1
|
Diatlova EA, Mechetin GV, Yudkina AV, Zharkov VD, Torgasheva NA, Endutkin AV, Shulenina OV, Konevega AL, Gileva IP, Shchelkunov SN, Zharkov DO. Correlated Target Search by Vaccinia Virus Uracil-DNA Glycosylase, a DNA Repair Enzyme and a Processivity Factor of Viral Replication Machinery. Int J Mol Sci 2023; 24:ijms24119113. [PMID: 37298065 DOI: 10.3390/ijms24119113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/13/2023] [Accepted: 05/21/2023] [Indexed: 06/12/2023] Open
Abstract
The protein encoded by the vaccinia virus D4R gene has base excision repair uracil-DNA N-glycosylase (vvUNG) activity and also acts as a processivity factor in the viral replication complex. The use of a protein unlike PolN/PCNA sliding clamps is a unique feature of orthopoxviral replication, providing an attractive target for drug design. However, the intrinsic processivity of vvUNG has never been estimated, leaving open the question whether it is sufficient to impart processivity to the viral polymerase. Here, we use the correlated cleavage assay to characterize the translocation of vvUNG along DNA between two uracil residues. The salt dependence of the correlated cleavage, together with the similar affinity of vvUNG for damaged and undamaged DNA, support the one-dimensional diffusion mechanism of lesion search. Unlike short gaps, covalent adducts partly block vvUNG translocation. Kinetic experiments show that once a lesion is found it is excised with a probability ~0.76. Varying the distance between two uracils, we use a random walk model to estimate the mean number of steps per association with DNA at ~4200, which is consistent with vvUNG playing a role as a processivity factor. Finally, we show that inhibitors carrying a tetrahydro-2,4,6-trioxopyrimidinylidene moiety can suppress the processivity of vvUNG.
Collapse
Affiliation(s)
- Evgeniia A Diatlova
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia
| | - Grigory V Mechetin
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia
| | - Anna V Yudkina
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia
| | - Vasily D Zharkov
- Biology Department, Tomsk State University, 634050 Tomsk, Russia
| | - Natalia A Torgasheva
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia
| | - Anton V Endutkin
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia
| | - Olga V Shulenina
- NRC "Kurchatov Institute"-B. P. Konstantinov Petersburg Nuclear Physics Institute, Leningrad Region, 188300 Gatchina, Russia
| | - Andrey L Konevega
- NRC "Kurchatov Institute"-B. P. Konstantinov Petersburg Nuclear Physics Institute, Leningrad Region, 188300 Gatchina, Russia
| | - Irina P Gileva
- State Research Center of Virology and Biotechnology Vector, Novosibirsk Region, 630559 Koltsovo, Russia
| | - Sergei N Shchelkunov
- State Research Center of Virology and Biotechnology Vector, Novosibirsk Region, 630559 Koltsovo, Russia
| | - Dmitry O Zharkov
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090 Novosibirsk, Russia
| |
Collapse
|
2
|
Diatlova EA, Mechetin GV, Zharkov DO. Distinct Mechanisms of Target Search by Endonuclease VIII-like DNA Glycosylases. Cells 2022; 11:cells11203192. [PMID: 36291061 PMCID: PMC9600533 DOI: 10.3390/cells11203192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/08/2022] [Accepted: 10/09/2022] [Indexed: 12/02/2022] Open
Abstract
Proteins that recognize specific DNA sequences or structural elements often find their cognate DNA lesions in a processive mode, in which an enzyme binds DNA non-specifically and then slides along the DNA contour by one-dimensional diffusion. Opposite to the processive mechanism is distributive search, when an enzyme binds, samples and releases DNA without significant lateral movement. Many DNA glycosylases, the repair enzymes that excise damaged bases from DNA, use processive search to find their cognate lesions. Here, using a method based on correlated cleavage of multiply damaged oligonucleotide substrates we investigate the mechanism of lesion search by three structurally related DNA glycosylases—bacterial endonuclease VIII (Nei) and its mammalian homologs NEIL1 and NEIL2. Similarly to another homologous enzyme, bacterial formamidopyrimidine–DNA glycosylase, NEIL1 seems to use a processive mode to locate its targets. However, the processivity of Nei was notably lower, and NEIL2 exhibited almost fully distributive action on all types of substrates. Although one-dimensional diffusion is often regarded as a universal search mechanism, our results indicate that even proteins sharing a common fold may be quite different in the ways they locate their targets in DNA.
Collapse
Affiliation(s)
- Evgeniia A. Diatlova
- Siberian Branch of the Russian Academy of Sciences Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia
| | - Grigory V. Mechetin
- Siberian Branch of the Russian Academy of Sciences Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia
| | - Dmitry O. Zharkov
- Siberian Branch of the Russian Academy of Sciences Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090 Novosibirsk, Russia
- Correspondence:
| |
Collapse
|
3
|
Structural organization, evolution, and distribution of viral pyrimidine dimer-DNA glycosylases. Biophys Rev 2022; 14:923-932. [DOI: 10.1007/s12551-022-00972-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/31/2022] [Indexed: 12/18/2022] Open
|
4
|
Lee AJ, Wallace SS. Hide and seek: How do DNA glycosylases locate oxidatively damaged DNA bases amidst a sea of undamaged bases? Free Radic Biol Med 2017; 107:170-178. [PMID: 27865982 PMCID: PMC5433924 DOI: 10.1016/j.freeradbiomed.2016.11.024] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 11/11/2016] [Accepted: 11/13/2016] [Indexed: 01/10/2023]
Abstract
The first step of the base excision repair (BER) pathway responsible for removing oxidative DNA damage utilizes DNA glycosylases to find and remove the damaged DNA base. How glycosylases find the damaged base amidst a sea of undamaged bases has long been a question in the BER field. Single molecule total internal reflection fluorescence microscopy (SM TIRFM) experiments have allowed for an exciting look into this search mechanism and have found that DNA glycosylases scan along the DNA backbone in a bidirectional and random fashion. By comparing the search behavior of bacterial glycosylases from different structural families and with varying substrate specificities, it was found that glycosylases search for damage by periodically inserting a wedge residue into the DNA stack as they redundantly search tracks of DNA that are 450-600bp in length. These studies open up a wealth of possibilities for further study in real time of the interactions of DNA glycosylases and other BER enzymes with various DNA substrates.
Collapse
Affiliation(s)
- Andrea J Lee
- Department of Microbiology and Molecular Genetics, The Markey Center for Molecular Genetics, The University of Vermont, 95 Carrigan Drive, Burlington, VT 05405, USA
| | - Susan S Wallace
- Department of Microbiology and Molecular Genetics, The Markey Center for Molecular Genetics, The University of Vermont, 95 Carrigan Drive, Burlington, VT 05405, USA.
| |
Collapse
|
5
|
Douki T, von Koschembahr A, Cadet J. Insight in DNA Repair of UV-induced Pyrimidine Dimers by Chromatographic Methods. Photochem Photobiol 2017; 93:207-215. [PMID: 27935042 DOI: 10.1111/php.12685] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 11/21/2016] [Indexed: 01/15/2023]
Abstract
UV-induced formation of pyrimidine dimers in DNA is a major deleterious event in both eukaryotic and prokaryotic cells. Accumulation of cyclobutane pyrimidine dimers and pyrimidine (6-4) pyrimidone photoproducts can lead to cell death or be at the origin of mutations. In skin, UV induction of DNA damage is a major initiating event in tumorigenesis. To counteract these deleterious effects, all cell types possess DNA repair machinery, such as nucleotide excision repair and, in some cell types, direct reversion. Different analytical approaches were used to assess the efficiency of repair and decipher the enzymatic mechanisms. We presently review the information provided by chromatographic methods, which are complementary to biochemical assays, such as immunological detection and electrophoresis-based techniques. Chromatographic assays are interesting in their ability to provide quantitative data on a wide range of damage and are also valuable tools for the identification of repair intermediates.
Collapse
Affiliation(s)
- Thierry Douki
- Univ. Grenoble Alpes, INAC, LCIB, LAN, Grenoble, France.,CEA, INAC, SyMMES, LAN, Grenoble, France
| | - Anne von Koschembahr
- Univ. Grenoble Alpes, INAC, LCIB, LAN, Grenoble, France.,CEA, INAC, SyMMES, LAN, Grenoble, France
| | - Jean Cadet
- Département de Médecine Nucléaire et Radiobiologie, Faculté de Médecine, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
6
|
Mechetin GV, Dyatlova EA, Sinyakov AN, Ryabinin VA, Vorobjev PE, Zharkov DO. Correlated target search by uracil-DNA glycosylase in the presence of bulky adducts and DNA-binding ligands. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2017. [DOI: 10.1134/s106816201606008x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
7
|
Lee AJ, Wallace SS. Visualizing the Search for Radiation-damaged DNA Bases in Real Time. Radiat Phys Chem Oxf Engl 1993 2016; 128:126-133. [PMID: 27818579 DOI: 10.1016/j.radphyschem.2016.05.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The Base Excision Repair (BER) pathway removes the vast majority of damages produced by ionizing radiation, including the plethora of radiation-damaged purines and pyrimidines. The first enzymes in the BER pathway are DNA glycosylases, which are responsible for finding and removing the damaged base. Although much is known about the biochemistry of DNA glycosylases, how these enzymes locate their specific damage substrates among an excess of undamaged bases has long remained a mystery. Here we describe the use of single molecule fluorescence to observe the bacterial DNA glycosylases, Nth, Fpg and Nei, scanning along undamaged and damaged DNA. We show that all three enzymes randomly diffuse on the DNA molecule and employ a wedge residue to search for and locate damage. The search behavior of the Escherichia coli DNA glycosylases likely provides a paradigm for their homologous mammalian counterparts.
Collapse
Affiliation(s)
- Andrea J Lee
- Department of Microbiology and Molecular Genetics, The Markey Center for Molecular Genetics, The University of Vermont, 95 Carrigan Drive, Burlington, Vermont, 05405, USA
| | - Susan S Wallace
- Department of Microbiology and Molecular Genetics, The Markey Center for Molecular Genetics, The University of Vermont, 95 Carrigan Drive, Burlington, Vermont, 05405, USA
| |
Collapse
|
8
|
Serum resistant and enhanced transfection of plasmid DNA by PEG-stabilized polyplex nanoparticles of L-histidine substituted polyethyleneimine. Macromol Res 2015. [DOI: 10.1007/s13233-015-3074-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
9
|
Mechetin GV, Zharkov DO. Mechanisms of diffusional search for specific targets by DNA-dependent proteins. BIOCHEMISTRY (MOSCOW) 2015; 79:496-505. [PMID: 25100007 DOI: 10.1134/s0006297914060029] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
To perform their functions, many DNA-dependent proteins have to quickly locate specific targets against the vast excess of nonspecific DNA. Although this problem was first formulated over 40 years ago, the mechanism of such search remains one of the unsolved fundamental problems in the field of protein-DNA interactions. Several complementary mechanisms have been suggested: sliding, based on one-dimensional random diffusion along the DNA contour; hopping, in which the protein "jumps" between the closely located DNA fragments; macroscopic association-dissociation of the protein-DNA complex; and intersegmental transfer. This review covers the modern state of the problem of target DNA search, theoretical descriptions, and methods of research at the macroscopic (molecule ensembles) and microscopic (individual molecules) levels. Almost all studied DNA-dependent proteins search for specific targets by combined three-dimensional diffusion and one-dimensional diffusion along the DNA contour.
Collapse
Affiliation(s)
- G V Mechetin
- Institute of Chemical Biology and Fundamental Medicine, Siberian Division of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | | |
Collapse
|
10
|
Lee AJ, Warshaw DM, Wallace SS. Insights into the glycosylase search for damage from single-molecule fluorescence microscopy. DNA Repair (Amst) 2014; 20:23-31. [PMID: 24560296 DOI: 10.1016/j.dnarep.2014.01.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 12/13/2013] [Accepted: 01/22/2014] [Indexed: 12/21/2022]
Abstract
The first step of base excision repair utilizes glycosylase enzymes to find damage within a genome. A persistent question in the field of DNA repair is how glycosylases interact with DNA to specifically find and excise target damaged bases with high efficiency and specificity. Ensemble studies have indicated that glycosylase enzymes rely upon both sliding and distributive modes of search, but ensemble methods are limited in their ability to directly observe these modes. Here we review insights into glycosylase scanning behavior gathered through single-molecule fluorescence studies of enzyme interactions with DNA and provide a context for these results in relation to ensemble experiments.
Collapse
Affiliation(s)
- Andrea J Lee
- Department of Microbiology and Molecular Genetics, The Markey Center for Molecular Genetics, The University of Vermont, 95 Carrigan Drive, Stafford Hall, Burlington, VT 05405-0084, USA.
| | - David M Warshaw
- Department of Molecular Physiology and Biophysics, The University of Vermont, Health Science Research Facility, 149 Beaumont Avenue, Burlington, VT 05405-0075, USA.
| | - Susan S Wallace
- Department of Microbiology and Molecular Genetics, The Markey Center for Molecular Genetics, The University of Vermont, 95 Carrigan Drive, Stafford Hall, Burlington, VT 05405-0084, USA.
| |
Collapse
|
11
|
Alternative excision repair of ultraviolet B- and C-induced DNA damage in dormant and developing spores of Bacillus subtilis. J Bacteriol 2012; 194:6096-104. [PMID: 22961846 DOI: 10.1128/jb.01340-12] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The nucleotide excision repair (NER) and spore photoproduct lyase DNA repair pathways are major determinants of Bacillus subtilis spore resistance to UV radiation. We report here that a putative ultraviolet (UV) damage endonuclease encoded by ywjD confers protection to developing and dormant spores of B. subtilis against UV DNA damage. In agreement with its predicted function, a His(6)-YwjD recombinant protein catalyzed the specific incision of UV-irradiated DNA in vitro. The maximum expression of a reporter gene fusion to the ywjD opening reading frame occurred late in sporulation, and this maximal expression was dependent on the forespore-specific RNA polymerase sigma factor, σ(G). Although the absence of YwjD and/or UvrA, an essential protein of the NER pathway, sensitized developing spores to UV-C, this effect was lower when these cells were treated with UV-B. In contrast, UV-B but not UV-C radiation dramatically decreased the survival of dormant spores deficient in both YwjD and UvrA. The distinct range of lesions generated by UV-C and UV-B and the different DNA photochemistry in developing and dormant spores may cause these differences. We postulate that in addition to the UvrABC repair system, developing and dormant spores of B. subtilis also rely on an alternative excision repair pathway involving YwjD to deal with the deleterious effects of various UV photoproducts.
Collapse
|
12
|
Sampath H, McCullough AK, Lloyd RS. Regulation of DNA glycosylases and their role in limiting disease. Free Radic Res 2012; 46:460-78. [PMID: 22300253 DOI: 10.3109/10715762.2012.655730] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
This review will present a current understanding of mechanisms for the initiation of base excision repair (BER) of oxidatively-induced DNA damage and the biological consequences of deficiencies in these enzymes in mouse model systems and human populations.
Collapse
Affiliation(s)
- Harini Sampath
- Center for Research on Occupational and Environmental Toxicology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, Oregon 97239 - 3098, USA
| | | | | |
Collapse
|
13
|
Modulation of the processive abasic site lyase activity of a pyrimidine dimer glycosylase. DNA Repair (Amst) 2011; 10:1014-22. [PMID: 21889915 DOI: 10.1016/j.dnarep.2011.07.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Accepted: 07/20/2011] [Indexed: 11/21/2022]
Abstract
The repair of cis-syn cyclobutane pyrimidine dimers (CPDs) can be initiated via the base excision repair (BER) pathway, utilizing pyrimidine dimer-specific DNA glycosylase/lyase enzymes (pdgs). However, prior to incision at lesion sites, these enzymes bind to non-damaged DNAs through charge-charge interactions. Following initial binding to DNA containing multiple lesions, the enzyme incises at most of these sites prior to dissociation. If a subset of these lesions are in close proximity, clustered breaks may be produced that could lead to decreased cell viability or increased mutagenesis. Based on the co-crystal structures of bacteriophage T4-pdg and homology modeling of a related enzyme from Paramecium bursaria Chlorella virus-1, the structure-function basis for the processive incision activity for both enzymes was investigated using site-directed mutagenesis. An assay was developed that quantitatively measured the rates of incision by these enzymes at clustered apurinic/apyrimidinic (AP) sites. Mathematical modeling of random (distributive) versus processive incisions predicted major differences in the rate and extent of the accumulation of singly nicked DNAs between these two mechanisms. Comparisons of these models with biochemical nicking data revealed significant changes in the damage search mechanisms between wild-type pdgs and most of the mutant enzymes. Several conserved arginine residues were shown to be critical for the processivity of the incision activity, without interfering with catalysis at AP sites. Comparable results were measured for incision at clustered CPD sites in plasmid DNAs. These data reveal that pdgs can be rationally engineered to retain full catalytic activity, while dramatically altering mechanisms of target site location.
Collapse
|
14
|
Sidorenko VS, Zharkov DO. Correlated cleavage of damaged DNA by bacterial and human 8-oxoguanine-DNA glycosylases. Biochemistry 2008; 47:8970-6. [PMID: 18672903 DOI: 10.1021/bi800569e] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Many enzymes acting on specific rare lesions in DNA are suggested to search for their targets by facilitated one-dimensional diffusion. We have used a recently developed correlated cleavage assay to investigate whether this mechanism operates for Fpg and OGG1, two structurally unrelated DNA glycosylases that excise an important oxidative lesion, 7,8-dihydro-8-oxoguanine (8-oxoG), from DNA. Similar to a number of other DNA glycosylases or restriction endonucleases, Fpg and OGG1 processively excised 8-oxoG from pairs with cytosine at low salt concentrations, indicating that the lesion search likely proceeds by one-dimensional diffusion. At high salt concentrations, both enzymes switched to a distributive mode of lesion search. Correlated cleavage of abasic site-containing substrates proceeded in the same manner as cleavage of 8-oxoG. Interestingly, both Fpg and especially OGG1 demonstrated higher processivity if the substrate contained 8-oxoG.A pairs, against which these enzyme discriminate. Introduction of a nick into the substrate DNA did not decrease the extent of correlated cleavage, suggesting that the search probably involves hopping between adjacent positions on DNA rather than sliding along DNA. This was further supported by the observation that mutant forms of Fpg (Fpg-F110A and Fpg-F110W) with different sizes of the side chain of the amino acid residue inserted into DNA during scanning were both less processive than the wild-type enzyme. In conclusion, processive cleavage by Fpg and OGG1 does not correlate with their substrate specificity and under nearly physiological salt conditions may be replaced with the distributive mode of action.
Collapse
Affiliation(s)
- Viktoriya S Sidorenko
- SB RAS Institute of Chemical Biology and Fundamental Medicine, Novosibirsk 630090, Russia
| | | |
Collapse
|
15
|
Sidorenko VS, Mechetin GV, Nevinsky GA, Zharkov DO. Correlated cleavage of single- and double-stranded substrates by uracil-DNA glycosylase. FEBS Lett 2008; 582:410-4. [PMID: 18201572 DOI: 10.1016/j.febslet.2008.01.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2007] [Revised: 01/04/2008] [Accepted: 01/06/2008] [Indexed: 10/22/2022]
Abstract
Uracil-DNA glycosylase (Ung) can quickly locate uracil bases in an excess of undamaged DNA. DNA glycosylases may use diffusion along DNA to facilitate lesion search, resulting in processivity, the ability of glycosylases to excise closely spaced lesions without dissociating from DNA. We propose a new assay for correlated cleavage and analyze the processivity of Ung. Ung conducted correlated cleavage on double- and single-stranded substrates; the correlation declined with increasing salt concentration. Proteins in cell extracts also decreased Ung processivity. The correlated cleavage was reduced by nicks in DNA, suggesting the intact phosphodiester backbone is important for Ung processivity.
Collapse
Affiliation(s)
- Viktoriya S Sidorenko
- SB RAS Institute of Chemical Biology and Fundamental Medicine, Novosibirsk 630090, Russia
| | | | | | | |
Collapse
|
16
|
Bartels CL, Lambert MW. Domains in the XPA protein important in its role as a processivity factor. Biochem Biophys Res Commun 2007; 356:219-25. [PMID: 17349973 PMCID: PMC1936984 DOI: 10.1016/j.bbrc.2007.02.125] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2007] [Accepted: 02/22/2007] [Indexed: 11/23/2022]
Abstract
XPA is a protein essential for nucleotide excision repair (NER) where it is thought to function in damage recognition/verification. We have proposed an additional role, that of a processivity factor, conferring a processive mechanism of action on XPF and XPG, the endonucleases, involved in NER. The present study was undertaken to examine the domain(s) in the XPA gene that are important for the ability of the XPA protein to function as a processivity factor. Using site-directed mutagenesis, mutations were created in several of the exons of XPA and mutant XPA proteins produced. The results showed that the DNA binding domain of XPA is critical for its ability to act as a processivity factor. Mutations in both the zinc finger motif and the large basic cleft in this domain eliminated the ability of XPA to confer a processive mechanism of action on the endonucleases involved in NER.
Collapse
Affiliation(s)
- Claudine L Bartels
- Department of Pathology and Laboratory Medicine, UMDNJ-New Jersey Medical School, Newark, NJ 07103, USA
| | | |
Collapse
|
17
|
Kampmann M. Facilitated diffusion in chromatin lattices: mechanistic diversity and regulatory potential. Mol Microbiol 2005; 57:889-99. [PMID: 16091032 DOI: 10.1111/j.1365-2958.2005.04707.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The interaction between a protein and a specific DNA site is the molecular basis for vital processes in all organisms. Location of the DNA target site by the protein commonly involves facilitated diffusion. Mechanisms of facilitated diffusion vary among proteins; they include one- and two-dimensional sliding along DNA, direct transfer between uncorrelated sites, as well as combinations of these mechanisms. Facilitated diffusion has almost exclusively been studied in vitro. This review discusses facilitated diffusion in the context of the living cell and proposes a theoretical model for facilitated diffusion in chromatin lattices. Chromatin structure differentially affects proteins in different modes of diffusion. The interplay of facilitated diffusion and chromatin structure can determine the rate of protein association with the target site, the frequency of association-dissociation events at the target site, and, under particular conditions, the occupancy of the target site. Facilitated diffusion is required in vivo for efficient DNA repair and bacteriophage restriction and has potential roles in fine-tuning gene regulatory networks and kinetically compartmentalizing the eukaryotic nucleus.
Collapse
Affiliation(s)
- Martin Kampmann
- The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA.
| |
Collapse
|
18
|
Lloyd RS. Investigations of pyrimidine dimer glycosylases--a paradigm for DNA base excision repair enzymology. Mutat Res 2005; 577:77-91. [PMID: 15923014 DOI: 10.1016/j.mrfmmm.2005.04.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2005] [Revised: 04/04/2005] [Accepted: 04/05/2005] [Indexed: 01/04/2023]
Abstract
The most prevalent forms of cancer in humans are the non-melanoma skin cancers, with over a million new cases diagnosed in the United States annually. The portions of the body where these cancers arise are almost exclusively on the most heavily sun-exposed tissues. It is now well established that exposure to ultraviolet light (UV) causes not only damage to DNA that subsequently generates mutations and a transformed phenotype, but also UV-induced immunosuppression. Human cells have only one mechanism to remove the UV-induced dipyrimidine DNA photoproducts: nucleotide excision repair (NER). However, simpler organisms such as bacteria, bacteriophages and some eukaryotic viruses contain up to three distinct mechanisms to initiate the repair of UV-induced dipyrimidine adducts: NER, base excision repair (BER) and photoreversal. This review will focus on the biology and the mechanisms of DNA glycosylase/AP lyases that initiate BER of cis-syn cyclobutane pyrimidine dimers. One of these enzymes, the T4 pyrimidine dimer glycosylase (T4-pdg), formerly known as T4 endonuclease V has served as a model in the study of this entire class of enzymes. It was the first DNA repair enzyme: (1) for which a biologically significant processive nicking activity was demonstrated; (2) to have its active site determined, (3) to have its crystal structure solved, (4) to be shown to carry out nucleotide flipping, and (5) to be used in human clinical trials for disease prevention.
Collapse
Affiliation(s)
- R Stephen Lloyd
- Center for Research on Occupational and Environmental Toxicology, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239-3098, USA.
| |
Collapse
|
19
|
Zharkov DO, Grollman AP. The DNA trackwalkers: principles of lesion search and recognition by DNA glycosylases. Mutat Res 2005; 577:24-54. [PMID: 15939442 DOI: 10.1016/j.mrfmmm.2005.03.011] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2005] [Revised: 03/28/2005] [Accepted: 03/29/2005] [Indexed: 11/24/2022]
Abstract
DNA glycosylases, the pivotal enzymes in base excision repair, are faced with the difficult task of recognizing their substrates in a large excess of unmodified DNA. We present here a kinetic analysis of DNA glycosylase substrate specificity, based on the probability of error. This novel approach to this subject explains many features of DNA surveillance and catalysis of lesion excision by DNA glycosylases. This approach also is applicable to the general issue of substrate specificity. We discuss determinants of substrate specificity in damaged DNA and in the enzyme, as well as methods by which these determinants can be identified.
Collapse
Affiliation(s)
- Dmitry O Zharkov
- Laboratory of Repair Enzymes, SB RAS Institute of Chemical Biology and Fundamental Medicine, Novosibirsk 630090, Russia.
| | | |
Collapse
|
20
|
McCullough AK, Dodson ML, Lloyd RS. Initiation of base excision repair: glycosylase mechanisms and structures. Annu Rev Biochem 2000; 68:255-85. [PMID: 10872450 DOI: 10.1146/annurev.biochem.68.1.255] [Citation(s) in RCA: 296] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The base excision repair pathway is an organism's primary defense against mutations induced by oxidative, alkylating, and other DNA-damaging agents. This pathway is initiated by DNA glycosylases that excise the damaged base by cleavage of the glycosidic bond between the base and the DNA sugar-phosphate backbone. A subset of glycosylases has an associated apurinic/apyrimidinic (AP) lyase activity that further processes the AP site to generate cleavage of the DNA phosphate backbone. Chemical mechanisms that are supported by biochemical and structural data have been proposed for several glycosylases and glycosylase/AP lyases. This review focuses on the chemical mechanisms of catalysis in the context of recent structural information, with emphasis on the catalytic residues and the active site conformations of several cocrystal structures of glycosylases with their substrate DNAs. Common structural motifs for DNA binding and damage specificity as well as conservation of acidic residues and amino groups for catalysis are discussed.
Collapse
Affiliation(s)
- A K McCullough
- Sealy Center for Molecular Science, University of Texas Medical Branch, Galveston 77555-1071, USA
| | | | | |
Collapse
|
21
|
Shimamoto N. One-dimensional diffusion of proteins along DNA. Its biological and chemical significance revealed by single-molecule measurements. J Biol Chem 1999; 274:15293-6. [PMID: 10336412 DOI: 10.1074/jbc.274.22.15293] [Citation(s) in RCA: 133] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- N Shimamoto
- Structural Biology Center, National Institute of Genetics, Mishima, Japan 411-8540, USA.
| |
Collapse
|
22
|
Lloyd RS. The initiation of DNA base excision repair of dipyrimidine photoproducts. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1999; 62:155-75. [PMID: 9932454 DOI: 10.1016/s0079-6603(08)60507-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
One of the major DNA repair pathways is base excision repair, in which DNA bases that have been damaged by endogenous or exogenous agents are removed by the action of a class of enzymes known as DNA glycosylases. One subset of the known DNA glycosylases has an associated abasic lyase activity that generates a phosphodiester bond scission. The base excision pathway is completed by the sequential action of abasic endonucleases, DNA polymerases, and DNA ligases. Base excision repair of ultraviolet (UV) light-induced dipyrimidine photoproducts has been described in a variety of prokaryotic and eukaryotic organisms and phages. These enzymes vary significantly in their exact substrate specificity and in the catalytic mechanism by which repair is initiated. The prototype enzyme within this class of UV-specific DNA glycosylases is T4 endonuclease V. Endonuclease V holds the distinction of being the first glycosylase (1) to have its structure solved by X-ray diffraction of the enzyme alone as well as in complex with pyrimidine dimer-containing DNA, (2) to have its key catalytic active site residues identified, and (3) to have its mechanism of target DNA site location determined and the biological relevance of this process established. Thus, the study of endonuclease V has been critical in gaining a better understanding of the mechanisms of all DNA glycosylases.
Collapse
Affiliation(s)
- R S Lloyd
- Sealy Center for Molecular Science, University of Texas Medical Branch at Galveston, Texas 77555, USA
| |
Collapse
|
23
|
Affiliation(s)
- R S Lloyd
- Center for Molecular Science, University of Texas Medical Branch, Galveston 77555-1071, USA.
| |
Collapse
|
24
|
Viswanathan M, Lovett ST. Single-strand DNA-specific exonucleases in Escherichia coli. Roles in repair and mutation avoidance. Genetics 1998; 149:7-16. [PMID: 9584082 PMCID: PMC1460129 DOI: 10.1093/genetics/149.1.7] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Mutations in the genes encoding single-strand DNA-specific exonucleases (ssExos) of Escherichia coli were examined for effects on mutation avoidance, UV repair, and conjugational recombination. Our results indicate complex and partially redundant roles for ssExos in these processes. Although biochemical experiments have implicated RecJ exonuclease, Exonuclease I (ExoI), and Exonuclease VII (ExoVII) in the methyl-directed mismatch repair pathway, the RecJ- ExoI- ExoVII- mutant did not exhibit a mutator phenotype in several assays for base substitution mutations. If these exonucleases do participate in mismatch excision, other exonucleases in E. coli can compensate for their loss. Frameshift mutations, however, were stimulated in the RecJ- ExoI- ExoVII- mutant. For acridine-induced frameshifts, this mutator effect was due to a synergistic effect of ExoI- and ExoVII- mutations, implicating both ExoI and ExoVII in avoidance of frameshift mutations. Although no single exonuclease mutant was especially sensitive to UV irradiation, the RecJ- ExoVII- double mutant was extremely sensitive. The addition of an ExoI- mutation augmented this sensitivity, suggesting that all three exonucleases play partially redundant roles in DNA repair. The ability to inherit genetic markers by conjugation was reduced modestly in the ExoI- RecJ- mutant, implying that the function of either ExoI or RecJ exonucleases enhances RecBCD-dependent homologous recombination.
Collapse
Affiliation(s)
- M Viswanathan
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts 02254-9110, USA
| | | |
Collapse
|
25
|
Latham KA, Rajendran S, Carmical JR, Lee JC, Lloyd RS. T4 endonuclease V exists in solution as a monomer and binds to target sites as a monomer. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1292:324-34. [PMID: 8597580 DOI: 10.1016/0167-4838(95)00224-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Endonuclease V, a N-glycosylase/lyase from T4 bacteriophage that initiates the repair of cyclobutane pyrimidine dimers in DNA, has been reported to form a monomer-dimer equilibrium in solution [Nickell and Lloyd (1991) Biochemistry 30, 8638], although the enzyme has only been crystallized in the absence of substrate as a monomer [Morikawa et al. (1992) Science 256, 523]. In this study, analytical gel filtration and sedimentation equilibrium techniques were used to rigorously characterize the association state of the enzyme in solution. In contrast to the previous report, at 100 mM KCl endonuclease V was found to exist predominantly as a monomer in solution by both of these techniques; no evidence for dimerization was seen. To characterize the oligomeric state of the enzyme at its target sites on DNA, the enzyme was bound to oligonucleotides containing a single site specific pyrimidine dimer or tetrahydrofuran residue. These complexes were analyzed by nondenaturing gel electrophoresis at various acrylamide concentrations in order to determine the molecular weights of the enzyme-DNA complexes. The results from these experiments demonstrate that endonuclease V binds to cyclobutane pyrimidine dimer and tetrahydrofuran site containing DNA as a monomer.
Collapse
Affiliation(s)
- K A Latham
- Sealy Center for Molecular Science, University of Texas Medical Branch, Galveston 77555-1071, USA
| | | | | | | | | |
Collapse
|
26
|
Lu T, Gray HB. Kinetics and mechanism of BAL 31 nuclease action on small substrates and single-stranded DNA. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1251:125-8. [PMID: 7669801 DOI: 10.1016/0167-4838(95)00091-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Kinetic and mechanistic aspects of the action of two forms of the BAL 31 nuclease (EC 3.1.11) from Alteromonas espejiana on model substrates, small oligonucleotides, larger oligonucleotides and poly[d(A)] have been examined. The minimal oligonucleotide substrate is a 5'-phosphorylated dinucleotide and a phosphodiester not containing a nucleotide residue is not cleaved. Both forms act predominantly in an exonucleolytic fashion on single-stranded DNA polymers in a highly processive manner; however, the mechanism becomes distributive for small oligomers (3-4 nucleotide residues). The direction of attack is from the 5' end, in contrast to the mode of digestion of duplex DNA which involves attack at the 3' termini. An endonucleolytic mode of attack also exists, but at a level 2-3% or less of that of the terminally directed cleavage. Apparent values for the catalytic efficiency of the action on long DNA polymers are too large to fit a simple kinetic scheme involving a direct enzyme-substrate encounter and lead to an interpretation in which nuclease molecules are non-productively bound away from the 5' ends and undergo facilitated diffusion to yield productive (terminally bound) enzyme-substrate complexes.
Collapse
Affiliation(s)
- T Lu
- Department of Biochemical and Biophysical Sciences, University of Houston, TX 77204-5934, USA
| | | |
Collapse
|
27
|
Latham KA, Taylor JS, Lloyd RS. T4 endonuclease V protects the DNA strand opposite a thymine dimer from cleavage by the footprinting reagents DNase I and 1,10-phenanthroline-copper. J Biol Chem 1995; 270:3765-71. [PMID: 7876117 DOI: 10.1074/jbc.270.8.3765] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The glycosylase/abasic lyase T4 endonuclease V initiates the repair of ultraviolet light-induced pyrimidine dimers. This enzyme forms an imino intermediate between its N-terminal alpha-NH2 group and C-1' of the 5'-residue within the dimer. Sodium borohydride was used to covalently trap endonuclease V to a 49-base pair oligodeoxynucleotide containing a site-specific cyclobutane thymine dimer. The bound and free oligonucleotides were then subjected to nuclease protection assays using DNase I and a complex of 1,10-phenanthroline-copper. There was a large region of protection from both nucleases produced by endonuclease V evident on the strand opposite and asymmetrically opposed to the dimer. Little protection was seen on the dimer-containing strand. The existence of a footprint with the 1,10-phenanthroline-copper cleavage agent indicated that endonuclease V was interacting with the DNA predominantly via the minor groove. Methylation by dimethyl sulfate yielded no areas of protection when endonuclease V was covalently attached to the DNA, indicating that the protein may closely approach the DNA without direct contact with the bases near the thymine dimer. The Escherichia coli proteins Fpg and photolyase display a very different pattern of nuclease protection on their respective substrates, implying that endonuclease V recognizes pyrimidine dimers by a novel mechanism.
Collapse
Affiliation(s)
- K A Latham
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232
| | | | | |
Collapse
|
28
|
|
29
|
Affiliation(s)
- K S Sweder
- Department of Biological Sciences, Stanford University, CA 94305-5020, USA
| |
Collapse
|
30
|
Jeltsch A, Alves J, Wolfes H, Maass G, Pingoud A. Pausing of the restriction endonuclease EcoRI during linear diffusion on DNA. Biochemistry 1994; 33:10215-9. [PMID: 8068662 DOI: 10.1021/bi00200a001] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Linear diffusion is a mechanism to accelerate association rates beyond their three-dimensional diffusional limit. It is employed by the restriction endonuclease EcoRI as well as many other proteins interacting with specific DNA sequences to locate their target sites on the macromolecular substrate. In order to investigate biochemical and biophysical details of the linear diffusion process, we have developed a competitive cleavage assay which allows us to assess with great accuracy the influence of sequence, sequence context, and other structural features on the linear diffusion of EcoRI on DNA. We show here that linear diffusion is not a hopping but a sliding movement in which EcoRI follows the helical pitch of the DNA, because it does not "overlook" any cleavage site. Linear diffusion is slowed when EcoRI encounters sites on the DNA which resemble its recognition site ("star" sites). Pauses of up to 20 s are induced, depending on sequence and orientation of the star site. These data suggest that EcoRI can bind to DNA in two binding modes: one tight, specific, and immobile, leading to DNA cleavage, and another one loose and nonspecific, allowing for linear diffusion. Depending on the similarity between the recognition sequence and the DNA sequence being encountered by EcoRI, there will be a continuous transition between these binding modes. Other proteins bound to the DNA and irregular DNA structures such as bent DNA or a triple helix constitute a barrier that cannot easily be passed by EcoRI.
Collapse
Affiliation(s)
- A Jeltsch
- Institut für Biochemie, Justus-Liebig-Universität, Heinrich-Buff-Ring, Giessen, Germany
| | | | | | | | | |
Collapse
|
31
|
Affiliation(s)
- K A Latham
- Sealy Center for Molecular Science, Department of Human Biological Chemistry and Genetics, University of Texas Medical Branch, Galveston 77555-1071
| | | |
Collapse
|
32
|
Iwai S, Maeda M, Shimada Y, Hori N, Murata T, Morioka H, Ohtsuka E. Endonuclease V from bacteriophage T4 interacts with its substrate in the minor groove. Biochemistry 1994; 33:5581-8. [PMID: 8180181 DOI: 10.1021/bi00184a029] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The binding of bacteriophage T4 endonuclease V to its substrate has been studied using synthetic oligodeoxyribonucleotide duplexes containing a cis-syn thymine dimer. Substrate analogues containing a methylphosphonate linkage with a defined configuration at the thymine dimer site were prepared, and the binding of the enzyme to each diastereomer was analyzed by the filter-binding method. The duplex containing a methylphosphonate with the SP configuration formed a complex with the enzyme, although the dissociation constant for this substrate analogue was about 8 times larger than that for the 12-mer substrate containing a phosphodiester linkage at this site. In contrast, no binding was observed when a duplex containing the RP-methylphosphonate linkage was used. The glycosyl bond of the thymine dimer in the SP isomer was cleaved by the enzyme, while no incision was detected in the case of the RP isomer, even after alkali treatment. Another substrate analogue containing a sulfur atom in place of the 3'-oxygen of the 5'-component at the thymine dimer site showed a reduced affinity for the enzyme. These results suggest that T4 endonuclease V interacts with its substrate in the minor groove. This mode of binding was confirmed by methylation protection experiments.
Collapse
Affiliation(s)
- S Iwai
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | | | | | | | | | | | | |
Collapse
|
33
|
|
34
|
Abstract
The purpose of this study was to determine the mechanism by which uracil DNA glycosylase locates uracil residues within double-stranded DNA. Using reaction conditions that contained low salt concentrations, the addition of uracil DNA glycosylase to plasmid DNAs containing multiple, randomly incorporated uracils resulted in the accumulation of form III DNA while unreacted form I DNA was still present. These data suggested that the enzyme utilizes a one-dimensional DNA-scanning mechanism such that this linear DNA arose by the accumulation of many single-strand breaks within the plasmid prior to enzyme dissociation. Reactions containing higher concentrations of uracil DNA glycosylase revealed a further accumulation of form III DNA after all form I DNA had been lost. These results suggested a partial (1.5-2 kb) enzyme processivity since the enzyme does not incise at all uracil bases on the DNA molecule prior to dissociation from that DNA. Since DNA scanning is regulated by electrostatic interactions, the processivity of the enzyme was evaluated through kinetic analyses of incision at various salt concentrations. At NaCl concentrations (< 50 mM), a significant amount of form III DNA accumulated while there were still unreacted form I DNAs present. In contrast, the accumulation of form III DNA was delayed at higher salt concentrations and the overall accumulation of form III DNA was less than that monitored at lower salt concentrations. DNAs were also analyzed by denaturing agarose gel electrophoresis in order to measure the average distance between strand breaks. Southern hybridizations showed a greater accumulation of breaks in DNAs that were reacted with the uracil DNA glycosylase at the lower salt concentrations, confirming a partial processivity for the enzyme.
Collapse
Affiliation(s)
- M Higley
- California State University, Long Beach 90840
| | | |
Collapse
|
35
|
Site-directed mutagenesis of the NH2 terminus of T4 endonuclease V. The position of the alpha NH2 moiety affects catalytic activity. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)54016-3] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
36
|
Wani AA, Arezina J. Immunoanalysis of ultraviolet radiation induced DNA damage and repair within specific gene segments of plasmid DNA. BIOCHIMICA ET BIOPHYSICA ACTA 1991; 1090:195-203. [PMID: 1657185 DOI: 10.1016/0167-4781(91)90101-q] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The region-specific heterogeneity of repairing DNA damage has been established in several biological systems. A flexible and sensitive approach, based upon DNA damage specific antibodies, is described to monitor the repair of specific lesions within discrete genomic segments. Membrane transblotted DNA restriction fragments are immunoanalyzed for the initial formation and repair of 254 nm radiation induced pyrimidine dimers. Sensitivity of dimer immunodetection increases proportional to fragment concentration and size. Antibody binding was detectable in a 0.5 kb fragment obtained from approx. 100 ng of restriction digested phage lambda DNA irradiated with 50 J m-2. Dimers within larger fragments (greater than 5 kb) could be detected at ultraviolet doses as low as 1 to 2 J m-2. To determine the occurrence of preferential repair in prokaryotic cells, damage was assessed in DNA sequences established in various Escherichia coli strains. In vivo repair of 8.9 kb vector and 6.4 and 3.2 kb gene inserts occurred with an approximate t1/2 of 45 min in UvrABC excision repair-proficient strains. Antibody binding sites were retained by DNA within repair-deficient strains. Compared to UvrABC, the repair of DNA fragments mediated by T4 endonuclease V was rapid and complete within 30 min of cellular irradiation. The efficient repair in DenV+ strain is attributable to a highly processive repair enzyme rather than to selective repair of actively replicating target genes. The results demonstrate the exceptional ability of antibodies specific for altered biomolecular lesions to map damage and repair in gene segments episomally established within cells.
Collapse
Affiliation(s)
- A A Wani
- Department of Radiology, Ohio State University, Columbus 43210
| | | |
Collapse
|
37
|
Nickell C, Lloyd RS. Mutations in endonuclease V that affect both protein-protein association and target site location. Biochemistry 1991; 30:8638-48. [PMID: 1888726 DOI: 10.1021/bi00099a021] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A general mechanism by which proteins locate their target sites within large domains of DNA is a one-dimensional facilitated diffusion process in which the protein scans DNA in a nonspecifically bound state. An electrostatic contribution to this type of mechanism has been previously established. This study was designed to question whether other characteristics of a protein's structure might contribute to the scanning mechanism of target site location. In this regard, T4 endonuclease V was shown to establish an ionic strength dependent monomer-dimer equilibrium in solution. A protein dimer interaction site was postulated to exist along a putative alpha-helix containing amino acid residues 54-62. The conservative substitutions of Phe-60----Leu-60 and Phe-59, Phe-60----Leu-59, Leu-60 resulted in mutant enzymes which remained in the monomeric state independent of the ionic strength of the solution. The target site location mechanism of these mutants has also been altered. Under conditions where wild-type endonuclease V processively scans nontarget DNA, the target location mechanism of the monomeric mutant proteins was shifted toward a less processive search. This decrease in the processivity of the mutants was especially surprising because the nontarget DNA binding affinity was found to be significantly increased. Thus, an additional component of the endonuclease V DNA scanning mechanism appears to be the formation of a stable endonuclease V dimer complex.
Collapse
Affiliation(s)
- C Nickell
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
| | | |
Collapse
|
38
|
Schrock R, Lloyd R. Reductive methylation of the amino terminus of endonuclease V eradicates catalytic activities. Evidence for an essential role of the amino terminus in the chemical mechanisms of catalysis. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(19)47418-8] [Citation(s) in RCA: 66] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
39
|
Dodson ML, Prince MA, Anderson WF, Lloyd RS. Site-directed deletion mutagenesis within the T4 endonuclease V gene: dispensable sequences within putative loop regions. Mutat Res 1991; 255:19-29. [PMID: 2067549 DOI: 10.1016/0921-8777(91)90014-g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Endonuclease V from bacteriophage T4 may be one of the first DNA-repair enzymes to have its three-dimensional structure determined by X-ray crystallography (Morikawa et al., 1988). However, since this structure is not yet available, analyses of the sequence of the protein were performed in order to guide site-directed mutational studies of enzyme structure-function relationships. The enzyme is predominantly alpha-helical, so that an algorithm which finds the locations of turns or loops in the structure would be expected to approximately locate the helices along the sequence. Two loop sites were identified which might be adjacent in the tertiary structure according to a model developed from the loop predictions and the derived secondary structure. Deletion of three residues at each loop site produced protein molecules which retained considerable in vitro enzyme activity and in vivo repair function. However, the mutant proteins did not accumulate as well within the cell as the wild-type enzyme, suggesting that the nascent molecules folded inefficiently. Combination of the two deletions yielded a molecule with activity enhanced over one of the individual mutants, a result which can be interpreted as a classic second-site mutational reversion. This result supports the hypothesis that these regions are adjacent in the enzyme tertiary structure.
Collapse
Affiliation(s)
- M L Dodson
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232
| | | | | | | |
Collapse
|
40
|
Nickell C, Anderson WF, Lloyd RS. Substitution of basic amino acids within endonuclease V enhances nontarget DNA binding. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(19)67642-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
41
|
Biological significance of facilitated diffusion in protein-DNA interactions. Applications to T4 endonuclease V-initiated DNA repair. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)39784-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
42
|
Dowd DR, Lloyd RS. Site-directed mutagenesis of the T4 endonuclease V gene: the role of arginine-3 in the target search. Biochemistry 1989; 28:8699-705. [PMID: 2690947 DOI: 10.1021/bi00448a005] [Citation(s) in RCA: 34] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Endonuclease V, a pyrimidine dimer specific endonuclease in T4 bacteriophage, is able to scan DNA, recognize pyrimidine dimer photoproducts produced by exposure to ultraviolet light, and effectively incise DNA through a two-step mechanism at the damaged bases. The interaction of endonuclease V with nontarget DNA is thought to occur via electrostatic interactions between basic amino acids and the acidic phosphate DNA backbone. Arginine-3 was chosen as a potential candidate for involvement in this protein-nontarget DNA interaction and was extensively mutated to assess its role. The mutations include changes to Asp, Glu, Leu, and Lys and deleting it from the enzyme. Deletion of Arg-3 resulted in an enzyme that retained marginal levels of AP specificity, but no other detectable activity. Charge reversal to Glu-3 and Asp-3 results in proteins that exhibit AP-specific nicking and low levels of dimer-specific nicking. These enzymes are incapable of affecting cellular survival of repair-deficient Escherichia coli after irradiation. Mutations of Arg-3 to Lys-3 or Leu-3 also are unable to complement repair-deficient E. coli. However, these two proteins do exhibit a substantial level of in vitro dimer- and AP-specific nicking. The mechanism by which the Leu-3 and Lys-3 mutant enzymes locate pyrimidine dimers within a population of heavily irradiated plasmid DNA molecules appears to be significantly different from that for the wild-type enzyme. The wild-type endonuclease V processively incises all dimers on an individual plasmid prior to dissociation from that plasmid and subsequent reassociation with other plasmids, yet neither of these mutants exhibits any of the characteristics of this processive nicking activity.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- D R Dowd
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | | |
Collapse
|
43
|
Hamilton RW, Lloyd RS. Modulation of the DNA Scanning Activity of the Micrococcus luteus UV Endonuclease. J Biol Chem 1989. [DOI: 10.1016/s0021-9258(18)71511-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
44
|
Abstract
Published data on the structure and mechanism of endonuclease V from bacteriophage T4 are reviewed with the objective of developing a working mechanistic model of this enzyme. Endonuclease V is an interesting and important candidate to be the first DNA-repair enzyme to have its structure determined by crystallography, and a more detailed model of the reaction process is needed to mechanistically interpret such a structure. Such a model should be sufficiently detailed to support future investigations of structure/function relationships between the enzyme and the DNA damage repair pathway it initiates, as probed by site-directed mutagenesis techniques and other methods. The early literature is presented in an historical perspective, followed by a description of prior models and biochemical investigations. The biochemical phenotypes of mutants in the enzyme structural gene are discussed. The results of computer analyses aimed at structural interpretations of the protein sequence are given, together with a brief discussion of the strengths and weaknesses of such experiments.
Collapse
Affiliation(s)
- M L Dodson
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232
| | | |
Collapse
|
45
|
Dowd DR, Lloyd RS. Biological consequences of a reduction in the non-target DNA scanning capacity of a DNA repair enzyme. J Mol Biol 1989; 208:701-7. [PMID: 2681789 DOI: 10.1016/0022-2836(89)90160-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Numerous DNA-interactive proteins have been shown to locate specific sequences within large domains of non-target DNA in vitro and in vivo by a one-dimensional diffusion mechanism; however, the biological significance of this process has not been evaluated. We have examined the biological consequences of sliding for the pyrimidine dimer-specific DNA repair enzyme T4 endonuclease V, an enzyme which scans non-target DNA both in vitro and in vivo. An endonuclease V mutant was constructed whose only altered biochemical characteristic, measured in vitro, was a loss in its ability to slide on non-target DNA. In contrast to the native enzyme, when the mutated endonuclease V was expressed in DNA repair-deficient Escherichia coli, no enhanced ultraviolet survival was conferred. These results suggest that the mechanisms which DNA-interactive proteins employ to enhance the probability of locating their target sequences are of significant biological importance.
Collapse
Affiliation(s)
- D R Dowd
- Department of Biochemistry, Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | | |
Collapse
|
46
|
Lloyd RS, Augustine ML. Site-directed mutagenesis of the T4 endonuclease V gene: mutations which enhance enzyme specific activity at low salt concentrations. Proteins 1989; 6:128-38. [PMID: 2695926 DOI: 10.1002/prot.340060204] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Previous structure/function analyses of the DNA repair enzyme, T4 endonuclease V, have suggested that the extreme carboxyl portion of the enzyme is associated with pyrimidine dimer-specific binding (Recinos and Lloyd, and Stump and Lloyd, Biochemistry 27:1832-1838 and 1839-1843, 1988, respectively). Within the final 11 amino acids there are 5 aromatic, 2 basic, and no acidic residues and it has been proposed that these residues stack with and electrostatically interact with the kinked DNA at the site of a pyrimidine dimer. The role of the tyrosine residue at position 129 has been investigated by oligonucleotide site-directed mutagenesis in which the codon for Tyr-129 has been altered to reflect conservative changes of Trp and Phe and more dramatic changes of Ser, a stop codon, deletion of the codon or introduction of a frameshift. Both changes to the aromatic amino acids resulted in proteins which accumulated well in E. coli and not only significantly enhanced the UV survival of repair-deficient cells but also complemented a defective denV gene within UV-irradiated T4 phage. Partially purified preparations of the Tyr-129----Trp and Tyr-129----Phe mutants were assayed for their ability to processively incise UV-irradiated plasmid DNA (a nicking reaction carried out at low 25 mM salt concentrations). The mutant enzymes Tyr-129----Phe and Tyr-129----Trp displayed a 1000% and 500% enhanced specific nicking activity, respectively. These reactions were also shown to be completely processive. Assays performed at higher (100 mM) salt concentrations reduced the specific activities of the mutant enzymes approximately to that of wild type for the Tyr-129----Phe mutant and to 20% that of wild type for the Tyr-129----Trp mutant.
Collapse
Affiliation(s)
- R S Lloyd
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | | |
Collapse
|
47
|
Gruskin EA, Lloyd RS. Molecular analysis of plasmid DNA repair within ultraviolet-irradiated Escherichia coli. II. UvrABC-initiated excision repair and photolyase-catalyzed dimer monomerization. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(18)37815-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|