1
|
Viringipurampeer IA, Metcalfe AL, Bashar AE, Sivak O, Yanai A, Mohammadi Z, Moritz OL, Gregory-Evans CY, Gregory-Evans K. NLRP3 inflammasome activation drives bystander cone photoreceptor cell death in a P23H rhodopsin model of retinal degeneration. Hum Mol Genet 2016; 25:1501-16. [PMID: 27008885 DOI: 10.1093/hmg/ddw029] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 02/01/2016] [Indexed: 12/11/2022] Open
Abstract
The molecular signaling leading to cell death in hereditary neurological diseases such as retinal degeneration is incompletely understood. Previous neuroprotective studies have focused on apoptotic pathways; however, incomplete suppression of cell death with apoptosis inhibitors suggests that other mechanisms are at play. Here, we report that different signaling pathways are activated in rod and cone photoreceptors in the P23H rhodopsin mutant rat, a model representing one of the commonest forms of retinal degeneration. Up-regulation of the RIP1/RIP3/DRP1 axis and markedly improved survival with necrostatin-1 treatment highlighted necroptosis as a major cell-death pathway in degenerating rod photoreceptors. Conversely, up-regulation of NLRP3 and caspase-1, expression of mature IL-1β and IL-18 and improved cell survival with N-acetylcysteine treatment suggested that inflammasome activation and pyroptosis was the major cause of cone cell death. This was confirmed by generation of the P23H mutation on an Nlrp3-deficient background, which preserved cone viability. Furthermore, Brilliant Blue G treatment inhibited inflammasome activation, indicating that the 'bystander cell death' phenomenon was mediated through the P2RX7 cell-surface receptor. Here, we identify a new pathway in cones for bystander cell death, a phenomenon important in development and disease in many biological systems. In other retinal degeneration models different cell-death pathways are activated, which suggests that the particular pathways that are triggered are to some extent genotype-specific. This also implies that neuroprotective strategies to limit retinal degeneration need to be customized; thus, different combinations of inhibitors will be needed to target the specific pathways in any given disease.
Collapse
Affiliation(s)
- Ishaq A Viringipurampeer
- Department of Ophthalmology and Visual Sciences, University of British Columbia, 2550 Willow Street, Vancouver, BC, Canada V5Z 3N9
| | - Andrew L Metcalfe
- Department of Ophthalmology and Visual Sciences, University of British Columbia, 2550 Willow Street, Vancouver, BC, Canada V5Z 3N9
| | - Abu E Bashar
- Department of Ophthalmology and Visual Sciences, University of British Columbia, 2550 Willow Street, Vancouver, BC, Canada V5Z 3N9
| | - Olena Sivak
- Department of Ophthalmology and Visual Sciences, University of British Columbia, 2550 Willow Street, Vancouver, BC, Canada V5Z 3N9
| | - Anat Yanai
- Department of Ophthalmology and Visual Sciences, University of British Columbia, 2550 Willow Street, Vancouver, BC, Canada V5Z 3N9
| | - Zeinabsadat Mohammadi
- Department of Ophthalmology and Visual Sciences, University of British Columbia, 2550 Willow Street, Vancouver, BC, Canada V5Z 3N9
| | - Orson L Moritz
- Department of Ophthalmology and Visual Sciences, University of British Columbia, 2550 Willow Street, Vancouver, BC, Canada V5Z 3N9
| | - Cheryl Y Gregory-Evans
- Department of Ophthalmology and Visual Sciences, University of British Columbia, 2550 Willow Street, Vancouver, BC, Canada V5Z 3N9
| | - Kevin Gregory-Evans
- Department of Ophthalmology and Visual Sciences, University of British Columbia, 2550 Willow Street, Vancouver, BC, Canada V5Z 3N9
| |
Collapse
|
2
|
Chen Y, Jastrzebska B, Cao P, Zhang J, Wang B, Sun W, Yuan Y, Feng Z, Palczewski K. Inherent instability of the retinitis pigmentosa P23H mutant opsin. J Biol Chem 2014; 289:9288-303. [PMID: 24515108 PMCID: PMC3979360 DOI: 10.1074/jbc.m114.551713] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 02/05/2014] [Indexed: 11/06/2022] Open
Abstract
The P23H opsin mutation is the most common cause of autosomal dominant retinitis pigmentosa. Even though the pathobiology of the resulting retinal degeneration has been characterized in several animal models, its complex molecular mechanism is not well understood. Here, we expressed P23H bovine rod opsin in the nervous system of Caenorhabditis elegans. Expression was low due to enhanced protein degradation. The mutant opsin was glycosylated, but the polysaccharide size differed from that of the normal protein. Although P23H opsin aggregated in the nervous system of C. elegans, the pharmacological chaperone 9-cis-retinal stabilized it during biogenesis, producing a variant of rhodopsin called P23H isorhodopsin. In vitro, P23H isorhodopsin folded correctly, formed the appropriate disulfide bond, could be photoactivated but with reduced sensitivity, and underwent Meta II decay at a rate similar to wild type isorhodopsin. In worm neurons, P23H isorhodopsin initiated phototransduction by coupling with the endogenous Gi/o signaling cascade that induced loss of locomotion. Using pharmacological interventions affecting protein synthesis and degradation, we showed that the chromophore could be incorporated either during or after mutant protein translation. However, regeneration of P23H isorhodopsin with chromophore was significantly slower than that of wild type isorhodopsin. This effect, combined with the inherent instability of P23H rhodopsin, could lead to the structural cellular changes and photoreceptor death found in autosomal dominant retinitis pigmentosa. These results also suggest that slow regeneration of P23H rhodopsin could prevent endogenous chromophore-mediated stabilization of rhodopsin in the retina.
Collapse
Affiliation(s)
| | | | | | | | - Benlian Wang
- Center for Proteomics and Bioinformatics, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106-4965 and
| | - Wenyu Sun
- Polgenix Inc., Cleveland, Ohio 44106
| | | | | | | |
Collapse
|
3
|
Nguyen ATH, Campbell M, Kiang AS, Humphries MM, Humphries P. Current therapeutic strategies for P23H RHO-linked RP. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 801:471-6. [PMID: 24664733 DOI: 10.1007/978-1-4614-3209-8_60] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
The first autosomal dominant mutation identified to cause retinitis pigmentosa in the North American population was the substitution of proline to histidine at position 23 of the rhodopsin gene (P23H RHO). Many biochemical studies have demonstrated that P23H mutation induces rhodopsin (RHO) misfolding leading to endoplasmic reticulum stress. Herein, we review current thinking of this topic.
Collapse
Affiliation(s)
- Anh T H Nguyen
- The Ocular Genetics Unit, Smurfit Institute of Genetics, Trinity College Dublin, College Green, Dublin 2, Ireland,
| | | | | | | | | |
Collapse
|
4
|
Zelinger L, Banin E, Obolensky A, Mizrahi-Meissonnier L, Beryozkin A, Bandah-Rozenfeld D, Frenkel S, Ben-Yosef T, Merin S, Schwartz SB, Cideciyan AV, Jacobson SG, Sharon D. A missense mutation in DHDDS, encoding dehydrodolichyl diphosphate synthase, is associated with autosomal-recessive retinitis pigmentosa in Ashkenazi Jews. Am J Hum Genet 2011; 88:207-15. [PMID: 21295282 DOI: 10.1016/j.ajhg.2011.01.002] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Revised: 12/29/2010] [Accepted: 01/10/2011] [Indexed: 11/30/2022] Open
Abstract
Retinitis pigmentosa (RP) is a heterogeneous group of inherited retinal degenerations caused by mutations in at least 50 genes. Using homozygosity mapping in Ashkenazi Jewish (AJ) patients with autosomal-recessive RP (arRP), we identified a shared 1.7 Mb homozygous region on chromosome 1p36.11. Sequence analysis revealed a founder homozygous missense mutation, c.124A>G (p.Lys42Glu), in the dehydrodolichyl diphosphate synthase gene (DHDDS) in 20 AJ patients with RP of 15 unrelated families. The mutation was not identified in an additional set of 109 AJ patients with RP, in 20 AJ patients with other inherited retinal diseases, or in 70 patients with retinal degeneration of other ethnic origins. The mutation was found heterozygously in 1 out of 322 ethnically matched normal control individuals. RT-PCR analysis in 21 human tissues revealed ubiquitous expression of DHDDS. Immunohistochemical analysis of the human retina with anti-DHDDS antibodies revealed intense labeling of the cone and rod photoreceptor inner segments. Clinical manifestations of patients who are homozygous for the c.124A>G mutation were within the spectrum associated with arRP. Most patients had symptoms of night and peripheral vision loss, nondetectable electroretinographic responses, constriction of visual fields, and funduscopic hallmarks of retinal degeneration. DHDDS is a key enzyme in the pathway of dolichol, which plays an important role in N-glycosylation of many glycoproteins, including rhodopsin. Our results support a pivotal role of DHDDS in retinal function and may allow for new therapeutic interventions for RP.
Collapse
Affiliation(s)
- Lina Zelinger
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Murray AR, Fliesler SJ, Al-Ubaidi MR. Rhodopsin: the functional significance of asn-linked glycosylation and other post-translational modifications. Ophthalmic Genet 2010; 30:109-20. [PMID: 19941415 DOI: 10.1080/13816810902962405] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Rhodopsin, the G-protein coupled receptor in retinal rod photoreceptors, is a highly conserved protein that undergoes several types of post-translational modifications. These modifications are essential to maintain the protein's structure as well as its proper function in the visual transduction cycle. Rhodopsin is N-glycosylated at Asn-2 and Asn-15 in its extracellular N-terminal domain. Mutations within the glycosylation consensus sequences of rhodopsin cause autosomal dominant retinitis pigmentosa, a disease that leads to blindness. Several groups have studied the role of rhodopsin's N-linked glycan chains in protein structure and function using a variety of approaches. These include the generation of a transgenic mouse model, study of a naturally occurring mutant animal model, in vivo pharmacological inhibition of glycosylation, and in vitro analyses using transfected COS-1 cells. These studies have provided insights into the possible role of rhodopsin glycosylation, but have yielded conflicting results.
Collapse
Affiliation(s)
- Anne R Murray
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| | | | | |
Collapse
|
6
|
Is the lifetime of light-stimulated cGMP phosphodiesterase regulated by recoverin through its regulation of rhodopsin phosphorylation? Behav Brain Sci 2010. [DOI: 10.1017/s0140525x00039522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
7
|
|
8
|
|
9
|
|
10
|
|
11
|
|
12
|
|
13
|
Ohta M, Sasa S, Inoue A, Tamai T, Fujita I, Morita K, Matsuura F. Characterization of Novel Steviol Glycosides from Leaves of Stevia rebaudiana Morita. J Appl Glycosci (1999) 2010. [DOI: 10.5458/jag.57.199] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
14
|
Abstract
Many mutations associated with retinal degeneration lead to the production of misfolded proteins by cells of the retina. Emerging evidence suggests that these abnormal proteins cause cell death by activating the Unfolded Protein Response, a set of conserved intracellular signaling pathways that detect protein misfolding within the endoplasmic reticulum and control protective and proapoptotic signal transduction pathways. Here, we review the misfolded proteins associated with select types of retinitis pigmentosa, Stargadt-like macular degeneration, and Doyne Honeycomb Retinal Dystrophy and discuss the role that endoplasmic reticulum stress and UPR signaling play in their pathogenesis. Last, we review new therapies for these diseases based on preventing protein misfolding in the retina.
Collapse
Affiliation(s)
- Jonathan H Lin
- Department of Pathology, University of California, San Diego, CA 92093-0612, USA
| | | |
Collapse
|
15
|
Ablonczy Z, Goletz P, Knapp DR, Crouch RK. Mass Spectrometric Analysis of Porcine Rhodopsin¶. Photochem Photobiol 2007. [DOI: 10.1562/0031-8655(2002)0750316msaopr2.0.co2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
16
|
Medina R, Perdomo D, Bubis J. The hydrodynamic properties of dark- and light-activated states of n-dodecyl beta-D-maltoside-solubilized bovine rhodopsin support the dimeric structure of both conformations. J Biol Chem 2004; 279:39565-73. [PMID: 15258159 DOI: 10.1074/jbc.m402446200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Rhodopsin (Rho) has been extracted in n-dodecyl beta-D-maltoside (DM) from bovine retinal rod outer segments and purified to homogeneity by affinity chromatography on concanavalin A-Sepharose. Because chemical cross-linking of Rho and photoactivated Rho (Rho*) provided initial evidence for the oligomeric nature of the photoreceptor protein, we carried out a hydrodynamic characterization of the native and activated conformations of detergent-solubilized Rho. The molecular weights of the complexes between dark and photoexcited states of Rho and DM were determined by gel filtration chromatography on Sephacryl S-300, in the presence of 0.1% DM. Subtracting the size of the corresponding detergent micelles resulted in molecular masses of 78 kDa for native Rho and 76 kDa for Rho*. The measured content of 0.97 g of detergent/g of protein resulted in a calculated partial specific volume of 0.765 cm(3)/g for the protein-detergent complex and a molar mass of 64-65 kDa for the protein moiety. The sizes of Rho.DM and Rho*.DM complexes were also evaluated by sedimentation on 10-30% sucrose gradients, in the presence of 0.1% DM, and molecular masses of about 60 kDa were estimated for both the dark- and light-activated states of the photoreceptor protein. The size of Rho was determined to be 65,300 and 69,800 Da, respectively, when the purified Rho.DM complex was either chromatographed on Sephacryl S-300 or ultracentrifuged on sucrose gradients in the absence of DM. All these results were consistent with a dimeric quaternary structure for both conformations of Rho. Additionally, the functional integrity of the purified photoreceptor protein following gel filtration chromatography and ultracentrifugation was demonstrated by three criteria as follows: (i) its characteristic UV-visible absorption spectra, (ii) its capability to photoactivate transducin, and (iii) its ability to serve as a substrate for rhodopsin kinase.
Collapse
Affiliation(s)
- Rafael Medina
- Departamento de Biología Celular, Universidad Simón Bolívar, Apartado 89.000, Valle de Sartenejas, Caracas 1081-A, Venezuela
| | | | | |
Collapse
|
17
|
Takahashi N, Masuda K, Hiraki K, Yoshihara K, Huang HH, Khoo KH, Kato K. N-Glycan structures of squid rhodopsin. EUROPEAN JOURNAL OF BIOCHEMISTRY 2003; 270:2627-32. [PMID: 12787029 DOI: 10.1046/j.1432-1033.2003.03636.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
To determine the glycoforms of squid rhodopsin, N-glycans were released by glycoamidase A digestion, reductively aminated with 2-aminopyridine, and then subjected to 2D HPLC analysis [Takahashi, N., Nakagawa, H., Fujikawa, K., Kawamura, Y. & Tomiya, N. (1995) Anal. Biochem.226, 139-146]. The major glycans of squid rhodopsin were shown to possess the alpha1-3 and alpha1-6 difucosylated innermost GlcNAc residue found in glycoproteins produced by insects and helminths. By combined use of 2D HPLC, electrospray ionization-mass spectrometry and permethylation and gas chromatography-electron ionization mass spectrometry analyses, it was revealed that most (85%) of the N-glycans exhibit the novel structure Manalpha1-6(Manalpha1-3)Manbeta1-4GlcNAcbeta1-4(Galbeta1-4Fucalpha1-6)(Fucalpha1-3)GlcNAc.
Collapse
Affiliation(s)
- Noriko Takahashi
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Japan.
| | | | | | | | | | | | | |
Collapse
|
18
|
Ohta M, Pan YT, Laine RA, Elbein AD. Trehalose-based oligosaccharides isolated from the cytoplasm of Mycobacterium smegmatis. Relation to trehalose-based oligosaccharides attached to lipid. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:3142-9. [PMID: 12084054 DOI: 10.1046/j.1432-1033.2002.02971.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A series of trehalose-based oligosaccharides were isolated from the cytoplasmic fraction of Mycobacterium smegmatis and purified by gel-filtration and paper chromatography and TLC. Their structures were determined by HPLC and GLC to determine sugar composition and ratios, MALDI-TOF MS to measure molecular mass, methylation analysis to determine linkages, (1)H-NMR to obtain anomeric configurations of glycosidic linkages, and exoglycosidase digestions followed by TLC to determine sequences and anomeric configurations of the monosaccharides. Six different oligosaccharides were identified all with trehalose as the basic structure and additional glucose or galactose residues attached in various linkages. One of these oligosaccharides is the disaccharide trehalose (Glcalpha1-1alphaGlc), which is present in substantial amounts in these cells and also in other mycobacteria. Two other oligosaccharides, the tetrasaccharides Glcalpha1-4Glcalpha1-1alphaGlc6-1alphaGal and Galalpha1-6Galalpha1-6Glcalpha1-1alphaGlc, have not previously been isolated from natural sources or synthesized chemically. The fourth oligosaccharide, Glcbeta1-6Glcbeta1-6Glcalpha1-1alphaGlc, has been isolated from corynebacteria, but not reported in other organisms. Two other oligosaccharides, Glcalpha1-4Glcalpha1-1alphaGlc, which has been synthesized chemically and isolated from insects but not previously reported in mycobacteria, and Glcbeta1-6Glcalpha1-1alphaGlc, which was previously isolated from Mycobacterium fortuitum and yeast, were also characterized. Another trisaccharide found in the cytosol has been partially characterized as arabinosyl-1-4trehalose, but neither the anomeric configuration nor the D or L configuration of the arabinose is known. In analogy with sucrose and its higher homologs, raffinose and stachyose, which may act as protective agents during maturation drying in plants, these trehalose homologs may also have a protective role in mycobacteria, perhaps during latency.
Collapse
Affiliation(s)
- Masaya Ohta
- Department of Biochemistry, Fukuyuma University, Japan
| | | | | | | |
Collapse
|
19
|
Abstract
Rhodopsin is the dim light photosensitive pigment of animals. In this work, we undertook to study the structure of rhodopsin from swine and compare it with bovine and rat rhodopsin. Porcine rhodopsin was analyzed using methodology developed previously for mass spectrometric analysis of integral membrane proteins. Combining efficient protein cleavage and high performance liquid chromatography separation with the sensitivity of mass spectrometry (MS), this technique allows the observation of the full protein map and the posttranslational modifications of the protein in a single experiment. The rhodopsin protein from a single porcine eye was sequenced completely, with the exception of two single-amino acid fragments and one two-amino acid fragment, and the gene sequence reported previously was confirmed. The posttranslational modifications, similar to the ones reported previously for bovine and rat rhodopsin, were also identified. Although porcine rhodopsin has a high degree of homology to bovine and rat rhodopsins and most of their posttranslational modifications are identical, the glycosylation and phosphorylation patterns observed were different. These results show that rhodopsin from a single porcine eye can be characterized completely by MS. This technology opens the possibility of rhodopsin structural and functional studies aided by powerful mass spectrometric analysis, using the fellow eye as an internal control.
Collapse
Affiliation(s)
- Zsolt Ablonczy
- Department of Ophthalmology, Medical University of South Carolina, Charleston 29425, USA
| | | | | | | |
Collapse
|
20
|
Cacan R, Duvet S, Labiau O, Verbert A, Krag SS. Monoglucosylated oligomannosides are released during the degradation process of newly synthesized glycoproteins. J Biol Chem 2001; 276:22307-12. [PMID: 11294837 DOI: 10.1074/jbc.m101077200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Chinese hamster ovary mutant MI8-5 is known to synthesize Man(9)GlcNAc(2)-P-P-dolichol rather than the fully glucosylated lipid intermediate Glc(3)Man(9)GlcNAc(2)-P-P-dolichol. This nonglucosylated oligosaccharide lipid precursor is used as donor for N-glycosylation. In this paper we demonstrate that a significant part of the glycans bound to the newly synthesized glycoproteins in MI8-5 cells are monoglucosylated. The presence of monoglucosylated glycans on glycoproteins determines their binding to calnexin as part of the quality control machinery. Furthermore, we point out the presence of Glc(1)Man(5)GlcNAc(1) in the cytosol of MI8-5 cells. This indicates that part of the monoglucosylated glycoproteins can be directed toward a deglycosylation process that occurs in the cytosol. Besides studies on glycoprotein degradation based on the disappearance of protein moieties, MI8-5 cells can be used as a tool to elucidate the various step leading to glycoprotein degradation by studying the fate of the glycan moieties.
Collapse
Affiliation(s)
- R Cacan
- Laboratoire de Chimie Biologique, CNRS-UMR 8576, Université des Sciences et Technologies de Lille, 59655 Villeneuve d'Ascq Cedex, France.
| | | | | | | | | |
Collapse
|
21
|
Nakagawa M, Miyamoto T, Kusakabe R, Takasaki S, Takao T, Shichida Y, Tsuda M. O-Glycosylation of G-protein-coupled receptor, octopus rhodopsin. Direct analysis by FAB mass spectrometry. FEBS Lett 2001; 496:19-24. [PMID: 11343699 DOI: 10.1016/s0014-5793(01)02392-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In addition to the N-glycan that is evidently conserved in G-protein-coupled receptors (GPCRs), O-glycans in the N-terminus of GPCRs have been suggested. Using a combination of enzymatic and manual Edman degradation in conjunction with G-protein coupled receptor mass spectrometry, the structure and sites of O-glycans in octopus rhodopsin are determined. Two N-acetylgalactosamine residues are O-linked to Thr4 and Thr5 in the N-terminus of octopus rhodopsin. Further, we found chicken iodopsin, but not bovine rhodopsin, contains N-acetylgalactosamine. This is the first direct evidence to determine the structure and sites of O-glycans in GPCRs.
Collapse
Affiliation(s)
- M Nakagawa
- Department of Life Sciences, Himeji Institute of Technology, Harima Science Garden City, Hyogo, Japan
| | | | | | | | | | | | | |
Collapse
|
22
|
Albert AD, Yeagle PL. Structural aspects of the G-protein receptor, rhodopsin. VITAMINS AND HORMONES 2000; 58:27-51. [PMID: 10668394 DOI: 10.1016/s0083-6729(00)58020-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Affiliation(s)
- A D Albert
- Department of Molecular and Cell Biology, University of Connecticut, Storrs 06269, USA
| | | |
Collapse
|
23
|
Kean EL. The dolichol pathway in the retina and its involvement in the glycosylation of rhodopsin. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1473:272-85. [PMID: 10594365 DOI: 10.1016/s0304-4165(99)00198-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- E L Kean
- Departments of Ophthalmology and Biochemistry, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
24
|
Whitelegge JP, Gundersen CB, Faull KF. Electrospray-ionization mass spectrometry of intact intrinsic membrane proteins. Protein Sci 1998; 7:1423-30. [PMID: 9655347 PMCID: PMC2144037 DOI: 10.1002/pro.5560070619] [Citation(s) in RCA: 159] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Membrane proteins drive and mediate many essential cellular processes making them a vital section of the proteome. However, the amphipathic nature of these molecules ensures their detailed structural analysis remains challenging. A versatile procedure for effective electrospray-ionization mass spectrometry (ESI-MS) of intact intrinsic membrane proteins purified using reverse-phase chromatography in aqueous formic acid/isopropanol is presented. The spectra of four examples, bacteriorhodopsin and its apoprotein from Halobacterium and the D1 and D2 reaction-center subunits from spinach thylakoids, achieve mass measurements that are within 0.01% of calculated theoretical values. All of the spectra reveal lesser quantities of other molecular species that can usually be equated with covalently modified subpopulations of these proteins. Our analysis of bovine rhodopsin, the first ESI-MS study of a G-protein coupled receptor, yielded a complex spectrum indicative of extensive molecular heterogeneity. The range of masses measured for the native molecule agrees well with the range calculated based upon variable glycosylation and reveals further heterogeneity arising from other covalent modifications. The technique described represents the most precise way to catalogue membrane proteins and their post-translational modifications. Resolution of the components of protein complexes provides insights into native protein/protein interactions. The apparent retention of structure by bacteriorhodopsin during the analysis raises the potential of obtaining tertiary structure information using more developed ESI-MS experiments.
Collapse
Affiliation(s)
- J P Whitelegge
- Center for Molecular and Medical Sciences Mass Spectrometry, Department of Chemistry & Biochemistry, University of California, Los Angeles 90095-1569, USA.
| | | | | |
Collapse
|
25
|
Barnidge DR, Dratz EA, Sunner J, Jesaitis AJ. Identification of transmembrane tryptic peptides of rhodopsin using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Protein Sci 1997; 6:816-24. [PMID: 9098891 PMCID: PMC2144751 DOI: 10.1002/pro.5560060408] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The application of mass spectrometry for determining the topography of integral membrane proteins has focused primarily on the mass determination of fragments that do not reside in the lipid bilayer. In this work, we present the accurate mass determination of transmembrane tryptic peptides of bovine rhodopsin using matrix-assisted laser desorption ionization time-of-flight mass spectrometry. The ability to determine the accurate mass of hydrophobic transmembrane peptides will facilitate the mapping of ligand binding sites in membrane receptors. It will also augment the determination of membrane spanning regions from integral membrane proteins digested in lipid bilayers. Affinity-purified rhodopsin in detergent and rhodopsin in retinal rod membranes were digested with trypsin. Tryptic peptides were separated using reverse-phase, high-performance liquid chromatography at 55 degrees C with the detergent octyl-beta-glucoside in the mobile phase. Four of the six transmembrane tryptic peptides of rhodopsin were identified, ranging in mass from 3,260 Da to 6,528 Da. The identities of the peptides were confirmed by Edman microsequencing. In addition, heterogeneity in the glycosylation of the N-terminal tryptic peptide of rhodopsin was identified by MALDI MS, without modifying the carbohydrate prior to analysis.
Collapse
Affiliation(s)
- D R Barnidge
- Department of Chemistry and Biochemistry, Montana State University, Bozeman 59717-3400, USA
| | | | | | | |
Collapse
|
26
|
Abstract
AbstractRecoverin is a Ca2+-binding protein found primarily in vertebrate photoreceptors. The proposed physiological function of recoverin is based on the finding that recoverin inhibits light-stimulated phosphorylation of rhodopsin. Recoverin interacts with rod outer segment membranes in a Ca2+-dependent manner. This interaction requires N-terminal acylation of recoverin. Four types of fatty acids have been detected on the N-terminus of recoverin, but the functional significance of this heterogeneous acylation is not yet clear.
Collapse
|
27
|
Future directions for rhodopsin structure and function studies. Behav Brain Sci 1995. [DOI: 10.1017/s0140525x00039534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
AbstractNMR (nuclear magnetic resonance) may be useful for determining the structure of retinal and its environment in rhodopsin, but not for determining the complete protein structure. Aggregation and low yield of fragments of rhodopsin may make them difficult to study by NMR. A long-term multidisciplinary attack on rhodopsin structure is required.
Collapse
|
28
|
More answers about cGMP-gated channels pose more questions. Behav Brain Sci 1995. [DOI: 10.1017/s0140525x00039509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractOur understanding of the molecular properties and cellular role of cGMP-gated channels in outer segments of vertebrate photo-receptors has come from over a decade of studies which have continuously altered and refined ideas about these channels. Further examination of this current view may lead to future surprises and further refine the understanding of cGMP-gated channels.
Collapse
|
29
|
Cyclic nucleotides as regulators of light-adaptation in photoreceptors. Behav Brain Sci 1995. [DOI: 10.1017/s0140525x00039510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractCyclic nucleotides can regulate the sensitivity of retinal rods to light through phosducin. The phosphorylation state of phosducin determines the amount of G available for activation by Rho*. Phosducin phosphorylation is regulated by cyclic nucleotides through their activation of cAMP-dependent protein kinase. The regulation of phosphodiesterase activity by the noncatalytic cGMP binding sites as well as Ca2+/calmodulin dependent regulation of cGMP binding to the cation channel are also discussed.
Collapse
|
30
|
Long term potentiation and CaM-sensitive adenylyl cyclase: Long-term prospects. Behav Brain Sci 1995. [DOI: 10.1017/s0140525x00039327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractThe type I CaM-sensitive adenylyl cyclase is in a position to integrate signals from multiple inputs, consistent with the requirements for mediating long term potentiation (LTP). Biochemical and genetic evidence supports the idea that this enzyme plays an important role inc LTP. However, more work is needed before we will be certain of the role that CaM-sensitive adenylyl cyclases play in LTP.
Collapse
|
31
|
Modulation of the cGMP-gated channel by calcium. Behav Brain Sci 1995. [DOI: 10.1017/s0140525x00039431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractCalcium acting through calmodulin has been shown to regulate the affinity of cyclic nucleotide-gated channels expressed in cell lines. But is calmodulin the Ca-sensor that normally regulates these channels?
Collapse
|
32
|
How many light adaptation mechanisms are there? Behav Brain Sci 1995. [DOI: 10.1017/s0140525x00039546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractThe generally positive response to our target article indicates that most of the commentators accept our contention that light adaptation consists of multiple and possibly redundant mechanisms. The commentaries fall into three general categories. The first deals with putative mechanisms that we chose not to emphasize. The second is a more extended discussion of the role of calcium in adaptation. Finally, additional aspects of cGMP involvement in adaptation are considered. We discuss each of these points in turn.
Collapse
|
33
|
Gene therapy, regulatory mechanisms, and protein function in vision. Behav Brain Sci 1995. [DOI: 10.1017/s0140525x00039388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractHereditary retinal degeneration due to mutations in visual genes may be amenable to therapeutic interventions that modulate, either positively or negatively, the amount of protein product. Some of the proteins involved in phototransduction are rapidly moved by a lightdependent mechanism between the inner segment and the outer segment in rod photoreceptor cells, and this phenomenon is important in phototransduction.
Collapse
|
34
|
A novel protein family of neuronal modulators. Behav Brain Sci 1995. [DOI: 10.1017/s0140525x00039479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractA number of proteins homologous to recoverin have been identified in the brains of the several vertebrate species. The brainderived members originally contain four EF-hand domains, but NH2- terminal domain is aberrant. Many of these proteins inhibited light-induced rhodopsin phosphorylation at high [Ca2+], suggesting that the brain-derived members may act as a Ca2+-sensitive modulator of receptor phosphorylation, as recoverin does.
Collapse
|
35
|
The structure of rhodopsin and mechanisms of visual adaptation. Behav Brain Sci 1995. [DOI: 10.1017/s0140525x00039273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
AbstractRapidly advancing studies on rhodopsin have focused on new strategies for crystallization of this integral membrane protein for x-ray analysis and on alternative methods for structural determination from nuclear magnetic resonance data. Functional studies of the interactions between the apoprotein and its chromophore have clarified the role of the chromophore in deactivation of opsin and in photoactivation of the pigment.
Collapse
|
36
|
Crucial steps in photoreceptor adaptation: Regulation of phosphodiesterase and guanylate cyclase activities and Ca 2+-buffering. Behav Brain Sci 1995. [DOI: 10.1017/s0140525x00039364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractThis commentary discusses the balance of phosphodiesterase and guanylate cyclase activities in vertebrate photoreceptors at moderate light intensities. The rate of cGMP hydrolysis and synthesis seem to equal each other. Ca2+ as regulator of both enzyme activities is also effectively buffered in photoreceptor cells by cytoplasmic buffer components.
Collapse
|
37
|
The atomic structure of visual rhodopsin: How and when? Behav Brain Sci 1995. [DOI: 10.1017/s0140525x00039297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractStrong arguments are presented by Hargrave suggesting that the crystallization of visual rhodopsin for high resolution analysis by X-ray crystallography or electron microscopy is feasible. However, the effort needed to achieve this goal will most likely exceed the resources of a single laboratory and a concerted approach to the research is necessary.
Collapse
|
38
|
Molecular insights gained from covalently tethering cGMP to the ligand-binding sites of retinal rod cGMP-gated channels. Behav Brain Sci 1995. [DOI: 10.1017/s0140525x00039261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractA photoaffinity analog of cGMP has been used to biochemically identify a new ligand-binding subunit of the retinal rod cGMP-activated ion channel, as well as amino acids in contact with cGMP in the original subunit. Covalent tethering of this probe to channels in excised menbrane patches has revealed a functional heteogeneity in the ligand-binding sites that may arise from the two biochemically identified subunits.
Collapse
|
39
|
Abstract
AbstractRecent findings emphasize the complexity, both genetic and functional, of the manifold genes and mutations causing inherited retinal degeneration in humans. Knowledge of the genetic bases of these diseases can contribute to design of rational therapy, as well as elucidating the function of each gene product in normal visual processes.
Collapse
|
40
|
Channel structure and divalent cation regulation of phototransduction. Behav Brain Sci 1995. [DOI: 10.1017/s0140525x00039339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractThe identification of additional subunits of the cGMP-gated cation channel suggests exciting questions about their regulatory roles and about structure/functional relationships. How do the different subunits interact? How is the complex assembled into the plasma membrane? Divalent cations have been implicated in the regulation of adaptation. One often overlooked cation is magnesium. Could this ion play a role in phototransduction?
Collapse
|
41
|
Structure of the cGMP-gated channel. Behav Brain Sci 1995. [DOI: 10.1017/s0140525x0003939x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractThe subunit structure of the cGMP-gated cation channel of rod photoreceptors is rapidly being defined, and in the process the mode of regulation by Ca2+-calmodulin unraveled. Intriguingly, early results suggest that additional subunits of unknown function are associated with the channel and remain to be identified.
Collapse
|
42
|
Linking genotypes with phenotypes in human retinal degenerations: Implications for future research and treatment. Behav Brain Sci 1995. [DOI: 10.1017/s0140525x00039340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractAlthough undoubtedly it will be incomplete by the time it is published, the target article by Daiger et al. organizes mutations in genes that produce retinal degenerations in humans into categories of clinically relevant phenotypes. Such classifications should help us understand the link between altered photoreceptor cell proteins and subsequent cell death, and they may yield insight into methods for preventing consequent blindness.
Collapse
|
43
|
Genetic and clinical heterogeneity in tapetal retinal dystrophies. Behav Brain Sci 1995. [DOI: 10.1017/s0140525x0003925x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
AbstractLarge scale DNA-mutation screening in patients with hereditary retinal diseases greatly enhances our knowledge about retinal function and diseases. Scientists, clinicians, patients, and families involved with retinal disorders may directly benefit from these developments. However, certain aspects of this expanding knowledge, such as the correlation between genotype and phenotype, may be much more complicated than we expect at present.
Collapse
|
44
|
The determination of rhodopsin structure may require alternative approaches. Behav Brain Sci 1995. [DOI: 10.1017/s0140525x00039236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
AbstractThe structure of rhodopsin is a subject of intense interest. Solving the structure by traditional methods has proved exceedingly challenging. It may therefore be useful to confront the problem by a combination of alternate techniques. These include FTIR (Fourier transform infrared spectroscopy) and AFM (atomic force microscopy) on the intact protein. Furthermore, additional insights may be gained through structural investigations of discrete rhodopsin domains.
Collapse
|
45
|
Na-Ca + K exchanger and Ca 2+ homeostasis in retinal rod outer segments: Inactivation of the Ca 2+ efflux mode and possible involvement of intracellular Ca 2+ stores in Ca 2+ homeostasis. Behav Brain Sci 1995. [DOI: 10.1017/s0140525x00039455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
AbstractInactivation of the Ca2+ extrusion mode of the retinal rod Na- Ca + K exchanger is suggested to be the mechanism that prevents lowering of cytosolic free Ca2+ to < 1 nM when rod cells are saturated for a prolonged time under bright light conditions. Under these conditions, Ca2+ fluxes across disk membranes can contribute significantly to Ca2+ homeostasis in rods.
Collapse
|
46
|
Nuclear magnetic resonance studies on the structure and function of rhodopsin. Behav Brain Sci 1995. [DOI: 10.1017/s0140525x00039467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractMagic angle spinning (MAS) NMR methods provide a means of obtaining high resolution structural data on rhodopsin and its photoin termediates. Current work has focused on the structure of the retinal chromophore and its interactions with surrounding protein charges. The recent development of MAS NMR methods for measuring internuclear distances with a resolution of ∼0.2 will complement diffraction methods for addressing key mechanistic questions.
Collapse
|
47
|
Glutamate accumulation in the photoreceptor-presumed final common path of photoreceptor cell death. Behav Brain Sci 1995. [DOI: 10.1017/s0140525x00039480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractGenetic abnormalities of three factors related to the photoreceptor mechanism have been reported in both animal models and humans. Apoptotic mechanism has also been suggested as a final common pathway of photoreceptor cell death. Our findings of increased level of glutamate in photoreceptor cells in rds mice suggest that amino acid might mediate between these two pathological mechanisms.
Collapse
|
48
|
Unique lipids and unique properties of retinal proteins. Behav Brain Sci 1995. [DOI: 10.1017/s0140525x00039443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractAmino-terminal heteroacylation has been identified in retinal proteins including recoverin and α subunit of G-protein, transducin. The tissue-specific modification seems to mediate not only a proteinmembrane interaction but also a specific protein-protein interaction. The mechanism generating the heterogeneity and its physiological role are still unclear, but an interesting idea for the latter postulates a fine regulation of the signal transduction pathway by distinct N-acyl groups.
Collapse
|
49
|
Further insight into the structural and regulatory properties of the cGMP-gated channel. Behav Brain Sci 1995. [DOI: 10.1017/s0140525x00039571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractRecent studies from several different laboratories have provided further insight into structure-function relationships of cyclic nucleotide-gated channel and in particular the cCMPgated channel of rod photoreceptors. Site-directed mutagenesis and rod-olfactory chimeria constructs have defined important amino acids and peptide segments of the channel that are important in ion blockage, ligand specificity, and gating properties. Molecular cloning studies have indicated that cyclic nucleotide-gated channels consist of two subunits that are required to reproduce the properties of the native channels. Biochemical analysis of the cGMP-gated channel of rodcells have indicated that the 240 kDa protein that co-purifies with the 63 kDa channel subunit contains both the previously cloned second subunit of the channel and a glutamic acid-rich protein. The regulatory properties of the cGMP-gated channel from rod cells has also been studied in more detail. Studies indicate that the beta subunit of the cGMP-gated channel of rod cells contains the binding site for calmodulin. Interaction of calmodulin with the channel alters the apparent affinity of the channel for cGMP in all in vitro systems that have been studied. The significance of these recent studies are discussed in relation to the commentaries on the target article.
Collapse
|
50
|
Unsolved issues in S-modulin/recoverin study. Behav Brain Sci 1995. [DOI: 10.1017/s0140525x00039352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
AbstractS-Modulin is a frog homolog of recoverin. The function and the underlying mechanism of the action of these proteins are now understood in general. However, there remain some unsolved issues including; two distinct effects of S-modulin; Ca2+-dependent binding of S-modulin to membranes and a possible target protein; S-modulin-like proteins in other neurons. These issues are considered in this commentary.
Collapse
|