | - He-Tong Wang
- Department of Radiotherapy Oncology, The Fourth Hospital of China Medical University, Shenyang, Liaoning, China (mainland).,Department of Radiotherapy Oncology, Shenyang Chest Hospital, Shenyang, Liaoning, China (mainland)
| | - Hong Yu
- Department of Radiotherapy Oncology, Liaoning Cancer Hospital
| | - Yu-Xia Zhao
- Department of Radiotherapy Oncology, The Fourth Hospital of China Medical University, Shenyang, Liaoning, China (mainland)
| |
Collapse
|
8
|
Cloning, expression and in silico studies of a serine protease from a marine actinomycete (Nocardiopsis sp. NCIM 5124). Process Biochem 2015. [DOI: 10.1016/j.procbio.2014.12.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
9
|
Xu G, Zhao Y, Du L, Qian G, Liu F. Hfq regulates antibacterial antibiotic biosynthesis and extracellular lytic-enzyme production in Lysobacter enzymogenes OH11. Microb Biotechnol 2015; 8:499-509. [PMID: 25683974 PMCID: PMC4408182 DOI: 10.1111/1751-7915.12246] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 10/31/2014] [Accepted: 11/02/2014] [Indexed: 12/14/2022] Open
Abstract
Lysobacter enzymogenes is an important biocontrol agent with the ability to produce a variety of lytic enzymes and novel antibiotics. Little is known about their regulatory mechanisms. Understanding these will be helpful for improving biocontrol of crop diseases and potential medical application. In the present study, we generated an hfq (encoding a putative ribonucleic acid chaperone) deletion mutant, and then utilized a new genomic marker-free method to construct an hfq-complemented strain. We showed for the first time that Hfq played a pleiotropic role in regulating the antibacterial antibiotic biosynthesis and extracellular lytic enzyme activity in L. enzymogenes. Mutation of hfq significantly increased the yield of WAP-8294A2 (an antibacterial antibiotic) as well as the transcription of its key biosynthetic gene, waps1. However, inactivation of hfq almost abolished the extracellular chitinase activity and remarkably decreased the activity of both extracellular protease and cellulase in L. enzymogenes. We further showed that the regulation of hfq in extracellular chitinase production was in part through the impairment of the secretion of chitinase A. Collectively, our results reveal the regulatory roles of hfq in antibiotic metabolite and extracellular lytic enzymes in the underexplored genus of Lysobacter.
Collapse
Affiliation(s)
- Gaoge Xu
- College of Plant Protection, Nanjing Agricultural University, China/Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, Nanjing, 210095, China
| | | | | | | | | |
Collapse
|
10
|
Krasovskaya LA, Rudenko NV, Shuvalova OP, Sukharicheva NA, Abbasova SG, Skiba NP, Stepnaya OA. Optimization of in vivo crosslinking technique for the study of AlpB-protein interactions in Lysobacter sp. XL1 cells. Process Biochem 2013. [DOI: 10.1016/j.procbio.2013.05.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Cloning and expression analysis of genes encoding lytic endopeptidases L1 and L5 from Lysobacter sp. strain XL1. Appl Environ Microbiol 2012; 78:7082-9. [PMID: 22865082 DOI: 10.1128/aem.01621-12] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lytic enzymes are the group of hydrolases that break down structural polymers of the cell walls of various microorganisms. In this work, we determined the nucleotide sequences of the Lysobacter sp. strain XL1 alpA and alpB genes, which code for, respectively, secreted lytic endopeptidases L1 (AlpA) and L5 (AlpB). In silico analysis of their amino acid sequences showed these endopeptidases to be homologous proteins synthesized as precursors similar in structural organization: the mature enzyme sequence is preceded by an N-terminal signal peptide and a pro region. On the basis of phylogenetic analysis, endopeptidases AlpA and AlpB were assigned to the S1E family [clan PA(S)] of serine peptidases. Expression of the alpA and alpB open reading frames (ORFs) in Escherichia coli confirmed that they code for functionally active lytic enzymes. Each ORF was predicted to have the Shine-Dalgarno sequence located at a canonical distance from the start codon and a potential Rho-independent transcription terminator immediately after the stop codon. The alpA and alpB mRNAs were experimentally found to be monocistronic; transcription start points were determined for both mRNAs. The synthesis of the alpA and alpB mRNAs was shown to occur predominantly in the late logarithmic growth phase. The amount of alpA mRNA in cells of Lysobacter sp. strain XL1 was much higher, which correlates with greater production of endopeptidase L1 than of L5.
Collapse
|
12
|
Krasovskaya LA, Rudenko NV, Abbasova SG, Shuvalova OP, Vidyagina EO, Sukharicheva NA, Ledova LA, Stepnaya OA, Kulaev IS. Monoclonal antibodies against the propeptide of endopeptidase AlpB of Lysobacter sp. XL1 for studying AlpB-protein interactions in bacterial cells. DOKL BIOCHEM BIOPHYS 2012; 441:298-301. [PMID: 22218960 DOI: 10.1134/s1607672911060147] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Indexed: 11/23/2022]
Affiliation(s)
- L A Krasovskaya
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, pr. Nauki 5, Pushchino, Moscow oblast, 142290, Russia
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Allen WJ, Phan G, Waksman G. Structural biology of periplasmic chaperones. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2009; 78:51-97. [PMID: 20663484 DOI: 10.1016/s1876-1623(08)78003-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Proteins often require specific helper proteins, chaperones, to assist with their correct folding and to protect them from denaturation and aggregation. The cell envelope of Gram-negative bacteria provides a particularly challenging environment for chaperones to function in as it lacks readily available energy sources such as adenosine 5' triphosphate (ATP) to power reaction cycles. Periplasmic chaperones have therefore evolved specialized mechanisms to carry out their functions without the input of external energy and in many cases to transduce energy provided by protein folding or ATP hydrolysis at the inner membrane. Structural and biochemical studies have in recent years begun to elucidate the specific functions of many important periplasmic chaperones and how these functions are carried out. This includes not only specific carrier chaperones, such as those involved in the biosynthesis of adhesive fimbriae in pathogenic bacteria, but also more general pathways including the periplasmic transport of outer membrane proteins and the extracytoplasmic stress responses. This chapter aims to provide an overview of protein chaperones so far identified in the periplasm and how structural biology has assisted with the elucidation of their functions.
Collapse
Affiliation(s)
- William J Allen
- Institute of Structural and Molecular Biology, Birkbeck and University College London, London WC1E 7HX, UK
| | | | | |
Collapse
|
14
|
Meng K, Li J, Cao Y, Shi P, Wu B, Han X, Bai Y, Wu N, Yao B. Gene cloning and heterologous expression of a serine protease fromStreptomyces fradiaevar.k11. Can J Microbiol 2007; 53:186-95. [PMID: 17496966 DOI: 10.1139/w06-122] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The gene sfp1, which encodes a predicted serine proteinase designated SFP1, was isolated by the screening of a gene library of the feather-degrading strain Streptomyces fradiae var.k11. The open reading frame of sfp1 encodes a protein of 454 amino acids with a calculated molecular mass of 46.19 kDa. Sequence analysis reveals that SFP1 possesses a typical pre-pro-mature organization that consists of a signal sequence, an N-terminal propeptide region, and a mature proteinase domain. The pre-enzyme of SFP1 was expressed in Escherichia coli and consequently purified. The 25.6 kDa fraction with protease activity separated by gel filtration chromatography indicated that the mature enzyme of SFP1 was formed by autolysis of the propeptide after its expression. The purified SFP1 is active under a broad range of pH and temperature. SFP1 has pH and temperature optima of pH 8.5 and 65 °C for its caseinolytic activity and pH 9 and 62 °C for its keratinolytic activity. SFP1 was sharply inhibited by the serine proteinase inhibitor phenylmethyl sulfonyl fluoride and exhibited a good stability to solvents, detergents, and salts. Comparison of the protease activity of SFP1 with other commercial proteases indicates that SFP1 has a considerable caseinolytic and keratinolytic activity as does proteinase K.
Collapse
Affiliation(s)
- Kun Meng
- Microbiological Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancunnandajie Road, Beijing 100081, China
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Lee MS, Do JO, Park MS, Jung S, Lee KH, Bae KS, Park SJ, Kim SB. Dominance of Lysobacter sp. in the rhizosphere of two coastal sand dune plant species, Calystegia soldanella and Elymus mollis. Antonie van Leeuwenhoek 2006; 90:19-27. [PMID: 16652206 DOI: 10.1007/s10482-006-9056-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2005] [Accepted: 01/04/2006] [Indexed: 11/24/2022]
Abstract
Bacterial diversity in the rhizosphere of beach morning glory (Calystegia soldanella) and wild rye (Elymus mollis), two of the major plant species inhabiting the coastal sane dune in Tae-An, Korea, was studied by the analysis of community 16S rRNA gene clones. The amplified rDNA restriction analysis (ARDRA) of the clones using HaeIII exhibited significant differences in the community composition between the two plant species as well as regional differences, but also identified a specific ARDRA pattern that was most common among the clones regardless of plant species. Subsequent sequence analysis indicated that the pattern was that of Lysobacter spp., which is a member of the family Xanthomonadaceae, class Gamma proteobacteria. The Lysobacter clones comprised 50.6% of the clones derived from C. soldanella and 62.5% of those from E. mollis. Other minor patterns included those of Pseudomonas spp., species of Rhizobium, Chryseobacterium spp. and Pantoea spp. among C. soldanella clones, and Pseudomonas sp. and Aeromonas hydrophila among E. mollis clones. It is not yet clear what kind of roles Lysobacter plays in association with sand dune plants, but its universal presence in the rhizosphere, together with the potential of this taxon for antagonistic activity against plant pathogens, suggests that Lysobacter might form a symbiotic relationship with its host plants.
Collapse
Affiliation(s)
- Myoung Sook Lee
- Food Analysis Research Center, Suwon Women's College, 336-27 Sanggi-ri, Bongdam-eup, Whasung, Kyunggi, 445-895, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Burger A, Gräfen I, Engemann J, Niermann E, Pieper M, Kirchner O, Gartemann KH, Eichenlaub R. Identification of homologues to the pathogenicity factor Pat-1, a putative serine protease of Clavibacter michiganensis subsp. michiganensis. Microbiol Res 2005; 160:417-27. [PMID: 16255147 DOI: 10.1016/j.micres.2005.03.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hybridization of Clavibacter michiganensis subsp. michiganensis total DNA against the pathogenicity gene pat-1 indicated the presence of pat-1 homologous nucleotide sequences on the chromosome and on plasmid pCM2. Isolation of the corresponding DNA fragments and nucleotide sequence determination showed that there are three pat-1 homologous genes: chpA (chromosome) and phpA and phpB (plasmid pCM2). The gene products share common characteristics, i.e. a signal sequence for Sec-dependent secretion, a serine protease motif, and six cysteine residues at conserved positions. Gene chpA located on the chromosome is a pseudogene since it contains a translational stop codon after 97 of 280 amino acids. In contrast to pat-1, cloning of the plasmid encoded homologs phpA and phpB into the avirulent plasmid free Cmm strain CMM100 did not result in a virulent phenotype. So far, no proteolytic activity could be demonstrated for Pat-1, however, site specific mutagenesis of pat-1 showed that the serine residue in the motif GDSGG is required for the virulent phenotype of pat-1 and thus Pat-1 could be a functional protease.
Collapse
Affiliation(s)
- Annette Burger
- Biology, Microbiology/Genetechnology, University of Bielefeld, Universitätsstr. 25, D-33615 Bielefeld, Germany
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Gartemann KH, Kirchner O, Engemann J, Gräfen I, Eichenlaub R, Burger A. Clavibacter michiganensis subsp. michiganensis: first steps in the understanding of virulence of a Gram-positive phytopathogenic bacterium. J Biotechnol 2004; 106:179-91. [PMID: 14651860 DOI: 10.1016/j.jbiotec.2003.07.011] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Clavibacter michiganensis subsp. michiganensis is a plant-pathogenic actinomycete. It infects tomato, spreads through the xylem and causes bacterial wilt and canker. The wild-type strain NCPPB382 carries two plasmids, pCM1 and pCM2. The cured plasmid-free derivative CMM100 is still able to colonize tomato, but no disease symptoms develop indicating that all genes required for successful infection, establishment and growth in the plant reside on the chromosome. Both plasmids carry one virulence factor, a gene encoding a cellulase, CelA in case of pCM1 and a putative serine protease Pat-1 on pCM2. These genes can independently convert the non-virulent strain CMM100 into a pathogen causing wilt on tomatoes. Currently, genome projects for Cmm and the closely related potato-pathogen C. michiganensis subsp. sepedonicus have been initiated. The data from the genome project shall give clues on further genes involved in plant-microbe interaction that can be tested experimentally. Especially, identification of genes related to host-specificity through genome comparison of the two subspecies might be possible.
Collapse
Affiliation(s)
- Karl-Heinz Gartemann
- Lehrstuhl Gentechnologie/Mikrobiologie, Fakultät für Biologie, Universität Bielefeld, Universitätsstrasse 25, D-33501 Bielefeld, Germany
| | | | | | | | | | | |
Collapse
|
18
|
Abstract
I have been studying the Thermobifida fusca cellulose degrading proteins for the past 25 years. In this period, we have purified and characterized the six extracellular cellulases and an intracellular beta- glucosidase used by T. fusca for cellulose degradation, cloned and sequenced the structural genes encoding these enzymes, and helped to determine the 3-dimensional structures of two of the cellulase catalytic domains. This research determined the mechanism of a novel class of cellulase, family 9 processive endoglucanases, and helped to show that there were two types of exocellulases, ones that attacked the non-reducing ends of cellulose and ones that attacked the reducing ends. It also led to the sequencing of the T. fusca genome by the DOE Joint Genome Institute. We have studied the mechanisms that regulate T. fusca cellulases and have shown that cellobiose is the inducer and that cellulase synthesis is repressed by any good carbon source. A regulatory protein (CelR) that functions in the induction control has been purified, characterized, and its structural gene cloned and expressed in E. coli. I have also carried out research on two rumen bacteria, Prevotella ruminicola and Fibrobacter succinogenes, in collaboration with Professor James Russell, helping to arrange for the genomes of these two organisms to be sequenced by TIGR, funded by a USDA grant to the North American Consortium for Genomics of Fibrolytic Ruminal Biology.
Collapse
Affiliation(s)
- David B Wilson
- Department of Molecular Biology & Genetics, Cornell University, 458 Biotechnology Building, Ithaca, NY 14853, USA.
| |
Collapse
|
19
|
Palumbo JD, Sullivan RF, Kobayashi DY. Molecular characterization and expression in Escherichia coli of three beta-1,3-glucanase genes from Lysobacter enzymogenes strain N4-7. J Bacteriol 2003; 185:4362-70. [PMID: 12867444 PMCID: PMC165785 DOI: 10.1128/jb.185.15.4362-4370.2003] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lysobacter enzymogenes strain N4-7 produces multiple biochemically distinct extracellular beta-1,3-glucanase activities. The gluA, gluB, and gluC genes, encoding enzymes with beta-1,3-glucanase activity, were identified by a reverse-genetics approach following internal amino acid sequence determination of beta-1,3-glucanase-active proteins partially purified from culture filtrates of strain N4-7. Analysis of gluA and gluC gene products indicates that they are members of family 16 glycoside hydrolases that have significant sequence identity to each other throughout the catalytic domain but that differ structurally by the presence of a family 6 carbohydrate-binding domain within the gluC product. Analysis of the gluB gene product indicates that it is a member of family 64 glycoside hydrolases. Expression of each gene in Escherichia coli resulted in the production of proteins with beta-1,3-glucanase activity. Biochemical analyses of the recombinant enzymes indicate that GluA and GluC exhibit maximal activity at pH 4.5 and 45 degrees C and that GluB is most active between pH 4.5 and 5.0 at 41 degrees C. Activity of recombinant proteins against various beta-1,3 glucan substrates indicates that GluA and GluC are most active against linear beta-1,3 glucans, while GluB is most active against the insoluble beta-1,3 glucan substrate zymosan A. These data suggest that the contribution of beta-1,3-glucanases to the biocontrol activity of L. enzymogenes may be due to complementary activities of these enzymes in the hydrolysis of beta-1,3 glucans from fungal cell walls.
Collapse
Affiliation(s)
- Jeffrey D Palumbo
- Department of Plant Biology and Pathology, Cook College, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901, USA
| | | | | |
Collapse
|
20
|
Dixit VS, Pant A. Comparative characterization of two serine endopeptidases from Nocardiopsis sp. NCIM 5124. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1523:261-8. [PMID: 11042393 DOI: 10.1016/s0304-4165(00)00132-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
A protease-producing, crude oil degrading marine isolate was identified as Nocardiopsis sp. on the basis of the morphology, cell wall composition, mycolic acid analysis and DNA base composition. The Nocardiopsis produces two extracellular proteases, both of which are alkaline serine endopeptidases. Protease I was purified to homogeneity by chromatography on CM-Sephadex at pH 5.0 and pH 9.0. Protease II was purified using DEAE-cellulose, Sephadex G-50, phenyl-Sepharose and hydroxyapatite chromatography. Protease I and II had almost similar M(r) of 21 kDa (Protease I) and 23 kDa (Protease II), pI of 8.3 and 7.0 respectively with pH and temperature optima for activity between 10.0 and 11.0 and about 60 degrees C. Specific activities were 152 and 14 U/mg respectively on casein. However, Protease I was antigenically unrelated to Protease II. Both proteases were endopeptidases and required extended substrate binding for catalysis. Both proteases had collagenolytic and fibrinolytic activity but only Protease I had elastinolytic activity. The proteases were chymotrypsin-like with respect to their amino acid compositions and N-terminal sequences.
Collapse
Affiliation(s)
- V S Dixit
- Division of Biochemical Sciences, National Chemical Laboratory, 411008, Pune, India
| | | |
Collapse
|
21
|
Kessler E, Safrin M, Gustin JK, Ohman DE. Elastase and the LasA protease of Pseudomonas aeruginosa are secreted with their propeptides. J Biol Chem 1998; 273:30225-31. [PMID: 9804780 DOI: 10.1074/jbc.273.46.30225] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Pseudomonas aeruginosa elastase and the LasA protease are synthesized as preproenzymes with long amino-terminal propeptides. The elastase propeptide is cleaved autocatalytically in the periplasm to form a transient, inactive elastase-propeptide complex. In contrast, the processing of proLasA does not involve autoproteolysis. In this study, we analyzed short-term P. aeruginosa cultures under conditions that minimize proteolysis and found that an elastase-propeptide complex is secreted, and then the propeptide is degraded extracellularly, apparently by elastase itself. LasA protease, on the other hand, was found to be secreted in its unprocessed 42-kDa proenzyme form. The processing of proLasA occurred extracellularly, and it involved the transient appearance of a 28-kDa intermediate and the respective 14-kDa LasA propeptide fragment. The processing of proLasA in P. aeruginosa strain FRD740, which does not express elastase, also proceeded via the 28-kDa intermediate, but the rate of processing was greatly reduced. This low rate of proLasA processing was further reduced when the activity of a secreted lysine-specific protease was blocked. Purified secreted proteases of P. aeruginosa (i.e. elastase, the lysine-specific protease, and alkaline proteinase) converted proLasA to the active enzyme. Processing by elastase and the lysine-specific enzyme, but not by alkaline proteinase, proceeded via the 28-kDa intermediate, and both were far more effective than alkaline proteinase in converting proLasA to the mature enzyme. We conclude that LasA protease and elastase are secreted with their propeptides, which are then degraded by secreted proteases of P. aeruginosa. In addition to their other functions, the propeptides may play a role in targeting their respective enzymes across the outer membrane.
Collapse
Affiliation(s)
- E Kessler
- Maurice and Gabriela Goldschleger Eye Research Institute, Tel-Aviv University Sackler Faculty of Medicine, Sheba Medical Center, Tel-Hashomer 52621, Israel.
| | | | | | | |
Collapse
|
22
|
Rao MB, Tanksale AM, Ghatge MS, Deshpande VV. Molecular and biotechnological aspects of microbial proteases. Microbiol Mol Biol Rev 1998; 62:597-635. [PMID: 9729602 PMCID: PMC98927 DOI: 10.1128/mmbr.62.3.597-635.1998] [Citation(s) in RCA: 1062] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Proteases represent the class of enzymes which occupy a pivotal position with respect to their physiological roles as well as their commercial applications. They perform both degradative and synthetic functions. Since they are physiologically necessary for living organisms, proteases occur ubiquitously in a wide diversity of sources such as plants, animals, and microorganisms. Microbes are an attractive source of proteases owing to the limited space required for their cultivation and their ready susceptibility to genetic manipulation. Proteases are divided into exo- and endopeptidases based on their action at or away from the termini, respectively. They are also classified as serine proteases, aspartic proteases, cysteine proteases, and metalloproteases depending on the nature of the functional group at the active site. Proteases play a critical role in many physiological and pathophysiological processes. Based on their classification, four different types of catalytic mechanisms are operative. Proteases find extensive applications in the food and dairy industries. Alkaline proteases hold a great potential for application in the detergent and leather industries due to the increasing trend to develop environmentally friendly technologies. There is a renaissance of interest in using proteolytic enzymes as targets for developing therapeutic agents. Protease genes from several bacteria, fungi, and viruses have been cloned and sequenced with the prime aims of (i) overproduction of the enzyme by gene amplification, (ii) delineation of the role of the enzyme in pathogenecity, and (iii) alteration in enzyme properties to suit its commercial application. Protein engineering techniques have been exploited to obtain proteases which show unique specificity and/or enhanced stability at high temperature or pH or in the presence of detergents and to understand the structure-function relationships of the enzyme. Protein sequences of acidic, alkaline, and neutral proteases from diverse origins have been analyzed with the aim of studying their evolutionary relationships. Despite the extensive research on several aspects of proteases, there is a paucity of knowledge about the roles that govern the diverse specificity of these enzymes. Deciphering these secrets would enable us to exploit proteases for their applications in biotechnology.
Collapse
Affiliation(s)
- M B Rao
- Division of Biochemical Sciences, National Chemical Laboratory, Pune 411008, India
| | | | | | | |
Collapse
|
23
|
Dreier J, Meletzus D, Eichenlaub R. Characterization of the plasmid encoded virulence region pat-1 of phytopathogenic Clavibacter michiganensis subsp. michiganensis. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 1997; 10:195-206. [PMID: 9057325 DOI: 10.1094/mpmi.1997.10.2.195] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The tomato pathogen Clavibacter michiganensis subsp. michiganensis NCPPB382, causing bacterial wilt and canker, harbors two plasmids, pCM1 (27.5 kb) and pCM2 (72 kb), carrying genes involved in virulence. The region of plasmid pCM2 encoding the pathogenicity locus pat-1 was mapped by deletion analysis and complementation studies to a 1.5-kb Bg/II/SmaI DNA fragment. Introduction of the pat-1 region into endophytic, plasmid-free isolates of C. michiganensis subsp. michiganensis converted these bacteria into virulent pathogens. Based on the nucleotide sequence of the pat-1 region, an open reading frame (ORF1) can be predicted, coding for a protein of 280 amino acids and 29.7 kDa with homology to serine proteases. Introduction of a frame-shift mutation in ORF1 leads to a loss of the pathogenic phenotype. Northern (RNA) hybridizations identified an 1.5-knt transcript of the pat-1 structural gene. The site of transcription initiation was mapped by primer extension and a typical -10/-35 region was located with significant homology to the consensus Escherichia coli sigma 70 and Bacillus subtilis sigma 43 promoters. Downstream of the pat-1 structural gene, a peculiar repetitive sequence motif (pat-1rep) is located, consisting of 20 direct tandem repeats preceded by a run of 14 guanosine residues. DNA sequences homologous to pat-1rep were isolated and characterized from four virulent C. michiganensis subsp. michiganensis strains exhibiting a high extent of structural conservation. The deletion of this repetitive sequence reduced virulence significantly but did not lead to a complete loss of the virulence phenotype.
Collapse
Affiliation(s)
- J Dreier
- Universität Bielefeld, Fakultät für Biologie, Gentechnologie/Mikrobiologie, Germany
| | | | | |
Collapse
|
24
|
Lin D, McBride MJ. Development of techniques for the genetic manipulation of the gliding bacteria Lysobacter enzymogenes and Lysobacter brunescens. Can J Microbiol 1996; 42:896-902. [PMID: 8864212 DOI: 10.1139/m96-115] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Lysobacter enzymogenes and Lysobacter brunescens are Gram-negative gliding bacteria that belong to the gamma subgroup of the proteobacteria. As a first step toward a molecular analysis of Lysobacter gliding motility, we developed techniques to genetically manipulate these bacteria. Cosmid pSUP106 of the broad host range incompatibility group Q (Inc Q) was introduced into L. enzymogenes and L. brunescens by conjugation and electroporation. pSUP106 replicated stably in both organisms and conferred antibiotic resistance. We also identified several other plasmids (pKT210, pH1JI) that functioned in L. enzymogenes and a transposon (mini-Tn5Sp) that functioned in L. brunescens. The identification of these tools allows genetic analysis of Lysobacter gliding motility, exoenzyme production, and production of antibiotics and other secondary metabolites.
Collapse
Affiliation(s)
- D Lin
- Department of Biological Sciences, University of Wisconsin-Milwaukee, 53201, USA
| | | |
Collapse
|
25
|
Proteolytic enzyme and polymer production by Lysobacter gummosus. Biotechnol Lett 1995. [DOI: 10.1007/bf00128391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
26
|
Affiliation(s)
- E Kessler
- Maurice and Gabriela Goldschleger Eye Research Institute, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Hashomer, Israel
| |
Collapse
|
27
|
Lucas N, Mazaud-Aujard C, Bremaud L, Cenatiempo Y, Julien R. Protein purification, gene cloning and sequencing of an acidic endoprotease from Myxococcus xanthus DK101. EUROPEAN JOURNAL OF BIOCHEMISTRY 1994; 222:247-54. [PMID: 8020464 DOI: 10.1111/j.1432-1033.1994.tb18863.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
An acidic endoprotease (MAEP) secreted during vegetative growth by Myxococcus xanthus DK101 was purified to homogeneity by a series of chromatographic procedures. The endoprotease cleaved the Phe-Met bond of kappa-casein under acidic conditions (pH 5.9). Its apparent molecular mass and its isoelectric point have been estimated to be 12 kDa and 4.5, respectively. From the N-terminal amino acid sequence, a set of two primers for polymerase chain reaction have been designed. Amplification of the corresponding DNA fragment (84 bp) generated a probe, then used to screen an expression DNA library of M. xanthus and to isolate a recombinant plasmid which contained a 2127-bp insert. The nucleotide sequence included an open reading frame (ORF) of 585 nucleotides, encoding 195 amino acids, that exhibited a high degree of similarity with the N-terminal amino acid sequence of the purified MAEP. The polypeptide sequence inferred from this ORF revealed that the mature enzyme should contain 131 amino acids arising from a 195-amino-acid precursor protein.
Collapse
Affiliation(s)
- N Lucas
- Institut de Biotechnologie, Faculté des Sciences, Limoges, France
| | | | | | | | | |
Collapse
|
28
|
Abstract
Many proteins from both prokaryotic and eukaryotic sources are produced with amino-terminal propeptides. These propeptides, which are usually located between the signal peptide and the mature protein, are essential for the proper function of that protein. Recent research has indicated that these polypeptides are indispensible for proper folding of the proteins they are attached to. As propeptides perform a function similar to that of a large family of heat shock proteins, they had been broadly classified as molecular chaperones. However, significant differences exist between these two classes of proteins and to distinguish them from one another, propeptides have been termed intramolecular chaperones. Recent results have suggested that such intramolecular chaperones may be found in a large number of proteins.
Collapse
Affiliation(s)
- U Shinde
- Department of Biochemistry, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, Piscataway 08854
| | | |
Collapse
|
29
|
|
30
|
Chang P, Lee Y. Extracellular autoprocessing of a metalloprotease from Streptomyces cacaoi. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)50618-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
31
|
Proclotting enzyme from horseshoe crab hemocytes. cDNA cloning, disulfide locations, and subcellular localization. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(18)45722-5] [Citation(s) in RCA: 133] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
32
|
Abstract
Many different bacteria secrete proteases into the culture medium. Extracellular proteases produced by Gram-positive bacteria are secreted by a signal-peptide-dependent pathway and have a propeptide located between the signal peptide and the mature protein. Many extracellular proteases synthesized by Gram-negative bacteria are also produced as precursors with a signal peptide. However, at least two species of Gram-negative bacteria secrete one or more proteases via a novel signal-peptide-independent route. Most proteases secreted by Gram-negative bacteria also have a propeptide whose length and location vary according to the protease. Specific features of protease secretion pathways and the mechanisms of protease activation are discussed with particular reference to some of the best-characterized extracellular proteases produced by Gram-positive and Gram-negative bacteria.
Collapse
Affiliation(s)
- C Wandersman
- Unité de Génétique Moléculaire, Institute Pasteur, Paris, France
| |
Collapse
|
33
|
Ohara T, Makino K, Shinagawa H, Nakata A, Norioka S, Sakiyama F. Cloning, nucleotide sequence, and expression of Achromobacter protease I gene. J Biol Chem 1989. [DOI: 10.1016/s0021-9258(19)47109-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|