1
|
Takata T, Haase-Pettingell C, King J. The C-terminal cysteine annulus participates in auto-chaperone function for Salmonella phage P22 tailspike folding and assembly. BACTERIOPHAGE 2012; 2:36-49. [PMID: 22666655 PMCID: PMC3357383 DOI: 10.4161/bact.19775] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Elongated trimeric adhesins are a distinct class of proteins employed by phages and viruses to recognize and bind to their host cells, and by bacteria to bind to their target cells and tissues. The tailspikes of E. coli phage K1F and Bacillus phage Ø29 exhibit auto-chaperone activity in their trimeric C-terminal domains. The P22 tailspike is structurally homologous to those adhesins. Though there are no disulfide bonds or reactive cysteines in the native P22 tailspikes, a set of C-terminal cysteines are very reactive in partially folded intermediates, implying an unusual local conformation in the domain. This is likely to be involved in the auto-chaperone function. We examined the unusual reactivity of C-terminal tailspike cysteines during folding and assembly as a potential reporter of auto-chaperone function. Reaction with IAA blocked productive refolding in vitro, but not off-pathway aggregation. Two-dimensional PAGE revealed that the predominant intermediate exhibiting reactive cysteine side chains was a partially folded monomer. Treatment with reducing reagent promoted native trimer formation from these species, consistent with transient disulfide bonds in the auto-chaperone domain. Limited enzymatic digestion and mass spectrometry of folding and assembly intermediates indicated that the C-terminal domain was compact in the protrimer species. These results indicate that the C-terminal domain of the P22 tailspike folds itself and associates prior to formation of the protrimer intermediate, and not after, as previously proposed. The C-terminal cysteines and triple β-helix domains apparently provide the staging for the correct auto-chaperone domain formation, needed for alignment of P22 tailspike native trimer.
Collapse
Affiliation(s)
- Takumi Takata
- Department of Biology; Massachusetts Institute of Technology; Cambridge, MA USA
| | | | | |
Collapse
|
2
|
The C-terminus of the P22 tailspike protein acts as an independent oligomerization domain for monomeric proteins. Biochem J 2009; 419:595-602. [PMID: 19196242 DOI: 10.1042/bj20081449] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
TSP (P22 tailspike protein) is a well-established model system for studying the folding and assembly of oligomeric proteins, and previous studies have documented both in vivo and in vitro folding intermediates using this protein. Especially important is the C-terminus of TSP, which plays a critical role in the assembly and maturation of the protrimer intermediate to its final trimeric form. In the present study, we show that by grafting the C-terminus of TSP on to the monomeric MBP (maltose-binding protein), the resulting chimaera (MBP-537) is a trimeric protein. Moreover, Western blot studies (using an anti-TSP antibody) indicate that the TSP C-terminus in the MBP-537 chimaera has the same conformation as the native TSP. The oligomerization of the MBP-537 chimaera appears to involve hydrophobic interactions and a refolding sequence, both of which are analogous to the native TSP. These results underscore the importance of the TSP C-terminus in the assembly of the mature trimer and demonstrate its potential utility as a model to study the folding and assembly of the TSP C-terminus in isolation.
Collapse
|
3
|
Cotranslational folding promotes beta-helix formation and avoids aggregation in vivo. J Mol Biol 2008; 383:683-92. [PMID: 18674543 DOI: 10.1016/j.jmb.2008.07.035] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2008] [Revised: 07/10/2008] [Accepted: 07/12/2008] [Indexed: 11/23/2022]
Abstract
Newly synthesized proteins must form their native structures in the crowded environment of the cell, while avoiding non-native conformations that can lead to aggregation. Yet, remarkably little is known about the progressive folding of polypeptide chains during chain synthesis by the ribosome or of the influence of this folding environment on productive folding in vivo. P22 tailspike is a homotrimeric protein that is prone to aggregation via misfolding of its central beta-helix domain in vitro. We have produced stalled ribosome:tailspike nascent chain complexes of four fixed lengths in vivo, in order to assess cotranslational folding of newly synthesized tailspike chains as a function of chain length. Partially synthesized, ribosome-bound nascent tailspike chains populate stable conformations with some native-state structural features even prior to the appearance of the entire beta-helix domain, regardless of the presence of the chaperone trigger factor, yet these conformations are distinct from the conformations of released, refolded tailspike truncations. These results suggest that organization of the aggregation-prone beta-helix domain occurs cotranslationally, prior to chain release, to a conformation that is distinct from the accessible energy minimum conformation for the truncated free chain in solution.
Collapse
|
4
|
Kim J, Robinson AS. Dissociation of intermolecular disulfide bonds in P22 tailspike protein intermediates in the presence of SDS. Protein Sci 2006; 15:1791-3. [PMID: 16751612 PMCID: PMC2040104 DOI: 10.1110/ps.062197206] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Each chain of the native trimeric P22 tailspike protein has eight cysteines that are reduced and buried in its hydrophobic core. However, disulfide bonds have been observed in the folding pathway and they are believed to play a critical role in the registration of the three chains. Interestingly, in the presence of sodium dodecyl sulfate (SDS) only monomeric chains, rather than disulfide-linked oligomers, have been observed from a mixture of folding intermediates. Here we show that when the oligomeric folding intermediates were separated from the monomer by native gel electrophoresis, the reduction of intermolecular disulfide bonds did not occur in the subsequent second-dimension SDS-gel electrophoresis. This result suggests that when tailspike monomer is present in free solution with SDS, the partially unfolded tailspike monomer can facilitate the reduction of disulfide bonds in the tailspike oligomers.
Collapse
Affiliation(s)
- Junghwa Kim
- Department of Chemical Engineering, University of Delaware, Newark 19716, USA
| | | |
Collapse
|
5
|
Weigele PR, Haase-Pettingell C, Campbell PG, Gossard DC, King J. Stalled folding mutants in the triple beta-helix domain of the phage P22 tailspike adhesin. J Mol Biol 2005; 354:1103-17. [PMID: 16289113 DOI: 10.1016/j.jmb.2005.10.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2005] [Revised: 10/04/2005] [Accepted: 10/05/2005] [Indexed: 11/18/2022]
Abstract
The trimeric bacteriophage P22 tailspike adhesin exhibits a domain in which three extended strands intertwine, forming a single turn of a triple beta-helix. This domain contains a single hydrophobic core composed of residues contributed by each of the three sister polypeptide chains. The triple beta-helix functions as a molecular clamp, increasing the stability of this elongated structural protein. During folding of the tailspike protein, the last precursor before the native state is a partially folded trimeric intermediate called the protrimer. The transition from the protrimer to the native state results in a structure that is resistant to denaturation by heat, chemical denaturants, and proteases. Random mutations were made in the region encoding residues 540-548, where the sister chains begin to wrap around each other. From a set of 26 unique single amino acid substitutions, we characterized mutations at G546, N547, and I548 that retarded or blocked the protrimer to native trimer transition. In contrast, many non-conservative substitutions were tolerated at residues 540-544. Sucrose gradient analysis showed that protrimer-like mutants had reduced sedimentation, 8.0 S to 8.3 S versus 9.3 S for the native trimer. Mutants affected in the protrimer to native trimer transition were also destabilized in their native state. These data suggest that the folding of the triple beta-helix domain drives transition of the protrimer to the native state and is accompanied by a major rearrangement of polypeptide chains.
Collapse
Affiliation(s)
- Peter R Weigele
- Department of Biology Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | |
Collapse
|
6
|
Jain M, Evans MS, King J, Clark PL. Monoclonal Antibody Epitope Mapping Describes Tailspike β-Helix Folding and Aggregation Intermediates. J Biol Chem 2005; 280:23032-40. [PMID: 15833745 DOI: 10.1074/jbc.m501963200] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
There is growing interest in understanding how the cellular environment affects protein folding mechanisms, but most spectroscopic methods for monitoring folding in vitro are unsuitable for experiments in vivo or in other complex mixtures. Monoclonal antibody binding represents a sensitive structural probe that can be detected against the background of other cellular components. A panel of antibodies has been raised against Salmonella typhimurium phage P22 tailspike. In this report, nine alpha-tailspike antibody binding epitopes were characterized by measuring the binding of these monoclonal antibodies to tailspike variants bearing surface point mutations. These results reveal that the antibody epitopes are distributed throughout the tailspike structure, with several clustered in the central parallel beta-helix domain. The ability of each antibody to distinguish between tailspike conformational states was assessed by measuring antibody binding to tailspike in vitro refolding intermediates. Interestingly, the binding of all but one of the nine antibodies is sensitive to the tailspike conformational state. Whereas several antibodies bind preferentially to the tailspike native structure, the structural features that comprise the binding epitopes form with different rates. In addition, two antibodies preferentially recognize early refolding intermediates. Combined with the epitope mapping, these results indicate portions of the beta-helix form early during refolding, perhaps serving as a scaffold for the formation of additional structure. Finally, three of the antibodies show enhanced binding to non-native, potentially aggregation-prone tailspike conformations. The refolding results indicate these non-native conformations form early during the refolding reaction, long before the appearance of native tailspike.
Collapse
Affiliation(s)
- Madhulika Jain
- Department of Chemistry and Biochemistry, University of Notre Dame, Indiana 46556 , USA
| | | | | | | |
Collapse
|
7
|
Lefebvre BG, Gage MJ, Robinson AS. Maximizing recovery of native protein from aggregates by optimizing pressure treatment. Biotechnol Prog 2004; 20:623-9. [PMID: 15059011 DOI: 10.1021/bp034221v] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Recovering native protein from aggregates is a common obstacle in the production of recombinant proteins. Recent reports have shown that hydrostatic pressure is an attractive alternative to traditional denature-and-dilute techniques, both in terms of yield and process simplicity. To determine the effect of process variables, we subjected tailspike aggregates to a variety of pressure-treatment conditions. Maximum native tailspike yields were obtained with only short pressure incubations (<5 min) at 240 MPa. However, some tailspike aggregates were resistant to pressure, despite multiple cycles of pressure. Extending the postpressure incubation time to 4 days improved the yield of native protein from aggregates from 19.4 +/- 0.9 to 47.4 +/- 19.6 microg/mL (approximately 78% yield of native trimer from nonaggregate material). The nearly exclusive conversion of monomer to trimer over the time scale of days, when combined with previous kinetic data, allows for the identification of three postpressure kinetic phases: a rapid phase consisting of structured dimer conversion to trimer (30 min), an intermediate phase consisting of monomer conversion to aggregate (100 min), and a slow phase consisting of conversion of monomer to trimer (days). Optimizing the production of structured dimer can yield the highest level of folded protein. Typical refolding additives, such as glycerol, or low-temperature incubation did not improve yields.
Collapse
Affiliation(s)
- Brian G Lefebvre
- Department of Chemical Engineering, University of Delaware, Newark, Delaware 19716, USA
| | | | | |
Collapse
|
8
|
Danek BL, Robinson AS. Nonnative interactions between cysteines direct productive assembly of P22 tailspike protein. Biophys J 2004; 85:3237-47. [PMID: 14581223 PMCID: PMC1303599 DOI: 10.1016/s0006-3495(03)74741-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Nonnative disulfide bond formation can play a critical role in the assembly of disulfide bonded proteins. During the folding and assembly of the P22 tailspike protein, nonnative disulfide bonds form both in vivo and in vitro. However, the mechanism and identity of cysteine disulfide pairs remains elusive, particularly for P22 tailspike, which contains no disulfide bonds in its native, functional form. Understanding the interactions between cysteine residues is important for developing a mechanistic model for the role of nonnative cysteines in P22 tailspike assembly. Prior in vivo studies have suggested that cysteines 496, 613, and 635 are the most likely site for sulfhydryl reactivity. Here we demonstrate that these three cysteines are critical for efficient assembly of tailspike trimers, and that interactions between cysteine pairs lead to productive assembly of native tailspike.
Collapse
Affiliation(s)
- Brenda L Danek
- Department of Chemical Engineering, University of Delaware, Newark, Delaware 19716, USA
| | | |
Collapse
|
9
|
Danek BL, Robinson AS. P22 tailspike trimer assembly is governed by interchain redox associations. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2004; 1700:105-16. [PMID: 15210130 DOI: 10.1016/j.bbapap.2004.04.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2003] [Revised: 04/07/2004] [Accepted: 04/08/2004] [Indexed: 11/22/2022]
Abstract
Though disulfide bonds are absent from P22 tailspike protein in its native state, a disulfide-bonded trimeric intermediate has been identified in the tailspike folding and assembly pathway in vitro. The formation of disulfide bonds is critical to efficient assembly of native trimers as mutations at C-terminal cysteines reduce or inhibit trimer formation. We investigated the effect of different redox folding environments on tailspike formation to discover if simple changes in reducing potential would facilitate trimer formation. Expression of tailspike in trxB cell lines with more oxidizing cytoplasms led to lower trimer yields; however, observed assembly rates were unchanged. In vitro, the presence of any redox buffer decreased the overall yield compared to non-redox buffered controls; however, the greatest yields of the native trimer were obtained in reducing rather than oxidizing environments at pH 7. Slightly faster trimer formation rates were observed in the redox samples at pH 7, perhaps by accelerating the reduction of the disulfide-bonded protrimer to the native trimer. These rates and the effects of the redox system were found to depend greatly on the pH of the refolding reaction. Oxidized glutathione (GSSG) trapped a tailspike intermediate, likely as a mixed disulfide. This trapped intermediate was able to form native trimer upon addition of dithiothreitol (DTT), indicating that the trapped intermediate is on the assembly pathway, rather than the aggregation pathway. Thus, the presence of redox agents interfered with the ability of the tailspike monomers to associate, demonstrating that disulfide associations play an important role during the assembly of this cytoplasmic protein.
Collapse
Affiliation(s)
- B L Danek
- Department of Chemical Engineering, University of Delaware, Newark, DE 19716, USA
| | | |
Collapse
|
10
|
Lefebvre BG, Comolli NK, Gage MJ, Robinson AS. Pressure dissociation studies provide insight into oligomerization competence of temperature-sensitive folding mutants of P22 tailspike. Protein Sci 2004; 13:1538-46. [PMID: 15133163 PMCID: PMC2279998 DOI: 10.1110/ps.03579304] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Several temperature-sensitive folding (tsf) mutants of the tailspike protein from bacteriophage P22 have been found to fold with lower efficiency than the wild-type sequence, even at lowered temperatures. Previous refolding studies initiated from the unfolded monomer have indicated that the tsf mutations decrease the rate of structured monomer formation. We demonstrate that pressure treatment of the tailspike aggregates provides a useful tool to explore the effects of tsf mutants on the assembly pathway of the P22 tailspike trimer. The effects of pressure on two different tsf mutants, G244R and E196K, were explored. Pressure treatment of both G244R and E196K aggregates produced a folded trimer. E196K forms almost no native trimer in in vitro refolding experiments, yet it forms a trimer following pressure in a manner similar to the native tailspike protein. In contrast, trimer formation from pressure-treated G244R aggregates was not rapid, despite the presence of a G244R dimer after pressure treatment. The center-of-mass shifts of the fluorescence spectra under pressure are nearly identical for both tsf aggregates, indicating that pressure generates similar intermediates. Taken together, these results suggest that E196K has a primary defect in formation of the beta-helix during monomer collapse, while G244R is primarily an assembly defect.
Collapse
Affiliation(s)
- Brian G Lefebvre
- Department of Chemical Engineering, University of Delaware, Newark, DE 19716, USA
| | | | | | | |
Collapse
|
11
|
Gage MJ, Robinson AS. C-terminal hydrophobic interactions play a critical role in oligomeric assembly of the P22 tailspike trimer. Protein Sci 2003; 12:2732-47. [PMID: 14627734 PMCID: PMC2366982 DOI: 10.1110/ps.03150303] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2003] [Revised: 09/08/2003] [Accepted: 09/08/2003] [Indexed: 10/26/2022]
Abstract
The tailspike protein from the bacteriophage P22 is a well characterized model system for folding and assembly of multimeric proteins. Folding intermediates from both the in vivo and in vitro pathways have been identified, and both the initial folding steps and the protrimer-to-trimer transition have been well studied. In contrast, there has been little experimental evidence to describe the assembly of the protrimer. Previous results indicated that the C terminus plays a critical role in the overall stability of the P22 tailspike protein. Here, we present evidence that the C terminus is also the critical assembly point for trimer assembly. Three truncations of the full-length tailspike protein, TSPDeltaN, TSPDeltaC, and TSPDeltaNC, were generated and tested for their ability to form mixed trimer species. TSPDeltaN forms mixed trimers with full-length P22 tailspike, but TSPDeltaC and TSPDeltaNC are incapable of forming similar mixed trimer species. In addition, mutations in the hydrophobic core of the C terminus were unable to form trimer in vivo. Finally, the hydrophobic-binding dye ANS inhibits the formation of trimer by inhibiting progression through the folding pathway. Taken together, these results suggest that hydrophobic interactions between C-terminal regions of P22 tailspike monomers play a critical role in the assembly of the P22 tailspike trimer.
Collapse
Affiliation(s)
- Matthew J Gage
- Department of Chemical Engineering, University of Delaware, Newark, Delaware 19716, USA
| | | |
Collapse
|
12
|
Panda AK. Bioprocessing of therapeutic proteins from the inclusion bodies of Escherichia coli. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2003; 85:43-93. [PMID: 12930093 DOI: 10.1007/3-540-36466-8_3] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Escherichia coli has been most extensively used for the large-scale production of therapeutic proteins, which do not require complex glycosylation for bioactivity. In recent years tremendous progress has been made on the molecular biology, fermentation process development and protein refolding from inclusion bodies for efficient production of therapeutic proteins using E. coli. High cell density fermentation and high throughput purification of the recombinant protein from inclusion bodies of E. coli are the two major bottle necks for the cost effective production of therapeutic proteins. The aim of this review is to summarize the developments both in high cell density, high productive fermentation and inclusion body protein refolding processes using E. coli as an expression system. The first section deals with the problems of high cell density fermentation with an aim to high volumetric productivity of recombinant protein. Process engineering parameters during the expression of ovine growth hormone as inclusion body in E. coli were analyzed. Ovine growth hormone yield was improved from 60 mg L(-1) to 3.2 g L(-1) using fed-batch culture. Similar high volumetric yields were also achieved for human growth hormone and for recombinant bonnet monkey zona pellucida glycoprotein expressed as inclusion bodies in E. coli. The second section deals with purification and refolding of recombinant proteins from the inclusion bodies of E. coli. The nature of inclusion body protein, its characterization and isolation from E. coli has been discussed in detail. Different solubilization and refolding methods, which have been used to recover bioactive protein from inclusion bodies of E. coli have also been discussed. A novel inclusion body protein solubilization method, while retaining the existing native-like secondary structure of the protein and its subsequent refolding in to bioactive form, has been discussed. This inclusion body solubilization and refolding method has been applied to recover bioactive recombinant ovine growth hormone, recombinant human growth hormone and bonnet monkey zona pellucida glycoprotein from the inclusion bodies of E. coli.
Collapse
Affiliation(s)
- Amulya K Panda
- Product Development Cell, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi-110067, India.
| |
Collapse
|
13
|
Lefebvre BG, Robinson AS. Pressure treatment of tailspike aggregates rapidly produces on-pathway folding intermediates. Biotechnol Bioeng 2003; 82:595-604. [PMID: 12652483 DOI: 10.1002/bit.10607] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Protein folding and aggregation are in direct competition in living systems, yet measuring the two pathways simultaneously has rarely been accomplished. In order to identify the mechanism of high-pressure dissociation of aggregates, we compared the simultaneous on- and off-pathway behavior following dilution of freshly denatured P22 tailspike protein. Tailspike assembly at 100 microg/mL was monitored at four temperatures using a combination of size-exclusion chromatography and native polyacrylamide gel electrophoresis (PAGE) and folding and aggregation rates and yields were determined. As temperature increased, the yield of native trimeric tailspike decreased from 26.1 +/- 1.3 microg/mL at 20 degrees C to 0 microg/mL at 37 degrees C. Pressure treatment dissociated 60% of the trapped aggregates created at 37 degrees C and yielded 19.8 +/- 1.1 microg/mL of native trimer following depressurization and incubation at 20 degrees C. The rate of refolding of "freshly denatured" tailspike was compared to that following pressure treatment. The trimer formation rate increased by a factor of roughly five, and the aggregate rate decreased by a factor of three, following pressure treatment. Circular dichroism and high-pressure intrinsic tryptophan fluorescence measurements support the model that a structured intermediate is formed in a rapid manner under high pressure from a pressure-sensitive aggregate population.
Collapse
Affiliation(s)
- Brian G Lefebvre
- Department of Chemical Engineering, 259 Colburn Laboratory, University of Delaware, Newark, Delaware 19716, USA
| | | |
Collapse
|
14
|
Abstract
Protein structure and stability are sensitive to and dependent on the local interactions of amino acid side chains. A diverse and important type of side-chain interaction is the hydrogen bond. Although numerous hydrogen bonds are resolved in protein 3-dimensional structures, those of the cysteine sulfhydryl group (S-H) are elusive to high-resolution X-ray and NMR methods. However, the nature and strength of sulfhydryl hydrogen bonds (S-H* * *X) are amenable to investigation by Raman spectroscopy. The power of the Raman method for characterizing S-H* * *X interactions is illustrated by resolving the Raman S-H stretching band for each of the eight cysteines per 666-residue subunit in the trimeric tailspike of icosahedral bacteriophage P22. The Raman sulfhydryl signatures of the wild-type tailspike and eight single-site cysteine to serine mutants reveal a heretofore unrecognized diversity of S-H hydrogen bonds in a native protein. The use of Raman spectroscopy to identify the non-hydrogen-bonded state of the tyrosine phenoxyl group is also described. This unusual and unexpected state occurs for all tyrosines in the assembled capsids of filamentous viruses Ff and Pf1. The Raman spectral signature of the non-hydrogen-bonded tyrosine phenoxyl, which is characterized by an extraordinary Raman Fermi doublet intensity ratio (I850/I830 = 6.7), extends and refines the existing correlation for hydrogen-bonded tyrosines. Finally, a novel Raman signature for tryptophan in the Pf3 filamentous virus is identified, which is proposed as diagnostic of "cation-pi interaction" involving the guanidinium group of Arg 37 as a cation donor and the indolyl ring of Trp 38 as a pi-electron acceptor. These studies demonstrate the power of Raman spectroscopy for investigating the interactions of key side chains in native protein assemblies.
Collapse
Affiliation(s)
- George J Thomas
- Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri-Kansas City, 5100 Rockhill Road, 64110-2499, USA.
| |
Collapse
|
15
|
Benton CB, King J, Clark PL. Characterization of the protrimer intermediate in the folding pathway of the interdigitated beta-helix tailspike protein. Biochemistry 2002; 41:5093-103. [PMID: 11955057 DOI: 10.1021/bi0115582] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
P22 tailspike is a homotrimeric, thermostable adhesin that recognizes the O-antigen lipopolysaccharide of Salmonella typhimurium. The 70 kDa subunits include long beta-helix domains. After residue 540, the polypeptide chains change their path and wrap around one another, with extensive interchain contacts. Formation of this interdigitated domain intimately couples the chain folding and assembly mechanisms. The earliest detectable trimeric intermediate in the tailspike folding and assembly pathway is the protrimer, suspected to be a precursor of the native trimer structure. We have directly analyzed the kinetics of in vitro protrimer formation and disappearance for wild type and mutant tailspike proteins. The results confirm that the protrimer intermediate is an on-pathway intermediate for tailspike folding. Protrimer was originally resolved during tailspike folding because its migration through nondenaturing polyacrylamide gels was significantly retarded with respect to the migration of the native tailspike trimer. By comparing protein mobility versus acrylamide concentration, we find that the retarded mobility of the protrimer is due exclusively to a larger overall size than the native trimer, rather than an altered net surface charge. Experiments with mutant tailspike proteins indicate that the conformation difference between protrimer and native tailspike trimer is localized toward the C-termini of the tailspike polypeptide chains. These results suggest that the transformation of the protrimer to the native tailspike trimer represents the C-terminal interdigitation of the three polypeptide chains. This late step may confer the detergent-resistance, protease-resistance, and thermostability of the native trimer.
Collapse
Affiliation(s)
- Christopher B Benton
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | |
Collapse
|
16
|
Clark PL, King J. A newly synthesized, ribosome-bound polypeptide chain adopts conformations dissimilar from early in vitro refolding intermediates. J Biol Chem 2001; 276:25411-20. [PMID: 11319217 DOI: 10.1074/jbc.m008490200] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Little is known about the conformations of newly synthesized polypeptide chains as they emerge from the large ribosomal subunit, or how these conformations compare with those populated immediately after dilution of polypeptide chains out of denaturant in vitro. Both in vivo and in vitro, partially folded intermediates of the tailspike protein from Salmonella typhimurium phage P22 can be trapped in the cold. A subset of monoclonal antibodies raised against tailspike recognize partially folded intermediates, whereas other antibodies recognize only later intermediates and/or the native state. We have used a pair of monoclonal antibodies to probe the conformational features of full-length, newly synthesized tailspike chains recovered on ribosomes from phage-infected cells. The antibody that recognizes early intermediates in vitro also recognizes the ribosome-bound intermediates. Surprisingly, the antibody that did not recognize early in vitro intermediates did recognize ribosome-bound tailspike chains translated in vivo. Thus, the newly synthesized, ribosome-bound tailspike chains display structured epitopes not detected upon dilution of tailspike chains from denaturant. As opposed to the random ensemble first populated when polypeptide chains are diluted out of denaturant, folding in vivo from the ribosome may begin with polypeptide conformations already directed toward the productive folding and assembly pathway.
Collapse
Affiliation(s)
- P L Clark
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | | |
Collapse
|
17
|
Raso SW, Clark PL, Haase-Pettingell C, King J, Thomas GJ. Distinct cysteine sulfhydryl environments detected by analysis of Raman S-hh markers of Cys-->Ser mutant proteins. J Mol Biol 2001; 307:899-911. [PMID: 11273709 DOI: 10.1006/jmbi.2001.4476] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Very little is known about the character or functional relevance of hydrogen-bonded cysteine sulfhydryl (S-H) groups in proteins. The Raman S-H band is a unique and sensitive probe of the local S-H environment. Here, we report the use of Raman spectroscopy combined with site-specific mutagenesis to document the existence of five distinguishable hydrogen-bonded states of buried cysteine sulfhydryl groups in a native protein. The 666 residue subunit of the Salmonella typhimurium bacteriophage P22 tailspike contains eight cysteine residues distributed through the elongated structure. The tailspike cysteine residues display an unusual Raman S-H band complex (2500-2600 cm(-1) interval) indicative of diverse S-H hydrogen-bonding interactions in the native trimeric structure. To resolve specific Cys contributions to the complex Raman band we characterized a set of tailspike proteins with each cysteine replaced by a serine. The mutant proteins, once folded, were structurally and functionally indistinguishable from wild-type tailspikes, except for their Raman S-H signatures. Comparison of the Raman spectra of the mutant and wild-type proteins reveals the following hydrogen-bond classes for cysteine sulfhydryl groups. (i) Cys613 forms the strongest S-H...X bond of the tailspike, stronger than any heretofore observed for a protein. (ii) Cys267, Cys287 and Cys458 form robust S-H...X bonds. (iii) Moderate S-H...X bonding occurs for Cys169 and Cys635. (iv) Cys290 and Cys496 form weak hydrogen bonds. (v) It is remarkable that Cys287 contributes two Raman S-H markers, indicating the population of two distinct hydrogen-bonding states. The sum of the S-H Raman signatures of all eight mutants accurately reproduces the composite Raman band of the wild-type tailspike. The diverse cysteine states may be an outcome of the folding and assembly pathway of the tailspike, which though lacking disulfide bonds in the native state, utilizes transient disulfide bonds in the maturation pathway. This Raman study represents the first detailed assessment of local S-H hydrogen bonding in a native protein and provides information not obtainable directly by other structural probes. The method employed here should be applicable to a wide range of cysteine-containing proteins.
Collapse
Affiliation(s)
- S W Raso
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02139, USA
| | | | | | | | | |
Collapse
|
18
|
Haase-Pettingell C, Betts S, Raso SW, Stuart L, Robinson A, King J. Role for cysteine residues in the in vivo folding and assembly of the phage P22 tailspike. Protein Sci 2001; 10:397-410. [PMID: 11266625 PMCID: PMC2373931 DOI: 10.1110/ps.34701] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
The predominantly beta-sheet phage P22 tailspike adhesin contains eight reduced cysteines per 666 residue chain, which are buried and unreactive in the native trimer. In the pathway to the native trimer, both in vivo and in vitro transient interchain disulfide bonds are formed and reduced. This occurs in the protrimer, an intermediate in the formation of the interdigitated beta-sheets of the trimeric tailspike. Each of the eight cysteines was replaced with serine by site-specific mutagenesis of the cloned P22 tailspike gene and the mutant genes expressed in Escherichia coli. Although the yields of native-like Cys>Ser proteins varied, sufficient soluble trimeric forms of each of the eight mutants accumulated to permit purification. All eight single Cys>Ser mature proteins maintained the high thermostability of the wild type, as well as the wild-type biological activity in forming infectious virions. Thus, these cysteine thiols are not required for the stability or activity of the native state. When their in vivo folding and assembly kinetics were examined, six of the mutant substitutions--C267S, C287S, C458S, C613S, and C635S--were significantly impaired at higher temperatures. Four--C290S, C496, C613S, and C635--showed significantly impaired kinetics even at lower temperatures. The in vivo folding of the C613S/C635S double mutant was severely defective independent of temperature. Since the trimeric states of the single Cys>Ser substituted chains were as stable and active as wild type, the impairment of tailspike maturation presumably reflects problems in the in vivo folding or assembly pathways. The formation or reduction of the transient interchain disulfide bonds in the protrimer may be the locus of these kinetic functions.
Collapse
Affiliation(s)
- C Haase-Pettingell
- Department of Biology, Masschusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | | | | | |
Collapse
|
19
|
Jaenicke R, Lilie H. Folding and association of oligomeric and multimeric proteins. ADVANCES IN PROTEIN CHEMISTRY 2000; 53:329-401. [PMID: 10751948 DOI: 10.1016/s0065-3233(00)53007-1] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- R Jaenicke
- Institut für Biophysik und Physikalische Biochemie, Universität Regensburg, Germany
| | | |
Collapse
|
20
|
Mitraki A, Barge A, Chroboczek J, Andrieu JP, Gagnon J, Ruigrok RW. Unfolding studies of human adenovirus type 2 fibre trimers. Evidence for a stable domain. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 264:599-606. [PMID: 10491109 DOI: 10.1046/j.1432-1327.1999.00683.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Adenovirus fibres are trimeric proteins that protrude from the 12 fivefold vertices of the virion and are the cell attachment organelle of the virus. They consist of three segments: an N-terminal tail, which is noncovalently attached to the penton base, a thin shaft carrying 15 amino acid pseudo repeats, and a C-terminal globular head (or knob) which recognizes the primary cell receptor. Due to their exceptional stability, which allows easy distinction of native trimers from unfolded forms and folding intermediates, adenovirus fibres are a very good model system for studying folding in vivo and in vitro. To understand the folding and stability of the trimeric fibres, the unfolding pathway of adenovirus 2 fibres induced by SDS and temperature has been investigated. Unfolding starts from the N-terminus and a stable intermediate accumulates that has the C-terminal head and part of the shaft structure (shown by electron microscopy). The unfolded part can be digested away using limited proteolysis, and the precise digestion sites have been determined. The remaining structured fragment is recognized by monoclonal antibodies that are specific for the trimeric globular head and therefore retains a native trimeric structure. Taken together, our results indicate that adenovirus fibres carry a stable C-terminal domain, consisting of the knob with five shaft-repeats.
Collapse
Affiliation(s)
- A Mitraki
- Institut de Biologie Structurale, Grenoble, France.
| | | | | | | | | | | |
Collapse
|
21
|
Jekow P, Behlke J, Tichelaar W, Lurz R, Regalla M, Hinrichs W, Tavares P. Effect of the ionic environment on the molecular structure of bacteriophage SPP1 portal protein. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 264:724-35. [PMID: 10491118 DOI: 10.1046/j.1432-1327.1999.00601.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Bacteriophage SPP1 portal protein is a large cyclical homo-oligomer composed of 13 subunits. The solution structure and assembly behavior of this protein with high-point rotational symmetry was characterized. The purified protein was present as a monodisperse population of 13-mers, named gp6H, at univalent salt concentrations in the hundred millimolar range (>/= 250 mM NaCl) or in the presence of bivalent cations in the millimolar range (>/= 5 mM MgCl2). Gp6H had a slightly higher sedimentation coefficient, a smaller shape-dependent frictional ratio, and a higher rate of intersubunit cross-linking in the presence of magnesium than in its absence. In the absence of bivalent cations and at univalent salt concentrations below 250 mM, the 13-mer molecules dissociated partially into stable monomers, named gp6L. The monomer had a somewhat different shape from the subunit present in the 13-mer, but maintained a defined tertiary structure. The association-dissociation equilibrium was mainly between the monomer and the 13-mer with a minor population of intermediate oligomers. Their interconversion was strongly influenced by the ionic environment. Under physiological conditions, the concentration of Mg2+ found in the Bacillus subtilis cytoplasm (10-50 mM) probably promotes complete association of gp6 into 13-mer rings with a compact conformation.
Collapse
Affiliation(s)
- P Jekow
- Max Planck Institut für Molekulare Genetik, Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
22
|
Betts S, King J. There's a right way and a wrong way: in vivo and in vitro folding, misfolding and subunit assembly of the P22 tailspike. Structure 1999; 7:R131-9. [PMID: 10404587 DOI: 10.1016/s0969-2126(99)80078-1] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The in vivo and in vitro folding, assembly and misfolding of an elongated protein, the thermostable tailspike adhesin of phage P22, reveals important aspects of the sequence control of chain folding as well as its failure mode, inclusion body formation.
Collapse
Affiliation(s)
- S Betts
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02139, USA
| | | |
Collapse
|
23
|
Miller S, Schuler B, Seckler R. Phage P22 tailspike protein: removal of head-binding domain unmasks effects of folding mutations on native-state thermal stability. Protein Sci 1998; 7:2223-32. [PMID: 9792111 PMCID: PMC2143837 DOI: 10.1002/pro.5560071021] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A shortened, recombinant protein comprising residues 109-666 of the tailspike endorhamnosidase of Salmonella phage P22 was purified from Escherichia coli and crystallized. Like the full-length tailspike, the protein lacking the amino-terminal head-binding domain is an SDS-resistant, thermostable trimer. Its fluorescence and circular dichroism spectra indicate native structure. Oligosaccharide binding and endoglycosidase activities of both proteins are identical. A number of tailspike folding mutants have been obtained previously in a genetic approach to protein folding. Two temperature-sensitive-folding (tsf) mutations and the four known global second-site suppressor (su) mutations were introduced into the shortened protein and found to reduce or increase folding yields at high temperature. The mutational effects on folding yields and subunit folding kinetics parallel those observed with the full-length protein. They mirror the in vivo phenotypes and are consistent with the substitutions altering the stability of thermolabile folding intermediates. Because full-length and shortened tailspikes aggregate upon thermal denaturation, and their denaturant-induced unfolding displays hysteresis, kinetics of thermal unfolding were measured to assess the stability of the native proteins. Unfolding of the shortened wild-type protein in the presence of 2% SDS at 71 degrees C occurs at a rate of 9.2 x 10(-4) s(-1). It reflects the second kinetic phase of unfolding of the full-length protein. All six mutations were found to affect the thermal stability of the native protein. Both tsf mutations accelerate thermal unfolding about 10-fold. Two of the su mutations retard thermal unfolding up to 5-fold, while the remaining two mutations accelerate unfolding up to 5-fold. The mutational effects can be rationalized on the background of the recently determined crystal structure of the protein.
Collapse
Affiliation(s)
- S Miller
- Institut für Biophysik und Physikalische Biochemie, Universität Regensburg, Germany
| | | | | |
Collapse
|
24
|
Seckler R. Folding and function of repetitive structure in the homotrimeric phage P22 tailspike protein. J Struct Biol 1998; 122:216-22. [PMID: 9724623 DOI: 10.1006/jsbi.1998.3974] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Salmonella bacteriophage P22 recognizes its host cell receptor, lipopolysaccharide, by means of six tailspikes, thermostable homotrimers of 72-kDa polypeptides. Biophysical results on the binding reaction, together with high-resolution structural information from X-ray crystallography, have shed light on the interactions determining the viral host range. Folding and assembly of the tailspike protein in vitro have been analyzed in detail, and the data have been compared with observations on the in vivo assembly pathway. Repetitive structural elements in the tailspike protein, like a side-by-side trimer of parallel beta-helices, a parallel alpha-helical bundle, a triangular prism made up from antiparallel beta-sheets, and a short segment of a triple beta-helix can be considered building blocks for larger structural proteins, and thus, the results on P22 tailspike may have implications for fibrous protein structure and folding.
Collapse
Affiliation(s)
- R Seckler
- Institut für Biophysik und Physikalische Biochemie, Regensburg, D-93040, Germany
| |
Collapse
|
25
|
Reubsaet JL, Beijnen JH, Bult A, van Maanen RJ, Marchal JA, Underberg WJ. Analytical techniques used to study the degradation of proteins and peptides: chemical instability. J Pharm Biomed Anal 1998; 17:955-78. [PMID: 9884187 DOI: 10.1016/s0731-7085(98)00063-6] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Instability of peptides and proteins can be divided into two forms: chemical and physical instability. Chemical instability is due to modification/alteration of amino acid residues. There are several types of degradation reactions responsible for this instability. Most frequently described reactions are oxidation, reduction, deamidation, hydrolysis, arginine conversion, beta-elimination and racemisation. However, any study of the degradation of a chemical substance lacks reliability when the analytical methodology, that is used is not properly validated. Especially in the investigation, where degradation processes lead to their parent compounds, validation of the analysis is pivotal for the correct interpretation of the results. It is therefore appropriate and useful to assemble an overview of degradation processes in relation to the analytical methods to monitor them. An overview like this can help investigators to make the right choices in their analytical approach of stability problems. The degradation reactions involved in peptide/protein degradation as well as the methods to monitor them are summarized and discussed.
Collapse
Affiliation(s)
- J L Reubsaet
- Department of Pharmaceutical Analysis, Faculty of Pharmacy, Utrecht University, The Netherlands
| | | | | | | | | | | |
Collapse
|
26
|
Martineau P, Jones P, Winter G. Expression of an antibody fragment at high levels in the bacterial cytoplasm. J Mol Biol 1998; 280:117-27. [PMID: 9653035 DOI: 10.1006/jmbi.1998.1840] [Citation(s) in RCA: 172] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recombinant antibody fragments expressed in the cytoplasm of cells have considerable practical potential. However in the reducing environment of the cytoplasm, the intradomain disulphide bonds are not formed and the fragments are unstable and expressed in low yields. Here we attempted to overcome these limitations. We first isolated an antibody single chain Fv fragment that binds and activates an inactive mutant beta-galactosidase. We then subjected the gene encoding the scFv fragment to random mutation in vitro by error-prone polymerase chain reaction, and co-expressed the mutant beta-galactosidase and mutant antibody fragments in lac- bacteria. By plating on limiting lactose, we selected for antibody mutants with improved expression, and after four successive rounds of mutation and selection, isolated an antibody fragment that is expressed in the bacterial cytoplasm with yields of 0.5 g/l in a shaker flask (A600 nm of 5.5) and 3.1 g/l (A600 nm=33) in a fermentor. Analysis of the mutant antibody fragments revealed that the disulphide bonds are reduced in the cytoplasm, and that the fragments could be denatured and renatured efficiently under reducing conditions in vitro. This shows that with a suitable method of screening or selection, it is possible to make folded and functional antibody fragments in excellent yield in the cytoplasm.
Collapse
Affiliation(s)
- P Martineau
- Medical Research Centre, Hills Road, Cambridge, CB2 2QH, England
| | | | | |
Collapse
|
27
|
Betts SD, King J. Cold rescue of the thermolabile tailspike intermediate at the junction between productive folding and off-pathway aggregation. Protein Sci 1998; 7:1516-23. [PMID: 9684883 PMCID: PMC2144048 DOI: 10.1002/pro.5560070704] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Off-pathway intermolecular interactions between partially folded polypeptide chains often compete with correct intramolecular interactions, resulting in self-association of folding intermediates into the inclusion body state. Intermediates for both productive folding and off-pathway aggregation of the parallel beta-coil tailspike trimer of phage P22 have been identified in vivo and in vitro using native gel electrophoresis in the cold. Aggregation of folding intermediates was suppressed when refolding was initiated and allowed to proceed for a short period at 0 degrees C prior to warming to 20 degrees C. Yields of refolded tailspike trimers exceeding 80% were obtained using this temperature-shift procedure, first described by Xie and Wetlaufer (1996, Protein Sci 5:517-523). We interpret this as due to stabilization of the thermolabile monomeric intermediate at the junction between productive folding and off-pathway aggregation. Partially folded monomers, a newly identified dimer, and the protrimer folding intermediates were populated in the cold. These species were electrophoretically distinguished from the multimeric intermediates populated on the aggregation pathway. The productive protrimer intermediate is disulfide bonded (Robinson AS, King J, 1997, Nat Struct Biol 4:450-455), while the multimeric aggregation intermediates are not disulfide bonded. The partially folded dimer appears to be a precursor to the disulfide-bonded protrimer. The results support a model in which the junctional partially folded monomeric intermediate acquires resistance to aggregation in the cold by folding further to a conformation that is activated for correct recognition and subunit assembly.
Collapse
Affiliation(s)
- S D Betts
- Department of Biology and The Biotechnology Process Engineering Center, Massachusetts Institute of Technology, Cambridge 02139, USA
| | | |
Collapse
|
28
|
Jensen PK, Lee CS, King JA. Temperature Effects on Refolding and Aggregation of a Large Multimeric Protein Using Capillary Zone Electrophoresis. Anal Chem 1998. [DOI: 10.1021/ac970884d] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Pamela K. Jensen
- Department of Chemistry and Ames Laboratory, USDOE, Iowa State University, Ames, Iowa 50011
| | - Cheng S. Lee
- Department of Chemistry and Ames Laboratory, USDOE, Iowa State University, Ames, Iowa 50011
| | - Jonathan A. King
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| |
Collapse
|
29
|
Han B, Hall FL, Nimni ME. Refolding of a recombinant collagen-targeted TGF-beta2 fusion protein expressed in Escherichia coli. Protein Expr Purif 1997; 11:169-78. [PMID: 9367813 DOI: 10.1006/prep.1997.0784] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In this study, a tripartite transforming growth factor-beta (TGF-beta2) fusion protein bearing an N-terminal purification tag and an auxiliary collagen binding decapeptide has been constructed and expressed at high levels in Escherichia coli. The resulting recombinant protein accumulates in an insoluble and biologically inactive inclusion-body complex. The insoluble protein was solubilized in guanidine hydrochloride and a Ni-chelating affinity column was utilized to isolate the 13.5-kDa TGF-beta2 fusion protein, which was then refolded into its native conformation under controlled redox conditions. The formation of native homodimers was monitored by nonreducing sodium dodecyl sulfate-polyacrylamide gel electrophoresis gradient gels and the bioactivity determined by a quantitative TGF-beta assay system using mink lung epithelial cells transfected with a plasminogen activator inhibitor-1 promoter/luciferase reporter plasmid. To optimize yields, renaturation conditions including denaturants, limiting protein concentrations, redox ratios, dialysis conditions, and refolding kinetics were studied and monitored by bioactivity. These studies demonstrate that recombinant TGF-beta2 fusion proteins can be produced in E. coli and renatured into biologically active homodimers. Furthermore, they confirm that the auxiliary collagen binding domain effectively targets the recombinant growth factor to type I collagen. Taken together, these studies advance the technology necessary to generate large quantities of targeted TGF-beta fusion proteins for specific biomedical applications.
Collapse
Affiliation(s)
- B Han
- School of Medicine, University of Southern California, Los Angeles, California 90027, USA
| | | | | |
Collapse
|
30
|
Robinson AS, King J. Disulphide-bonded intermediate on the folding and assembly pathway of a non-disulphide bonded protein. NATURE STRUCTURAL BIOLOGY 1997; 4:450-5. [PMID: 9187652 DOI: 10.1038/nsb0697-450] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The trimeric parallel beta-coil P22 tailspike contains eight cysteines per chain, but lacks disulphide bonds in the native state, in both the crystalline and solution forms. However, cysteines in a folding intermediate are reactive with thiol blocking reagents, which prevent further productive folding both in vivo and in vitro. The in vivo refolding yield was independent of the availability of metal ions, but was sensitive to redox potential. Isolation by nondenaturing gel electrophoresis of the protrimer intermediate, a trimeric folding intermediate that precedes the fully folded trimer in the in vivo and in vitro pathways, revealed the presence of interchain disulphide bonds. Incubation of the isolated protrimer with reducing agents generated the native trimer. The formation of beta-sheets with interdigitated strands from different subunits in the native trimer may require the transient disulphide bonds for proper alignment. To our knowledge this is the first report of a disulphide bond present in a folding intermediate of a non-disulphide bonded protein.
Collapse
Affiliation(s)
- A S Robinson
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02139, USA
| | | |
Collapse
|
31
|
|
32
|
Speed MA, Morshead T, Wang DI, King J. Conformation of P22 tailspike folding and aggregation intermediates probed by monoclonal antibodies. Protein Sci 1997; 6:99-108. [PMID: 9007981 PMCID: PMC2143526 DOI: 10.1002/pro.5560060111] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The partitioning of partially folded polypeptide chains between correctly folded native states and off-pathway inclusion bodies is a critical reaction in biotechnology. Multimeric partially folded intermediates, representing early stages of the aggregation pathway for the P22 tailspike protein, have been trapped in the cold and isolated by nondenaturing polyacrylamide gel electrophoresis (PAGE) (speed MA, Wang DIC, King J. 1995. Protein Sci 4:900-908). Monoclonal antibodies against tailspike chains discriminate between folding intermediates and native states (Friguet B, Djavadi-Ohaniance L, King J, Goldberg ME. 1994. J Biol Chem 269:15945-15949). Here we describe a nondenaturing Western blot procedure to probe the conformation of productive folding intermediates and off-pathway aggregation intermediates. The aggregation intermediates displayed epitopes in common with productive folding intermediates but were not recognized by antibodies against native epitopes. The nonnative epitope on the folding and aggregation intermediates was located on the partially folded N-terminus, indicating that the N-terminus remained accessible and nonnative in the aggregated state. Antibodies against native epitopes blocked folding, but the monoclonal directed against the N-terminal epitope did not, indicating that the conformation of the N-terminus is not a key determinant of the productive folding and chain association pathway.
Collapse
Affiliation(s)
- M A Speed
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge 02139, USA
| | | | | | | |
Collapse
|
33
|
Abler JK, Reddy K, Lee CS. Post-capillary affinity detection of protein microheterogeneity in capillary zone electrophoresis. J Chromatogr A 1997. [DOI: 10.1016/s0021-9673(96)00766-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
34
|
Speed MA, Wang DI, King J. Specific aggregation of partially folded polypeptide chains: the molecular basis of inclusion body composition. Nat Biotechnol 1996; 14:1283-7. [PMID: 9631094 DOI: 10.1038/nbt1096-1283] [Citation(s) in RCA: 246] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
During expression of many recombinant proteins, off-pathway association of partially folded intermediates into inclusion bodies competes with productive folding. A common assumption is that such aggregation reactions are nonspecific processes. The multimeric intermediates along the aggregation pathway have been identified for both the P22 tailspike and P22 coat protein. We show that for a mixture of proteins refolding in vitro, folding intermediates do not coaggregate with each other but only with themselves. This indicates that aggregation occurs by specific interaction of certain conformations of folding intermediates rather than by nonspecific coaggregation, providing a rationale for recovering relatively pure protein from the inclusion body state.
Collapse
Affiliation(s)
- M A Speed
- Biotechnology Process Engineering Center, Massachusetts Institute of Technology, Cambridge 02139, USA
| | | | | |
Collapse
|
35
|
Speed MA, Wang DI, King J. Multimeric intermediates in the pathway to the aggregated inclusion body state for P22 tailspike polypeptide chains. Protein Sci 1995; 4:900-8. [PMID: 7663345 PMCID: PMC2143126 DOI: 10.1002/pro.5560040509] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The failure of newly synthesized polypeptide chains to reach the native conformation due to their accumulation as inclusion bodies is a serious problem in biotechnology. The critical intermediate at the junction between the productive folding and the inclusion body pathway has been previously identified for the P22 tailspike endorhamnosidase. We have been able to trap subsequent intermediates in the in vitro pathway to the aggregated inclusion body state. Nondenaturing gel electrophoresis identified a sequential series of multimeric intermediates in the aggregation pathway. These represent discrete species formed from noncovalent association of partially folded intermediates rather than aggregation of native-like trimeric species. Monomer, dimer, trimer, tetramer, pentamer, and hexamer states of the partially folded species were populated in the initial stages of the aggregation reaction. This methodology of isolating early multimers along the aggregation pathway was applicable to other proteins, such as the P22 coat protein and carbonic anhydrase II.
Collapse
Affiliation(s)
- M A Speed
- Biotechnology Process Engineering Center, Massachusetts Institute of Technology, Cambridge 02139, USA
| | | | | |
Collapse
|