1
|
Buchel G, Nayak AR, Herbine K, Sarfallah A, Sokolova VO, Zamudio-Ochoa A, Temiakov D. Structural basis for DNA proofreading. Nat Commun 2023; 14:8501. [PMID: 38151585 PMCID: PMC10752894 DOI: 10.1038/s41467-023-44198-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 12/04/2023] [Indexed: 12/29/2023] Open
Abstract
DNA polymerase (DNAP) can correct errors in DNA during replication by proofreading, a process critical for cell viability. However, the mechanism by which an erroneously incorporated base translocates from the polymerase to the exonuclease site and the corrected DNA terminus returns has remained elusive. Here, we present an ensemble of nine high-resolution structures representing human mitochondrial DNA polymerase Gamma, Polγ, captured during consecutive proofreading steps. The structures reveal key events, including mismatched base recognition, its dissociation from the polymerase site, forward translocation of DNAP, alterations in DNA trajectory, repositioning and refolding of elements for primer separation, DNAP backtracking, and displacement of the mismatched base into the exonuclease site. Altogether, our findings suggest a conserved 'bolt-action' mechanism of proofreading based on iterative cycles of DNAP translocation without dissociation from the DNA, facilitating primer transfer between catalytic sites. Functional assays and mutagenesis corroborate this mechanism, connecting pathogenic mutations to crucial structural elements in proofreading steps.
Collapse
Affiliation(s)
- Gina Buchel
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 1020 Locust St, Philadelphia, PA, 19107, USA
| | - Ashok R Nayak
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 1020 Locust St, Philadelphia, PA, 19107, USA
| | - Karl Herbine
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 1020 Locust St, Philadelphia, PA, 19107, USA
| | - Azadeh Sarfallah
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 1020 Locust St, Philadelphia, PA, 19107, USA
| | - Viktoriia O Sokolova
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 1020 Locust St, Philadelphia, PA, 19107, USA
| | - Angelica Zamudio-Ochoa
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 1020 Locust St, Philadelphia, PA, 19107, USA
| | - Dmitry Temiakov
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 1020 Locust St, Philadelphia, PA, 19107, USA.
| |
Collapse
|
2
|
Marygold SJ, Attrill H, Speretta E, Warner K, Magrane M, Berloco M, Cotterill S, McVey M, Rong Y, Yamaguchi M. The DNA polymerases of Drosophila melanogaster. Fly (Austin) 2020; 14:49-61. [PMID: 31933406 PMCID: PMC7714529 DOI: 10.1080/19336934.2019.1710076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/19/2019] [Accepted: 12/23/2019] [Indexed: 11/08/2022] Open
Abstract
DNA synthesis during replication or repair is a fundamental cellular process that is catalyzed by a set of evolutionary conserved polymerases. Despite a large body of research, the DNA polymerases of Drosophila melanogaster have not yet been systematically reviewed, leading to inconsistencies in their nomenclature, shortcomings in their functional (Gene Ontology, GO) annotations and an under-appreciation of the extent of their characterization. Here, we describe the complete set of DNA polymerases in D. melanogaster, applying nomenclature already in widespread use in other species, and improving their functional annotation. A total of 19 genes encode the proteins comprising three replicative polymerases (alpha-primase, delta, epsilon), five translesion/repair polymerases (zeta, eta, iota, Rev1, theta) and the mitochondrial polymerase (gamma). We also provide an overview of the biochemical and genetic characterization of these factors in D. melanogaster. This work, together with the incorporation of the improved nomenclature and GO annotation into key biological databases, including FlyBase and UniProtKB, will greatly facilitate access to information about these important proteins.
Collapse
Affiliation(s)
- Steven J. Marygold
- FlyBase, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Helen Attrill
- FlyBase, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Elena Speretta
- UniProt, European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridgeshire, UK
| | - Kate Warner
- UniProt, European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridgeshire, UK
| | - Michele Magrane
- UniProt, European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridgeshire, UK
| | - Maria Berloco
- Dipartimento di Biologia, Università degli Studi di Bari “Aldo Moro”, Bari, Italy
| | - Sue Cotterill
- Department Basic Medical Sciences, St Georges University London, London, UK
| | - Mitch McVey
- Department of Biology, Tufts University, Medford, MA, USA
| | - Yikang Rong
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Masamitsu Yamaguchi
- Department of Applied Biology and Advanced Insect Research Promotion Center, Kyoto Institute of Technology, Kyoto, Japan
| |
Collapse
|
3
|
Grando AC, Guimarães NN, de Souza AP, Lehmann M, Cunha KS, Dihl RR. Assessment of complex genomic alterations induced by AZT, 3TC, and the combination AZT +3TC. Drug Chem Toxicol 2018; 43:429-434. [PMID: 30208744 DOI: 10.1080/01480545.2018.1504959] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Highly active antiretroviral therapy (HAART) regimens are based on the use of nucleoside reverse transcriptase inhibitors (NRTIs), which are the main drugs used by patients infected with the human immunodeficiency virus (HIV). The use of NRTIs combinations has afforded clear clinical benefits to patients undergoing HAART. However, the combination of two NRTIs may increase the risk of genomic instability in comparison with the drugs administered individually. We analyzed the ability of zidovudine (AZT) and lamivudine (3TC), and the combination AZT +3TC to induce complex genomic alterations using the cytokinesis-block micronucleus (CBMN) assay in Chinese hamster ovary (CHO)-K1 cells. The 24-h cell treatment with individual NRTIs showed that AZT increased micronucleus frequencies and nucleoplasmic bridges (NPBs). No significant differences were observed for any parameters investigated after exposure of CHO-K1 cells to 3TC. The combination AZT +3TC significantly increased micronucleus frequencies. Analysis of interaction between these drugs suggested that antagonism occurs in all AZT +3TC concentrations. These results highlight the importance to investigate the genotoxic profile of NRTIs to develop safer intervention strategies in antiretroviral treatment protocols.
Collapse
Affiliation(s)
- Allyne Cristina Grando
- Laboratory of Genetic Toxicity and Cellular Toxic-Genetic Analysis, Graduate Program in Molecular and Cellular Biology Applied to Health (PPGBioSaúde), Lutheran University of Brazil, Canoas, Brazil
| | | | - Ana Paula de Souza
- Laboratory of Genetic Toxicity and Cellular Toxic-Genetic Analysis, Graduate Program in Molecular and Cellular Biology Applied to Health (PPGBioSaúde), Lutheran University of Brazil, Canoas, Brazil
| | - Mauricio Lehmann
- Laboratory of Genetic Toxicity and Cellular Toxic-Genetic Analysis, Graduate Program in Molecular and Cellular Biology Applied to Health (PPGBioSaúde), Lutheran University of Brazil, Canoas, Brazil
| | - Kênya Silva Cunha
- Institute of Biological Science, Federal University of Goiás, Goiás, Brazil
| | - Rafael Rodrigues Dihl
- Laboratory of Genetic Toxicity and Cellular Toxic-Genetic Analysis, Graduate Program in Molecular and Cellular Biology Applied to Health (PPGBioSaúde), Lutheran University of Brazil, Canoas, Brazil
| |
Collapse
|
4
|
Noncatalytic aspartate at the exonuclease domain of proofreading DNA polymerases regulates both degradative and synthetic activities. Proc Natl Acad Sci U S A 2018. [PMID: 29531047 DOI: 10.1073/pnas.1718787115] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Most replicative DNA polymerases (DNAPs) are endowed with a 3'-5' exonuclease activity to proofread the polymerization errors, governed by four universally conserved aspartate residues belonging to the Exo I, Exo II, and Exo III motifs. These residues coordinate the two metal ions responsible for the hydrolysis of the last phosphodiester bond of the primer strand. Structural alignment of the conserved exonuclease domain of DNAPs from families A, B, and C has allowed us to identify an additional and invariant aspartate, located between motifs Exo II and Exo III. The importance of this aspartate has been assessed by site-directed mutagenesis at the corresponding Asp121 of the family B ϕ29 DNAP. Substitution of this residue by either glutamate or alanine severely impaired the catalytic efficiency of the 3'-5' exonuclease activity, both on ssDNA and dsDNA. The polymerization activity of these mutants was also affected due to a defective translocation following nucleotide incorporation. Alanine substitution for the homologous Asp90 in family A T7 DNAP showed essentially the same phenotype as ϕ29 DNAP mutant D121A. This functional conservation, together with a close inspection of ϕ29 DNAP/DNA complexes, led us to conclude a pivotal role for this aspartate in orchestrating the network of interactions required during internal proofreading of misinserted nucleotides.
Collapse
|
5
|
Kasiviswanathan R, Gustafson MA, Copeland WC, Meyer JN. Human mitochondrial DNA polymerase γ exhibits potential for bypass and mutagenesis at UV-induced cyclobutane thymine dimers. J Biol Chem 2011; 287:9222-9. [PMID: 22194617 DOI: 10.1074/jbc.m111.306852] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Cyclobutane thymine dimers (T-T) comprise the majority of DNA damage caused by short wavelength ultraviolet radiation. These lesions generally block replicative DNA polymerases and are repaired by nucleotide excision repair or bypassed by translesion polymerases in the nucleus. Mitochondria lack nucleotide excision repair, and therefore, it is important to understand how the sole mitochondrial DNA polymerase, pol γ, interacts with irreparable lesions such as T-T. We performed in vitro DNA polymerization assays to measure the kinetics of incorporation opposite the lesion and bypass of the lesion by pol γ with a dimer-containing template. Exonuclease-deficient pol γ bypassed thymine dimers with low relative efficiency; bypass was attenuated but still detectable when using exonuclease-proficient pol γ. When bypass did occur, pol γ misincorporated a guanine residue opposite the 3'-thymine of the dimer only 4-fold less efficiently than it incorporated an adenine. Surprisingly, the pol γ exonuclease-proficient enzyme excised the incorrectly incorporated guanine at similar rates irrespective of the nature of the thymines in the template. In the presence of all four dNTPs, pol γ extended the primer after incorporation of two adenines opposite the lesion with relatively higher efficiency compared with extension past either an adenine or a guanine incorporated opposite the 3'-thymine of the T-T. Our results suggest that T-T usually stalls mitochondrial DNA replication but also suggest a mechanism for the introduction of point mutations and deletions in the mitochondrial genomes of chronically UV-exposed cells.
Collapse
Affiliation(s)
- Rajesh Kasiviswanathan
- Laboratory of Molecular Genetics, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | | | | | | |
Collapse
|
6
|
Kasiviswanathan R, Collins TRL, Copeland WC. The interface of transcription and DNA replication in the mitochondria. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2011; 1819:970-8. [PMID: 22207204 DOI: 10.1016/j.bbagrm.2011.12.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2011] [Revised: 12/09/2011] [Accepted: 12/12/2011] [Indexed: 11/30/2022]
Abstract
DNA replication of the mitochondrial genome is unique in that replication is not primed by RNA derived from dedicated primases, but instead by extension of processed RNA transcripts laid down by the mitochondrial RNA polymerase. Thus, the RNA polymerase serves not only to generate the transcripts but also the primers needed for mitochondrial DNA replication. The interface between this transcription and DNA replication is not well understood but must be highly regulated and coordinated to carry out both mitochondrial DNA replication and transcription. This review focuses on the extension of RNA primers for DNA replication by the replication machinery and summarizes the current models of DNA replication in mitochondria as well as the proteins involved in mitochondrial DNA replication, namely, the DNA polymerase γ and its accessory subunit, the mitochondrial DNA helicase, the single-stranded DNA binding protein, topoisomerase I and IIIα and RNaseH1. This article is part of a Special Issue entitled: Mitochondrial Gene Expression.
Collapse
Affiliation(s)
- Rajesh Kasiviswanathan
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | | | | |
Collapse
|
7
|
Guimarães NN, de Andrade HHR, Lehmann M, Dihl RR, Cunha KS. The genetic toxicity effects of lamivudine and stavudine antiretroviral agents. Expert Opin Drug Saf 2011; 9:771-81. [PMID: 20377473 DOI: 10.1517/14740331003702384] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
IMPORTANCE OF THE FIELD The nucleoside reverse transcriptase inhibitors (NRTIs) are used in antiretroviral therapy worldwide for the treatment of HIV infections. These drugs act by blocking reverse transcriptase enzyme activity, causing pro-viral DNA chain termination. As a consequence, NRTIs could cause genomic instability and loss of heterozygosity. AREAS COVERED IN THIS REVIEW This review highlights the toxic and genotoxic effects of NRTIs, particularly lamivudine (3TC) and stavudine (d4T) analogues. In addition, a battery of short-term in vitro and in vivo systems are described to explain the potential genotoxic effects of these NRTIs as a single drug or a complexity of highly active antiretroviral therapy. WHAT THE READER WILL GAIN The readers will gain an understanding of a secondary effect that could be induced by 3TC and d4T treatments. TAKE HOME MESSAGE Considering that AIDS has become a chronic disease, more comprehensive toxic genetic studies are needed, with particular attention to the genetic alterations induced by NRTIs. These alterations play a primary role in carcinogenesis and are also involved in secondary and subsequent steps of carcinogenesis.
Collapse
Affiliation(s)
- Nilza Nascimento Guimarães
- Laboratório de Genética Toxicológica, Departamento de Bioquímica e Biologia Molecular (DBBM), Instituto de Ciências Biológicas (ICB), Universidade Federal de Goiás (UFG), Goiânia, GO, Brasil
| | | | | | | | | |
Collapse
|
8
|
Bailey CM, Anderson KS. A mechanistic view of human mitochondrial DNA polymerase gamma: providing insight into drug toxicity and mitochondrial disease. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2010; 1804:1213-22. [PMID: 20083238 DOI: 10.1016/j.bbapap.2010.01.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Revised: 12/30/2009] [Accepted: 01/04/2010] [Indexed: 02/08/2023]
Abstract
Mitochondrial DNA polymerase gamma (Pol gamma) is the sole polymerase responsible for replication of the mitochondrial genome. The study of human Pol gamma is of key importance to clinically relevant issues such as nucleoside analog toxicity and mitochondrial disorders such as progressive external ophthalmoplegia. The development of a recombinant form of the human Pol gamma holoenzyme provided an essential tool in understanding the mechanism of these clinically relevant phenomena using kinetic methodologies. This review will provide a brief history on the discovery and characterization of human mitochondrial DNA polymerase gamma, focusing on kinetic analyses of the polymerase and mechanistic data illustrating structure-function relationships to explain drug toxicity and mitochondrial disease.
Collapse
Affiliation(s)
- Christopher M Bailey
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| | | |
Collapse
|
9
|
Graziewicz MA, Longley MJ, Copeland WC. DNA polymerase gamma in mitochondrial DNA replication and repair. Chem Rev 2006; 106:383-405. [PMID: 16464011 DOI: 10.1021/cr040463d] [Citation(s) in RCA: 211] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Maria A Graziewicz
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, USA
| | | | | |
Collapse
|
10
|
Wieczorek A, McHenry CS. The NH2-terminal php domain of the alpha subunit of the Escherichia coli replicase binds the epsilon proofreading subunit. J Biol Chem 2006; 281:12561-7. [PMID: 16517598 DOI: 10.1074/jbc.m513844200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The alpha subunit of the replicase of all bacteria contains a php domain, initially identified by its similarity to histidinol phosphatase but of otherwise unknown function (Aravind, L., and Koonin, E. V. (1998) Nucleic Acids Res. 26, 3746-3752). Deletion of 60 residues from the NH2 terminus of the alpha php domain destroys epsilon binding. The minimal 255-residue php domain, estimated by sequence alignment with homolog YcdX, is insufficient for epsilon binding. However, a 320-residue segment including sequences that immediately precede the polymerase domain binds epsilon with the same affinity as the 1160-residue full-length alpha subunit. A subset of mutations of a conserved acidic residue (Asp43 in Escherichia coli alpha) present in the php domain of all bacterial replicases resulted in defects in epsilon binding. Using sequence alignments, we show that the prototypical gram+ Pol C, which contains the polymerase and proofreading activities within the same polypeptide chain, has an epsilon-like sequence inserted in a surface loop near the center of the homologous YcdX protein. These findings suggest that the php domain serves as a platform to enable coordination of proofreading and polymerase activities during chromosomal replication.
Collapse
Affiliation(s)
- Anna Wieczorek
- Department of Biochemistry and Molecular Genetics, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA
| | | |
Collapse
|
11
|
Garesse R, Kaguni LS. A Drosophila model of mitochondrial DNA replication: proteins, genes and regulation. IUBMB Life 2006; 57:555-61. [PMID: 16118113 DOI: 10.1080/15216540500215572] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Mitochondrial biogenesis is a critical process in animal development, cellular homeostasis and aging. Mitochondrial DNA replication is an essential part of this process, and both nuclear and mitochondrial DNA mutations are found to result in mitochondrial dysfunction that leads to developmental defects and delays, aging and disease. Drosophila provides an amenable model system to study mitochondrial biogenesis in normal and disease states. This review provides an overview of current approaches to study the proteins involved in mitochondrial DNA replication, the genes that encode them and their regulation. It also presents a survey of cell and animal models under development to mimic the pathophysiology of human mitochondrial disorders.
Collapse
Affiliation(s)
- Rafael Garesse
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain.
| | | |
Collapse
|
12
|
Abstract
DNA polymerase (pol) gamma is the sole DNA polymerase in animal mitochondria. Biochemical and genetic evidence document a key role for pol gamma in mitochondrial DNA replication, and whereas DNA repair and recombination were thought to be limited or absent in animal mitochondria, both have been demonstrated in recent years. Thus, the mitochondrial replicase is also apparently responsible for the relevant DNA synthetic reactions in these processes. Pol gamma comprises a catalytic core in a heterodimeric complex with an accessory subunit. The two-subunit holoenzyme is an efficient and processive polymerase, which exhibits high fidelity in nucleotide selection and incorporation while proofreading errors with its intrinsic 3' 5' exonuclease. Incorporation of nucleotide analogs followed by proofreading failure leads to mitochondrial toxicity in antiviral therapy, and misincorporation during DNA replication leads to mitochondrial mutagenesis and dysfunction. This review describes our current understanding of pol gamma biochemistry and biology, and it introduces other key proteins that function at the mitochondrial DNA replication fork.
Collapse
Affiliation(s)
- Laurie S Kaguni
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824-1319, USA.
| |
Collapse
|
13
|
Farr CL, Matsushima Y, Lagina AT, Luo N, Kaguni LS. Physiological and biochemical defects in functional interactions of mitochondrial DNA polymerase and DNA-binding mutants of single-stranded DNA-binding protein. J Biol Chem 2004; 279:17047-53. [PMID: 14754882 DOI: 10.1074/jbc.m400283200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Functional interactions between mitochondrial DNA polymerase (pol gamma) and mitochondrial single-stranded DNA-binding protein (mtSSB) from Drosophila embryos greatly enhance the overall activity of pol gamma by increasing primer recognition and binding and stimulating the rate of initiation of DNA strands (Farr, C. L., Wang, Y., and Kaguni, L. S. (1999) J. Biol. Chem. 274, 14779-14785). We show here that DNA-binding mutants of mtSSB are defective in stimulation of DNA synthesis by pol gamma. RNAi knock-down of mtSSB reduces expression to <5% of its normal level in Schneider cells, resulting in growth defects and in the depletion of mitochondrial DNA (mtDNA). Overexpression of mtSSB restores cell growth rate and the copy number of mtDNA, whereas overexpression of a DNA-binding and functionally impaired form of mtSSB neither rescues the cell growth defect nor the mtDNA depletion phenotype. Further development of Drosophila animal models, in which induced mtDNA depletion is manipulated by controlling exogenous expression of wild-type or mutant forms, will offer new insight into the mechanism and progression of human mtDNA depletion syndromes and possible intervention schemes.
Collapse
Affiliation(s)
- Carol L Farr
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824-1319, USA
| | | | | | | | | |
Collapse
|
14
|
Lilling G, Elena N, Sidi Y, Bakhanashvili M. p53-associated 3'-->5' exonuclease activity in nuclear and cytoplasmic compartments of cells. Oncogene 2003; 22:233-45. [PMID: 12527892 DOI: 10.1038/sj.onc.1206111] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The tumor suppressor protein p53 plays an important role in maintenance of the genomic integrity of cells. p53 possesses an intrinsic 3'-->5' exonuclease activity. p53 was found in the nucleus and in the cytoplasm of the cell. In order to evaluate the subcellular location and extent of p53-associated 3'--> 5' exonuclease activity, we established an in vitro experimental system of cell lines with different nuclear/cytoplasmic distribution of p53. Nuclear and cytoplasmic extracts obtained from LCC2 cells (expressing a high level of cytoplasmic wild-type p53), MCF-7 cells (expressing a high level of wild-type nuclear p53), MDA cells (expressing mutant p53) and H1299 cells (p53-null) were subjected to the analysis of exonuclease activity. Interestingly, 3'-->5' exonuclease was predominantly cytoplasmic; the nuclear extracts derived from all cell lines tested, exerted a low level of exonuclease activity. Cytoplasmic extracts of LCC2 cells, with a high level of wild-type p53, showed an enhanced exonuclease activity in comparison to those expressing either a low level of wild-type p53 (in MCF-7 cells) or the mutant p53 (in MDA cells). Evidence that exonuclease function detected in cytoplasmic extracts is attributed to the p53 is supported by several facts: First, this activity closely parallels with levels and status of endogenous cytoplasmic p53. Second, immunoprecipitation of p53 from cytoplasmic extracts of LCC2 cells markedly reduced the exonuclease activity. Third, the observed 3'-->5' exonuclease in cytoplasmic fraction of LCC2 cells displays identical biochemical properties characteristic of recombinant wild-type p53. The biochemical functions include: (a) substrate specificity; exonuclease hydrolyzes single-stranded DNA in preference to double-stranded DNA and RNA/DNA template-primers, (b) efficient excision of 3'-terminal mispairs from DNA/DNA and RNA/DNA substrates, (c) the preferential excision of purine-purine mispairs over purine-pyrimidine mispairs and (d) functional interaction with exonuclease-deficient DNA polymerase, for example, murine leukemia virus reverse transcriptase (representing a relatively low fidelity enzyme), thus enhancing the fidelity of DNA synthesis by excision of mismatched nucleotides from the nascent DNA strand. Taken together, the data demonstrate that wild-type p53 in cytoplasm, in its noninduced state, is functional; it displays intrinsic 3'-->5' exonuclease activity. The possible role of p53-associated 3'-->5' exonuclease activity in DNA repair in nucleus and cytoplasm is discussed.
Collapse
Affiliation(s)
- Gila Lilling
- Department of Medicine C, Chaim Sheba Medical Center, Tel Hashomer, Israel
| | | | | | | |
Collapse
|
15
|
Anderson KS. Perspectives on the molecular mechanism of inhibition and toxicity of nucleoside analogs that target HIV-1 reverse transcriptase. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1587:296-9. [PMID: 12084471 DOI: 10.1016/s0925-4439(02)00092-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Among the acquired immunodeficiency syndrome (AIDS) drugs approved by the FDA for clinical use, two are modified cytosine analogs, Zalcitabine (ddC) and Lamivudine [(-)3TC]. (-)3TC is the only analog containing an unnatural L (-) nucleoside configuration. Similar to other dideoxy nucleosides, these analogs are metabolically activated to the triphosphate that is incorporated into DNA by human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) resulting in DNA chain termination and ultimately cessation of viral replication. The natural D (+) 3TC isomer also acts in a similar manner to inhibit HIV-1 RT. In cell culture, (-)3TC is less toxic than its D (+) isomer, (+)3TC, containing the natural nucleoside configuration, and both are considerably less toxic than 2',3'-dideoxycytidine (ddC). The mechanistic basis for the stereochemical selectivity and differential toxicity of the isomeric 2',3'-dideoxy-3'-thiacytidine (3TC) and ddC compounds is not completely understood although a number of factors may clearly come into play. We have previously investigated the mechanistic basis for the differential stereoselective inhibition and toxicity of these three cytosine analogs by comparing the effects of 2',3'-deoxycytidine-5'-triphosphate (ddCTP), beta-D-(+)-2'3'-dideoxy-3'-thiacytidine-5'-triphosphate [(+)3TC-TP] and beta-L-(-)-2'3'-dideoxy-3'-thiacytidine-5'-triphosphate [(-)3TC-TP] on the HIV-1 RT as well as a recombinant form of the human mitochondrial DNA polymerase gamma (Pol gamma), the holoenzyme polymerase responsible for mitochondrial DNA replication. In this review, we discuss studies which may provide insight into the molecular mechanism for the stereochemical selectivity and differential toxicity.
Collapse
Affiliation(s)
- Karen S Anderson
- Department of Pharmacology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA.
| |
Collapse
|
16
|
Abstract
Over the past few years, several new 3' 5' exonucleases have been identified. In vitro studies of these enzymes have uncovered much about their potential functions in vivo, and certain organisms with a defect in 3' 5' exonucleases have an increased susceptibility to cancer, especially under conditions of stress. Here, we look at not only the newly discovered enzymes, but also at the roles of other 3' 5' exonucleases in the quality control of DNA synthesis, where they act as proofreading exonucleases for DNA polymerases during DNA replication, repair and recombination.
Collapse
Affiliation(s)
- Igor V Shevelev
- Institute of Veterinary Biochemistry and Molecular Biology, University of Zürich Irchel, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | | |
Collapse
|
17
|
Longley MJ, Nguyen D, Kunkel TA, Copeland WC. The fidelity of human DNA polymerase gamma with and without exonucleolytic proofreading and the p55 accessory subunit. J Biol Chem 2001; 276:38555-62. [PMID: 11504725 DOI: 10.1074/jbc.m105230200] [Citation(s) in RCA: 178] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mutations in human mitochondrial DNA influence aging, induce severe neuromuscular pathologies, cause maternally inherited metabolic diseases, and suppress apoptosis. Since the genetic stability of mitochondrial DNA depends on the accuracy of DNA polymerase gamma (pol gamma), we investigated the fidelity of DNA synthesis by human pol gamma. Comparison of the wild-type 140-kDa catalytic subunit to its exonuclease-deficient derivative indicates pol gamma has high base substitution fidelity that results from high nucleotide selectivity and exonucleolytic proofreading. pol gamma is also relatively accurate for single-base additions and deletions in non-iterated and short repetitive sequences. However, when copying homopolymeric sequences longer than four nucleotides, pol gamma has low frameshift fidelity and also generates base substitutions inferred to result from a primer dislocation mechanism. The ability of pol gamma both to make and to proofread dislocation intermediates is the first such evidence for a family A polymerase. Including the p55 accessory subunit, which confers processivity to the pol gamma catalytic subunit, decreases frameshift and base substitution fidelity. Kinetic analyses indicate that p55 promotes extension of mismatched termini to lower the fidelity. These data suggest that homopolymeric runs in mitochondrial DNA may be particularly prone to frameshift mutation in vivo due to replication errors by pol gamma.
Collapse
Affiliation(s)
- M J Longley
- Laboratory of Molecular Genetics and the Laboratory of Structural Biology, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | | | | | | |
Collapse
|
18
|
Abstract
We have examined the ability of the human mitochondrial DNA polymerase to correct errors in DNA sequence using single turnover kinetic methods. The rate of excision of single-stranded DNA ranged from 0.07 to 0.17 x s(-1), depending on the identity of the 3'-base. Excision of the 3'-terminal base from correctly base paired DNA occurred at a rate of 0.05 x s(-1), indicating that the cost of proofreading is minimal, as defined by the ratio of the k(exo) for correctly base-paired DNA divided by the rate of forward polymerization (0.05/37 = 0.14%). Excision of duplex DNA containing 1-7 mismatches was biphasic, and the rate and amplitude of the fast phase increased with the number of mismatches, reaching a maximum of 9 x s(-1). We showed that transfer of DNA from the polymerase to the exonuclease active site and back again occurs through an intramolecular reaction, allowing for a complete cycle of reactions for error correction. For DNA containing a buried mismatch (T:T followed by C:G base pairs), the 3' base was removed at a rate of 3 x s(-1). The addition of nucleotide to the reaction that is identical to the 3' base increased the rate of excision 7-fold to 21 x s(-1). We propose that the free nucleotide enhances the rate of transfer of the DNA to the exonuclease active site by interrupting the correct 3' base pair through interaction with the template base. The exonuclease contribution to fidelity is minimal if the calculation is based on hydrolysis of a single mismatch: (k(exo) + k(pol,over))/(k(pol,over)) = 10, but this value increases to approximately 200 when examining error correction in the presence of nucleotides.
Collapse
Affiliation(s)
- A A Johnson
- Institute for Cellular and Molecular Biology, University of Texas, Austin, 78712, USA
| | | |
Collapse
|
19
|
Lim SE, Copeland WC. Differential incorporation and removal of antiviral deoxynucleotides by human DNA polymerase gamma. J Biol Chem 2001; 276:23616-23. [PMID: 11319228 DOI: 10.1074/jbc.m101114200] [Citation(s) in RCA: 187] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mitochondrial toxicity can result from antiviral nucleotide analog therapy used to control human immunodeficiency virus type 1 infection. We evaluated the ability of such analogs to inhibit DNA synthesis by the human mitochondrial DNA polymerase (pol gamma) by comparing the insertion and exonucleolytic removal of six antiviral nucleotide analogs. Apparent steady-state K(m) and k(cat) values for insertion of 2',3'-dideoxy-TTP (ddTTP), 3'-azido-TTP (AZT-TP), 2',3'-dideoxy-CTP (ddCTP), 2',3'-didehydro-TTP (D4T-TP), (-)-2',3'-dideoxy-3'-thiacytidine (3TC-TP), and carbocyclic 2',3'-didehydro-ddGTP (CBV-TP) indicated incorporation of all six analogs, albeit with varying efficiencies. Dideoxynucleotides and D4T-TP were utilized by pol gamma in vitro as efficiently as natural deoxynucleotides, whereas AZT-TP, 3TC-TP, and CBV-TP were only moderate inhibitors of DNA chain elongation. Inefficient excision of dideoxynucleotides, D4T, AZT, and CBV from DNA predicts persistence in vivo following successful incorporation. In contrast, removal of 3'-terminal 3TC residues was 50% as efficient as natural 3' termini. Finally, we observed inhibition of exonuclease activity by concentrations of AZT-monophosphate known to occur in cells. Thus, although their greatest inhibitory effects are through incorporation and chain termination, persistence of these analogs in DNA and inhibition of exonucleolytic proofreading may also contribute to mitochondrial toxicity.
Collapse
Affiliation(s)
- S E Lim
- Laboratory of Molecular Genetics, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | | |
Collapse
|
20
|
Feng JY, Johnson AA, Johnson KA, Anderson KS. Insights into the molecular mechanism of mitochondrial toxicity by AIDS drugs. J Biol Chem 2001; 276:23832-7. [PMID: 11328813 DOI: 10.1074/jbc.m101156200] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Several of the nucleoside analogs used in the treatment of AIDS exhibit a delayed clinical toxicity limiting their usefulness. The toxicity of nucleoside analogs may be related to their effects on the human mitochondrial DNA polymerase (Pol gamma), the polymerase responsible for mitochondrial DNA replication. Among the AIDS drugs approved by the FDA for clinical use, two are modified cytosine analogs, Zalcitabine (2',3'-dideoxycytidine (ddC)) and Lamivudine (beta-d-(+)-2',3'-dideoxy-3'-thiacytidine ((-)3TC])). (-)3TC is the only analog containing an unnatural l(-) nucleoside configuration and is well tolerated by patients even after long term administration. In cell culture (-)3TC is less toxic than its d(+) isomer, (+)3TC, containing the natural nucleoside configuration, and both are considerably less toxic than ddC. We have investigated the mechanistic basis for the differential toxicity of these three cytosine analogs by comparing the effects of dideoxy-CTP), (+)3TC-triphosphate (TP), and (-)3TC-TP on the polymerase and exonuclease activities of recombinant human Pol gamma. This analysis reveals that Pol gamma incorporates (-)3TC-triphosphate 16-fold less efficiently than the corresponding (+)isomer and 1140-fold less efficiently than dideoxy-CTP, showing a good correlation between incorporation rate and toxicity. The rates of excision of the incorporated analogs from the chain-terminated 3'-end of the DNA primer by the 3'-5'-exonuclease activity of Pol gamma were similar (0.01 s(-)1) for both 3TC analogs. In marked contrast, the rate of exonuclease removal of a ddC chain-terminated DNA occurs at least 2 orders of magnitude slower, suggesting that the failure of the exonuclease to remove ddC may play a major role in its greater toxicity. This study demonstrates that direct analysis of the mitochondrial DNA polymerase structure/function relationships may provide valuable insights leading to the design of less toxic inhibitors.
Collapse
Affiliation(s)
- J Y Feng
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | | | | | | |
Collapse
|
21
|
Lim SE, Longley MJ, Copeland WC. The mitochondrial p55 accessory subunit of human DNA polymerase gamma enhances DNA binding, promotes processive DNA synthesis, and confers N-ethylmaleimide resistance. J Biol Chem 1999; 274:38197-203. [PMID: 10608893 DOI: 10.1074/jbc.274.53.38197] [Citation(s) in RCA: 164] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human DNA polymerase gamma is composed of a 140-kDa catalytic subunit and a smaller accessory protein variously reported to be 43-54 kDa. Immunoblot analysis of the purified, heterodimeric native human polymerase gamma complex identified the accessory subunit as 55 kDa. We isolated the full-length cDNA encoding a 55-kDa polypeptide, expressed the cDNA in Escherichia coli and purified the 55-kDa protein to homogeneity. Recombinant Hp55 forms a high affinity, salt-stable complex with Hp140 during protein affinity chromatography. Immunoprecipitation, gel filtration, and sedimentation analyses revealed a 190-kDa complex indicative of a native heterodimer. Reconstitution of Hp140.Hp55 raises the salt optimum of Hp140, stimulates the polymerase and exonuclease activities, and increases the processivity of the enzyme by several 100-fold. Similar to Hp140, isolated Hp55 binds DNA with moderate strength and was a specificity for double-stranded primer-template DNA. However, Hp140.Hp55 has a surprisingly high affinity for DNA, and kinetic analyses indicate Hp55 enhances the affinity of Hp140 for primer termini by 2 orders of magnitude. Thus the enhanced DNA binding caused by Hp55 is the basis for the salt tolerance and high processivity characteristic of DNA polymerase gamma. Observation of native DNA polymerase gamma both as an Hp140 monomer and as a heterodimer with Hp55 supports the notion that the two forms act in mitochondrial DNA repair and replication. Additionally, association of Hp55 with Hp140 protects the polymerase from inhibition by N-ethylmaleimide.
Collapse
Affiliation(s)
- S E Lim
- Laboratory of Molecular Genetics, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | | | | |
Collapse
|
22
|
de Vega M, Blanco L, Salas M. Processive proofreading and the spatial relationship between polymerase and exonuclease active sites of bacteriophage phi29 DNA polymerase. J Mol Biol 1999; 292:39-51. [PMID: 10493855 DOI: 10.1006/jmbi.1999.3052] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
phi29 DNA polymerase is a multifunctional enzyme, able to incorporate and to proofread misinserted nucleotides, maintaining a very high replication fidelity. Since both activities are functionally separated, a mechanism is needed to guarantee proper coordination between synthesis and degradation, implying movement of the DNA primer terminus between polymerization and 3'-5' exonuclease active sites. Using single-turnover conditions, we have demonstrated that phi29 DNA polymerase edits the polymerization errors using an intramolecular pathway; that is, the primer terminus travels from one active site to the other without dissociation from the DNA. On the other hand, by using chemical tags, we could infer a difference in length of only one nucleotide to contact the primer strand when it is in the polymerization mode versus the editing mode. Using the same approach, it was estimated that phi29 DNA polymerase covers a DNA region of ten nucleotides, as has been measured in other polymerases using different techniques.
Collapse
Affiliation(s)
- M de Vega
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma, Canto Blanco, Madrid, 28049, Spain
| | | | | |
Collapse
|
23
|
Strick R, Knopf CW. DNA binding properties and processive proofreading of herpes simplex virus type 1 DNA polymerase. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1388:315-24. [PMID: 9858758 DOI: 10.1016/s0167-4838(98)00181-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The DNA binding properties of herpes simplex virus type 1 DNA polymerase (HSV pol), an alpha-like DNA polymerase, were investigated using an optimized band-shift assay. With linear double-stranded DNA (dsDNA), HSV pol formed two complexes. The favored DNA template was dsDNA with protruding 5'-phosphoryl termini. Stable binding of HSV pol was observed with a DNA hairpin containing a primer region of 9 bp of dsDNA, a 6-base loop and a 12-base 5'-terminal single-stranded extension. For the polymerization activity of HSV pol on poly(dT) an optimal primer length of 8 to 10 nucleotides was determined. The DNA binding event could be clearly separated from the enzymatic activities by its unique response to divalent cations and salt. Under ionic strength conditions where HSV pol exerts optimal polymerization activity in vitro, novel polymerase-DNA complexes were detected by band-shift analysis. These new complexes were similar while either in DNA polymerase or 3',5' exonuclease mode. Using a polymerase trap method and high-resolution polyacrylamide gel electrophoresis, HSV pol demonstrated internal switching from 3',5' exonuclease to polymerase-active mode during one DNA binding event. These results support the role of HSV pol as a true replicase, which proofreads without dissociating from the DNA template.
Collapse
Affiliation(s)
- R Strick
- Forschungsschwerpunkt Genomforschung und Bioinformatik H0601, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 506, D-69120 Heidelberg, Germany
| | | |
Collapse
|
24
|
Pinz KG, Bogenhagen DF. Efficient repair of abasic sites in DNA by mitochondrial enzymes. Mol Cell Biol 1998; 18:1257-65. [PMID: 9488440 PMCID: PMC108838 DOI: 10.1128/mcb.18.3.1257] [Citation(s) in RCA: 138] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Mutations in mitochondrial DNA (mtDNA) cause a variety of relatively rare human diseases and may contribute to the pathogenesis of other, more common degenerative diseases. This stimulates interest in the capacity of mitochondria to repair damage to mtDNA. Several recent studies have shown that some types of damage to mtDNA may be repaired, particularly if the lesions can be processed through a base excision mechanism that employs an abasic site as a common intermediate. In this paper, we demonstrate that a combination of enzymes purified from Xenopus laevis mitochondria efficiently repairs abasic sites in DNA. This repair pathway employs a mitochondrial class II apurinic/apyrimidinic (AP) endonuclease to cleave the DNA backbone on the 5' side of an abasic site. A deoxyribophosphodiesterase acts to remove the 5' sugar-phosphate residue left by AP endonuclease. mtDNA polymerase gamma fills the resulting 1-nucleotide gap. The remaining nick is sealed by an mtDNA ligase. We report the first extensive purification of mtDNA ligase as a 100-kDa enzyme that functions with an enzyme-adenylate intermediate and is capable of ligating oligo(dT) strands annealed to poly(rA). These properties together with preliminary immunological evidence suggest that mtDNA may be related to nuclear DNA ligase III.
Collapse
Affiliation(s)
- K G Pinz
- Department of Pharmacological Sciences, State University of New York at Stony Brook, 11794-8651, USA
| | | |
Collapse
|
25
|
Mikhailov VS, Bogenhagen DF. Termination within oligo(dT) tracts in template DNA by DNA polymerase gamma occurs with formation of a DNA triplex structure and is relieved by mitochondrial single-stranded DNA-binding protein. J Biol Chem 1996; 271:30774-80. [PMID: 8940057 DOI: 10.1074/jbc.271.48.30774] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Xenopus laevis DNA polymerase gamma (pol gamma) exhibits low activity on a poly(dT)-oligo(dA) primer-template. We prepared a single-stranded phagemid template containing a dT41 sequence to test the ability of pol gamma to extend a primer through a defined oligo(dT) tract. pol gamma terminates in the center of this dT41 sequence. This replication arrest is abrogated by addition of single-stranded DNA-binding protein or by substitution of 7-deaza-dATP for dATP. These features are consistent with the formation of a T.A*T DNA triplex involving the primer stem. Replication arrest occurs under conditions that permit highly processive DNA synthesis by pol gamma. A similar replication arrest occurs for T7 DNA polymerase, which is also a highly processive DNA polymerase. These results suggest the possibility that DNA triplex formation can occur prior to dissociation of DNA polymerase. Primers with 3'-oligo(dA) termini annealed to a template with a longer oligo(dT) tract are not efficiently extended by pol gamma unless single-stranded DNA-binding protein is added. Thus, one of the functions of single-stranded DNA-binding protein in mtDNA maintenance may be to enable pol gamma to successfully replicate through dT-rich sequences.
Collapse
Affiliation(s)
- V S Mikhailov
- Department of Pharmacological Sciences, State University of New York at Stony Brook, Stony Brook, New York 11794, USA
| | | |
Collapse
|
26
|
Lewis DL, Farr CL, Wang Y, Lagina AT, Kaguni LS. Catalytic subunit of mitochondrial DNA polymerase from Drosophila embryos. Cloning, bacterial overexpression, and biochemical characterization. J Biol Chem 1996; 271:23389-94. [PMID: 8798543 DOI: 10.1074/jbc.271.38.23389] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
A full-length cDNA of the catalytic subunit of mitochondrial DNA polymerase from Drosophila embryos has been obtained, and its nucleotide sequence was determined. The cDNA clone encodes a polypeptide with a deduced amino acid sequence of 1145 residues and a predicted molecular mass of 129.9 kDa. Amino-terminal sequence analysis of the mature catalytic subunit of the heterodimeric mitochondrial enzyme from Drosophila embryos identified the amino-terminal amino acid at position +10 in the deduced amino acid sequence, indicating a mitochondrial presequence peptide of only nine amino acids. Alignment of the catalytic subunit sequence with that of Escherichia coli DNA polymerase I Klenow fragment indicated a high degree of amino acid sequence conservation in each of the three DNA polymerase and three 3' --> 5' exonuclease domains identified by biochemical studies in the latter enzyme. Bacterial overexpression, purification, and biochemical analysis demonstrated both 5' --> 3' DNA polymerase and 3' --> 5' exonuclease in the recombinant polypeptide. This represents the first demonstration of 3' --> 5' exonuclease activity in the polymerase catalytic subunit of animal mitochondrial DNA polymerase.
Collapse
Affiliation(s)
- D L Lewis
- Department of Biochemistry, Michigan State University, East Lansing, Michigan 48824-1319, USA
| | | | | | | | | |
Collapse
|
27
|
Shevelev IV, Kravetskaya TP, Legina OK, Krutyakov VM. 'External' proofreading of DNA replication errors and mammalian autonomous 3'-->5'exonucleases. Mutat Res 1996; 352:51-5. [PMID: 8676915 DOI: 10.1016/0027-5107(95)00230-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Mammalian nuclear DNA polymerases alpha and beta are known to be devoid of the editing 3'-->5' exonucleolytic activity. The base substitutions misinserted by these polymerases could be eliminated with two kinds of an 'external' proofreading carried out (1) by the 3'-->5' exonuclease function intrinsic to DNA polymerases delta and epsilon or/and (2) by the autonomous 3'-->5' exonucleases non-associated covalently with DNA polymerases. DNA polymerases delta and epsilon can be separated from autonomous 3'-->5' exonucleases by means of sedimentation. Ultracentrifugation of the nuclear extracts and cytosols from normal and regenerating rat liver as well as from total embryos has shown the bulk of the cellular 3'-->5' exonucleolytic activity is due to autonomous nucleases. Moreover, the level of such a specific activity correlates with the replicative status of the organs from adult animals: spleen > regenerating liver > normal liver > cardiac muscle > brain, maximum difference being an order of magnitude. In addition, autonomous exonucleases were shown to be the constituents of the multienzyme forms of DNA polymerases alpha and beta. Hence, autonomous 3'-->5' exonucleases seem to be the principal participants in an 'external' proofreading.
Collapse
Affiliation(s)
- I V Shevelev
- Department of Molecular and Radiation Biophysics, Petersburg Nuclear Physics Institute of the Russia Academy of Sciences, Gatchina, Leningrad District, Russia
| | | | | | | |
Collapse
|
28
|
Olson MW, Wang Y, Elder RH, Kaguni LS. Subunit structure of mitochondrial DNA polymerase from Drosophila embryos. Physical and immunological studies. J Biol Chem 1995; 270:28932-7. [PMID: 7499423 DOI: 10.1074/jbc.270.48.28932] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The subunit structure of mitochondrial DNA polymerase from Drosophila embryos has been examined by a combination of physical and immunological methods. A highly specific rabbit antiserum directed against the native enzyme was developed and found to recognize specifically its two subunits in immunoblot and immunoprecipitation analyses. That and the potent inhibition by the rabbit antiserum of the DNA polymerase and 3'-->5' exonuclease activities of the nearly homogeneous mitochondrial DNA polymerase provide strong evidence for the physical association of the 3'-->5' exonuclease with the two subunit enzyme. An immunoprecipitation analysis of crude enzyme fractions showed that the two subunits of Drosophila mitochondrial DNA polymerase are intact, and an in situ gel proteolysis analysis showed that they are structurally distinct. Template-primer DNA binding studies demonstrated formation of a stable and discrete enzyme-DNA complex in the absence of accessory proteins. Photochemical cross-linking of the complexes by UV light indicated that the alpha but not the beta subunit of mitochondrial DNA polymerase makes close contact with DNA, and limited digestion of the native enzyme with trypsin showed that an approximately 65-kDa proteolytic fragment of the alpha subunit retains the DNA binding function.
Collapse
Affiliation(s)
- M W Olson
- Department of Biochemistry, Michigan State University, East Lansing 48824, USA
| | | | | | | |
Collapse
|
29
|
Gray NM, Marr CL, Penn CR, Cameron JM, Bethell RC. The intracellular phosphorylation of (-)-2'-deoxy-3'-thiacytidine (3TC) and the incorporation of 3TC 5'-monophosphate into DNA by HIV-1 reverse transcriptase and human DNA polymerase gamma. Biochem Pharmacol 1995; 50:1043-51. [PMID: 7575660 DOI: 10.1016/0006-2952(95)96620-a] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
(-)-2'-deoxy-3'-thiacytidine (3TC) has been shown to be a potent, selective inhibitor of HIV replication in vitro, which requires phosphorylation to its 5'-triphosphate for antiviral activity. The intracellular concentration of 3TC 5'-triphosphate in phytohaemagglutinin (PHA)-stimulated peripheral blood lymphocytes (PBL) shows a linear dependence on the extracellular concentration of 3TC up to an extracellular 3TC concentration of 10 microM. At this extracellular concentration of 3TC, the resulting intracellular concentration of 3TC 5'-triphosphate is 5 microM. This value is similar to the inhibition constant (Ki) values for the competitive inhibition of human immunodeficiency virus type 1 (HIV-1) reverse transcriptase and human DNA polymerases (10-16 microM) by 3TC 5'-triphosphate. Since the concentration of 3TC producing 90% inhibition (IC90) of HIV replication in PBLs has been reported to be 76 nM, the antiviral activity of 3TC requires intracellular concentrations of 3TC 5'-triphosphate, which would result in very little inhibition of reverse transcriptase if its sole mode of action was competitive inhibition. This apparent discrepency may be explained by the ability of 3TC 5'-triphosphate to act as a substrate for reverse transcriptase. Primer extension assays have shown that 3TC 5'-triphosphate is a substrate for HIV-1 reverse transcriptase and DNA polymerase gamma, resulting in the incorporation of 3TC 5'-monophosphate into DNA. In the case of DNA polymerase gamma, the product of this reaction (i.e. double-stranded DNA with 3TC 5'-monophosphate incorporated at the 3'-terminus of the primer strand) is also a substrate for the 3'-5' exonuclease activity of this enzyme. This may explain the low levels of mitochondrial toxicity observed with 3TC.
Collapse
Affiliation(s)
- N M Gray
- Department of Virology, Glaxo Research and Development Ltd., Stevenage, Hertfordshire, U.K
| | | | | | | | | |
Collapse
|
30
|
Eriksson S, Xu B, Clayton DA. Efficient incorporation of anti-HIV deoxynucleotides by recombinant yeast mitochondrial DNA polymerase. J Biol Chem 1995; 270:18929-34. [PMID: 7642550 DOI: 10.1074/jbc.270.32.18929] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Saccharomyces cerevisiae mtDNA polymerase, isolated as a single 135-kDa recombinant polypeptide, showed high processivity and a capacity of use poly(dA).oligo(dT), poly(rA).oligo(dT), or primed bacteriophage M13 DNA as a template. In a primer extension assay, the enzyme exhibited an intrinsic 3'-5'-exonuclease activity. By optimizing the polymerization reaction conditions, apparent Km and Vmax values could be determined for the incorporation of dTTP, 2'-3'-dideoxy-TTP (ddTTP), 3'-azido-TTP (AZTTP), 3'-fluoro-TTP, dCTP, 2'-3'-dideoxy-CTP, and didehydro(d4)CTP. The yeast mtDNA polymerase used ddTTP, 3'-fluoro-TTP, and ddCTP almost as efficiently as natural deoxynucleoside trisphosphates. Both 3'AZTTP and d4CTP were each significantly less efficient as substrates. Overall, the kinetic data with mtDNA polymerase were very similar to those of the recombinant human immunodeficiency virus reverse transcriptase control. Terminally incorporated AZTTP or ddTTP was not removed by the 3'-5' exonuclease activity of mtDNA polymerase. This may explain the inhibition of mtDNA replication observed in anti-human immunodeficiency virus treatment with dideoxynucleoside analogs for their effects of mtDNA polymerase could be of value in future rational drug design.
Collapse
Affiliation(s)
- S Eriksson
- Department of Developmental Biology, Stanford University School of Medicine, California 94305-5427, USA
| | | | | |
Collapse
|
31
|
Pinz KG, Shibutani S, Bogenhagen DF. Action of mitochondrial DNA polymerase gamma at sites of base loss or oxidative damage. J Biol Chem 1995; 270:9202-6. [PMID: 7721837 DOI: 10.1074/jbc.270.16.9202] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Mitochondrial DNA is subject to oxidative damage generating 7,8-dihydro-8-oxo-2'-deoxyguanosine (8-oxo-dG) residues and to spontaneous or induced base loss generating abasic sites. Synthetic oligonucleotides containing these lesions were prepared and used as templates to determine their effects on the action of Xenopus laevis DNA polymerase gamma. An analogue of an abasic site in DNA, tetrahydrofuran, was found to inhibit elongation by DNA polymerase gamma. When the DNA polymerase was able to complete translesional synthesis, a dA residue was incorporated opposite the abasic site. In contrast, elongation by DNA polymerase gamma was not inhibited by an 8-oxo-dG residue in the template strand. The polymerase inserted dA opposite 8-oxo-dG in approximately 27% of the extended products. The effects of these lesions on the 3'-->5' exonuclease proofreading activity of DNA polymerase gamma were also investigated. The 3'-->5' exonuclease activity excised any of the four normal bases positioned opposite either a tetrahydrofuran residue or 8-oxo-dG, suggesting that proofreading may not play a major role in avoiding misincorporation at abasic sites or 8-oxo-dG residues in the template. Thus, both of these lesions have the prospect of causing high rates of mutation during mtDNA replication.
Collapse
Affiliation(s)
- K G Pinz
- Department of Pharmacological Sciences, State University of New York, Stony Brook 11794-8651, USA
| | | | | |
Collapse
|