1
|
Schwank K, Schmid C, Fremter T, Engel C, Milkereit P, Griesenbeck J, Tschochner H. Features of yeast RNA polymerase I with special consideration of the lobe binding subunits. Biol Chem 2023; 404:979-1002. [PMID: 37823775 DOI: 10.1515/hsz-2023-0184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/13/2023] [Indexed: 10/13/2023]
Abstract
Ribosomal RNAs (rRNAs) are structural components of ribosomes and represent the most abundant cellular RNA fraction. In the yeast Saccharomyces cerevisiae, they account for more than 60 % of the RNA content in a growing cell. The major amount of rRNA is synthesized by RNA polymerase I (Pol I). This enzyme transcribes exclusively the rRNA gene which is tandemly repeated in about 150 copies on chromosome XII. The high number of transcribed rRNA genes, the efficient recruitment of the transcription machinery and the dense packaging of elongating Pol I molecules on the gene ensure that enough rRNA is generated. Specific features of Pol I and of associated factors confer promoter selectivity and both elongation and termination competence. Many excellent reviews exist about the state of research about function and regulation of Pol I and how Pol I initiation complexes are assembled. In this report we focus on the Pol I specific lobe binding subunits which support efficient, error-free, and correctly terminated rRNA synthesis.
Collapse
Affiliation(s)
- Katrin Schwank
- Regensburg Center of Biochemistry (RCB), Universität Regensburg, D-93053 Regensburg, Germany
| | - Catharina Schmid
- Regensburg Center of Biochemistry (RCB), Universität Regensburg, D-93053 Regensburg, Germany
| | - Tobias Fremter
- Regensburg Center of Biochemistry (RCB), Universität Regensburg, D-93053 Regensburg, Germany
| | - Christoph Engel
- Regensburg Center of Biochemistry (RCB), Universität Regensburg, D-93053 Regensburg, Germany
| | - Philipp Milkereit
- Regensburg Center of Biochemistry (RCB), Universität Regensburg, D-93053 Regensburg, Germany
| | - Joachim Griesenbeck
- Regensburg Center of Biochemistry (RCB), Universität Regensburg, D-93053 Regensburg, Germany
| | - Herbert Tschochner
- Regensburg Center of Biochemistry (RCB), Universität Regensburg, D-93053 Regensburg, Germany
| |
Collapse
|
2
|
Jamalzadeh S, Pujari AN, Cullen PJ. A Rab escort protein regulates the MAPK pathway that controls filamentous growth in yeast. Sci Rep 2020; 10:22184. [PMID: 33335117 PMCID: PMC7746766 DOI: 10.1038/s41598-020-78470-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 11/18/2020] [Indexed: 12/12/2022] Open
Abstract
MAPK pathways regulate different responses yet can share common components. Although core regulators of MAPK pathways are well known, new pathway regulators continue to be identified. Overexpression screens can uncover new roles for genes in biological processes and are well suited to identify essential genes that cannot be evaluated by gene deletion analysis. In this study, a genome-wide screen was performed to identify genes that, when overexpressed, induce a reporter (FUS1-HIS3) that responds to ERK-type pathways (Mating and filamentous growth or fMAPK) but not p38-type pathways (HOG) in yeast. Approximately 4500 plasmids overexpressing individual yeast genes were introduced into strains containing the reporter by high-throughput transformation. Candidate genes were identified by measuring growth as a readout of reporter activity. Fourteen genes were identified and validated by re-testing: two were metabolic controls (HIS3, ATR1), five had established roles in regulating ERK-type pathways (STE4, STE7, BMH1, BMH2, MIG2) and seven represent potentially new regulators of MAPK signaling (RRN6, CIN5, MRS6, KAR2, TFA1, RSC3, RGT2). MRS6 encodes a Rab escort protein and effector of the TOR pathway that plays a role in nutrient signaling. MRS6 overexpression stimulated invasive growth and phosphorylation of the ERK-type fMAPK, Kss1. Overexpression of MRS6 reduced the osmotolerance of cells and phosphorylation of the p38/HOG MAPK, Hog1. Mrs6 interacted with the PAK kinase Ste20 and MAPKK Ste7 by two-hybrid analysis. Based on these results, Mrs6 may selectively propagate an ERK-dependent signal. Identifying new regulators of MAPK pathways may provide new insights into signal integration among core cellular processes and the execution of pathway-specific responses.
Collapse
Affiliation(s)
- Sheida Jamalzadeh
- Department of Chemical and Biological Engineering, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Atindra N Pujari
- Department of Biological Sciences, State University of New York at Buffalo, 532 Cooke Hall, Buffalo, NY, 14260-1300, USA
| | - Paul J Cullen
- Department of Biological Sciences, State University of New York at Buffalo, 532 Cooke Hall, Buffalo, NY, 14260-1300, USA.
| |
Collapse
|
3
|
Blombach F, Ausiannikava D, Figueiredo A, Soloviev Z, Prentice T, Zhang M, Zhou N, Thalassinos K, Allers T, Werner F. Structural and functional adaptation of Haloferax volcanii TFEα/β. Nucleic Acids Res 2018; 46:2308-2320. [PMID: 29309690 PMCID: PMC5861453 DOI: 10.1093/nar/gkx1302] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 12/08/2017] [Accepted: 12/19/2017] [Indexed: 12/14/2022] Open
Abstract
The basal transcription factor TFE enhances transcription initiation by catalysing DNA strand-separation, a process that varies with temperature and ionic strength. Canonical TFE forms a heterodimeric complex whose integrity and function critically relies on a cubane iron-sulphur cluster residing in the TFEβ subunit. Halophilic archaea such as Haloferax volcanii have highly divergent putative TFEβ homologues with unknown properties. Here, we demonstrate that Haloferax TFEβ lacks the prototypical iron-sulphur cluster yet still forms a stable complex with TFEα. A second metal cluster contained in the zinc ribbon domain in TFEα is highly degenerate but retains low binding affinity for zinc, which contributes to protein folding and stability. The deletion of the tfeB gene in H. volcanii results in the aberrant expression of approximately one third of all genes, consistent with its function as a basal transcription initiation factor. Interestingly, tfeB deletion particularly affects foreign genes including a prophage region. Our results reveal the loss of metal centres in Hvo transcription factors, and confirm the dual function of TFE as basal factor and regulator of transcription.
Collapse
Affiliation(s)
- Fabian Blombach
- Institute for Structural and Molecular Biology, Division of Biosciences, University College London, London, UK
| | - Darya Ausiannikava
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Angelo Miguel Figueiredo
- Institute for Structural and Molecular Biology, Division of Biosciences, University College London, London, UK
| | - Zoja Soloviev
- Institute for Structural and Molecular Biology, Division of Biosciences, University College London, London, UK
| | - Tanya Prentice
- Institute for Structural and Molecular Biology, Division of Biosciences, University College London, London, UK
| | - Mark Zhang
- Institute for Structural and Molecular Biology, Division of Biosciences, University College London, London, UK
| | - Nanruoyi Zhou
- Institute for Structural and Molecular Biology, Division of Biosciences, University College London, London, UK
| | - Konstantinos Thalassinos
- Institute for Structural and Molecular Biology, Division of Biosciences, University College London, London, UK
| | - Thorsten Allers
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Finn Werner
- Institute for Structural and Molecular Biology, Division of Biosciences, University College London, London, UK
| |
Collapse
|
4
|
Miwa K, Kojima R, Obita T, Ohkuma Y, Tamura Y, Mizuguchi M. Crystal Structure of Human General Transcription Factor TFIIE at Atomic Resolution. J Mol Biol 2016; 428:4258-4266. [DOI: 10.1016/j.jmb.2016.09.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 09/09/2016] [Accepted: 09/09/2016] [Indexed: 11/17/2022]
|
5
|
Blombach F, Salvadori E, Fouqueau T, Yan J, Reimann J, Sheppard C, Smollett KL, Albers SV, Kay CWM, Thalassinos K, Werner F. Archaeal TFEα/β is a hybrid of TFIIE and the RNA polymerase III subcomplex hRPC62/39. eLife 2015; 4:e08378. [PMID: 26067235 PMCID: PMC4495717 DOI: 10.7554/elife.08378] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 06/11/2015] [Indexed: 01/01/2023] Open
Abstract
Transcription initiation of archaeal RNA polymerase (RNAP) and eukaryotic RNAPII is assisted by conserved basal transcription factors. The eukaryotic transcription factor TFIIE consists of α and β subunits. Here we have identified and characterised the function of the TFIIEβ homologue in archaea that on the primary sequence level is related to the RNAPIII subunit hRPC39. Both archaeal TFEβ and hRPC39 harbour a cubane 4Fe-4S cluster, which is crucial for heterodimerization of TFEα/β and its engagement with the RNAP clamp. TFEα/β stabilises the preinitiation complex, enhances DNA melting, and stimulates abortive and productive transcription. These activities are strictly dependent on the β subunit and the promoter sequence. Our results suggest that archaeal TFEα/β is likely to represent the evolutionary ancestor of TFIIE-like factors in extant eukaryotes.
Collapse
Affiliation(s)
- Fabian Blombach
- Institute for Structural and Molecular Biology, Division of Biosciences, University College London, London, United Kingdom
| | - Enrico Salvadori
- Institute for Structural and Molecular Biology, Division of Biosciences, University College London, London, United Kingdom
- London Centre for Nanotechnology, University College London, London, United Kingdom
| | - Thomas Fouqueau
- Institute for Structural and Molecular Biology, Division of Biosciences, University College London, London, United Kingdom
| | - Jun Yan
- Institute for Structural and Molecular Biology, Division of Biosciences, University College London, London, United Kingdom
| | - Julia Reimann
- Molecular Biology of Archaea Group, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Carol Sheppard
- Institute for Structural and Molecular Biology, Division of Biosciences, University College London, London, United Kingdom
| | - Katherine L Smollett
- Institute for Structural and Molecular Biology, Division of Biosciences, University College London, London, United Kingdom
| | - Sonja V Albers
- Molecular Biology of Archaea Group, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- Microbiology, University of Freiburg, Freiburg, Germany
| | - Christopher WM Kay
- Institute for Structural and Molecular Biology, Division of Biosciences, University College London, London, United Kingdom
- London Centre for Nanotechnology, University College London, London, United Kingdom
| | - Konstantinos Thalassinos
- Institute for Structural and Molecular Biology, Division of Biosciences, University College London, London, United Kingdom
| | - Finn Werner
- Institute for Structural and Molecular Biology, Division of Biosciences, University College London, London, United Kingdom
| |
Collapse
|
6
|
Warf MB, Shepherd BA, Johnson WE, Bass BL. Effects of ADARs on small RNA processing pathways in C. elegans. Genome Res 2012; 22:1488-98. [PMID: 22673872 PMCID: PMC3409262 DOI: 10.1101/gr.134841.111] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Accepted: 04/02/2012] [Indexed: 11/24/2022]
Abstract
Adenosine deaminases that act on RNA (ADARs) are RNA editing enzymes that convert adenosine to inosine in double-stranded RNA (dsRNA). To evaluate effects of ADARs on small RNAs that derive from dsRNA precursors, we performed deep-sequencing, comparing small RNAs from wild-type and ADAR mutant Caenorhabditis elegans. While editing in small RNAs was rare, at least 40% of microRNAs had altered levels in at least one ADAR mutant strain, and miRNAs with significantly altered levels had mRNA targets with correspondingly affected levels. About 40% of siRNAs derived from endogenous genes (endo-siRNAs) also had altered levels in at least one mutant strain, including 63% of Dicer-dependent endo-siRNAs. The 26G class of endo-siRNAs was significantly affected by ADARs, and many altered 26G loci had intronic reads and histone modifications associated with transcriptional silencing. Our data indicate that ADARs, through both direct and indirect mechanisms, are important for maintaining wild-type levels of many small RNAs in C. elegans.
Collapse
Affiliation(s)
- M. Bryan Warf
- Department of Biochemistry, University of Utah, Salt Lake City, Utah 84112, USA
| | - Brent A. Shepherd
- Department of Statistics, Brigham Young University, Provo, Utah 84602, USA
| | - W. Evan Johnson
- Department of Medicine, Boston University, Boston, Massachusetts 02118, USA
| | - Brenda L. Bass
- Department of Biochemistry, University of Utah, Salt Lake City, Utah 84112, USA
| |
Collapse
|
7
|
Grünberg S, Warfield L, Hahn S. Architecture of the RNA polymerase II preinitiation complex and mechanism of ATP-dependent promoter opening. Nat Struct Mol Biol 2012; 19:788-96. [PMID: 22751016 PMCID: PMC3414687 DOI: 10.1038/nsmb.2334] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 05/28/2012] [Indexed: 01/23/2023]
Abstract
Yeast RNA polymerase (Pol) II general factor TFIIE and the TFIIH subunit Ssl2/XPB function in transition of the preinitiation complex (PIC) to the open complex. We find that the three TFIIE winged helix (WH) domains form a heterodimer, with the Tfa1/TFIIEα WH binding the Pol II clamp and the Tfa2/TFIIEβ tandem WH domain encircling promoter DNA that becomes single stranded in the open complex. Ssl2 lies adjacent to TFIIE, enclosing downstream promoter DNA. In contrast to previous proposals, comparison of the PIC and open complex models strongly suggests that Ssl2 promotes DNA opening by functioning as a double stranded DNA translocase, feeding 15 bp of double stranded DNA into the Pol II cleft. Right-handed threading of DNA through the Ssl2 binding groove, combined with the fixed position of upstream promoter DNA, will lead to DNA unwinding and the open state.
Collapse
|
8
|
Callebaut I, Prat K, Meurice E, Mornon JP, Tomavo S. Prediction of the general transcription factors associated with RNA polymerase II in Plasmodium falciparum: conserved features and differences relative to other eukaryotes. BMC Genomics 2005; 6:100. [PMID: 16042788 PMCID: PMC1199594 DOI: 10.1186/1471-2164-6-100] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2005] [Accepted: 07/23/2005] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND To date, only a few transcription factors have been identified in the genome of the parasite Plasmodium falciparum, the causative agent of malaria. Moreover, no detailed molecular analysis of its basal transcription machinery, which is otherwise well-conserved in the crown group of eukaryotes, has yet been reported. In this study, we have used a combination of sensitive sequence analysis methods to predict the existence of several parasite encoded general transcription factors associated with RNA polymerase II. RESULTS Several orthologs of general transcription factors associated with RNA polymerase II can be predicted among the hypothetical proteins of the P. falciparum genome using the two-dimensional Hydrophobic Cluster Analysis (HCA) together with profile-based search methods (PSI-BLAST). These predicted orthologous genes encoding putative transcription factors include the large subunit of TFIIA and two candidates for its small subunit, the TFIIE beta-subunit, which would associate with the previously known TFIIE alpha-subunit, the TFIIF beta-subunit, as well as the p62/TFB1 subunit of the TFIIH core. Within TFIID, the putative orthologs of TAF1, TAF2, TAF7 and TAF10 were also predicted. However, no candidates for TAFs with classical histone fold domain (HFD) were found, suggesting an unusual architecture of TFIID complex of RNA polymerase II in the parasite. CONCLUSION Taken together, these results suggest that more general transcription factors may be present in the P. falciparum proteome than initially thought. The prediction of these orthologous general transcription factors opens the way for further studies dealing with transcriptional regulation in P. falciparum. These alternative and sensitive sequence analysis methods can help to identify candidates for other transcriptional regulatory factors in P. falciparum. They will also facilitate the prediction of biological functions for several orphan proteins from other apicomplexan parasites such as Toxoplasma gondii, Cryptosporidium parvum and Eimeria.
Collapse
Affiliation(s)
- Isabelle Callebaut
- Centre National de la Recherche Scientifique CNRS UMR7590, Universités Paris 6 et Paris 7, Département de Biologie Structurale, IMPMC, case 115, 4 place Jussieu, 75252 Paris Cedex 05, France
| | - Karine Prat
- Centre National de la Recherche Scientifique CNRS UMR7590, Universités Paris 6 et Paris 7, Département de Biologie Structurale, IMPMC, case 115, 4 place Jussieu, 75252 Paris Cedex 05, France
| | - Edwige Meurice
- Centre National de la Recherche Scientifique CNRS UMR 8576, Université des Sciences et Technologies de Lille, Equipe de Parasitologie Moléculaire, Laboratoire de Chimie Biologique, UGSF, Bâtiment C9, 59655 Villeneuve d'Ascq, France
| | - Jean-Paul Mornon
- Centre National de la Recherche Scientifique CNRS UMR7590, Universités Paris 6 et Paris 7, Département de Biologie Structurale, IMPMC, case 115, 4 place Jussieu, 75252 Paris Cedex 05, France
| | - Stanislas Tomavo
- Centre National de la Recherche Scientifique CNRS UMR 8576, Université des Sciences et Technologies de Lille, Equipe de Parasitologie Moléculaire, Laboratoire de Chimie Biologique, UGSF, Bâtiment C9, 59655 Villeneuve d'Ascq, France
| |
Collapse
|
9
|
Hayashi K, Watanabe T, Tanaka A, Furumoto T, Sato-Tsuchiya C, Kimura M, Yokoi M, Ishihama A, Hanaoka F, Ohkuma Y. Studies ofSchizosaccharomyces pombeTFIIE indicate conformational and functional changes in RNA polymerase II at transcription initiation. Genes Cells 2005; 10:207-24. [PMID: 15743411 DOI: 10.1111/j.1365-2443.2005.00833.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The general transcription factor TFIIE plays essential roles in transcription by RNA polymerase II (PolII). Despite recent progress, the elucidation of its precise mechanisms including biological functions awaits further characterization. We report the isolation and characterization of Schizosaccharomyces pombe TFIIE (spTFIIE). Like human and other eukaryotic TFIIE proteins, spTFIIE consists of alpha and beta subunits and the genes encoding both subunits are essential for viability. Chromatin immunoprecipitation assays demonstrated that spTFIIE localizes to promoters in vivo. Mutational analysis of the C-terminal basic helix-loop region of TFIIEbeta, which is involved in the transition from transcription initiation to elongation, revealed that transcription-defective mutants affected in this region are also cold sensitive. The spTFIIEbeta subunit binds both spTFIIEbeta and spTFIIEalpha but spTFIIEalpha binds only spTFIIEbeta. These results indicate that TFIIE forms an alpha2beta2 heterotetramer in which two alphabeta heterodimers are connected via beta subunits. Further analysis of binding specificities showed that spTFIIEbeta binds the Rpb2 and Rpb12 subunits of PolII, whereas spTFIIEalpha predominantly binds Rpb5, which is located at the clamp region and changes conformation upon transcription initiation.
Collapse
Affiliation(s)
- Kazuhiro Hayashi
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Watanabe T, Hayashi K, Tanaka A, Furumoto T, Hanaoka F, Ohkuma Y. The carboxy terminus of the small subunit of TFIIE regulates the transition from transcription initiation to elongation by RNA polymerase II. Mol Cell Biol 2003; 23:2914-26. [PMID: 12665589 PMCID: PMC152561 DOI: 10.1128/mcb.23.8.2914-2926.2003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2002] [Revised: 11/26/2002] [Accepted: 01/28/2003] [Indexed: 11/20/2022] Open
Abstract
The general transcription factor TFIIE plays essential roles in both transcription initiation and the transition from initiation to elongation. Previously, we systematically deleted the structural motifs and characteristic sequences of the small subunit of human TFIIE (hTFIIE beta) to map its functional regions. Here we introduced point mutations into two regions located near the carboxy terminus of hTFIIE beta and identified the functionally essential amino acid residues that bind to RNA polymerase II (Pol II), the general transcription factors, and single-stranded DNA. Although most residues identified were essential for transcription initiation, use of an in vitro transcription assay with a linearized template revealed that several residues in the carboxy-terminal helix-loop region are crucially involved in the transition stage. Mutations in these residues also affected the ability of hTFIIE beta to stimulate TFIIH-mediated phosphorylation of the carboxy-terminal heptapeptide repeats of the largest subunit of Pol II. Furthermore, these mutations conspicuously augmented the binding of hTFIIE beta to the p44 subunit of TFIIH. The antibody study indicated that they thus altered the conformation of one side of TFIIH, consisting of p44, XPD, and Cdk-activating kinase subunits, that is essential for the transition stage. This is an important clue for elucidating the molecular mechanisms involved in the transition stage.
Collapse
Affiliation(s)
- Tomomichi Watanabe
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | |
Collapse
|
11
|
Sakurai H, Fukasawa T. Artificial recruitment of certain Mediator components affects requirement of basal transcription factor IIE. Genes Cells 2003; 8:41-50. [PMID: 12558798 DOI: 10.1046/j.1365-2443.2003.00613.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Basal transcription factors are essential for RNA polymerase II (RNAPII)-catalysed transcription of many but not all the mRNA-encoding genes in vivo as well as in vitro. For example, copper-inducible transcription of the copper metallothionein gene CUP1 occurs independently of basal factor TFIIE in budding yeast. To gain insight into the mechanism by which the requirement for TFIIE is bypassed, we artificially recruited certain constituents of Mediator, a large protein complex transmitting signals from various activators to the RNAPII machinery, to the CUP1 promoter by protein fusions with Ace1, the copper-inducible activator. RESULTS Fusions with Med2 or Pgd1 activated CUP1 independently of TFIIE. Surprisingly, fusions with neither Srb5 nor Med9 circumvented TFIIE requirement for the CUP1 activation. Components of TFIID were similarly recruited to the CUP1 promoter without activation. By using a chromatin immunoprecipitation technique, we found that TFIIE is necessary for stable binding of TFIIH and RNAPII to the ADH1 promoter, whose activation requires TFIIE. However, binding of TFIIH and RNAPII to CUP1 upon its activation did not require TFIIE. CONCLUSIONS Our results strongly suggest that the TFIIE requirement of a gene is determined by a target(s) in Mediator through which the signal of the cognate activator is transmitted.
Collapse
Affiliation(s)
- Hiroshi Sakurai
- School of Health Sciences, Faculty of Medicine, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa, Ishikawa 920-0942, Japan.
| | | |
Collapse
|
12
|
Howard SC, Budovskaya YV, Chang YW, Herman PK. The C-terminal domain of the largest subunit of RNA polymerase II is required for stationary phase entry and functionally interacts with the Ras/PKA signaling pathway. J Biol Chem 2002; 277:19488-97. [PMID: 12032176 DOI: 10.1074/jbc.m201878200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The Saccharomyces cerevisiae Ras proteins control cell growth by regulating the activity of the cAMP-dependent protein kinase (PKA). In this study, a genetic approach was used to identify cellular processes that were regulated by Ras/PKA signaling activity. Interestingly, we found that mutations affecting the C-terminal domain (CTD), of Rpb1p, the largest subunit of RNA polymerase II, were very sensitive to changes in Ras signaling activity. The Rpb1p CTD is a highly conserved, repetitive structure that is a key site of control during the production of a mature mRNA molecule. We found that mutations compromising the CTD were synthetically lethal with alterations that led to elevated levels of Ras/PKA signaling. Altogether, the data suggested that Ras/PKA activity was negatively regulating a protein that functioned in concert with the CTD during RNA pol II transcription. Consistent with this prediction, we found that elevated levels of Ras signaling caused growth and transcription defects that were very similar to those observed in mutants encoding an Rpb1p with a truncated CTD. In all, these data suggested that S. cerevisiae growth control and RNA pol II transcription might be coupled by using the Ras pathway to regulate CTD function.
Collapse
Affiliation(s)
- Susie C Howard
- Department of Molecular Genetics and Program in Molecular, Cellular, and Developmental Biology, Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | |
Collapse
|
13
|
Orlicky SM, Tran PT, Sayre MH, Edwards AM. Dissociable Rpb4-Rpb7 subassembly of rna polymerase II binds to single-strand nucleic acid and mediates a post-recruitment step in transcription initiation. J Biol Chem 2001; 276:10097-102. [PMID: 11087726 DOI: 10.1074/jbc.m003165200] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Rpb4 and Rpb7 subunits of yeast RNA polymerase II form a heterodimeric complex essential for promoter-directed transcription initiation in a reconstituted system. Results of template competition experiments indicate that the Rpb4-Rpb7 complex is not required for stable recruitment of polymerase to active preinitiation complexes, suggesting that Rpb4-Rpb7 mediates an essential step subsequent to promoter binding. Sequence and structure-based alignments revealed a possible OB-fold single-strand nucleic acid-binding motif in Rpb7. Purified Rpb4-Rpb7 complex exhibited both single-strand DNA- and RNA-binding activities, and a small deletion in the putative OB-fold nucleic acid-binding surface of Rpb7 abolished binding activity without affecting the stability of the Rpb4-Rpb7 complex or its ability to associate with polymerase. The same mutation destroyed the transcription activity of the Rpb4-Rpb7 complex. A separate deletion elsewhere in the OB-fold motif of Rpb7 also blocked transcription but did not affect nucleic acid binding, suggesting that the OB-fold of Rpb7 mediates both DNA-protein and protein-protein interactions required for productive initiation.
Collapse
Affiliation(s)
- S M Orlicky
- Banting and Best Department of Medical Research and Department of Medical Genetics and Microbiology, C. H. Best Institute, University of Toronto, Ontario M5G 1L6, Canada
| | | | | | | |
Collapse
|
14
|
García MG, O'Connor JE, García LL, Martínez SI, Herrero E, del Castillo Agudo L. Isolation of a Candida albicans gene, tightly linked to URA3, coding for a putative transcription factor that suppresses a Saccharomyces cerevisiae aft1 mutation. Yeast 2001; 18:301-11. [PMID: 11223939 DOI: 10.1002/1097-0061(20010315)18:4<301::aid-yea672>3.0.co;2-h] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
A pathogen such as C. albicans needs an efficient mechanism of iron uptake in an iron-restricted environment such as is the human body. A ferric-reductase activity regulated by iron and copper, and analogous to that in S. cerevisiae, has been described in C. albicans. We have developed an in-plate protocol for the isolation of clones that complement an aft1 mutation in S. cerevisiae that makes cells dependent on iron for growth. After transformation of S. cerevisiae aft1 with a C. albicans library, we have selected clones that grow in conditions of iron deficiency and share an identical plasmid, pIRO1, with a 4500 bp insert containing the URA3 gene and an ORF (IRO1) responsible for the suppression of the iron dependency. IRO1 does not show homology with AFT1 or with other sequences in the databases. Northern analysis demonstrates constitutive expression of IRO1. CAI4, a C. albicans strain isolated as Deltaura3, also has a deletion of the 3' half of IRO1, and displays in YNB medium similar phenotypic characteristics to S. cerevisiae aft1 mutant strains. Therefore, we consider IRO1 as a gene of C. albicans involved in the utilization of iron. However, in extreme conditions of iron deprivation, CAI4 seems to activate alternative mechanisms of iron uptake that allow a better growth than the wild strain SC5314. Analysis of its predicted protein sequence is in agreement with a role of Iro1p as a transcription factor.
Collapse
Affiliation(s)
- M G García
- Departament de Bioquimica i Biologia Molecular, Facultat de Farmacia, Universitat de València, 46100 Burjassot, Spain
| | | | | | | | | | | |
Collapse
|
15
|
Yamamoto S, Watanabe Y, van der Spek PJ, Watanabe T, Fujimoto H, Hanaoka F, Ohkuma Y. Studies of nematode TFIIE function reveal a link between Ser-5 phosphorylation of RNA polymerase II and the transition from transcription initiation to elongation. Mol Cell Biol 2001; 21:1-15. [PMID: 11113176 PMCID: PMC86563 DOI: 10.1128/mcb.21.1.1-15.2001] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The general transcription factor TFIIE plays important roles in transcription initiation and in the transition to elongation. However, little is known about its function during these steps. Here we demonstrate for the first time that TFIIH-mediated phosphorylation of RNA polymerase II (Pol II) is essential for the transition to elongation. This phosphorylation occurs at serine position 5 (Ser-5) of the carboxy-terminal domain (CTD) heptapeptide sequence of the largest subunit of Pol II. In a human in vitro transcription system with a supercoiled template, this process was studied using a human TFIIE (hTFIIE) homolog from Caenorhabditis elegans (ceTFIIEalpha and ceTFIIEbeta). ceTFIIEbeta could partially replace hTFIIEbeta, whereas ceTFIIEalpha could not replace hTFIIEalpha. We present the studies of TFIIE binding to general transcription factors and the effects of subunit substitution on CTD phosphorylation. As a result, ceTFIIEalpha did not bind tightly to hTFIIEbeta, and ceTFIIEbeta showed a similar profile for binding to its human counterpart and supported an intermediate level of CTD phosphorylation. Using antibodies against phosphorylated serine at either Ser-2 or Ser-5 of the CTD, we found that ceTFIIEbeta induced Ser-5 phosphorylation very little but induced Ser-2 phosphorylation normally, in contrast to wild-type hTFIIE, which induced phosphorylation at both Ser-2 and Ser-5. In transcription transition assays using a linear template, ceTFIIEbeta was markedly defective in its ability to support the transition to elongation. These observations provide evidence of TFIIE involvement in the transition and suggest that Ser-5 phosphorylation is essential for Pol II to be in the processive elongation form.
Collapse
Affiliation(s)
- S Yamamoto
- Institute for Molecular and Cellular Biology, Osaka University, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | |
Collapse
|
16
|
Liu C, Yang Z, Yang J, Xia Z, Ao S. Regulation of the yeast transcriptional factor PHO2 activity by phosphorylation. J Biol Chem 2000; 275:31972-8. [PMID: 10884387 DOI: 10.1074/jbc.m003055200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The induction of yeast Saccharomyces cerevisiae gene PHO5 expression is mediated by transcriptional factors PHO2 and PHO4. PHO4 protein has been reported to be phosphorylated and inactivated by a cyclin-CDK (cyclin-dependent kinase) complex, PHO80-PHO85. We report here that PHO2 can also be phosphorylated. A Ser-230 to Ala mutation in the consensus sequence (SPIK) recognized by cdc2/CDC28-related kinase in PHO2 protein led to complete loss of its ability to activate the transcription of PHO5 gene. Further investigation showed that the Pro-231 to Ser mutation inactivated PHO2 protein as well, whereas the Ser-230 to Asp mutation did not affect PHO2 activity. Since the PHO2 Asp-230 mutant mimics Ser-230-phosphorylated PHO2, we postulate that only phosphorylated PHO2 protein could activate the transcription of PHO5 gene. Two hybrid assays showed that yeast CDC28 could interact with PHO2. CDC28 immunoprecipitate derived from the YPH499 strain grown under low phosphate conditions phosphorylated GST-PHO2 in vitro. A phosphate switch regulates the transcriptional activation activity of PHO2, and mutations of the (SPIK) site affect the transcriptional activation activity of PHO2 and the interaction between PHO2 and PHO4. BIAcore(R) analysis indicated that the negative charge in residue 230 of PHO2 was sufficient to help PHO2 interact with PHO4 in vitro.
Collapse
Affiliation(s)
- C Liu
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry, Chinese Academy of Sciences, Shanghai 200031, People's Republic of China
| | | | | | | | | |
Collapse
|
17
|
Shpakovski GV, Baranova GM. Chromosomal localization of therpb9 + andtfa1 + genes encoding components of the mRNA synthesis machinery ofSchizosaccharomyces pombe. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2000. [DOI: 10.1007/bf02758631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
18
|
Kang SW, Kuzuhara T, Horikoshi M. Functional interaction of general transcription initiation factor TFIIE with general chromatin factor SPT16/CDC68. Genes Cells 2000; 5:251-63. [PMID: 10792464 DOI: 10.1046/j.1365-2443.2000.00323.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Transcriptional initiation of class II genes is one of the major targets for the regulation of gene expression and is carried out by RNA polymerase II and many auxiliary factors, which include general transcription initiation factors (GTFs). TFIIE, one of the GTFs, functions at the later stage of transcription initiation. As recent studies indicated the possibility that TFIIE may have a role in chromatin transcriptional regulation, we isolated TFIIE-interacting factors which have chromatin-related functions. RESULTS Using the yeast two-hybrid screening system, we isolated the C-terminal part of the human homologue of Saccharomyces cerevisiae (y) Spt16p/Cdc68p, a general chromatin factor. The C-terminal part of human SPT16/CDC68 directly interacts with TFIIE, and ySpt16p/Cdc68p also interacts with yTFIIE (Tfa1p/Tfa2p), thus indicating the existence of an evolutionarily conserved interaction between TFIIE and SPT16/CDC68. Functional interaction of yTFIIE and ySpt16p/Cdc68p was examined using a conditional yTFIIE-alpha mutant strain. Over-expression of ySpt16p/Cdc68p suppressed the phenotype of cold sensitivity of the yTFIIE-alpha-cs mutant strain, and in vitro binding assays revealed that yTFIIE-alpha-cs mutant protein showed diminished binding affinity to ySpt16p/Cdc68p. CONCLUSIONS These observations indicate that general transcription initiation factor TFIIE functionally interacts with general chromatin factor SPT16/CDC68, a finding which provides new insight into the involvement of TFIIE in chromatin transcription. This may well lead to a breakthrough in relationships between the transcription initiation process and structural changes in chromatin.
Collapse
Affiliation(s)
- S W Kang
- Laboratory of Developmental Biology, Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | | | | |
Collapse
|
19
|
Belotserkovskaya R, Sterner DE, Deng M, Sayre MH, Lieberman PM, Berger SL. Inhibition of TATA-binding protein function by SAGA subunits Spt3 and Spt8 at Gcn4-activated promoters. Mol Cell Biol 2000; 20:634-47. [PMID: 10611242 PMCID: PMC85153 DOI: 10.1128/mcb.20.2.634-647.2000] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
SAGA is a 1.8-MDa yeast protein complex that is composed of several distinct classes of transcription-related factors, including the adaptor/acetyltransferase Gcn5, Spt proteins, and a subset of TBP-associated factors. Our results indicate that mutations that completely disrupt SAGA (deletions of SPT7 or SPT20) strongly reduce transcriptional activation at the HIS3 and TRP3 genes and that Gcn5 is required for normal HIS3 transcriptional start site selection. Surprisingly, mutations in Spt proteins involved in the SAGA-TBP interaction (Spt3 and Spt8) cause derepression of HIS3 and TRP3 transcription in the uninduced state. Consistent with this finding, wild-type SAGA inhibits TBP binding to the HIS3 promoter in vitro, while SAGA lacking Spt3 or Spt8 is not inhibitory. We detected two distinct forms of SAGA in cell extracts and, strikingly, one lacks Spt8. Conditions that induce HIS3 and TRP3 transcription result in an altered balance between these complexes strongly in favor of the form without Spt8. These results suggest that the composition of SAGA may be dynamic in vivo and may be regulated through dissociable inhibitory subunits.
Collapse
|
20
|
Cho EJ, Buratowski S. Evidence that transcription factor IIB is required for a post-assembly step in transcription initiation. J Biol Chem 1999; 274:25807-13. [PMID: 10464320 DOI: 10.1074/jbc.274.36.25807] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mutation of glutamate 62 to lysine in yeast transcription factor (TF) IIB (Sua7) causes a cold-sensitive phenotype. This mutant also leads to preferential transcription of downstream start sites on some promoters in vivo. To explore the molecular nature of these phenotypes, the TFIIB E62K mutant was characterized in vitro. The mutant interacts with TATA-binding protein normally. In three different assays, the mutant can also interact with RNA polymerase II and recruit it and the other basal transcription factors to a promoter. Despite the ability to assemble a transcription complex, the TFIIB E62K protein is severely defective in transcription in vitro. Therefore, the role of TFIIB must be more than simply bridging TATA-binding protein and polymerase at the promoter. We propose that the region around Glu-62 in yeast TFIIB plays a role in start site selection, perhaps mediating a conformational change in the polymerase or the DNA during the search for initiation sites. This step may be related to the yeast-specific spacing between TATA elements and start sites since mutations of the corresponding glutamate in mammalian TFIIB do not produce a similar effect.
Collapse
Affiliation(s)
- E J Cho
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
21
|
Sakurai H, Fukasawa T. Activator-specific requirement for the general transcription factor IIE in yeast. Biochem Biophys Res Commun 1999; 261:734-9. [PMID: 10441494 DOI: 10.1006/bbrc.1999.1113] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The general transcription factor (TF) IIE is required for mRNA synthesis of many, but not all, genes in yeast. In the transcription process, TFIIE regulates TFIIH kinase activity that phosphorylates the carboxy-terminal domain (CTD) of the largest subunit of RNA polymerase II. The CTD and the CTD kinase Kin28, a subunit of TFIIH, have been shown to be dispensable for activation of several heat shock genes and the copper metallothionein gene CUP1. Here we analyzed requirement of TFIIE for transcription of these genes and found that TFIIE is necessary for activation of the heat shock genes by heat shock transcription factor Hsf1. By contrast, transcription of CUP1 mediated by both Hsf1 and copper-activated transcription factor Ace1 was inducible after inactivating TFIIE. These results show that both TFIIE and the CTD/the CTD kinase exhibit "gene specificities" which are overlapping, but not identical to each other, and thereby suggest that TFIIE functions with or without involvement of the CTD/the CTD kinase depending on the gene to be transcribed.
Collapse
Affiliation(s)
- H Sakurai
- Faculty of Medicine, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa, Ishikawa, 920-0942, Japan.
| | | |
Collapse
|
22
|
Kusakabe T, Hine AV, Hyberts SG, Richardson CC. The Cys4 zinc finger of bacteriophage T7 primase in sequence-specific single-stranded DNA recognition. Proc Natl Acad Sci U S A 1999; 96:4295-300. [PMID: 10200256 PMCID: PMC16326 DOI: 10.1073/pnas.96.8.4295] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bacteriophage T7 DNA primase recognizes 5'-GTC-3' in single-stranded DNA. The primase contains a single Cys4 zinc-binding motif that is essential for recognition. Biochemical and mutagenic analyses suggest that the Cys4 motif contacts cytosine of 5'-GTC-3' and may also contribute to thymine recognition. Residues His33 and Asp31 are critical for these interactions. Biochemical analysis also reveals that T7 primase selectively binds CTP in the absence of DNA. We propose that bound CTP selects the remaining base G, of 5'-GTC-3', by base pairing. Our deduced mechanism for recognition of ssDNA by Cys4 motifs bears little resemblance to the recognition of trinucleotides of double-stranded DNA by Cys2His2 zinc fingers.
Collapse
Affiliation(s)
- T Kusakabe
- Department of Biological Chemistry and Molecular Pharmacology, Harvard University Medical School, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
23
|
Wysocki R, Van Dyck E, Fairhead C, Foury F. Mass-murdering: deletion of twenty-three ORFs from Saccharomyces cerevisiae chromosome XI reveals five genes essential for growth and three genes conferring detectable mutant phenotype. Gene 1999; 229:37-45. [PMID: 10095102 DOI: 10.1016/s0378-1119(99)00030-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In the frame of the European Network for Functional Analysis (EUROFAN), two regions from chromosome XI covering 54kb have been subjected to 'mass-murder'. Ten deletions covering 23 novel open reading frames (ORFs) were constructed in haploid and diploid strains. Six deletions were lethal in haploid strains. One deletion caused slow germination of spores and slow cellular growth, and another one was associated with both cellular growth thermosensitivity and poor growth on glycerol. These two defects were assigned to two different genes. All mutant phenotypes were complemented by a single gene, enabling us to identify five genes essential for vegetative growth, three genes with detectable phenotype and 15 dispensable genes under standard physiological conditions.
Collapse
Affiliation(s)
- R Wysocki
- Unité de Biochimie Physiologique, Université Catholique de Louvain, Place Croix du Sud 2/20, B-1348, Louvain-la-Neuve, Belgium
| | | | | | | |
Collapse
|
24
|
Affiliation(s)
- V E Myer
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142 and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | |
Collapse
|
25
|
Abstract
Transcription initiation by RNA polymerase II (RNA pol II) requires interaction between cis-acting promoter elements and trans-acting factors. The eukaryotic promoter consists of core elements, which include the TATA box and other DNA sequences that define transcription start sites, and regulatory elements, which either enhance or repress transcription in a gene-specific manner. The core promoter is the site for assembly of the transcription preinitiation complex, which includes RNA pol II and the general transcription fctors TBP, TFIIB, TFIIE, TFIIF, and TFIIH. Regulatory elements bind gene-specific factors, which affect the rate of transcription by interacting, either directly or indirectly, with components of the general transcriptional machinery. A third class of transcription factors, termed coactivators, is not required for basal transcription in vitro but often mediates activation by a broad spectrum of activators. Accordingly, coactivators are neither gene-specific nor general transcription factors, although gene-specific coactivators have been described in metazoan systems. Transcriptional repressors include both gene-specific and general factors. Similar to coactivators, general transcriptional repressors affect the expression of a broad spectrum of genes yet do not repress all genes. General repressors either act through the core transcriptional machinery or are histone related and presumably affect chromatin function. This review focuses on the global effectors of RNA polymerase II transcription in yeast, including the general transcription factors, the coactivators, and the general repressors. Emphasis is placed on the role that yeast genetics has played in identifying these factors and their associated functions.
Collapse
Affiliation(s)
- M Hampsey
- Department of Biochemistry, Division of Nucleic Acids Enzymology, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, Piscataway, New Jersey 08854-5635, USA.
| |
Collapse
|
26
|
You Z, Feaver WJ, Friedberg EC. Yeast RNA polymerase II transcription in vitro is inhibited in the presence of nucleotide excision repair: complementation of inhibition by Holo-TFIIH and requirement for RAD26. Mol Cell Biol 1998; 18:2668-76. [PMID: 9566886 PMCID: PMC110646 DOI: 10.1128/mcb.18.5.2668] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The Saccharomyces cerevisiae transcription factor IIH (TFIIH) is essential both for transcription by RNA polymerase II (RNAP II) and for nucleotide excision repair (NER) of damaged DNA. We have established cell extracts which support RNAP II transcription from the yeast CYC1 promoter or NER of transcriptionally silent damaged DNA on independent plasmid templates and substrates. When plasmid templates and substrates for both processes are simultaneously incubated with these extracts, transcription is significantly inhibited. This inhibition is strictly dependent on active NER and can be complemented with purified holo-TFIIH. These results suggest that in the presence of active NER, TFIIH is preferentially mobilized from the basal transcription machinery for use in NER. Inhibition of transcription in the presence of active NER requires the RAD26 gene, the yeast homolog of the human Cockayne syndrome group B gene (CSB).
Collapse
Affiliation(s)
- Z You
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas 75235, USA
| | | | | |
Collapse
|
27
|
Gaudreau L, Adam M, Ptashne M. Activation of transcription in vitro by recruitment of the yeast RNA polymerase II holoenzyme. Mol Cell 1998; 1:913-6. [PMID: 9660974 DOI: 10.1016/s1097-2765(00)80090-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
It has been argued that many transcriptional activators work by "recruitment," that is, by helping the transcriptional machinery bind stably to DNA. We demonstrate here a realization of a strong prediction of this idea in an in vitro transcription reaction performed with purified yeast RNA polymerase II holoenzyme and a classical transcriptional activator. We show that the level of transcription reached by the activator working on low concentrations of holoenzyme can also be reached in the absence of activator by raising the holoenzyme concentration, and that under that condition the activator has no further stimulatory effect. We also show, in agreement with another prediction of the recruitment model, that in a reaction using a holoenzyme purified from cells bearing the "P" mutation, transcription is stimulated by a DNA-tethered peptide that binds the mutant holoenzyme component Gal11P but that lacks a classical activating region.
Collapse
Affiliation(s)
- L Gaudreau
- Program in Molecular Biology, Memorial Sloan-Kettering Cancer Institute, New York, New York 10021, USA
| | | | | |
Collapse
|
28
|
Sakurai H, Fukasawa T. Functional correlation among Gal11, transcription factor (TF) IIE, and TFIIH in Saccharomyces cerevisiae. Gal11 and TFIIE cooperatively enhance TFIIH-mediated phosphorylation of RNA polymerase II carboxyl-terminal domain sequences. J Biol Chem 1998; 273:9534-8. [PMID: 9545282 DOI: 10.1074/jbc.273.16.9534] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Saccharomyces cerevisiae Gal11, a component of the holoenzyme of RNA polymerase II, interacts through its functional domains A and B with the small (Tfa2) and large (Tfa1) subunits of the general transcription factor (TF) IIE, respectively. We have recently suggested that Gal11 functions through a common pathway with TFIIE in transcriptional regulation (Sakurai, H., and Fukasawa, T. (1997) J. Biol. Chem. 272, 32663-32669). Here, we report that the activity of the TFIIH-associated kinase, responsible for phosphorylation of the largest subunit of RNA polymerase II at the carboxyl-terminal domain (CTD), is enhanced cooperatively by Gal11 and TFIIE. The enhancement of CTD phosphorylation was observed in the holoenzyme of RNA polymerase II, but not in its core enzyme. The stimulatory effect was completely abolished in the absence of either domain B of Gal11 or the Tfa1 subunit of TFIIE, suggesting that the domain B-Tfa1 interaction is necessary, if not sufficient, for an extensive phosphorylation of the CTD by TFIIH. Stimulation of basal transcription by Gal11 was coupled with enhancement of TFIIH-catalyzed CTD phosphorylation in a cell-free transcription system, suggesting that Gal11 activates transcription by stimulating the CTD phosphorylation in the cell.
Collapse
Affiliation(s)
- H Sakurai
- School of Health Sciences, Faculty of Medicine, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa, Ishikawa 920-0942, Japan.
| | | |
Collapse
|
29
|
Tijerina P, Sayre MH. A debilitating mutation in transcription factor IIE with differential effects on gene expression in yeast. J Biol Chem 1998; 273:1107-13. [PMID: 9422776 DOI: 10.1074/jbc.273.2.1107] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The influence of transcription factor (TF) IIE on mRNA synthesis in vivo was examined in a temperature-sensitive yeast mutant. A missense mutation in the conserved zinc finger domain severely weakened TFIIE's transcription activity without appreciably affecting its quaternary structure, chromatographic properties, or cellular abundance. The mutation conferred recessive slow-growth and heat-sensitive phenotypes in yeast, but quantitative effects on promoter utilization by RNA polymerase II ranged from strongly negative to somewhat positive. Heat-induced activation of the HSP26, HSP104, and SSA4 genes was attenuated in the mutant, indicating dependence on TFIIE for maximal rates of de novo synthesis. Constitutive HSP expression in mutant cells was elevated, exposing a negative (likely indirect) influence by TFIIE in the absence of heat stress. Our results corroborate and extend recent findings of differential dependence on TFIIE activity for yeast promoters, but reveal an important counterpoint to the notion that dependence is tied to TATA element structure (Sakurai, H., Ohishi, T., and Fukasawa, T. (1997) J. Biol. Chem. 272, 15936-15942). We also provide empirical evidence for conservation of structure-activity relationships in TFIIE's zinc finger domain, and establish a direct link between TFIIE's biochemical activity in reconstituted transcription and its function in cellular mRNA synthesis.
Collapse
Affiliation(s)
- P Tijerina
- Department of Biochemistry, Johns Hopkins University School of Hygiene and Public Health, Baltimore, Maryland 21205, USA
| | | |
Collapse
|
30
|
Sakurai H, Fukasawa T. Yeast Gal11 and transcription factor IIE function through a common pathway in transcriptional regulation. J Biol Chem 1997; 272:32663-9. [PMID: 9405484 DOI: 10.1074/jbc.272.51.32663] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The global transcription regulator Gal11, a component of RNA polymerase II holoenzyme, is required for full expression of many genes in yeast. We previously reported that Gal11 binds the small (Tfa2) and large (Tfa1) subunits of the general transcription factor (TF) IIE through Gal11 functional domains A and B, respectively. Here we demonstrate that the C-terminal basic region in Tfa2 is responsible for binding to domain A, whereas both the N-terminal hydrophobic and internal glutamic acid-rich regions in Tfa1 are responsible for binding to domain B. Yeast cells bearing a C-terminal deletion encompassing the Gal11-interacting region in each of the two TFIIE subunits, being viable, exhibited no obvious phenotype. In contrast, combination of the two deletions (TFIIE-DeltaC) showed phenotypes similar to those of gal11 null mutations. The levels of mRNA from TATA-containing genes, but not from TATA-less genes, decreased in TFIIE-DeltaC to an extent comparable to that in the gal11 null mutant. Combination of TFIIE-DeltaC with a gal11 null mutation did not result in an enhanced effect, suggesting that both TFIIE and Gal11 act in a common regulatory pathway. In a reconstituted cell-free system, Gal11 protein stimulated basal transcription in the presence of wild-type TFIIE. Such a stimulation was not seen in the presence of TFIIE-DeltaC.
Collapse
Affiliation(s)
- H Sakurai
- School of Health Sciences, Faculty of Medicine, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa, Ishikawa 920, Japan.
| | | |
Collapse
|
31
|
Feaver WJ, Henry NL, Wang Z, Wu X, Svejstrup JQ, Bushnell DA, Friedberg EC, Kornberg RD. Genes for Tfb2, Tfb3, and Tfb4 subunits of yeast transcription/repair factor IIH. Homology to human cyclin-dependent kinase activating kinase and IIH subunits. J Biol Chem 1997; 272:19319-27. [PMID: 9235928 DOI: 10.1074/jbc.272.31.19319] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Genes for the Tfb2, Tfb3, and Tfb4 subunits of yeast RNA polymerase transcription factor IIH (TFIIH) are described. All three genes are essential for cell viability, and antibodies against Tfb3 specifically inhibit transcription in vitro. A C-terminal deletion of Tfb2 caused a defect in nucleotide excision repair, as shown by UV sensitivity of the mutant strain and loss of nucleotide excision repair activity in cell extracts (restored by the addition of purified TFIIH). An interaction between Tfb3 and the Kin28 subunit of TFIIH was detected by the two-hybrid approach, consistent with a role for Tfb3 in linking kinase and core domains of the factor. The deduced amino acid sequence of Tfb2 is similar to that of the 52-kDa subunit of human TFIIH, while Tfb3 is identified as a RING finger protein homologous to the 36-kDa subunit of murine CAK (cyclin-dependent kinase activating kinase) and to the 32-kDa subunit of human TFIIH. Tfb4 is homologous to p34 of human TFIIH and is identified as the weakly associated 37-kDa subunit of the yeast factor. These and other findings reveal a one-to-one correspondence and high degree of sequence similarity between the entire set of yeast and human TFIIH polypeptides.
Collapse
Affiliation(s)
- W J Feaver
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California 94305-5400, USA
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Ouhammouch M, Sayre MH, Kadonaga JT, Geiduschek EP. Activation of RNA polymerase II by topologically linked DNA-tracking proteins. Proc Natl Acad Sci U S A 1997; 94:6718-23. [PMID: 9192631 PMCID: PMC21224 DOI: 10.1073/pnas.94.13.6718] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Almost all proteins mediating transcriptional activation from promoter-distal sites attach themselves, directly or indirectly, to specific DNA sequence elements. Nevertheless, a single instance of activation by a prokaryotic topologically linked DNA-tracking protein has also been demonstrated. The scope of the latter class of transcriptional activators is broadened in this work. Heterologous fusion proteins linking the transcriptional activation domain of herpes simplex virus VP16 protein to the sliding clamp protein beta of the Escherichia coli DNA polymerase III holoenzyme are shown to function as topologically DNA-linked activators of yeast and Drosophila RNA polymerase II. The beta:VP16 fusion proteins must be loaded onto DNA by the clamp-loading E. coli gamma complex to be transcriptionally active, but they do not occupy fixed sites on the DNA. The DNA-loading sites of these activators have all the properties of enhancers: they can be inverted and their locations relative to the transcriptional start site are freely adjustable.
Collapse
Affiliation(s)
- M Ouhammouch
- Department of Biology and Center for Molecular Genetics, 9500 Gilman Drive, University of California at San Diego, La Jolla, CA 92093-0634, USA.
| | | | | | | |
Collapse
|
33
|
Sakurai H, Ohishi T, Fukasawa T. Promoter structure-dependent functioning of the general transcription factor IIE in Saccharomyces cerevisiae. J Biol Chem 1997; 272:15936-42. [PMID: 9188494 DOI: 10.1074/jbc.272.25.15936] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
General transcription factor (TF) IIE is an essential component of the basal transcription complex for protein-encoding genes, which is widely conserved in eukaryotes. Here we analyzed requirement for TFIIE for transcription in vivo by using yeast Saccharomyces cerevisiae cells harboring mutations in the TFA1 gene encoding the larger one of the two subunits of TFIIE. Deletion analysis indicated that the N-terminal half of Tfa1 protein has an essential function to support the cell growth. In a temperature-sensitive tfa1 mutant cell, the steady-state level of bulk poly(A)+ RNA decreased rapidly at the restrictive temperature. Surprisingly, levels of several mRNAs, whose transcription is directed by the promoters lacking the typical TATA sequence, were not affected in the mutant cells at that temperature. This promoter-specific functioning of TFIIE was reproduced in a cell-free system composed of TFIIE-depleted nuclear extracts. These results strongly suggest that requirement for TFIIE varies in each gene depending on the promoter structures in vivo.
Collapse
Affiliation(s)
- H Sakurai
- School of Health Sciences, Faculty of Medicine, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa, Ishikawa 920, Japan.
| | | | | |
Collapse
|
34
|
Conaway RC, Conaway JW. General transcription factors for RNA polymerase II. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1997; 56:327-46. [PMID: 9187058 DOI: 10.1016/s0079-6603(08)61009-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- R C Conaway
- Program in Molecular and Cell Biology, Oklahoma Medical Research Foundation, Oklahoma City 73104, USA
| | | |
Collapse
|
35
|
Künzler M, Springer C, Braus GH. The transcriptional apparatus required for mRNA encoding genes in the yeast Saccharomyces cerevisiae emerges from a jigsaw puzzle of transcription factors. FEMS Microbiol Rev 1996; 19:117-36. [PMID: 8988567 DOI: 10.1111/j.1574-6976.1996.tb00256.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The number of identified yeast factors involved in transcription has dramatically increased in recent years and the understanding of the interplay between the different factors has become more and more puzzling. Transcription initiation at the core promoter of mRNA encoding genes consisting of upstream, TATA and initiator elements requires an approximately ribosome-sized complex of more than 50 polypeptides. The recent identification and isolation of an RNA polymerase holoenzyme which seems to be preassembled before interacting with a promoter allowed a better understanding of the roles, assignments and interplays of the various constituents of the basal transcription machinery. Recruitment of this complex to the promoter is achieved by numerous interactions with a variety of DNA-bound proteins. These interactions can be direct or mediated by additional adaptor proteins. Other proteins negatively affect transcription by interrupting the recruitment process through protein-protein or protein-DNA interactions. Some basic features of cis-acting elements, the transcriptional apparatus and various trans-acting factors involved in the initiation of mRNA synthesis in yeast are summarized.
Collapse
Affiliation(s)
- M Künzler
- Institute of Microbiology, Biochemistry and Genetics, Friedrich-Alexander-University, Erlangen, Germany
| | | | | |
Collapse
|
36
|
Bushnell DA, Bamdad C, Kornberg RD. A minimal set of RNA polymerase II transcription protein interactions. J Biol Chem 1996; 271:20170-4. [PMID: 8702741 DOI: 10.1074/jbc.271.33.20170] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
All pairwise interactions of RNA polymerase II and general transcription factors (TF) IIB, E, F, and H have been quantitated by surface plasmon resonance with the use of a Ni2+ chelate on the sensor surface where necessary to attain higher sensitivity. Only 4 of 10 possible interactions were found above the detection limit: TFIIB, -E, and -F binding to RNA polymerase II and TFIIE binding to TFIIH. These four interactions constitute a minimal set for the formation of a transcription initiation complex and may represent the primary interactions involved in assembly of the complex. Point mutations in TFIIB that alter the location of transcription start sites in vivo markedly diminished the affinity of TFIIB binding to RNA polymerase II. Protein blotting revealed an interaction between the largest subunit of TFIIE and third largest subunit of TFIIH, which may be responsible for TFIIE binding to TFIIH.
Collapse
Affiliation(s)
- D A Bushnell
- Department of Structural Biology, Stanford School of Medicine, Stanford, California 94027, USA
| | | | | |
Collapse
|
37
|
Roberts S, Miller SJ, Lane WS, Lee S, Hahn S. Cloning and functional characterization of the gene encoding the TFIIIB90 subunit of RNA polymerase III transcription factor TFIIIB. J Biol Chem 1996; 271:14903-9. [PMID: 8662956 DOI: 10.1074/jbc.271.25.14903] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The yeast RNA polymerase III (pol III) general transcription factor TFIIIB is composed of three subunits; the TATA-binding protein (TBP)1, the TFIIB-related factor (BRF1), and a third factor termed TFIIIB90 or B". Here we report the purification of yeast TFIIIB90, cloning of the gene encoding TFIIIB90, and reconstitution of TFIIIB from recombinant polypeptides. The TFIIIB90 open reading frame encodes a 68-kDa polypeptide and has no obvious similarity to any other known protein sequences. The gene encoding TFIIIB90 is essential for viability of yeast. Using recombinant TFIIIB subunits, we found that TFIIIB90 interacts weakly with TBP in the absence of BRF1, and that this interaction is enhanced at least 25-fold by BRF1. In addition, TFIIIB90 showed pol III specificity as it could not interact with the pol II-specific TFIIB-TBP-DNA complex. To localize the regions of the TBP-DNA complex that interact with BRF1 and TFIIIB90, we tested whether the pol II factors TFIIA and TFIIB interfered with the binding of BRF1 and TFIIIB90 to TBP-DNA. Our results suggest that the binding sites for BRF1 and TFIIIB90 on TBP-DNA both overlap the binding sites for TFIIA and TFIIB.
Collapse
Affiliation(s)
- S Roberts
- Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | | | | | | | | |
Collapse
|
38
|
Leuther KK, Bushnell DA, Kornberg RD. Two-dimensional crystallography of TFIIB- and IIE-RNA polymerase II complexes: implications for start site selection and initiation complex formation. Cell 1996; 85:773-9. [PMID: 8646784 DOI: 10.1016/s0092-8674(00)81242-8] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
SUMMARY Transcription factors IIB (TFIIB) and IIE (TFIIE) bound to RNA polymerase II have been revealed by electron crystallography in projection at 15.7 A resolution. The results lead to simple hypotheses for the roles of these factors in the initiation of transcription. TFIIB is suggested to define the distance from TATA box to transcription start site by bringing TATA DNA in contact with polymerase at that distance from the active center of the enzyme. TFIIE is suggested to participate in a key conformational switch occurring at the active center upon polymerase-DNA interaction.
Collapse
Affiliation(s)
- K K Leuther
- Department of Structural Biology, Stanford University School of Medicine, California 94305-5400, USA
| | | | | |
Collapse
|
39
|
Svejstrup JQ, Feaver WJ, Kornberg RD. Subunits of yeast RNA polymerase II transcription factor TFIIH encoded by the CCL1 gene. J Biol Chem 1996; 271:643-5. [PMID: 8557668 DOI: 10.1074/jbc.271.2.643] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Both 45- and 47-kDa subunits of TFIIK, a subcomplex of RNA polymerase II general transcription factor TFIIH, are encoded by the yeast cyclin gene CCL1. In all likelihood, these two subunits individually form cyclin-dependent kinase/cyclin dimers with Kin28 protein, a key enzyme in phosphorylation of the C-terminal domain of RNA polymerase II concomitant with transcription.
Collapse
Affiliation(s)
- J Q Svejstrup
- Department of Structural Biology, Stanford University School of Medicine, California 94305-5400, USA
| | | | | |
Collapse
|
40
|
Feaver WJ, Svejstrup JQ, Henry NL, Kornberg RD. Relationship of CDK-activating kinase and RNA polymerase II CTD kinase TFIIH/TFIIK. Cell 1994; 79:1103-9. [PMID: 8001136 DOI: 10.1016/0092-8674(94)90040-x] [Citation(s) in RCA: 334] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
KIN28, a member of the p34cdc2/CDC28 family of protein kinases, is identified as a subunit of yeast RNA polymerase transcription factor IIH (TFIIH) on the basis of sequence determination, immunological reactivity, and copurification. KIN28 is, moreover, one of three subunits of TFIIK, a subassembly of TFIIH with protein kinase activity directed toward the C-terminal repeat domain (CTD) of the largest subunit of RNA polymerase II. Itself a phosphoprotein, KIN28 interacts specifically with the two largest subunits of RNA polymerase II. Previous work of others points to two further associations: KIN28 interacts in vivo with the cyclin CCL1, and KIN28 and CCL1 are homologous to human MO15 and cyclin H, which form the cyclin-dependent kinase-activating kinase (CAK). We show that human CAK possesses the CTD kinase activity characteristic of TFIIH.
Collapse
Affiliation(s)
- W J Feaver
- Department of Structural Biology, Stanford University School of Medicine, California 94305
| | | | | | | |
Collapse
|
41
|
Henry NL, Campbell AM, Feaver WJ, Poon D, Weil PA, Kornberg RD. TFIIF-TAF-RNA polymerase II connection. Genes Dev 1994; 8:2868-78. [PMID: 7995524 DOI: 10.1101/gad.8.23.2868] [Citation(s) in RCA: 126] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
RNA polymerase transcription factor IIF (TFIIF) is required for initiation at most, if not all, polymerase II promoters. We report here the cloning and sequencing of genes for a yeast protein that is the homolog of mammalian TFIIF. This yeast protein, previously designated factor g, contains two subunits, Tfg1 and Tfg2, both of which are required for transcription, essential for yeast cell viability, and whose sequences exhibit significant similarity to those of the mammalian factor. The yeast protein also contains a third subunit, Tfg3, which is less tightly associated and at most stimulatory to transcription, dispensable for cell viability, and has no known counterpart in mammalian TFIIF. Remarkably, the TFG3 gene encodes yeast TAF30, and furthermore, is identical to ANC1, a gene implicated in actin cytoskeletal function in vivo (Welch and Drubin 1994). Tfg3 is also a component of the recently described mediator complex (Kim et al. 1994), whose interaction with the carboxy-terminal repeat domain of RNA polymerase II enables transcriptional activation. Deletion of TFG3 results in diminished transcription in vivo.
Collapse
Affiliation(s)
- N L Henry
- Department of Structural Biology, Stanford University School of Medicine, California 94305
| | | | | | | | | | | |
Collapse
|