1
|
Nacheva G, Lilkova E, Petkov P, Petkov P, Ilieva N, Ivanov I, Litov L. In SilicoStudies on the Stability of Human Interferon-Gamma Mutants. BIOTECHNOL BIOTEC EQ 2012. [DOI: 10.5504/50yrtimb.2011.0036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
2
|
Franzen S, Lommel SA. Targeting cancer with 'smart bombs': equipping plant virus nanoparticles for a 'seek and destroy' mission. Nanomedicine (Lond) 2009; 4:575-88. [PMID: 19572822 DOI: 10.2217/nnm.09.23] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
This article discusses plant virus nanoparticles as a weapon in the war on cancer. The successes and failures of numerous nanoparticle strategies are discussed as a background to consideration of the plant virus nanoparticle approach. To have therapeutic benefit, the advantages of the targeted nanoparticle must outweigh the problems of colloidal stability, uptake by the reticuloendothelial system as well as the requirement for clearance from the body. Biodegradable nanoparticles are considered to have the most promise to address these complex phenomena. After justifying the choice of biodegradable particles, the article focuses on comparison of micelles, liposomes, polymers and modified plant viruses. The structural uniformity, cargo capacity, responsive behavior and ease of manufacturing of plant virus nanoparticles are unique properties that suggest they have a wider role to play in targeted therapy. The loading of chemotherapeutic cargo is discussed, with specific reference to the advantage of reversible transitions of the capsid of Red clover necrotic mosaic virus. These features will be contrasted and compared with other biodegradable 'smart bombs' that target cancer cells.
Collapse
Affiliation(s)
- Stefan Franzen
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, USA.
| | | |
Collapse
|
3
|
Petrov S, Boyanova M, Berzal-Herranz A, Karshikoff A, Nacheva G, Ivanov I. Significance of the Putative Upstream Polybasic Nuclear Localisation Sequence for the Biological Activity of Human Interferon-Gamma. BIOTECHNOL BIOTEC EQ 2009; 23:1058-1062. [DOI: 10.1080/13102818.2009.10817612] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
4
|
Nacheva G, Todorova K, Boyanova M, Berzal-Herranz A, Karshikoff A, Ivanov I. Human interferon gamma: significance of the C-terminal flexible domain for its biological activity. Arch Biochem Biophys 2003; 413:91-98. [PMID: 12706345 DOI: 10.1016/s0003-9861(03)00113-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The significance of the C-terminal part of human interferon gamma (hIFNgamma) for its biological activity was studied by 3(')-end gene mutagenesis. A series of nine derivative genes obtained by systemic deletion of three codons was constructed and expressed in Escherichia coli LE392. It was shown that the yield of recombinant protein gradually decreased and the solubility gradually increased with truncation of the C terminus. To avoid artifacts related to the imperfect folding of the proteins during purification, the biological activity of the hIFNgamma proteins was measured in clear cell lysates containing the soluble fractions only. The deletion of the C terminus had a two-step effect on both hIFNgamma antiviral and antiproliferative activities. Whereas the removal of the last 3, 6, and 9 C-terminal amino acids led to a gradual increase (up to 10 times) in biological activity of hIFNgamma, the deletion of more than 9 amino acids had an opposite effect. The truncation of the whole unstructured C-terminal domain resulted in a 10-fold decrease (but not in a complete loss) in biological activity of hIFNgamma. The latter was sequestered upon deletion of 24 amino acids, 3 of which belonged to the alpha-helical domain F.
Collapse
Affiliation(s)
- Genoveva Nacheva
- Institute of Molecular Biology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., 21, 1113, Sofia, Bulgaria
| | | | | | | | | | | |
Collapse
|
5
|
Papageorgiou FT, Soteriadou KP. Expression of a novel Leishmania gene encoding a histone H1-like protein in Leishmania major modulates parasite infectivity in vitro. Infect Immun 2002; 70:6976-86. [PMID: 12438377 PMCID: PMC132950 DOI: 10.1128/iai.70.12.6976-6986.2002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We describe identification and characterization of a novel two-copy gene of the parasitic protozoan Leishmania that encodes a nuclear protein designated LNP18. This protein is highly conserved in the genus Leishmania, and it is developmentally regulated. It is an alanine- and lysine-rich protein with potential bipartite nuclear targeting sequence sites. LNP18 shows sequence similarity to H1 histones of trypanosomatids and of higher eukaryotes and in particular with histone H1 of Leishmania major. The nuclear localization of LNP18 was determined by indirect immunofluorescence and Western blot analysis of isolated nuclei by using antibodies raised against the recombinant protein as probes. The antibodies recognized predominantly a 18-kDa band or a 18-kDa-16-kDa doublet. Photochemical cross-linking of intact parasites followed by Western blot analysis provided evidence that LNP18 is indeed a DNA-binding protein. Generation of transfectants overexpressing LNP18 allowed us to determine the role of this protein in Leishmania infection of macrophages in vitro. These studies revealed that transfectants overexpressing LNP18 are significantly less infective than transfectants with the vector alone and suggested that the level of LNP18 expression modulates Leishmania infectivity, as assessed in vitro.
Collapse
|
6
|
Shibata Y, Muramatsu T, Hirai M, Inui T, Kimura T, Saito H, McCormick LM, Bu G, Kadomatsu K. Nuclear targeting by the growth factor midkine. Mol Cell Biol 2002; 22:6788-96. [PMID: 12215536 PMCID: PMC134045 DOI: 10.1128/mcb.22.19.6788-6796.2002] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2002] [Accepted: 06/17/2002] [Indexed: 01/08/2023] Open
Abstract
Ligand-receptor internalization has been traditionally regarded as part of the cellular desensitization system. Low-density lipoprotein receptor-related protein (LRP) is a large endocytosis receptor with a diverse array of ligands. We recently showed that LRP binds heparin-binding growth factor midkine. Here we demonstrate that LRP mediates nuclear targeting by midkine and that the nuclear targeting is biologically important. Exogenous midkine reached the nucleus, where intact midkine was detected, within 20 min. Midkine was not internalized in LRP-deficient cells, whereas transfection of an LRP expression vector restored midkine internalization and subsequent nuclear translocation. Internalized midkine in the cytoplasm bound to nucleolin, a nucleocytoplasmic shuttle protein. The midkine-binding sites were mapped to acidic stretches in the N-terminal domain of nucleolin. When the nuclear localization signal located next to the acidic stretches was deleted, we found that the mutant nucleolin not only accumulated in the cytoplasm but also suppressed the nuclear translocation of midkine. By using cells that overexpressed the mutant nucleolin, we further demonstrated that the nuclear targeting was necessary for the full activity of midkine in the promotion of cell survival. This study therefore reveals a novel role of LRP in intracellular signaling by its ligand and the importance of nucleolin in this process.
Collapse
Affiliation(s)
- Yoshihisa Shibata
- Department of Biochemistry, Nagoya University School of Medicine, Showa-ku, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Sadir R, Lambert A, Lortat-Jacob H, Morel G. Caveolae and clathrin-coated vesicles: two possible internalization pathways for IFN-gamma and IFN-gamma receptor. Cytokine 2001; 14:19-26. [PMID: 11298489 DOI: 10.1006/cyto.2000.0854] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Interferon-gamma (IFN-gamma) elicits a variety of activities following binding to its cell-surface-specific receptor (IFN-gammaR). This complex formation leads to the activation of the Jak-STAT pathway. Several hypotheses have been proposed to explain the role and location of the receptor and its ligand in the signalling pathway. In vivo as well as in vitro, the present study shows that IFN-gamma and its receptor were internalized in different cellular compartments including cytoplasmic matrix, mitochondria and nucleus. In order to analyse the internalization pathway of IFN-gamma and its receptor, we have study in vivo and in vitro their colocalization with clathrin and caveolin by using double immunogold-labelling experiments using electron microscopy. We demonstrate that IFN-gamma and IFN-gammaR were colocalized in the caveolin-containing structures and the clathrin-coated pits suggesting that both internalization pathways may be used. This indicates that IFN-gamma and IFN-gammaR were internalized by these two different pathways, suggesting two different intracellular routes probably for different target cell-compartments.
Collapse
Affiliation(s)
- R Sadir
- CNRS UMR 5578, Université Claude Bernard-Lyon 1, Villeurbanne, France
| | | | | | | |
Collapse
|
8
|
Watson PH, Fraher LJ, Natale BV, Kisiel M, Hendy GN, Hodsman AB. Nuclear localization of the type 1 parathyroid hormone/parathyroid hormone-related peptide receptor in MC3T3-E1 cells: association with serum-induced cell proliferation. Bone 2000; 26:221-5. [PMID: 10709993 DOI: 10.1016/s8756-3282(99)00264-1] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We have recently demonstrated that the receptor for parathyroid hormone (PTH) and PTH-related peptide (PTHrP), PTHR, can be localized to the nucleus of cells within the liver, kidney, uterus, gut, and ovary of the rat. We set out to determine the localization of the PTHR in cultured osteoblast-like cells. MC3T3-E1, ROS 17/2.8, UMR106, and SaOS-2 cells were cultured in alpha-modified eagle medium containing 15% fetal calf serum under standard conditions. Untreated cells were grown on glass coverslips to 75-95% confluence and fixed in 1% paraformaldehyde. For experiments designed to examine cells synchronized by serum starvation, cells were grown on glass coverslips, starved of serum for 46 h, and then fixed at 2-h intervals for a total of 26 h after the addition of serum to the medium. Parallel sets of cells were pulsed with [3H]thymidine to track the DNA duplication interval. The PTHR was localized by immunocytochemistry using a primary antibody raised against a portion of the N-terminal extracellular domain of the PTHR. The results presented herein indicate that the PTHR attains a nuclear localization in each cell line examined. In UMR106 cells, PTHR immunoreactivity was restricted to the nucleolus. After cell synchronization, MC3T3-E1 cells double approximately 24 h after the addition of serum. Immunocytochemistry for the PTHR in these cells showed that the receptor staining is initially diffuse for the first 6 h, then becomes more perinuclear in distribution by 12-16 h. Nuclear localization of the receptor is achieved approximately 16-20 h after the addition of serum and remains there throughout the mitotic phase. Intense staining of mitotic and postmitotic cells was observed. No change in cell proliferation kinetics was observed in MC3T3-E1 cells cultured in the presence of 25 nM PTH(1-34). These data suggest an important role for the PTHR in the nucleus of MC3T3-E1 cells at the time of DNA synthesis and mitosis.
Collapse
Affiliation(s)
- P H Watson
- Department of Medicine, University of Western Ontario and The Lawson Research Institute, London, Canada.
| | | | | | | | | | | |
Collapse
|
9
|
Mertani HC, Morel G, Lobie PE. Cytoplasmic and nuclear cytokine receptor complexes. VITAMINS AND HORMONES 1999; 57:79-121. [PMID: 10232047 DOI: 10.1016/s0083-6729(08)60641-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Much of our understanding on how hormones and cytokines transmit their message into the cell is based on the receptor activation at the plasma membrane. Many experimental in vitro models have established the paradigm for cytokine action based upon such activation of their cell surface receptor. The signaling from the plasma membrane activated cytokine receptor is driven to the nucleus by a rapid ricochet of protein phosphorylation, ultimately integrated as a differentiative, proliferative, or transcriptional message. The Janus kinase (JAK)--signal transducers and activators of transcription (STAT) pathway that was first thought to be cytokine receptor specific now appears to be activated by other noncytokine receptors. Also, evidence is accumulating showing that cytokines modulate the signal transduction machinery of the tyrosine kinase receptors and that of the heterotrimeric guanosine triphosphate (GTP)-binding protein-coupled receptors. Thus cytokine receptor signaling has become much more complex than originally hypothesized, challenging the established model of specificity of the action of a given cytokine. This review is focused on another level of complexity emerging within cytokine receptor superfamily signaling. Over the past 10 years, data from different laboratories have shown that cytokines and their receptors localize to intracellular compartments including the nucleus, and, in some cases, biological responses have been correlated with this unexpected location, raising the possibility that cytokines act as their own messenger through inter-actions with nuclear proteins. Thus, the interplay between cytokine receptor engagement and cellular signaling turns out to be more dynamic than originally suspected. The mechanisms and regulations of intracellular translocation of the cytokines, their receptors, and their signaling proteins are discussed in the context that such compartmentalization provides some of the specificity of the responses mediated by each cytokine.
Collapse
Affiliation(s)
- H C Mertani
- Institute of Molecular and Cell Biology, Singapore, Republic of Singapore
| | | | | |
Collapse
|
10
|
Tachibana R, Harashima H, Shono M, Azumano M, Niwa M, Futaki S, Kiwada H. Intracellular regulation of macromolecules using pH-sensitive liposomes and nuclear localization signal: qualitative and quantitative evaluation of intracellular trafficking. Biochem Biophys Res Commun 1998; 251:538-44. [PMID: 9792809 DOI: 10.1006/bbrc.1998.9460] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The objective of this study is to present a rational strategy to target macromolecules to the nucleus via the endocytic pathway. The two major barriers in this route to the nucleus are known as endosomal escape and nuclear transport. pH-sensitive liposomes were used in order to achieve endosomal escape under the conditions of low pH in endosomes. Bovine serum albumin (alb) served as a model compound to be delivered to nucleus and was encapsulated into the pH-sensitive liposomes. The liposomes are composed of dioleoyl phosphatidyl ethanolamine: cholesterylhemisuccinate. They were taken up by rat peritoneal macrophages via endocytosis and subsequently underwent degradation, principally by lysosomal enzymes. By using pH-sensitive liposomes, intracellular degradation was reduced by a significant extent, as expected, via endosomal escape. Cytosolic delivery of FITC-labelled alb was also detected by confocal microscopy. Selective targeting to the nucleus was performed by adding the nuclear localization signal (NLS) of the SV-40 large T antigen to the FITC-alb, which were then encapsulated into the pH-sensitive liposomes. Confocal microscopy revealed that FITC-alb, in the presence of NLS was successfully delivered into nucleus, while no transport was observed in the absence of NLS. These results provide a useful strategy for the nuclear targeting of macromolecules using pH-sensitive liposomes in conjunction with NLS.
Collapse
Affiliation(s)
- R Tachibana
- Faculty of Pharmaceutical Sciences, The University of Tokushima, 1-78-1 Shomachi, Tokushima City, Tokushima, 770-8505, Japan
| | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
The role of membrane receptors is regarded as being to transduce the signal represented by ligand binding from the external cell surface across the membrane into the cell. Signals are subsequently conveyed from the cytoplasm to the nucleus through a combination of second-messenger molecules, kinase/phosphorylation cascades, and transcription factor (TF) translocation to effect changes in gene expression. Mounting evidence suggests that through direct targeting to the nucleus, polypeptide ligands and their receptors may have an important additional signaling role. Ligands such as those of the platelet-derived and fibroblast growth factor classes, as well as cytokines such as interferon-gamma and interleukins-1 and -5, have been found to localize in the nucleus through the action of nuclear localization sequences (NLSs). Where tested, these NLSs appear to be essential for full signaling activity and may be responsible for cotranslocating receptors to the nucleus in complexes with their ligands. The implication is that, subsequent to endocytosis at the membrane, particular polypeptide ligands or their receptors, or both, may translocate to the nucleus to participate directly in gene regulation.
Collapse
Affiliation(s)
- D A Jans
- Division for Biochemistry and Molecular Biology, John Curtin School of Medical Research, Canberra, Australia.
| | | |
Collapse
|
12
|
Olcott MC, Haley BE. Identification of an adenine-nucleotide-binding site on interferon alpha2. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 247:762-9. [PMID: 9288895 DOI: 10.1111/j.1432-1033.1997.t01-1-00762.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Using 32P-labeled 2-azidoadenosine 5'-triphosphate (2N3ATP) and 8-azidoadenosine 5'-triphosphate (8N3ATP), we have identified a site on human interferon alpha2 (IFN-alpha2) that binds adenine nucleotides. The results from saturation and competition experiments demonstrated the specificity of the nucleotide interaction. Half-maximal saturation of IFN-alpha2 was observed at 10 microM 2N3ATP or 35 microM 8N3ATP. ATP effectively decreased photoinsertion of both photoaffinity analogs of ATP. Photoinsertion of 8N3ATP was enhanced by MgCl2, independent of the ionic strength, and exhibited an optimum pH between 7.0 and 7.5. Immobilized-Al3+ affinity chromatography and HPLC were used to purify the modified peptides from IFN-alpha2 that had been photolabeled with 8N3ATP and digested with trypsin or chymotrypsin. Overlapping-sequence analysis localized the sites of photoinsertion to the region corresponding to Lys121-Tyr135 in the amino acid sequence of IFN-alpha2, which almost perfectly overlaps a nuclear-localization signal (R120KYFQRITLYLKEKKY135).
Collapse
Affiliation(s)
- M C Olcott
- College of Pharmacy and the Lucille P. Markey Cancer Center, University of Kentucky, Lexington 40536-0082, USA
| | | |
Collapse
|
13
|
Besançon F, Just J, Bourgeade MF, Van Weyenbergh J, Solomon D, Guillozo H, Wietzerbin J, Cayre YE. HIV-1 p17 and IFN-gamma both induce fructose 1,6-bisphosphatase. J Interferon Cytokine Res 1997; 17:461-7. [PMID: 9282826 DOI: 10.1089/jir.1997.17.461] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The p17 matrix protein of the human immunodeficiency virus type 1 (HIV-1) plays a crucial role in AIDS pathogenesis. It orchestrates viral assembly and directs the preintegration complex to the nucleus of infected cells. Recently, the three-dimensional structure of p17 was shown to resemble that of interferon-gamma (IFN-gamma), suggesting that both proteins might share analogous functions. We demonstrate that in monocytes, p17 shares with IFN-gamma the ability to induce 1alpha-hydroxylase activity and to activate fructose 1,6-bisphosphatase gene expression in the presence of 25-hydroxyvitamin D3. However, p17 does not bind to the IFN-gamma cell membrane receptor and fails to increase expression of IFN-gamma-induced proteins, such as tryptophanyl-tRNA synthetase, Fc gammaRI, and HLA DR or B7/BB1 antigens. Altogether, our results raise the possibility that the structural resemblance between p17 and IFN-gamma causes the selective activation of a common pathway resulting in the production of 1,25-dihydroxyvitamin D3. We also found that unlike IFN-gamma, p17 increases the intracellular ATP content. Since transport of the HIV-1 preintegration complex through the nuclear membrane is an ATP-dependent process, our observation suggests that p17 plays a double role in this active transport, not only by acting as a chaperone molecule but also by recruiting the necessary energy for this process.
Collapse
Affiliation(s)
- F Besançon
- INSERM Unité 417, Hôpital Saint-Antoine, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Affiliation(s)
- A Billiau
- Rega Institute, University of Leuven, Belgium
| |
Collapse
|
15
|
Camejo EH, Rosengren B, Camejo G, Sartipy P, Fager G, Bondjers G. Interferon gamma binds to extracellular matrix chondroitin-sulfate proteoglycans, thus enhancing its cellular response. Arterioscler Thromb Vasc Biol 1995; 15:1456-65. [PMID: 7670961 DOI: 10.1161/01.atv.15.9.1456] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The amino acid sequence of interferon gamma (IFN-gamma) has basic amino acid clusters similar to the heparin-binding consensus sequences found in other proteins that bind to proteoglycans (PGs). We investigated whether recombinant human IFN-gamma could bind to extracellular matrix (ECM) PGs secreted by human arterial smooth muscle cells (HASMCs) in vitro and whether the interaction affected the cellular response to IFN-gamma. As an in vitro model of ECM we used the basement membrane from HASMCs in culture. The binding of 125I-IFN-gamma to ECM was reduced significantly by pretreatment of ECM with chondroitinase ABC, an enzyme that degrades chondroitin-sulfate glycosaminoglycans. IFN-gamma binding to ECM was reduced by increasing concentrations of chondroitin-6-sulfate. 125I-IFN-gamma (0.05 to 2 ng/mL) binding data indicated an apparent Kd of 2 x 10(-11) mol/L and a maximum binding of 1.6 x 10(6) IFN-gamma molecules bound per square millimeter of ECM. Experiments with synthetic peptides suggested that residues 127 through 135 (AKTGKRKRS) are involved in the binding. The binding to chondroitin-sulfate PGs was confirmed by affinity chromatography of isolated [35S]chondroitin-sulfate PGs from ECM and cell-culture medium on immobilized IFN-gamma. The binding was abolished by treatment with chondroitinase ABC. ECM-bound IFN-gamma was more effective in inducing the expression of class II major histocompatibility antigens such as HLA-DR in HASMCs and human arterial endothelial cells than soluble IFN-gamma. These results suggest a role for chondroitin-sulfate PGs in immobilizing IFN-gamma in the ECM compartment and enhancing the cellular response to IFN-gamma.
Collapse
Affiliation(s)
- E H Camejo
- Wallenberg Laboratory for Cardiovascular Research, University of Gothenburg, Sahlgrenska University Hospital, Sweden
| | | | | | | | | | | |
Collapse
|
16
|
Lundell DL, Narula SK. Structural elements required for receptor recognition of human interferon-gamma. Pharmacol Ther 1994; 64:1-21. [PMID: 7531344 DOI: 10.1016/0163-7258(94)90031-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Interferon (IFN)-gamma is a central factor in numerous immune responses. Recently the three-dimensional structure of human and rabbit IFN-gamma has been elucidated. This review attempts to bring together the structure and function information into a working model of IFN-gamma: receptor interaction. Based on mutagenesis studies, and corroborated by work with peptides, antibodies and proteolytic digestion, three regions have been found to be important for receptor binding: a long loop connecting the A and B helices, His111 in the F helix and a conserved section of the flexible carboxyl terminus. These three regions may form one continuous binding domain.
Collapse
Affiliation(s)
- D L Lundell
- Schering-Plough Research Institute, Kenilworth, NJ 07033
| | | |
Collapse
|