1
|
Selenium and selenoproteins in thermogenic adipocytes. Arch Biochem Biophys 2022; 731:109445. [PMID: 36265651 PMCID: PMC9981474 DOI: 10.1016/j.abb.2022.109445] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 11/20/2022]
Abstract
Selenium (Se) is involved in energy metabolism in the liver, white adipose tissue, and skeletal muscle, and may also play a role in thermogenic adipocytes, i.e. brown and beige adipocytes. Thereby this micronutrient is a key nutritional target to aid in combating obesity and metabolic diseases. In thermogenic adipocytes, particularly in brown adipose tissue (BAT), the selenoprotein type 2 iodothyronine deiodinase (DIO2) is essential for the activation of adaptive thermogenesis. Recent evidence has suggested that additional selenoproteins may also be participating in this process, and a role for Se itself through its metabolic pathways is also envisioned. In this review, we discuss the recognized effects and the knowledge gaps in the involvement of Se metabolism and selenoproteins in the mechanisms of adaptive thermogenesis in thermogenic (brown and beige) adipocytes.
Collapse
|
2
|
Cohen P, Kajimura S. The cellular and functional complexity of thermogenic fat. Nat Rev Mol Cell Biol 2021; 22:393-409. [PMID: 33758402 PMCID: PMC8159882 DOI: 10.1038/s41580-021-00350-0] [Citation(s) in RCA: 279] [Impact Index Per Article: 69.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2021] [Indexed: 02/01/2023]
Abstract
Brown and beige adipocytes are mitochondria-enriched cells capable of dissipating energy in the form of heat. These thermogenic fat cells were originally considered to function solely in heat generation through the action of the mitochondrial protein uncoupling protein 1 (UCP1). In recent years, significant advances have been made in our understanding of the ontogeny, bioenergetics and physiological functions of thermogenic fat. Distinct subtypes of thermogenic adipocytes have been identified with unique developmental origins, which have been increasingly dissected in cellular and molecular detail. Moreover, several UCP1-independent thermogenic mechanisms have been described, expanding the role of these cells in energy homeostasis. Recent studies have also delineated roles for these cells beyond the regulation of thermogenesis, including as dynamic secretory cells and as a metabolic sink. This Review presents our current understanding of thermogenic adipocytes with an emphasis on their development, biological functions and roles in systemic physiology.
Collapse
Affiliation(s)
- Paul Cohen
- Laboratory of Molecular Metabolism, The Rockefeller University, New York, NY, USA.
| | - Shingo Kajimura
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
- Department of Cell and Tissue Biology, UCSF Diabetes Center, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
3
|
Verkerke ARP, Kajimura S. Oil does more than light the lamp: The multifaceted role of lipids in thermogenic fat. Dev Cell 2021; 56:1408-1416. [PMID: 34004150 DOI: 10.1016/j.devcel.2021.04.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/25/2021] [Accepted: 04/16/2021] [Indexed: 01/23/2023]
Abstract
Brown and beige adipocytes, or thermogenic fat, were initially thought to be merely a thermogenic organ. However, emerging evidence suggests its multifaceted roles in the regulation of systemic glucose and lipid homeostasis that go beyond enhancing thermogenesis. One of the important functions of thermogenic fat is as a "metabolic sink" for glucose, fatty acids, and amino acids, which profoundly impacts metabolite clearance and oxidation. Importantly, lipids are not only the predominant fuel source used for thermogenesis but are also essential molecules for development, cellular signaling, and structural components. Here, we review the multifaceted role of lipids in thermogenic adipocytes.
Collapse
Affiliation(s)
- Anthony R P Verkerke
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Shingo Kajimura
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
4
|
Nicholls DG. Mitochondrial proton leaks and uncoupling proteins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2021; 1862:148428. [PMID: 33798544 DOI: 10.1016/j.bbabio.2021.148428] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/15/2021] [Accepted: 03/25/2021] [Indexed: 01/02/2023]
Abstract
Non-shivering thermogenesis in brown adipose tissue is mediated by uncoupling protein 1 (UCP1), which provides a carefully regulated proton re-entry pathway across the mitochondrial inner membrane operating in parallel to the ATP synthase and allowing respiration, and hence thermogenesis, to be released from the constraints of respiratory control. In the 40 years since UCP1 was first described, an extensive, and frequently contradictory, literature has accumulated, focused on the acute physiological regulation of the protein by fatty acids, purine nucleotides and possible additional factors. The purpose of this review is to examine, in detail, the experimental evidence underlying these proposed mechanisms. Emphasis will be placed on the methodologies employed and their relation to the physiological constraints under which the protein functions in the intact cell. The nature of the endogenous, UCP1-independent, proton leak will also be discussed. Finally, the troubled history of the putative novel uncoupling proteins, UCP2 and UCP3, will be evaluated.
Collapse
|
5
|
Kreiter J, Rupprecht A, Zimmermann L, Moschinger M, Rokitskaya TI, Antonenko YN, Gille L, Fedorova M, Pohl EE. Molecular Mechanisms Responsible for Pharmacological Effects of Genipin on Mitochondrial Proteins. Biophys J 2019; 117:1845-1857. [PMID: 31706565 PMCID: PMC7031773 DOI: 10.1016/j.bpj.2019.10.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 09/26/2019] [Accepted: 10/15/2019] [Indexed: 12/15/2022] Open
Abstract
Genipin, a natural compound from Gardenia jasminoides, is a well-known compound in Chinese medicine that is used for the treatment of cancer, inflammation, and diabetes. The use of genipin in classical medicine is hindered because of its unknown molecular mechanisms of action apart from its strong cross-linking ability. Genipin is increasingly applied as a specific inhibitor of proton transport mediated by mitochondrial uncoupling protein 2 (UCP2). However, its specificity for UCP2 is questionable, and the underlying mechanism behind its action is unknown. Here, we investigated the effect of genipin in different systems, including neuroblastoma cells, isolated mitochondria, isolated mitochondrial proteins, and planar lipid bilayer membranes reconstituted with recombinant proteins. We revealed that genipin activated dicarboxylate carrier and decreased the activity of UCP1, UCP3, and complex III of the respiratory chain alongside with UCP2 inhibition. Based on competitive inhibition experiments, the use of amino acid blockers, and site-directed mutagenesis of UCP1, we propose a mechanism of genipin’s action on UCPs. At low concentrations, genipin binds to arginine residues located in the UCP funnel, which leads to a decrease in UCP’s proton transporting function in the presence of long chain fatty acids. At concentrations above 200 μM, the inhibitory action of genipin on UCPs is overlaid by increased nonspecific membrane conductance due to the formation of protein-genipin aggregates. Understanding the concentration-dependent mechanism of genipin action in cells will allow its targeted application as a drug in the above-mentioned diseases.
Collapse
Affiliation(s)
- Jürgen Kreiter
- Institute of Physiology, Pathophysiology and Biophysics, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Anne Rupprecht
- Rostock University Medical Center, Rostock, Mecklenburg-Vorpommern, Germany
| | - Lars Zimmermann
- Institute of Physiology, Pathophysiology and Biophysics, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Michael Moschinger
- Institute of Physiology, Pathophysiology and Biophysics, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Tatyana I Rokitskaya
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Yuri N Antonenko
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Lars Gille
- Institute of Pharmacology and Toxicology, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Maria Fedorova
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, Center for Biotechnology and Biomedicine, University of Leipzig, Leipzig, Germany
| | - Elena E Pohl
- Institute of Physiology, Pathophysiology and Biophysics, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria.
| |
Collapse
|
6
|
Ježek P, Jabůrek M, Porter RK. Uncoupling mechanism and redox regulation of mitochondrial uncoupling protein 1 (UCP1). BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2019; 1860:259-269. [DOI: 10.1016/j.bbabio.2018.11.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 10/15/2018] [Accepted: 11/07/2018] [Indexed: 01/11/2023]
|
7
|
Echtay KS, Bienengraeber M, Mayinger P, Heimpel S, Winkler E, Druhmann D, Frischmuth K, Kamp F, Huang SG. Uncoupling proteins: Martin Klingenberg's contributions for 40 years. Arch Biochem Biophys 2018; 657:41-55. [PMID: 30217511 DOI: 10.1016/j.abb.2018.09.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 09/07/2018] [Accepted: 09/10/2018] [Indexed: 12/22/2022]
Abstract
The uncoupling protein (UCP1) is a proton (H+) transporter in the mitochondrial inner membrane. By dissipating the electrochemical H+ gradient, UCP1 uncouples respiration from ATP synthesis, which drives an increase in substrate oxidation via the TCA cycle flux that generates more heat. The mitochondrial uncoupling-mediated non-shivering thermogenesis in brown adipose tissue is vital primarily to mammals, such as rodents and new-born humans, but more recently additional functions in adult humans have been described. UCP1 is regulated by β-adrenergic receptors through the sympathetic nervous system and at the molecular activity level by nucleotides and fatty acid to meet thermogenesis needs. The discovery of novel UCP homologs has greatly contributed to the understanding of human diseases, such as obesity and diabetes. In this article, we review the progress made towards the molecular mechanism and function of the UCPs, in particular focusing on the influential contributions from Martin Klingenberg's laboratory. Because all members of the UCP family are potentially promising drug targets, we also present and discuss possible approaches and methods for UCP-related drug discovery.
Collapse
Affiliation(s)
- Karim S Echtay
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, P.O. Box: 100, Tripoli, Lebanon
| | - Martin Bienengraeber
- Departments of Anesthesiology and Pharmacology, Medical College of Wisconsin, Milwaukee, USA
| | - Peter Mayinger
- Division of Nephrology & Hypertension and Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, 2730 SW Moody Ave, Portland, OR, 97201, USA
| | - Simone Heimpel
- Campus of Applied Science, University of Applied Sciences Würzburg-Schweinfurt, Münzstraße 12, D-97070, Würzburg, Germany
| | - Edith Winkler
- Institute of Physical Biochemistry, University of Munich, Schillerstrasse 44, D-80336, Munich, Germany
| | - Doerthe Druhmann
- Institute of Physical Biochemistry, University of Munich, Schillerstrasse 44, D-80336, Munich, Germany
| | - Karina Frischmuth
- Institute of Physical Biochemistry, University of Munich, Schillerstrasse 44, D-80336, Munich, Germany
| | - Frits Kamp
- Institute of Physical Biochemistry, University of Munich, Schillerstrasse 44, D-80336, Munich, Germany
| | - Shu-Gui Huang
- BioAssay Systems, 3191 Corporate Place, Hayward, CA, 94545, USA.
| |
Collapse
|
8
|
Ježek P, Holendová B, Garlid KD, Jabůrek M. Mitochondrial Uncoupling Proteins: Subtle Regulators of Cellular Redox Signaling. Antioxid Redox Signal 2018; 29:667-714. [PMID: 29351723 PMCID: PMC6071544 DOI: 10.1089/ars.2017.7225] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
SIGNIFICANCE Mitochondria are the energetic, metabolic, redox, and information signaling centers of the cell. Substrate pressure, mitochondrial network dynamics, and cristae morphology state are integrated by the protonmotive force Δp or its potential component, ΔΨ, which are attenuated by proton backflux into the matrix, termed uncoupling. The mitochondrial uncoupling proteins (UCP1-5) play an eminent role in the regulation of each of the mentioned aspects, being involved in numerous physiological events including redox signaling. Recent Advances: UCP2 structure, including purine nucleotide and fatty acid (FA) binding sites, strongly support the FA cycling mechanism: UCP2 expels FA anions, whereas uncoupling is achieved by the membrane backflux of protonated FA. Nascent FAs, cleaved by phospholipases, are preferential. The resulting Δp dissipation decreases superoxide formation dependent on Δp. UCP-mediated antioxidant protection and its impairment are expected to play a major role in cell physiology and pathology. Moreover, UCP2-mediated aspartate, oxaloacetate, and malate antiport with phosphate is expected to alter metabolism of cancer cells. CRITICAL ISSUES A wide range of UCP antioxidant effects and participations in redox signaling have been reported; however, mechanisms of UCP activation are still debated. Switching off/on the UCP2 protonophoretic function might serve as redox signaling either by employing/releasing the extra capacity of cell antioxidant systems or by directly increasing/decreasing mitochondrial superoxide sources. Rapid UCP2 degradation, FA levels, elevation of purine nucleotides, decreased Mg2+, or increased pyruvate accumulation may initiate UCP-mediated redox signaling. FUTURE DIRECTIONS Issues such as UCP2 participation in glucose sensing, neuronal (synaptic) function, and immune cell activation should be elucidated. Antioxid. Redox Signal. 29, 667-714.
Collapse
Affiliation(s)
- Petr Ježek
- 1 Department of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences , Prague, Czech Republic
| | - Blanka Holendová
- 1 Department of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences , Prague, Czech Republic
| | - Keith D Garlid
- 2 UCLA Cardiovascular Research Laboratory, David Geffen School of Medicine at UCLA , Los Angeles, California
| | - Martin Jabůrek
- 1 Department of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences , Prague, Czech Republic
| |
Collapse
|
9
|
Crichton PG, Lee Y, Kunji ERS. The molecular features of uncoupling protein 1 support a conventional mitochondrial carrier-like mechanism. Biochimie 2017; 134:35-50. [PMID: 28057583 PMCID: PMC5395090 DOI: 10.1016/j.biochi.2016.12.016] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 12/24/2016] [Indexed: 12/14/2022]
Abstract
Uncoupling protein 1 (UCP1) is an integral membrane protein found in the mitochondrial inner membrane of brown adipose tissue, and facilitates the process of non-shivering thermogenesis in mammals. Its activation by fatty acids, which overcomes its inhibition by purine nucleotides, leads to an increase in the proton conductance of the inner mitochondrial membrane, short-circuiting the mitochondrion to produce heat rather than ATP. Despite 40 years of intense research, the underlying molecular mechanism of UCP1 is still under debate. The protein belongs to the mitochondrial carrier family of transporters, which have recently been shown to utilise a domain-based alternating-access mechanism, cycling between a cytoplasmic and matrix state to transport metabolites across the inner membrane. Here, we review the protein properties of UCP1 and compare them to those of mitochondrial carriers. UCP1 has the same structural fold as other mitochondrial carriers and, in contrast to past claims, is a monomer, binding one purine nucleotide and three cardiolipin molecules tightly. The protein has a single substrate binding site, which is similar to those of the dicarboxylate and oxoglutarate carriers, but also contains a proton binding site and several hydrophobic residues. As found in other mitochondrial carriers, UCP1 has two conserved salt bridge networks on either side of the central cavity, which regulate access to the substrate binding site in an alternating way. The conserved domain structures and mobile inter-domain interfaces are consistent with an alternating access mechanism too. In conclusion, UCP1 has retained all of the key features of mitochondrial carriers, indicating that it operates by a conventional carrier-like mechanism.
Collapse
Affiliation(s)
- Paul G Crichton
- Biomedical Research Centre, Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom.
| | - Yang Lee
- Laboratory of Molecular Biology, Medical Research Council, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Edmund R S Kunji
- Mitochondrial Biology Unit, Medical Research Council, Cambridge Biomedical Campus, Wellcome Trust, MRC Building, Hills Road, Cambridge CB2 0XY, United Kingdom.
| |
Collapse
|
10
|
Abstract
This review focuses on the biochemical work of UCP1 starting from the early observation by Ricquier and Kader in 1976. We entered this field in 1980 with the isolation of native UCP1 and then reported the amino acid sequence structure discovering a strong homology to the ADP/ATP carrier. With the isolated native UCP1 we studied structural and functional features, in particular the complex characteristics of nucleotide binding. A strong pH dependence of binding and herein the differences between diphopho- and triphopho-nucleotides were observed, resulting in the identification of residues which control binding site access by their H+ dissociation. Newly synthesized fluorescent nucleotide derivatives provided tools to determine a two state nucleotide binding in line with loose and tight UCP1 conformations and H+ transport inhibition. The slow transition between these states were a notable feature. The reconstitution of isolated UCP1 in vesicles demonstrated that UCP1 protein is in fact the uncoupling factor and not only a nucleotide controlled regulator. The H+ transport was shown to be electrophoretic with a linear relation to the membrane potential. The dependence of H+ transport on fatty acids (FA) was characterized and is elaborated here with a view of the experimental conditions of other research groups which had different views of the role of FA in H+ transport. Furthermore, to explain the contrast of the FA - nucleotide competition between mitochondria and reconstituted system, indirect paths for FA to relieve the inhibition in mitochondria are here proposed, such as a FA induced upward pH shift and a FA induced increase of cardiolipin level around UCP1 since cardiolipin has been found by us to relieve nucleotide binding on isolated UCP1. Recently reported patch clamp results on mitoplasts led to a reformulation of the H+ transport mechanism of FA in UCP1 in which bound FA shuttles with the carboxyl group between the two membrane sides along the translocation channel outward as FA- and inward as FA-H+. We propose here a modified version, where FA forms an immobile prosthetic group surrounded by the inner and outer gate of the H+ translocation channel. By alternating opening of the gates FA takes up H+ from the cytosol side and releases H+ to the matrix.
Collapse
|
11
|
The conserved regulation of mitochondrial uncoupling proteins: From unicellular eukaryotes to mammals. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1858:21-33. [PMID: 27751905 DOI: 10.1016/j.bbabio.2016.10.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 09/29/2016] [Accepted: 10/13/2016] [Indexed: 12/19/2022]
Abstract
Uncoupling proteins (UCPs) belong to the mitochondrial anion carrier protein family and mediate regulated proton leak across the inner mitochondrial membrane. Free fatty acids, aldehydes such as hydroxynonenal, and retinoids activate UCPs. However, there are some controversies about the effective action of retinoids and aldehydes alone; thus, only free fatty acids are commonly accepted positive effectors of UCPs. Purine nucleotides such as GTP inhibit UCP-mediated mitochondrial proton leak. In turn, membranous coenzyme Q may play a role as a redox state-dependent metabolic sensor that modulates the complete activation/inhibition of UCPs. Such regulation has been observed for UCPs in microorganisms, plant and animal UCP1 homologues, and UCP1 in mammalian brown adipose tissue. The origin of UCPs is still under debate, but UCP homologues have been identified in all systematic groups of eukaryotes. Despite the differing levels of amino acid/DNA sequence similarities, functional studies in unicellular and multicellular organisms, from amoebae to mammals, suggest that the mechanistic regulation of UCP activity is evolutionarily well conserved. This review focuses on the regulatory feedback loops of UCPs involving free fatty acids, aldehydes, retinoids, purine nucleotides, and coenzyme Q (particularly its reduction level), which may derive from the early stages of evolution as UCP first emerged.
Collapse
|
12
|
JEŽEK P, OLEJÁR T, SMOLKOVÁ K, JEŽEK J, DLASKOVÁ A, PLECITÁ-HLAVATÁ L, ZELENKA J, ŠPAČEK T, ENGSTOVÁ H, PAJUELO REGUERA D, JABŮREK M. Antioxidant and Regulatory Role of Mitochondrial Uncoupling Protein UCP2 in Pancreatic β-cells. Physiol Res 2014; 63:S73-91. [DOI: 10.33549/physiolres.932633] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Research on brown adipose tissue and its hallmark protein, mitochondrial uncoupling protein UCP1, has been conducted for half a century and has been traditionally studied in the Institute of Physiology (AS CR, Prague), likewise UCP2 residing in multiple tissues for the last two decades. Our group has significantly contributed to the elucidation of UCP uncoupling mechanism, fully dependent on free fatty acids (FFAs) within the inner mitochondrial membrane. Now we review UCP2 physiological roles emphasizing its roles in pancreatic β-cells, such as antioxidant role, possible tuning of redox homeostasis (consequently UCP2 participation in redox regulations), and fine regulation of glucose-stimulated insulin secretion (GSIS). For example, NADPH has been firmly established as being a modulator of GSIS and since UCP2 may influence redox homeostasis, it likely affects NADPH levels. We also point out the role of phospholipase iPLA2 isoform in providing FFAs for the UCP2 antioxidant function. Such initiation of mild uncoupling hypothetically precedes lipotoxicity in pancreatic β-cells until it reaches the pathological threshold, after which the antioxidant role of UCP2 can be no more cell-protective, for example due to oxidative stress-accumulated mutations in mtDNA. These mechanisms, together with impaired autocrine insulin function belong to important causes of Type 2 diabetes etiology.
Collapse
Affiliation(s)
- P. JEŽEK
- Department of Membrane Transport Biophysics, Institute of Physiology Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
UCP2 transports C4 metabolites out of mitochondria, regulating glucose and glutamine oxidation. Proc Natl Acad Sci U S A 2014; 111:960-5. [PMID: 24395786 DOI: 10.1073/pnas.1317400111] [Citation(s) in RCA: 313] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Uncoupling protein 2 (UCP2) is involved in various physiological and pathological processes such as insulin secretion, stem cell differentiation, cancer, and aging. However, its biochemical and physiological function is still under debate. Here we show that UCP2 is a metabolite transporter that regulates substrate oxidation in mitochondria. To shed light on its biochemical role, we first studied the effects of its silencing on the mitochondrial oxidation of glucose and glutamine. Compared with wild-type, UCP2-silenced human hepatocellular carcinoma (HepG2) cells, grown in the presence of glucose, showed a higher inner mitochondrial membrane potential and ATP:ADP ratio associated with a lower lactate release. Opposite results were obtained in the presence of glutamine instead of glucose. UCP2 reconstituted in lipid vesicles catalyzed the exchange of malate, oxaloacetate, and aspartate for phosphate plus a proton from opposite sides of the membrane. The higher levels of citric acid cycle intermediates found in the mitochondria of siUCP2-HepG2 cells compared with those found in wild-type cells in addition to the transport data indicate that, by exporting C4 compounds out of mitochondria, UCP2 limits the oxidation of acetyl-CoA-producing substrates such as glucose and enhances glutaminolysis, preventing the mitochondrial accumulation of C4 metabolites derived from glutamine. Our work reveals a unique regulatory mechanism in cell bioenergetics and provokes a substantial reconsideration of the physiological and pathological functions ascribed to UCP2 based on its purported uncoupling properties.
Collapse
|
14
|
Akopyan K, Trchounian A. Proton cycles through membranes in bacteria: Relationship between proton passive and active fluxes and their dependence on some external physico-chemical factors under fermentation. Biophysics (Nagoya-shi) 2013. [DOI: 10.1134/s0006350913050023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
15
|
Mostyn A, Bos PM, Litten JC, Laws J, Symonds ME, Clarke L. Differential effects of thyroid hormone manipulation and beta adrenoceptor agonist administration on uncoupling protein mRNA abundance in adipose tissue and thermoregulation in neonatal pigs. Organogenesis 2012; 4:182-7. [PMID: 19279731 DOI: 10.4161/org.4.3.6505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2008] [Accepted: 05/31/2008] [Indexed: 01/28/2023] Open
Abstract
We have shown that there is significant disparity in the expression of uncoupling proteins (UCP) 2 and 3 between modern-commercial and ancient-Meishan porcine genotypes, commercial pigs also have higher plasma triiodothyronine (T(3)) in on the first day of life. T(3) and the sympathetic nervous system are both known to regulate UCPs in rodents and humans; their role in regulating these proteins in the pig is unknown. This study examined whether thyroid hormone manipulation or administration of a selective beta3 adrenoceptor agonist (ZD) influenced plasma hormones, colonic temperature and UCP expression in adipose tissue of two breeds of pig. To mimic the differences observed in thyroid hormone status, piglets from Meishan and commercial litters were randomly assigned to control (1 ml/kg water), T(3) (10 mg/kg) (Meishan only), methimazole (a commonly used antithyroid drug) (50 mg/kg) (commercial only) or ZD (10 mg/kg) oral administration for the first 4 days of postnatal life. Adipose tissue UCP2/3 mRNA abundance was measured on day 4 using PCR. T(3) administration raised plasma T(3) concentrations and increased colonic temperature on day 4. UCP3 mRNA abundance was higher in Meishan, than commercial piglets (p = 0.042) and was downregulated following T(3) administration (p = 0.014). Irrespective of genotype, ZD increased UCP2 mRNA abundance (Meishan p = 0.05, commercial p = 0.03). Expression of neither UCP2 nor 3 was related to colonic temperature, regardless of treatment. In conclusion, we have demonstrated a dissociation between thyroid hormones and the sympathetic nervous system in the regulation of UCPs in porcine adipose tissue. We have also suggested that expression of adipose tissue UCP2 and 3 are not related to body temperature in piglets.
Collapse
Affiliation(s)
- Alison Mostyn
- Centre for Reproduction and Early Life; Institute of Clinical Research; University Hospital; Nottingham United Kingdom
| | | | | | | | | | | |
Collapse
|
16
|
Guo QY, Robson-Doucette CA, Allister EM, Wheeler MB. Inducible Deletion of UCP2 in Pancreatic β-Cells Enhances Insulin Secretion. Can J Diabetes 2012. [DOI: 10.1016/j.jcjd.2012.08.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
17
|
Divakaruni AS, Humphrey DM, Brand MD. Fatty acids change the conformation of uncoupling protein 1 (UCP1). J Biol Chem 2012; 287:36845-53. [PMID: 22952235 DOI: 10.1074/jbc.m112.381780] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
UCP1 catalyzes proton leak across the mitochondrial inner membrane to disengage substrate oxidation from ATP production. It is well established that UCP1 is activated by fatty acids and inhibited by purine nucleotides, but precisely how this regulation occurs remains unsettled. Although fatty acids can competitively overcome nucleotide inhibition in functional assays, fatty acids have little effect on purine nucleotide binding. Here, we present the first demonstration that fatty acids induce a conformational change in UCP1. Palmitate dramatically changed the binding kinetics of 2'/3'-O-(N-methylanthraniloyl)-GDP, a fluorescently labeled nucleotide analog, for UCP1. Furthermore, palmitate accelerated the rate of enzymatic proteolysis of UCP1. The altered kinetics of both processes indicate that fatty acids change the conformation of UCP1, reconciling the apparent discrepancy between existing functional and ligand binding data. Our results provide a framework for how fatty acids and nucleotides compete to regulate the activity of UCP1.
Collapse
Affiliation(s)
- Ajit S Divakaruni
- Medical Research Council Mitochondrial Biology Unit, Cambridge CB2 0XY, United Kingdom.
| | | | | |
Collapse
|
18
|
Divakaruni AS, Brand MD. The regulation and physiology of mitochondrial proton leak. Physiology (Bethesda) 2011; 26:192-205. [PMID: 21670165 DOI: 10.1152/physiol.00046.2010] [Citation(s) in RCA: 289] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Mitochondria couple respiration to ATP synthesis through an electrochemical proton gradient. Proton leak across the inner membrane allows adjustment of the coupling efficiency. The aim of this review is threefold: 1) introduce the unfamiliar reader to proton leak and its physiological significance, 2) review the role and regulation of uncoupling proteins, and 3) outline the prospects of proton leak as an avenue to treat obesity, diabetes, and age-related disease.
Collapse
Affiliation(s)
- Ajit S Divakaruni
- Medical Research Council Mitochondrial Biology Unit, Wellcome Trust/MRC Building, Cambridge, United Kingdom
| | | |
Collapse
|
19
|
Jezek P, Jabůrek M, Garlid KD. Channel character of uncoupling protein-mediated transport. FEBS Lett 2010; 584:2135-41. [PMID: 20206627 DOI: 10.1016/j.febslet.2010.02.068] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Revised: 02/23/2010] [Accepted: 02/26/2010] [Indexed: 11/15/2022]
Abstract
Mitochondrial uncoupling proteins (UCPs) are pure anion uniporters, which mediate fatty acid (FA) uniport leading to FA cycling. Protonated FAs then flip-flop back across the lipid bilayer. An existence of pure proton channel in UCPs is excluded by the equivalent flux-voltage dependencies for uniport of FAs and halide anions, which are best described by the Eyring barrier variant with a single energy well in the middle of two peaks. Experiments with FAs unable to flip and alkylsulfonates also support this view. Phylogenetically, UCPs took advantage of the common FA-uncoupling function of SLC25 family carriers and dropped their solute transport function.
Collapse
Affiliation(s)
- Petr Jezek
- Department of Membrane Transport Biophysics, No. 75, Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | | | | |
Collapse
|
20
|
Klingenberg M. Wanderings in bioenergetics and biomembranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:579-94. [PMID: 20175988 DOI: 10.1016/j.bbabio.2010.02.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Revised: 02/07/2010] [Accepted: 02/08/2010] [Indexed: 01/29/2023]
Abstract
Having worked for 55 years in the center and at the fringe of bioenergetics, my major research stations are reviewed in the following wanderings: from microsomes to mitochondria, from NAD to CoQ, from reversed electron transport to reversed oxidative phosphorylation, from mitochondrial hydrogen transfer to phosphate transfer pathways, from endogenous nucleotides to mitochondrial compartmentation, from transport to mechanism, from carrier to structure, from coupling by AAC to uncoupling by UCP, and from specific to general transport laws. These wanderings are recalled with varying emphasis paid to the covered science stations.
Collapse
Affiliation(s)
- Martin Klingenberg
- Institut für Physiologische Chemie der Universität München, Schillerstr. 44, D-80336 München, Germany.
| |
Collapse
|
21
|
Nabben M, Hoeks J. Mitochondrial uncoupling protein 3 and its role in cardiac- and skeletal muscle metabolism. Physiol Behav 2007; 94:259-69. [PMID: 18191161 DOI: 10.1016/j.physbeh.2007.11.039] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2007] [Revised: 11/22/2007] [Accepted: 11/23/2007] [Indexed: 11/20/2022]
Abstract
Uncoupling protein 3 (UCP3), is primarily expressed in skeletal muscle mitochondria and has been suggested to be involved in mediating energy expenditure via uncoupling, hereby dissipating the mitochondrial proton gradient necessary for adenosine triphosphate (ATP) synthesis. Although some studies support a role for UCP3 in energy metabolism, other studies pointed towards a function in fatty acid metabolism. Thus, the protein is up regulated or high when fatty acid supply to the mitochondria exceeds the capacity to oxidize fatty acids and down regulated or low when oxidative capacity is high or improved. Irrespective of the exact operating mechanism, UCP3 seems to protect mitochondria against lipid-induced oxidative stress, which makes this protein a potential player in the development of type 2 diabetes mellitus. Next to skeletal muscle, UCP3 is also expressed in cardiac muscle where its role is relatively unexplored. Interestingly, energy deficiency in cardiac muscle is associated to heart failure and UCP3 might contribute to this energy deficiency. It has been suggested that UCP3 decreases energy status via uncoupling of mitochondrial respiration, but the available data does not provide a unified answer. In fact, the results obtained regarding cardiac UCP3 are very similar as in skeletal muscle, implying that its physiological function can be extrapolated. Therefore, cardiac UCP3 can just as well serve to protect the heart against lipid-induced oxidative stress, similar to the function described for skeletal muscle UCP3. The present review will deal with the available literature on both skeletal muscle- and cardiac UCP3 to elucidate its physiological function in these tissues.
Collapse
Affiliation(s)
- Miranda Nabben
- Department of Human Biology, Nutrition and Toxicology Research Institute Maastricht (NUTRIM), Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands.
| | | |
Collapse
|
22
|
Ellard JP, McCudden CR, Tanega C, James KA, Ratkovic S, Staples JF, Wagner GF. The respiratory effects of stanniocalcin-1 (STC-1) on intact mitochondria and cells: STC-1 uncouples oxidative phosphorylation and its actions are modulated by nucleotide triphosphates. Mol Cell Endocrinol 2007; 264:90-101. [PMID: 17092635 DOI: 10.1016/j.mce.2006.10.008] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2006] [Revised: 10/10/2006] [Accepted: 10/11/2006] [Indexed: 12/27/2022]
Abstract
Stanniocalcin-1 (STC-1) is one of only a handful of hormones that are targeted to mitochondria. High affinity receptors for STC-1 are present on cytoplasmic membranes and both the outer and inner mitochondrial membranes of nephron cells and hepatocytes. In both cell types, STC-1 is also present within the mitochondrial matrix and receptors presumably enable its sequestration. Furthermore, studies in bovine heart sub-mitochondrial particles have shown that STC-1 has concentration-dependent stimulatory effects on electron transport chain activity. The aim of the present study was to determine if the same effects could be demonstrated in intact, respiring mitochondria. At the same time, we also sought to demonstrate the functionality, if any, of an ATP binding cassette that has only recently been identified within the N-terminus of STC-1 by Prosite analysis. Intact, respiring mitochondria were isolated from rat muscle and liver and exposed to increasing concentrations of recombinant human STC-1 (STC-1). Following a 1h exposure to 500 nM STC-1, mitochondria from both organs displayed significant increases in respiration rate as compared to controls. Moreover, STC-1 uncoupled oxidative phosphorylation as ADP:O ratios were significantly reduced in mitochondria from both tissues. The resulting uncoupling was correlated with enhanced mitochondrial (45)Ca uptake in the presence of hormone. Respiratory studies were also conducted on a mouse inner medullary collecting cell line, where STC-1 had time and concentration-dependent stimulatory effects within the physiological range. In the presence of nucleotide triphosphates such as ATP and GTP (5mM) the respiratory effects of STC-1 were attenuated or abolished. Receptor binding studies revealed that this was due to a four-fold decrease in binding affinity (KD) between ligand and receptor. The results suggest that STC-1 stimulates mitochondrial electron transport chain activity and calcium transport, and that these effects are negatively modulated by nucleotide triphosphates.
Collapse
Affiliation(s)
- Joseph P Ellard
- Department of Physiology and Pharmacology, Faculty of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada N6A 5C1
| | | | | | | | | | | | | |
Collapse
|
23
|
Chen CY, Carstens GE, Gilbert CD, Theis CM, Archibeque SL, Kurz MW, Slay LJ, Smith SB. Dietary supplementation of high levels of saturated and monounsaturated fatty acids to ewes during late gestation reduces thermogenesis in newborn lambs by depressing fatty acid oxidation in perirenal brown adipose tissue. J Nutr 2007; 137:43-8. [PMID: 17182799 DOI: 10.1093/jn/137.1.43] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We hypothesized that dietary supplementation of (n-6) plus (n-3) PUFA during late gestation would increase uncoupling protein-1 (UCP1) gene expression and thereby increase thermogenic capacity of newborn lambs. Thirty twin-bearing ewes were fed rumen-protected fat (2, 4, or 8%) high in saturated and monounsaturated fatty acids (SMFA) or high in (n-6) and (n-3) PUFA. Lambs (n = 7-10 per ewe treatment group) were placed in a cold chamber at 0 degrees C for 2 h. Rectal temperature was higher at birth and increased more with cold exposure in lambs from ewes fed 2 or 4% supplemental fat than in lambs from ewes fed 8% SMFA (fat type x fat level interaction, P = 0.001). Cytochrome c oxidase activity was greatest in brown adipose tissue (BAT) lambs from ewes fed 2% SMFA or 4% PUFA (fat type x fat level interaction, P = 0.01). BAT of lambs from ewes fed 2 or 4% PUFA had nearly 7-fold more (P = 0.05) UCP1 mRNA than BAT of lambs from ewes fed 8% PUFA. UCP1 expression decreased by over 80% by 24 h of age. Supplementation of 8% fat tended to depress palmitate esterification into lipids (P = 0.07) and decreased palmitate oxidation (P = 0.003) in lamb BAT in vitro, especially in those lambs from ewes fed 8% SMFA. Thus, supplementing the diets of ewes with 8% SMFA depressed cold tolerance in newborn lambs, which was reflected in their decreased ability to oxidize fatty acids in vitro.
Collapse
Affiliation(s)
- Ching Yi Chen
- Department of Animal Science, Texas A&M University, College Station, 2471 TAMU, TX 77843, USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Dlasková A, Spacek T, Skobisová E, Santorová J, Jezek P. Certain aspects of uncoupling due to mitochondrial uncoupling proteins in vitro and in vivo. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2006; 1757:467-73. [PMID: 16781660 DOI: 10.1016/j.bbabio.2006.05.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2006] [Revised: 04/21/2006] [Accepted: 05/05/2006] [Indexed: 01/12/2023]
Abstract
Thermogenic uncoupling has been proven only for UCP1 in brown adipose tissue. All other isoforms of UCPs are potentially acting in suppression of mitochondrial reactive oxygen species (ROS) production. In this contribution we show that BAT mitochondria can be uncoupled by lauric acid in the range of approximately 100 nM when endogenous fatty acids are combusted by carnitine cycle and beta-oxidation is properly separated from the uncoupling effect. Respiration increased up to 3 times when related to the lowest fatty acid content (BSA present plus carnitine cycle). We also illustrated that any effect leading to more coupled states leads to enhanced H2O2 generation and any effect resulting in uncoupling gives reduced H2O2 generation in BAT mitochondria. Finally, we report doubling of plant UCP transcript in cells as well as amount of protein detected by 3H-GTP-binding sites in mitochondria of shoots and roots of maize seedlings subjected to the salt stress.
Collapse
Affiliation(s)
- Andrea Dlasková
- Department No.75, Membrane Transport Biophysics, Institute of Physiology, Academy of Sciences of the Czech Republic, Vídenská 1083, 14220 Prague 4, Czech Republic
| | | | | | | | | |
Collapse
|
25
|
Belosludtsev K, Saris NEL, Andersson LC, Belosludtseva N, Agafonov A, Sharma A, Moshkov DA, Mironova GD. On the mechanism of palmitic acid-induced apoptosis: the role of a pore induced by palmitic acid and Ca2+ in mitochondria. J Bioenerg Biomembr 2006; 38:113-120. [PMID: 16847595 DOI: 10.1007/s10863-006-9010-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2006] [Accepted: 03/12/2006] [Indexed: 01/22/2023]
Abstract
Palmitic acid (Pal) is known to promote apoptosis (Sparagna G et al (2000) Am J Physiol Heart Circ Physiol 279: H2124-H2132) and its amount in blood and mitochondria increases under some pathological conditions. Yet, the mechanism of the proapoptotic action of Pal has not been elucidated. We present evidence for the involvement of the mitochondrial cyclosporin A-insensitive pore induced by Pal/Ca(2+) complexes in the apoptotic process. Opening of this pore led to a fall of the mitochondrial membrane potential and the release of the proapoptotic signal cytochrome c. The addition of cytochrome c prevented these effects and recovered membrane potential, which is in contrast to the cyclosporin A-sensitive mitochondrial permeability transition pore. Oleic and linoleic acids prevented the Pal/Ca(2+)-induced pore opening in the intact mitochondria, this directly and significantly correlating with the effect of these fatty acids on Pal-induced apoptosis in cells (Hardy S et al (2003) J Biol Chem 278: 31861-31870). The specific probe for cardiolipin, 10-N-nonyl acridine orange, inhibited formation of this pore.
Collapse
Affiliation(s)
- Konstantin Belosludtsev
- Institute of Theoretical and Experimental Biophysics RAS, Pushchino, Moscow Region, 142290, Russia
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Hoeks J, Hesselink MKC, Schrauwen P. Involvement of UCP3 in mild uncoupling and lipotoxicity. Exp Gerontol 2006; 41:658-62. [PMID: 16564663 DOI: 10.1016/j.exger.2006.02.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2005] [Accepted: 02/14/2006] [Indexed: 01/06/2023]
Abstract
Although vital to life, mitochondria are also the major source of ROS production, which may have unwanted detrimental effects on DNA, RNA and protein structures Therefore, mitochondria must exhibit well-developed mechanisms to regulate its ROS production. One such mechanism might be mild uncoupling of the mitochondrial respiratory chain, thereby lowering the proton gradient across the inner mitochondrial membrane and directly lowering ROS production. Mitochondrial uncoupling proteins have been shown to possess mild uncoupling activity and may therefore be important regulator of mitochondrial ROS production. The skeletal muscle isoform of the uncoupling protein family, UCP3, seems to be specifically active under conditions of high fatty acid availability. Although the exact function of UCP3 is not yet unravelled, UCP3 is activated by lipid peroxides and suggested to export fatty acid anions and/or peroxides from the mitochondrial matrix, thereby specifically protecting fatty acids from ROS-induced oxidative damage. Protein levels of UCP3 are reduced with aging and in the (pre)-diabetic state, both conditions characterized by increased levels of oxidative damage to lipids and proteins and reduced mitochondrial function. Whether UCP3 is causally related to mitochondrial dysfunction and is essential in the prevention and treatment of lipid-induced mitochondrial dysfunction requires further study.
Collapse
Affiliation(s)
- Joris Hoeks
- Department of Human Biology, Nutrition and Toxicology Research Institute Maastricht (NUTRIM), Maastricht University, P.O. Box 616, NL-6200 MD, Maastricht, The Netherlands
| | | | | |
Collapse
|
27
|
Hoeks J, Hesselink MKC, Sluiter W, Schaart G, Willems J, Morrisson A, Clapham JC, Saris WHM, Schrauwen P. The effect of high-fat feeding on intramuscular lipid and lipid peroxidation levels in UCP3-ablated mice. FEBS Lett 2006; 580:1371-5. [PMID: 16455084 DOI: 10.1016/j.febslet.2006.01.059] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2005] [Revised: 01/11/2006] [Accepted: 01/13/2006] [Indexed: 01/06/2023]
Abstract
Uncoupling protein-3 (UCP3) has been suggested to protect against lipid-induced oxidative damage. Therefore, we studied intramuscular lipid peroxide levels and high-fat diet induced alterations in muscle lipid metabolism of UCP3-ablated mice. UCP3-/- mice showed approximately 3-fold higher levels of intramuscular lipid peroxides upon standard chow feeding, compared to wild-type littermates. Remarkably, this difference was no longer apparent on the high-fat diet. However, upon high-fat feeding, intramuscular triacylglycerol levels were approximately 50% lower in UCP3-/- mice, in comparison to UCP3+/+ animals. Succinate dehydrogenase activity, and total protein content of the muscle fatty acid transporter FAT/CD36 were however similar between UCP3-/- and UCP3+/+ mice.
Collapse
Affiliation(s)
- Joris Hoeks
- Department of Human Biology, Nutrition and Toxicology Research Institute Maastricht (NUTRIM), Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Jezek P, Spacek T, Garlid K, Jabůrek M. Undecanesulfonate does not allosterically activate H+ uniport mediated by uncoupling protein-1 in brown adipose tissue mitochondria. Int J Biochem Cell Biol 2006; 38:1965-74. [PMID: 16807058 DOI: 10.1016/j.biocel.2006.05.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2006] [Revised: 05/23/2006] [Accepted: 05/23/2006] [Indexed: 10/24/2022]
Abstract
Undecanesulfonate is transported by uncoupling protein-1. Its inability to induce H+ uniport with reconstituted uncoupling protein-1 supports fatty acid cycling hypothesis. Rial et al. [Rial, E., Aguirregoitia, E., Jimenez-Jimenez, J., & Ledesma, A. (2004). Alkylsulfonates activate the uncoupling protein UCP1: Implications for the transport mechanism. Biochimica et Biophysica Acta, 1608, 122-130], have challenged the fatty acid cycling by observing uncoupling of brown adipose tissue mitochondria due to undecanesulfonate, interpreted as allosteric activation of uncoupling protein-1. We have estimated undecanesulfonate effects after elimination of endogenous fatty acids by carnitine cycle in the presence or absence of bovine serum albumin. We show that the undecanesulfonate effect is partly due to fatty acid release from albumin when undecanesulfonate releases bound fatty acid and partly represents a non-specific uncoupling protein-independent acceleration of respiration, since it proceeds also in rat heart mitochondria lacking uncoupling protein-1 and membrane potential is not decreased upon addition of undecanesulfonate without albumin. When the net fatty acid-induced uncoupling was assayed, the addition of undecanesulfonate even slightly inhibited the uncoupled respiration. We conclude that undecanesulfonate does not allosterically activate uncoupling protein-1 and that fatty acid cycling cannot be excluded on a basis of its non-specific effects.
Collapse
Affiliation(s)
- Petr Jezek
- Department of Membrane Transport Biophysics, No. 75, Institute of Physiology, Academy of Sciences of the Czech Republic, Vídenská 1083, 14220 Prague 4, Czech Republic.
| | | | | | | |
Collapse
|
29
|
Hirabara SM, Silveira LR, Abdulkader FRM, Alberici LC, Procopio J, Carvalho CRO, Pithon-Curi TC, Curi R. Role of fatty acids in the transition from anaerobic to aerobic metabolism in skeletal muscle during exercise. Cell Biochem Funct 2006; 24:475-81. [PMID: 16924590 DOI: 10.1002/cbf.1327] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In moderate physical exercise, the transition from predominantly anaerobic towards predominantly aerobic metabolism is a key step to improve performance. Increase in the supply of oxygen and nutrients, such as free fatty acids (FFA) and glucose, which accompanies high blood flow, is required for this transition. The mechanisms involved in the vasodilation in skeletal muscle during physical activity are not completely known yet. In this article, we postulate a role of FFA and heat production in this process. The presence of uncoupling protein-2 and -3 (UCP-2 and -3) in skeletal muscle, whose activity is dependent on FFA, suggests that these metabolites can act as mitochondrial uncouplers in this tissue. Evidence indicates however that UCPs act as uncouplers only when coenzyme Q is predominantly in the reduced state (i.e. under nonphosphorylation conditions or state 4 respiration) as is observed in resting muscles and in the beginning of physical activity (predominantly anaerobic metabolism). The increase in the lipolytic activity in adipose tissue in the beginning of physical activity results in elevated plasma FFA levels. The FFA can then act on the UCPs, increasing the local heat production. We propose that this calorigenic effect of FFA is important to activate nitric oxide synthase, resulting in nitric oxide production and consequent vasodilation. Therefore, FFA would be important mediators for the changes that occur in muscle metabolism during prolonged physical activity, ensuring the appropriate supply of oxygen and nutrients by increasing blood flow at the beginning of exercise in the contracting skeletal muscles.
Collapse
Affiliation(s)
- Sandro M Hirabara
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes 1524, CEP 05508-900 Butantã, São Paulo, SP, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Vercesi AE, Borecký J, Maia IDG, Arruda P, Cuccovia IM, Chaimovich H. Plant uncoupling mitochondrial proteins. ANNUAL REVIEW OF PLANT BIOLOGY 2006; 57:383-404. [PMID: 16669767 DOI: 10.1146/annurev.arplant.57.032905.105335] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Uncoupling proteins (UCPs) are membrane proteins that mediate purine nucleotide-sensitive free fatty acid-activated H(+) flux through the inner mitochondrial membrane. After the discovery of UCP in higher plants in 1995, it was acknowledged that these proteins are widely distributed in eukaryotic organisms. The widespread presence of UCPs in eukaryotes implies that these proteins may have functions other than thermogenesis. In this review, we describe the current knowledge of plant UCPs, including their discovery, biochemical properties, distribution, gene family, gene expression profiles, regulation of gene expression, and evolutionary aspects. Expression analyses and functional studies on the plant UCPs under normal and stressful conditions suggest that UCPs regulate energy metabolism in the cellular responses to stress through regulation of the electrochemical proton potential (Deltamu(H)+) and production of reactive oxygen species.
Collapse
Affiliation(s)
- Aníbal Eugênio Vercesi
- Laboratório de Bioenergética, Faculdade de Ciências Médicas, Universidade Estadual de Campinas (UNICAMP), 13083-970, Campinas, SP, Brazil.
| | | | | | | | | | | |
Collapse
|
31
|
Krauss S, Zhang CY, Lowell BB. The mitochondrial uncoupling-protein homologues. Nat Rev Mol Cell Biol 2005; 6:248-61. [PMID: 15738989 DOI: 10.1038/nrm1592] [Citation(s) in RCA: 495] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Uncoupling protein(UCP)1 is an integral membrane protein that is located in the mitochondrial inner membrane of brown adipocytes. Its physiological role is to mediate a regulated, thermogenic proton leak. UCP2 and UCP3 are recently identified UCP1 homologues. They also mediate regulated proton leak, and might function to control the production of superoxide and other downstream reactive oxygen species. However, their role in normal physiology remains unknown. Recent studies have shown that UCP2 has an important part in the pathogenesis of type-2 diabetes. The obscure roles of the UCP homologues in normal physiology, together with their emerging role in pathophysiology, provide exciting potential for further investigation.
Collapse
Affiliation(s)
- Stefan Krauss
- Department of Medicine, Division of Endocrinology, Beth Israel Deaconess Medical Center and Harvard Medical School, 99 Brookline Avenue, Boston, Massachusetts 02215, USA
| | | | | |
Collapse
|
32
|
Rial E, Aguirregoitia E, Jiménez-Jiménez J, Ledesma A. Alkylsulfonates activate the uncoupling protein UCP1: implications for the transport mechanism. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2004; 1608:122-30. [PMID: 14871489 DOI: 10.1016/j.bbabio.2003.11.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2003] [Revised: 11/11/2003] [Accepted: 11/12/2003] [Indexed: 10/26/2022]
Abstract
Fatty acids activate the uncoupling protein UCP1 by a still controversial mechanism. Two models have been put forward where the fatty acid operates as either substrate ("fatty acid cycling hypothesis") or prosthetic group ("proton buffering model"). Two sets of experiments that should help to discriminate between the two hypothetical mechanisms are presented. We show that undecanosulfonate activates UCP1 in respiring mitochondria under conditions identical to those required for the activation by fatty acids. Since alkylsulfonates cannot cross the lipid bilayer, these experiments rule out the fatty acid cycling hypothesis as the mechanism of uncoupling. We also demonstrate that without added nucleotides and upon careful removal of endogenous fatty acids, brown adipose tissue (BAT) mitochondria from cold-adapted hamsters respire at the full uncoupled rate. Addition of nucleotides lower the respiratory rate tenfold. The high activity observed in the absence of the two regulatory ligands is an indication that UCP1 displays an intrinsic proton conductance that is fatty acid-independent. We propose that the fatty acid uncoupling mediated by other members of the mitochondrial transporter family probably involves a carrier to pore transition and therefore has little in common with the activation of UCP1.
Collapse
Affiliation(s)
- Eduardo Rial
- Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain.
| | | | | | | |
Collapse
|
33
|
Hoeks J, Hesselink MKC, van Bilsen M, Schaart G, van der Vusse GJ, Saris WHM, Schrauwen P. Differential response of UCP3 to medium versus long chain triacylglycerols; manifestation of a functional adaptation. FEBS Lett 2004; 555:631-7. [PMID: 14675786 DOI: 10.1016/s0014-5793(03)01343-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We compared UCP3 protein in rat cardiac, glycolytic and oxidative skeletal muscle and examined the effect of high-fat medium chain vs. long chain triacylglycerol feeding on UCP3 content in these tissues. Cardiac muscle displays the lowest basal levels of UCP3 protein. Increasing long chain - but not medium chain - fatty acid supply upregulates UCP3 in all muscles. Since plasma non-esterified fatty acids and the expression of two peroxisome proliferator-activated receptor (PPAR)-responsive genes, were not different between groups, we conclude that the differential upregulation of UCP3 is not merely PPAR-mediated. This study supports a role of UCP3 in export of non-metabolizable fatty acids.
Collapse
Affiliation(s)
- Joris Hoeks
- Department of Human Biology, Nutrition and Toxicology Research Institute Maastricht (NUTRIM), Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
34
|
Schrauwen P, Hoeks J, Schaart G, Kornips E, Binas B, Van De Vusse GJ, Van Bilsen M, Luiken JJFP, Coort SLM, Glatz JFC, Saris WHM, Hesselink MKC. Uncoupling protein 3 as a mitochondrial fatty acid anion exporter. FASEB J 2003; 17:2272-4. [PMID: 14525936 DOI: 10.1096/fj.03-0515fje] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
In contrast to UCP1, the primary function of UCP3 is not the dissipation of energy. Rather, several lines of evidence suggest that UCP3 is related to cellular long-chain fatty acid homeostasis. If long-chain fatty acids enter the mitochondrial matrix in their non-esterified form, they cannot be metabolized and may exert deleterious effects. To test the feasibility that UCP3 exports fatty acid anions, we systematically interfered at distinct steps in the fatty acid metabolism pathway, thereby creating conditions in which the entry of (non-esterified) fatty acids into the mitochondrial matrix is enhanced. First, reducing the cellular fatty acid binding capacity, known to increase cytosolic concentrations of non-esterified fatty acids, up-regulated UCP3 5.3-fold. Second, inhibition of mitochondrial entry of esterified long-chain fatty acids up-regulated UCP3 by 1.9-fold. Third, high-fat diets, to increase mitochondrial supply of non-esterified long-chain fatty acids exceeding oxidative capacity, up-regulated UCP3 twofold. However, feeding a similar amount of medium-chain fatty acids, which can be oxidized inside the mitochondrial matrix and therefore do not need to be exported from the matrix, did not affect UCP3 protein levels. These data are compatible with a physiological function of UCP3 in facilitating outward transport of long-chain fatty acid anions, which cannot be oxidized, from the mitochondrial matrix.
Collapse
Affiliation(s)
- Patrick Schrauwen
- Department of Human Biology, Nutrition and Toxicology Research Institute Maastricht , Maastricht University, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Goglia F, Skulachev VP. A function for novel uncoupling proteins: antioxidant defense of mitochondrial matrix by translocating fatty acid peroxides from the inner to the outer membrane leaflet. FASEB J 2003; 17:1585-91. [PMID: 12958165 DOI: 10.1096/fj.03-0159hyp] [Citation(s) in RCA: 170] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
It is hypothesized that mitochondrial uncoupling proteins operate as carriers of fatty acid peroxide anions. This is assumed to result in electrophoretic extrusion of such anions from the inner to the outer leaflet of the inner mitochondrial membrane, being driven by membrane potential (mitochondrial interior negative). In this way, the inner leaflet is ridded of fatty acid peroxides that otherwise can form very aggressive oxidants damaging mitochondrial DNA, aconitase, and other mitochondrial matrix-localized components of vital importance. The steady-state concentration the fatty acid peroxides is known to be low. This explains why UCP2, 3, 4, and 5 are present in small amounts usually insufficient to make a large contribution to the H+ conductance of the mitochondrial membrane.
Collapse
Affiliation(s)
- Fernando Goglia
- Dipartimento di Scienze Biologiche ed Ambientali, 082100, Benevento, Italy
| | | |
Collapse
|
36
|
Urbánková E, Voltchenko A, Pohl P, Jezek P, Pohl EE. Transport kinetics of uncoupling proteins. Analysis of UCP1 reconstituted in planar lipid bilayers. J Biol Chem 2003; 278:32497-500. [PMID: 12826670 DOI: 10.1074/jbc.m303721200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
According to alternative hypotheses, mitochondrial uncoupling protein 1 (UCP1) is either a proton channel ("buffering model") or a fatty acid anion carrier ("fatty acid cycling"). Transport across the proton channel along a chain of hydrogen bonds (Grotthus mechanism) may include fatty acid carboxyl groups or occur in the absence of fatty acids. In this work, we demonstrate that planar bilayers reconstituted with UCP1 exhibit an increase in membrane conductivity exclusively in the presence of fatty acids. Hence, we can exclude the hypothesis considering a preexisting H+ channel in UCP1, which does not require fatty acid for function. The augmented conductivity is nearly completely blocked by ATP. Direct application of transmembrane voltage and precise current measurements allowed determination of ATP-sensitive conductances at 0 and 150 mV as 11.5 and 54.3 pS, respectively, by reconstituting nearly 3 x 10(5) copies of UCP1. The proton conductivity measurements carried out in presence of a pH gradient (0.4 units) allowed estimation of proton turnover numbers per UCP1 molecule. The observed transport rate of 14 s-1 is compatible both with carrier and channel nature of UCP1.
Collapse
Affiliation(s)
- Eva Urbánková
- Department of Membrane Transport Biophysics, Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | | | | | | | | |
Collapse
|
37
|
Jaburek M, Garlid KD. Reconstitution of recombinant uncoupling proteins: UCP1, -2, and -3 have similar affinities for ATP and are unaffected by coenzyme Q10. J Biol Chem 2003; 278:25825-31. [PMID: 12734183 DOI: 10.1074/jbc.m302126200] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The successful development of recombinant expression and reconstitution protocols has enabled a detailed study of the transport properties and regulation of the uncoupling proteins (UCP). We optimized conditions of isolation and refolding of bacterially expressed uncoupling proteins and reexamined the transport properties and regulation of bacterially expressed UCP1, -2, and -3 reconstituted in liposomes. We show for the first time that ATP inhibits UCP1, -2, and -3 with similar affinities. The Ki values for ATP inhibition were 50 microm (UCP1), 70 microm (UCP2), and 120 microm (UCP3) at pH 7.2. These affinities for ATP are similar to those obtained with native UCP1 isolated from brown adipose tissue mitochondria (Ki = 65 microm at pH 7.2). The Vmax values for proton transport were also similar among the UCPs, ranging from 8 to 20 micromol.min(-1).mg(-1), depending on experimental conditions. We also examined the effect of coenzyme Q on fatty acid-catalyzed proton flux in liposomes containing recombinant UCP1, -2, and -3. We found that coenzyme Q had no effect on the fatty acid-dependent proton transport catalyzed by any of the UCPs nor did it affect nucleotide regulation of the UCPs. We conclude that coenzyme Q is not a cofactor of UCP-mediated proton transport.
Collapse
Affiliation(s)
- Martin Jaburek
- Department of Biology, Portland State University, Portland, Oregon 97207, USA
| | | |
Collapse
|
38
|
Urbánková E, Hanák P, Skobisová E, Růzicka M, Jezek P. Substitutional mutations in the uncoupling protein-specific sequences of mitochondrial uncoupling protein UCP1 lead to the reduction of fatty acid-induced H+ uniport. Int J Biochem Cell Biol 2003; 35:212-20. [PMID: 12479871 DOI: 10.1016/s1357-2725(02)00131-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Mutants were constructed for mitochondrial uncoupling protein UCP1, with single or multiple substitutions within or nearby the UCP-signatures located in the first alpha-helix and second matrix-segment, using the QuickChange site directed mutagenesis protocol (Stratagene), and were assayed fluorometrically for kinetics of fatty acid (FA)-induced H+ uniport and for Cl- uniport. Their ability to bind 3H-GTP was also evaluated. The wild type UCP1 was associated with the FA-induced H+ uniport proportional to the added protein with a Km for lauric acid of 43 micro M and Vmax of 18 micro molmin(-1)(mg protein)(-1). Neutralization of Arg152 (in the second matrix-segment UCP-signature) led to approximately 50% reduction of FA affinity (reciprocal Km) and of Vmax for FA-induced H+ uniport. Halved FA affinity and 70% reduction of Vmax was found for the double His substitution outside the signature (H145L and H147L mutant). Neutralization of Asp27 in the first alpha-helix UCP-signature (D27V mutant) resulted in 75% reduction of FA affinity and approximately 50% reduction of Vmax, whereas the triple C24A and D27V and T30A mutant was fully non-functional (Vmax reduced by 90%). Interestingly, the T30A mutant exhibited only the approximately 50% reduced FA affinity but not Vmax. Cl- uniport and 3H-GTP binding were preserved in all studied mutants. We conclude that amino acid residues of the first alpha-helix UCP signature may be required to hold the intact UCP1 transport conformation. This could be valid also for the positive charge of Arg152 (second matrix-segment UCP signature), which may alternatively mediate FA interaction with the native protein.
Collapse
Affiliation(s)
- Eva Urbánková
- Department of Membrane Transport Biophysics, No. 375, Institute of Physiology, Academy of Sciences, Videnska 1083, 14220 Prague 4, Czech Republic
| | | | | | | | | |
Collapse
|
39
|
Hesselink MKC, Greenhaff PL, Constantin-Teodosiu D, Hultman E, Saris WHM, Nieuwlaat R, Schaart G, Kornips E, Schrauwen P. Increased uncoupling protein 3 content does not affect mitochondrial function in human skeletal muscle in vivo. J Clin Invest 2003; 111:479-86. [PMID: 12588886 PMCID: PMC152374 DOI: 10.1172/jci16653] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2002] [Accepted: 11/19/2002] [Indexed: 01/27/2023] Open
Abstract
Phosphocreatine (PCr) resynthesis rate following intense anoxic contraction can be used as a sensitive index of in vivo mitochondrial function. We examined the effect of a diet-induced increase in uncoupling protein 3 (UCP3) expression on postexercise PCr resynthesis in skeletal muscle. Nine healthy male volunteers undertook 20 one-legged maximal voluntary contractions with limb blood flow occluded to deplete muscle PCr stores. Exercise was performed following 7 days consumption of low-fat (LF) or high-fat (HF) diets. Immediately following exercise, blood flow was reinstated, and muscle was sampled after 20, 60, and 120 seconds of recovery. Mitochondrial coupling was assessed by determining the rate of PCr resynthesis during recovery. The HF diet increased UCP3 protein content by approximately 44% compared with the LF diet. However, this HF diet-induced increase in UCP3 expression was not associated with any changes in the rate of muscle PCr resynthesis during conditions of maximal flux through oxidative phosphorylation. Muscle acetylcarnitine, free-creatine, and lactate concentrations during recovery were unaffected by the HF diet. Taken together, our findings demonstrate that increasing muscle UCP3 expression does not diminish the rate of PCr resynthesis, allowing us to conclude that the primary role of UCP3 in humans is not uncoupling.
Collapse
Affiliation(s)
- Matthijs K C Hesselink
- Department of Movement Sciences, Nutrition and Toxicology Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Schrauwen P, Hinderling V, Hesselink MKC, Schaart G, Kornips E, Saris WHM, Westerterp-Plantenga M, Langhans W. Etomoxir-induced increase in UCP3 supports a role of uncoupling protein 3 as a mitochondrial fatty acid anion exporter. FASEB J 2002; 16:1688-90. [PMID: 12206997 DOI: 10.1096/fj.02-0275fje] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The physiological function of human uncoupling protein-3 is still unknown. Uncoupling protein-3 is increased during fasting and high-fat feeding. In these situations the availability of fatty acids to the mitochondria exceeds the capacity to metabolize fatty acids, suggesting a role for uncoupling protein-3 in handling of non-metabolizable fatty acids. To test the hypothesis that uncoupling protein-3 acts as a mitochondrial exporter of non-metabolizable fatty acids from the mitochondrial matrix, we gave human subjects Etomoxir (which blocks mitochondrial entry of fatty acids) or placebo in a cross-over design during a 36-h stay in a respiration chamber. Etomoxir inhibited 24-h fat oxidation and fat oxidation during exercise by approximately 14-19%. Surprisingly, uncoupling protein-3 content in human vastus lateralis muscle was markedly up-regulated within 36 h of Etomoxir administration. Up-regulation of uncoupling protein-3 was accompanied by lowered fasting blood glucose and increased translocation of glucose transporter-4. These data support the hypothesis that the physiological function of uncoupling protein-3 is to facilitate the outward transport of non-metabolizable fatty acids from the mitochondrial matrix and thus prevents mitochondria from the potential deleterious effects of high fatty acid levels. In addition our data show that up-regulation of uncoupling protein-3 can be beneficial in the treatment of type 2 diabetes.
Collapse
Affiliation(s)
- Patrick Schrauwen
- Nutrition and Toxicology Research Institute Maastricht, Department of Human Biology, Maastricht University, 6200 MD Maastricht, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Echtay KS, Roussel D, St-Pierre J, Jekabsons MB, Cadenas S, Stuart JA, Harper JA, Roebuck SJ, Morrison A, Pickering S, Clapham JC, Brand MD. Superoxide activates mitochondrial uncoupling proteins. Nature 2002; 415:96-9. [PMID: 11780125 DOI: 10.1038/415096a] [Citation(s) in RCA: 1061] [Impact Index Per Article: 46.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Uncoupling protein 1 (UCP1) diverts energy from ATP synthesis to thermogenesis in the mitochondria of brown adipose tissue by catalysing a regulated leak of protons across the inner membrane. The functions of its homologues, UCP2 and UCP3, in other tissues are debated. UCP2 and UCP3 are present at much lower abundance than UCP1, and the uncoupling with which they are associated is not significantly thermogenic. Mild uncoupling would, however, decrease the mitochondrial production of reactive oxygen species, which are important mediators of oxidative damage. Here we show that superoxide increases mitochondrial proton conductance through effects on UCP1, UCP2 and UCP3. Superoxide-induced uncoupling requires fatty acids and is inhibited by purine nucleotides. It correlates with the tissue expression of UCPs, appears in mitochondria from yeast expressing UCP1, and is absent in skeletal muscle mitochondria from UCP3 knockout mice. Our findings indicate that the interaction of superoxide with UCPs may be a mechanism for decreasing the concentrations of reactive oxygen species inside mitochondria.
Collapse
Affiliation(s)
- Karim S Echtay
- Medical Research Council Dunn Human Nutrition Unit, Hills Road, Cambridge CB2 2XY, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Bernlohr DA, Jenkins AE, Bennaars AA. Chapter 10 Adipose tissue and lipid metabolism. BIOCHEMISTRY OF LIPIDS, LIPOPROTEINS AND MEMBRANES, 4TH EDITION 2002. [DOI: 10.1016/s0167-7306(02)36012-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
43
|
Lee I, Kadenbach B. Palmitate decreases proton pumping of liver-type cytochrome c oxidase. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:6329-34. [PMID: 11737187 DOI: 10.1046/j.0014-2956.2001.02602.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The H+/e- stoichiometry of reconstituted cytochrome c oxidase from bovine kidney, containing subunit VIaL (liver type), is 0.5 under standard conditions but 1.0 on addition of 1% cardiolipin to the lipid mixture (asolectin). Low concentrations of palmitate (half-maximal effect at 0.5 microm), but not laurate, myristate, stearate, oleate, 1-hexadecanol, palmitoyl glycerol and palmitoyl CoA, decreased the H+/e- ratio in the presence of cardiolipin from 1.0 to 0.5, accompanied by an increase of coupled, but not of uncoupled respiration of proteoliposomes. Cardiolipin and palmitate did not influence the H+/e- stoichiometry and respiration of reconstituted cytochrome c oxidase from bovine heart, containing subunit VIaH (heart-type). The H+/e- stoichiometry of the heart enzyme, however, is decreased from 1.0 to 0.5 by 5 mm intraliposomal ATP (instead of 5 mm ADP). It is assumed that palmitate binds to subunit VIaL. The partial uncoupling of proton pumping in cytochrome c oxidase is suggested to participate in mammalian thermogenesis.
Collapse
Affiliation(s)
- I Lee
- Fachbereich Chemie, Philipps-Universität, D-35032 Marburg, Germany
| | | |
Collapse
|
44
|
Schrauwen P, Saris WH, Hesselink MK. An alternative function for human uncoupling protein 3: protection of mitochondria against accumulation of nonesterified fatty acids inside the mitochondrial matrix. FASEB J 2001; 15:2497-502. [PMID: 11689475 DOI: 10.1096/fj.01-0400hyp] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The physiological function of the human uncoupling protein 3 UCP3, which was discovered in 1997, is unknown. Here we evaluate the available data on human UCP3 expression and show that UCP3 is up-regulated in situations where fatty acid delivery to the mitochondria exceeds oxidative capacity, whereas down-regulation of UCP3 is observed when oxidative capacity is enhanced. With a surplus of fatty acid delivery, accumulation of nonesterified fatty acids in the cytoplasm is likely to occur. Although the inner mitochondrial membrane provides a barrier for nonesterified fatty acids, neutral nonesterified fatty acids can partition into the phospholipid bilayer and flip-flop to the other side of the membrane, where they can be released into the mitochondrial matrix. Due to pH differences, these nonesterified fatty acids will be protonated. Because fatty acid anions can neither be metabolized inside the matrix or cross the inner mitochondrial membrane, accumulation of nonesterified fatty acids inside the matrix might occur. Therefore, we postulate that UCP3 is required for the outward translocation of fatty acids from the mitochondrial matrix. In this way, UCP3 is involved in the protection of mitochondria against accumulation of nonesterified fatty acids inside the mitochondrial matrix.
Collapse
Affiliation(s)
- P Schrauwen
- Department of Human Biology, Maastricht University, The Netherlands.
| | | | | |
Collapse
|
45
|
Jabůrek M, Varecha M, Jezek P, Garlid KD. Alkylsulfonates as probes of uncoupling protein transport mechanism. Ion pair transport demonstrates that direct H(+) translocation by UCP1 is not necessary for uncoupling. J Biol Chem 2001; 276:31897-905. [PMID: 11468281 DOI: 10.1074/jbc.m103507200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mechanism of fatty acid-dependent uncoupling by mitochondrial uncoupling proteins (UCP) is still in debate. We have hypothesized that the anionic fatty acid head group is translocated by UCP, and the proton is transported electroneutrally in the bilayer by flip-flop of the protonated fatty acid. Alkylsulfonates are useful as probes of the UCP transport mechanism. They are analogues of fatty acids, and they are transported by UCP1, UCP2, and UCP3. We show that undecanesulfonate and laurate are mutually competitive inhibitors, supporting the hypothesis that fatty acid anion is transported by UCP1. Alkylsulfonates cannot be protonated because of their low pK(a), consequently, they cannot catalyze electroneutral proton transport in the bilayer and cannot support uncoupling by UCP. We report for the first time that propranolol forms permeant ion pairs with the alkylsulfonates, thereby removing this restriction. Because a proton is transported with the neutral ion pair, the sulfonate is able to deliver protons across the bilayer, behaving as if it were a fatty acid. When ion pair transport is combined with UCP1, we now observe electrophoretic proton transport and uncoupling of brown adipose tissue mitochondria. These experiments confirm that the proton transport of UCP-mediated uncoupling takes place in the lipid bilayer and not via UCP itself. Thus, UCP1, like other members of its gene family, translocates anions and does not translocate protons.
Collapse
Affiliation(s)
- M Jabůrek
- Department of Biochemistry and Molecular Biology, Oregon Graduate Institute of Science and Technology, Portland, Oregon 97006, USA
| | | | | | | |
Collapse
|
46
|
Saier MH. Molecular phylogeny as a basis for the classification of transport proteins from bacteria, archaea and eukarya. Adv Microb Physiol 2001; 40:81-136. [PMID: 9889977 DOI: 10.1016/s0065-2911(08)60130-7] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Although enzymes catalyzing chemical reactions have long been classified according to the system developed by the Enzyme Commission (EC), no comparable system has been developed or proposed for transport proteins catalyzing transmembrane vectorial reactions. We here propose a comprehensive system, designated the Transport Commission (TC) system, based both on function and phylogeny. The TC system initially categorizes permeases according to mode of transport and energy coupling mechanism, and each category is assigned a one-component TC number (W). The secondary level of classification corresponds to the phylogenetic family (or superfamily) to which a particular permease is assigned, and each family is assigned a two-component TC number (W.X). The third level of classification refers to the phylogenetic cluster within a family (or the family within a superfamily) to which the permease belongs, and each cluster receives a three-component TC number (W.X.Y). Finally, the last level of categorization is based on substrate specificity and polarity of transport, and each entry is assigned a four component TC number (W.X.Y.Z). This system is based on the observation that mode of transport and energy coupling mechanism are fundamental properties of transport systems that very seldom transcend familial lines, but substrate specificity, being readily alterable by point mutations, is a superficial characteristic that often transcends familial lines. The proposed system has the potential to include all known permeases for which sequence data are available and has the flexibility to accommodate the multitude of permeases likely to be revealed by future genome sequencing and biochemical analysis. Major conclusions resulting from our classification efforts are described. The classification system, which will be continuously updated, is available on our World Wide Web site (http:/(/)www-biology.ucsd.edu/ approximately msaier/transport/titlepage.html).
Collapse
Affiliation(s)
- M H Saier
- Department of Biology, University of California at San Diego, La Jolla 92093-0116, USA.
| |
Collapse
|
47
|
Abstract
A comprehensive classification system for transmembrane molecular transporters has been proposed. This system is based on (i) mode of transport and energy-coupling mechanism, (ii) protein phylogenetic family, (iii) phylogenetic cluster, and (iv) substrate specificity. The proposed "Transport Commission" (TC) system is superficially similar to that implemented decades ago by the Enzyme Commission for enzymes, but it differs from the latter system in that it uses phylogenetic and functional data for classification purposes. Very few families of transporters include members that do not function exclusively in transport. Analyses reported reveal that channels, primary carriers, secondary carriers (uni-, sym-, and antiporters), and group translocators comprise distinct categories of transporters, and that transport mode and energy coupling are relatively immutable characteristics. By contrast, substrate specificity and polarity of transport are often readily mutable. Thus, with very few exceptions, a unified family of transporters includes members that function by a single transport mode and energy-coupling mechanism although a variety of substrates may be transported with either inwardly or outwardly directed polarity. The TC system allows cross-referencing according to substrates transported and protein sequence database accession numbers. Thus, familial assignments of newly sequenced transport proteins are facilitated. In this article I examine families of transporters that are eukaryotic specific. These families include (i) channel proteins, mostly from animals; (ii) facilitators and secondary active transport carriers; (iii) a few ATP-dependent primary active transporters; and (iv) transporters of unknown mode of action or energy-coupling mechanism. None of the several ATP-independent primary active transport energy-coupling mechanisms found in prokaryotes is represented within the eukaryotic-specific families. The analyses reported provide insight into transporter families that may have arisen in eukaryotes after the separation of eukaryotes from archaea and bacteria. On the basis of the reported analyses, it is suggested that the horizontal transfer of genes encoding transport proteins between eukaryotes and members of the other two domains of life occurred very infrequently during evolutionary history.
Collapse
Affiliation(s)
- M H Saier
- Department of Biology, University of California at San Diego, La Jolla 92093-0116, USA.
| |
Collapse
|
48
|
Yanagisawa Y, Hasegawa K, Dever GJ, Otto CT, Sakuma M, Shibata S, Miyagi S, Kaneko Y, Kagawa Y. Uncoupling protein 3 and peroxisome proliferator-activated receptor gamma2 contribute to obesity and diabetes in palauans. Biochem Biophys Res Commun 2001; 281:772-8. [PMID: 11237725 DOI: 10.1006/bbrc.2001.4417] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We examined the genetic contribution of single nucleotide polymorphisms (SNPs) of the energy metabolism-related genes, including beta 3 adrenergic receptor (beta3AR), apolipoprotein E (apo-E), promoter of uncoupling protein 3 (UCP3-p), peroxisome proliferator-activated receptor gamma 2 (PPARgamma2) and leptin receptor (LEPR) to metabolic disorders, in 118 inhabitants of Palau. The data were statistically analyzed and ethnically compared to correlate SNPs and their metabolic parameters. UCP3-p (P < 0.01) and PPARgamma2 (p = 0.05) correlated with plasma HbA1c, and UCP3-p correlated with fasting blood glucose (P < 0.01) in males, but not in females. UCP3-p correlated with body fat (%) (P < 0.01) in females, but not in males. Plasma leptin levels and apo-E were correlated in both groups. The frequency of SNPs for PPARgamma2, LEPR, and UCP3-p are significantly different between Palauans and Caucasians.
Collapse
Affiliation(s)
- Y Yanagisawa
- Department of Medical Chemistry, Kagawa Nutrition University, Chiyoda Sakado, Saitama, 350-0288, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Klingenberg M, Echtay KS. Uncoupling proteins: the issues from a biochemist point of view. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1504:128-43. [PMID: 11239490 DOI: 10.1016/s0005-2728(00)00242-5] [Citation(s) in RCA: 139] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The functional characteristics of uncoupling proteins (UCP) are reviewed, with the main focus on the results with isolated and reconstituted proteins. UCP1 from brown adipose tissue, the paradigm of the UCP subfamily, is treated in more detail. The issues addressed are the role and mechanism of fatty acids, the nucleotide binding, the regulation by pH and the identification by mutagenesis of residues involved in these functions. The transport and regulatory functions of UCP2 and 3 are reviewed in comparison to UCP1. The inconsistencies of a proposed nucleotide insensitive H(+) transport by these UCPs as concluded from the expression in yeast and Escherichia coli are elucidated. In both expression system UCP 2 and 3 are not in or cannot be converted to a functionally native state and thus also for these UCPs a nucleotide regulated H (+) transport is postulated.
Collapse
Affiliation(s)
- M Klingenberg
- Institut für Physiologische Chemie der Universität München, Schillerstrasse 44, D-80336 Munich, Germany.
| | | |
Collapse
|
50
|
Harper ME, Himms-Hagen J. Mitochondrial efficiency: lessons learned from transgenic mice. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1504:159-72. [PMID: 11239492 DOI: 10.1016/s0005-2728(00)00244-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Metabolic research has, like most areas of research in the life sciences, been affected dramatically by the application of transgenic technologies. Within the specific area of bioenergetics it has been thought that transgenic approaches in mice would provide definitive proof for some longstanding metabolic theories and assumptions. Here we review a number of transgenic approaches that have been used in mice to address theories of mitochondrial efficiency. The focus is largely on genes that affect the coupling of energy substrate oxidation to ATP synthesis, and thus, mice in which the uncoupling protein (Ucp) genes are modified are discussed extensively. Transgenic approaches have indeed provided proof-of-concept in some instances, but in many other instances they have yielded results that are in contrast to initial hypotheses. Many studies have also shown that genetic background can affect phenotypic outcomes, and that the upregulated expression of genes that are related to the modified gene often complicates the interpretation of findings.
Collapse
Affiliation(s)
- M E Harper
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Rd., Ottawa, Ont., Canada K1H 8M5.
| | | |
Collapse
|