1
|
Bagshaw CR, Hentschel J, Stone MD. The Processivity of Telomerase: Insights from Kinetic Simulations and Analyses. Molecules 2021; 26:7532. [PMID: 34946615 PMCID: PMC8705835 DOI: 10.3390/molecules26247532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/01/2021] [Accepted: 12/08/2021] [Indexed: 11/16/2022] Open
Abstract
Telomerases are moderately processive reverse transcriptases that use an integral RNA template to extend the 3' end of linear chromosomes. Processivity values, defined as the probability of extension rather than dissociation, range from about 0.7 to 0.99 at each step. Consequently, an average of tens to hundreds of nucleotides are incorporated before the single-stranded sDNA product dissociates. The RNA template includes a six nucleotide repeat, which must be reset in the active site via a series of translocation steps. Nucleotide addition associated with a translocation event shows a lower processivity (repeat addition processivity, RAP) than that at other positions (nucleotide addition processivity, NAP), giving rise to a characteristic strong band every 6th position when the product DNA is analyzed by gel electrophoresis. Here, we simulate basic reaction mechanisms and analyze the product concentrations using several standard procedures to show how the latter can give rise to systematic errors in the processivity estimate. Complete kinetic analysis of the time course of DNA product concentrations following a chase with excess unlabeled DNA primer (i.e., a pulse-chase experiment) provides the most rigorous approach. This analysis reveals that the higher product concentrations associated with RAP arise from a stalling of nucleotide incorporation reaction during translocation rather than an increased rate constant for the dissociation of DNA from the telomerase.
Collapse
Affiliation(s)
- Clive R. Bagshaw
- Department of Chemistry and Biochemistry, University of California at Santa Cruz, Santa Cruz, CA 95064, USA;
| | - Jendrik Hentschel
- Department of Chemistry and Biochemistry, University of California at Santa Cruz, Santa Cruz, CA 95064, USA;
- Element Biosciences, 9880 Campus Point Drive, San Diego, CA 92121, USA
| | - Michael D. Stone
- Department of Chemistry and Biochemistry, University of California at Santa Cruz, Santa Cruz, CA 95064, USA;
| |
Collapse
|
2
|
Prestel A, Wichmann N, Martins JM, Marabini R, Kassem N, Broendum SS, Otterlei M, Nielsen O, Willemoës M, Ploug M, Boomsma W, Kragelund BB. The PCNA interaction motifs revisited: thinking outside the PIP-box. Cell Mol Life Sci 2019; 76:4923-4943. [PMID: 31134302 PMCID: PMC6881253 DOI: 10.1007/s00018-019-03150-0] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 04/16/2019] [Accepted: 05/13/2019] [Indexed: 02/08/2023]
Abstract
Proliferating cell nuclear antigen (PCNA) is a cellular hub in DNA metabolism and a potential drug target. Its binding partners carry a short linear motif (SLiM) known as the PCNA-interacting protein-box (PIP-box), but sequence-divergent motifs have been reported to bind to the same binding pocket. To investigate how PCNA accommodates motif diversity, we assembled a set of 77 experimentally confirmed PCNA-binding proteins and analyzed features underlying their binding affinity. Combining NMR spectroscopy, affinity measurements and computational analyses, we corroborate that most PCNA-binding motifs reside in intrinsically disordered regions, that structure preformation is unrelated to affinity, and that the sequence-patterns that encode binding affinity extend substantially beyond the boundaries of the PIP-box. Our systematic multidisciplinary approach expands current views on PCNA interactions and reveals that the PIP-box affinity can be modulated over four orders of magnitude by positive charges in the flanking regions. Including the flanking regions as part of the motif is expected to have broad implications, particularly for interpretation of disease-causing mutations and drug-design, targeting DNA-replication and -repair.
Collapse
Affiliation(s)
- Andreas Prestel
- Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, 2200, Copenhagen N, Denmark
| | - Nanna Wichmann
- Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, 2200, Copenhagen N, Denmark
| | - Joao M Martins
- Department of Computer Science, University of Copenhagen, Universitetsparken 1, 2100, Copenhagen Ø, Denmark
| | - Riccardo Marabini
- Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, 2200, Copenhagen N, Denmark
| | - Noah Kassem
- Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, 2200, Copenhagen N, Denmark
| | - Sebastian S Broendum
- Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, 2200, Copenhagen N, Denmark
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Victoria, 3800, Australia
| | - Marit Otterlei
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, NTNU Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Olaf Nielsen
- Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, 2200, Copenhagen N, Denmark
| | - Martin Willemoës
- Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, 2200, Copenhagen N, Denmark
| | - Michael Ploug
- Finsen Laboratory, Rigshospitalet, Ole Maaloes Vej 5, 2200, Copenhagen N, Denmark
- Finsen Laboratory, Biotechnology Research Innovation Centre, University of Copenhagen, Ole Maaloes Vej 5, 2200, Copenhagen N, Denmark
| | - Wouter Boomsma
- Department of Computer Science, University of Copenhagen, Universitetsparken 1, 2100, Copenhagen Ø, Denmark.
| | - Birthe B Kragelund
- Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, 2200, Copenhagen N, Denmark.
| |
Collapse
|
3
|
Benkovic SJ, Spiering MM. Understanding DNA replication by the bacteriophage T4 replisome. J Biol Chem 2017; 292:18434-18442. [PMID: 28972188 DOI: 10.1074/jbc.r117.811208] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The T4 replisome has provided a unique opportunity to investigate the intricacies of DNA replication. We present a comprehensive review of this system focusing on the following: its 8-protein composition, their individual and synergistic activities, and assembly in vitro and in vivo into a replisome capable of coordinated leading/lagging strand DNA synthesis. We conclude with a brief comparison with other replisomes with emphasis on how coordinated DNA replication is achieved.
Collapse
Affiliation(s)
- Stephen J Benkovic
- From the Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Michelle M Spiering
- From the Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802
| |
Collapse
|
4
|
Coordinated DNA Replication by the Bacteriophage T4 Replisome. Viruses 2015; 7:3186-200. [PMID: 26102578 PMCID: PMC4488733 DOI: 10.3390/v7062766] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 06/12/2015] [Accepted: 06/16/2015] [Indexed: 11/16/2022] Open
Abstract
The T4 bacteriophage encodes eight proteins, which are sufficient to carry out coordinated leading and lagging strand DNA synthesis. These purified proteins have been used to reconstitute DNA synthesis in vitro and are a well-characterized model system. Recent work on the T4 replisome has yielded more detailed insight into the dynamics and coordination of proteins at the replication fork. Since the leading and lagging strands are synthesized in opposite directions, coordination of DNA synthesis as well as priming and unwinding is accomplished by several protein complexes. These protein complexes serve to link catalytic activities and physically tether proteins to the replication fork. Essential to both leading and lagging strand synthesis is the formation of a holoenzyme complex composed of the polymerase and a processivity clamp. The two holoenzymes form a dimer allowing the lagging strand polymerase to be retained within the replisome after completion of each Okazaki fragment. The helicase and primase also form a complex known as the primosome, which unwinds the duplex DNA while also synthesizing primers on the lagging strand. Future studies will likely focus on defining the orientations and architecture of protein complexes at the replication fork.
Collapse
|
5
|
Reha-Krantz LJ, Woodgate S, Goodman MF. Engineering processive DNA polymerases with maximum benefit at minimum cost. Front Microbiol 2014; 5:380. [PMID: 25136334 PMCID: PMC4120765 DOI: 10.3389/fmicb.2014.00380] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 07/07/2014] [Indexed: 11/25/2022] Open
Abstract
DNA polymerases need to be engineered to achieve optimal performance for biotechnological applications, which often require high fidelity replication when using modified nucleotides and when replicating difficult DNA sequences. These tasks are achieved for the bacteriophage T4 DNA polymerase by replacing leucine with methionine in the highly conserved Motif A sequence (L412M). The costs are minimal. Although base substitution errors increase moderately, accuracy is maintained for templates with mono- and dinucleotide repeats while replication efficiency is enhanced. The L412M substitution increases intrinsic processivity and addition of phage T4 clamp and single-stranded DNA binding proteins further enhance the ability of the phage T4 L412M-DNA polymerase to replicate all types of difficult DNA sequences. Increased pyrophosphorolysis is a drawback of increased processivity, but pyrophosphorolysis is curbed by adding an inorganic pyrophosphatase or divalent metal cations, Mn2+ or Ca2+. In the absence of pyrophosphorolysis inhibitors, the T4 L412M-DNA polymerase catalyzed sequence-dependent pyrophosphorolysis under DNA sequencing conditions. The sequence specificity of the pyrophosphorolysis reaction provides insights into how the T4 DNA polymerase switches between nucleotide incorporation, pyrophosphorolysis and proofreading pathways. The L-to-M substitution was also tested in the yeast DNA polymerases delta and alpha. Because the mutant DNA polymerases displayed similar characteristics, we propose that amino acid substitutions in Motif A have the potential to increase processivity and to enhance performance in biotechnological applications. An underlying theme in this chapter is the use of genetic methods to identify mutant DNA polymerases with potential for use in current and future biotechnological applications.
Collapse
Affiliation(s)
- Linda J Reha-Krantz
- Department of Biological Sciences, University of Alberta Edmonton, AB, Canada
| | | | | |
Collapse
|
6
|
Ward DN, Talley DC, Tavag M, Menji S, Schaughency P, Baier A, Smith PJ. UK-1 and structural analogs are potent inhibitors of hepatitis C virus replication. Bioorg Med Chem Lett 2013; 24:609-12. [PMID: 24360997 DOI: 10.1016/j.bmcl.2013.12.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 11/25/2013] [Accepted: 12/02/2013] [Indexed: 12/12/2022]
Abstract
The bacterial natural product UK-1 and several structural analogs inhibit replication of the hepatitis C virus in the replicon assay, with IC50 values as low as 0.50 μM. The NS3 helicase has been identified as a possible target of inhibition for several of these compounds, while the remaining inhibitors act via an undetermined mechanism. Gel shift assays suggest that helicase inhibition is a direct result of inhibitor-enzyme binding as opposed to direct RNA binding, and the ATPase activity of NS3 is not affected. The syntheses and biological results are presented herein.
Collapse
Affiliation(s)
- Dawn N Ward
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, United States
| | - Daniel C Talley
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, United States
| | - Mrinalini Tavag
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, United States
| | - Samrawit Menji
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, United States
| | - Paul Schaughency
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, United States
| | - Andrea Baier
- Department of Molecular Biology, John Paul II Catholic University of Lublin, Poland
| | - Paul J Smith
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, United States.
| |
Collapse
|
7
|
Raney KD, Sharma SD, Moustafa IM, Cameron CE. Hepatitis C virus non-structural protein 3 (HCV NS3): a multifunctional antiviral target. J Biol Chem 2010; 285:22725-31. [PMID: 20457607 PMCID: PMC2906261 DOI: 10.1074/jbc.r110.125294] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Hepatitis C virus non-structural protein 3 contains a serine protease and an RNA helicase. Protease cleaves the genome-encoded polyprotein and inactivates cellular proteins required for innate immunity. Protease has emerged as an important target for the development of antiviral therapeutics, but drug resistance has turned out to be an obstacle in the clinic. Helicase is required for both genome replication and virus assembly. Mechanistic and structural studies of helicase have hurled this enzyme into a prominent position in the field of helicase enzymology. Nevertheless, studies of helicase as an antiviral target remain in their infancy.
Collapse
Affiliation(s)
- Kevin D. Raney
- From the
Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205 and
| | - Suresh D. Sharma
- the
Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Ibrahim M. Moustafa
- the
Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Craig E. Cameron
- the
Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802
| |
Collapse
|
8
|
Mikheikin AL, Lin HK, Mehta P, Jen-Jacobson L, Trakselis MA. A trimeric DNA polymerase complex increases the native replication processivity. Nucleic Acids Res 2010; 37:7194-205. [PMID: 19773426 PMCID: PMC2790891 DOI: 10.1093/nar/gkp767] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
DNA polymerases are essential enzymes in all domains of life for both DNA replication and repair. The primary DNA replication polymerase from Sulfolobus solfataricus (SsoDpo1) has been shown previously to provide the necessary polymerization speed and exonuclease activity to replicate the genome accurately. We find that this polymerase is able to physically associate with itself to form a trimer and that this complex is stabilized in the presence of DNA. Analytical gel filtration and electrophoretic mobility shift assays establish that initially a single DNA polymerase binds to DNA followed by the cooperative binding of two additional molecules of the polymerase at higher concentrations of the enzyme. Protein chemical crosslinking experiments show that these are specific polymerase–polymerase interactions and not just separate binding events along DNA. Isothermal titration calorimetry and fluorescence anisotropy experiments corroborate these findings and show a stoichiometry where three polymerases are bound to a single DNA substrate. The trimeric polymerase complex significantly increases both the DNA synthesis rate and the processivity of SsoDpo1. Taken together, these results suggest the presence of a trimeric DNA polymerase complex that is able to synthesize long DNA strands more efficiently than the monomeric form.
Collapse
Affiliation(s)
- Andrey L Mikheikin
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | | | | | | | |
Collapse
|
9
|
Rajagopal V, Patel SS. Viral Helicases. VIRAL GENOME REPLICATION 2009. [PMCID: PMC7121818 DOI: 10.1007/b135974_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Helicases are motor proteins that use the free energy of NTP hydrolysis to catalyze the unwinding of duplex nucleic acids. Helicases participate in almost all processes involving nucleic acids. Their action is critical for replication, recombination, repair, transcription, translation, splicing, mRNA editing, chromatin remodeling, transport, and degradation (Matson and Kaiser-Rogers 1990; Matson et al. 1994; Mendonca et al. 1995; Luking et al. 1998).
Collapse
|
10
|
Smiley RD, Zhuang Z, Benkovic SJ, Hammes GG. Single-molecule investigation of the T4 bacteriophage DNA polymerase holoenzyme: multiple pathways of holoenzyme formation. Biochemistry 2006; 45:7990-7. [PMID: 16800624 PMCID: PMC2516556 DOI: 10.1021/bi0603322] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In T4 bacteriophage, the DNA polymerase holoenzyme is responsible for accurate and processive DNA synthesis. The holoenzyme consists of DNA polymerase gp43 and clamp protein gp45. To form a productive holoenzyme complex, clamp loader protein gp44/62 is required for the loading of gp45, along with MgATP, and also for the subsequent binding of polymerase to the loaded clamp. Recently published evidence suggests that holoenzyme assembly in the T4 replisome may take place via more than one pathway [Zhuang, Z., Berdis, A. J., and Benkovic, S. J. (2006) Biochemistry 45, 7976-7989]. To demonstrate unequivocally whether there are multiple pathways leading to the formation of a productive holoenzyme, single-molecule fluorescence microscopy has been used to study the potential clamp loading and holoenzyme assembly pathways on a single-molecule DNA substrate. The results obtained reveal four pathways that foster the formation of a functional holoenzyme on DNA: (1) clamp loader-clamp complex binding to DNA followed by polymerase, (2) clamp loader binding to DNA followed by clamp and then polymerase, (3) clamp binding to DNA followed by clamp loader and then polymerase, and (4) polymerase binding to DNA followed by the clamp loader-clamp complex. In all cases, MgATP is required. The possible physiological significance of the various assembly pathways is discussed in the context of replication initiation and lagging strand synthesis during various stages of T4 phage replication.
Collapse
Affiliation(s)
- R Derike Smiley
- Department of Biochemistry, Duke University Medical Center, Box 3711, Durham, North Carolina 27710, USA
| | | | | | | |
Collapse
|
11
|
Delagoutte E, von Hippel PH. Mechanistic studies of the T4 DNA (gp41) replication helicase: functional interactions of the C-terminal Tails of the helicase subunits with the T4 (gp59) helicase loader protein. J Mol Biol 2005; 347:257-75. [PMID: 15740739 DOI: 10.1016/j.jmb.2005.01.036] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2004] [Revised: 01/07/2005] [Accepted: 01/12/2005] [Indexed: 11/28/2022]
Abstract
We compare the activities of the wild-type (gp41WT) and mutant (gp41delta C20) forms of the bacteriophage T4 replication helicase. In the gp41delta C20 mutant the helicase subunits have been genetically truncated to remove the 20 residue C-terminal tail peptide domains present in the wild-type enzyme. Here, we examine the interactions of these helicase forms with the T4 gp59 helicase loader and the gp32 single-stranded DNA binding proteins, both of which are physically and functionally coupled with the helicase in the T4 DNA replication complex. We show that the wild-type and mutant forms of the helicase do not differ in their ability to assemble into dimers and hexamers, nor in their interactions with gp61 (the T4 primase). However they do differ in their gp59-stimulated unwinding activities and in their abilities to translocate along a ssDNA strand that has been coated with gp32. We demonstrate that functional coupling between gp59 and gp41 involves direct interactions between the C-terminal tail peptides of the helicase subunits and the loading protein, and measure the energetics and kinetics of these interactions. This work helps to define a gp41-gp59 assembly pathway that involves an initial interaction between the C-terminal tails of the helicases and the gp59 loader proteins, followed by a conformational change of the helicase subunits that exposes new interaction surfaces, which can then be trapped by the gp59 protein. Our results suggest that the gp41-gp59 complex is then poised to bind ssDNA portions of the replication fork. We suggest that one of the important functions of gp59 may be to aid in the exposure of the ssDNA binding sites of the helicase subunits, which are otherwise masked and regulated by interactions with the helicase carboxy-terminal tail peptides.
Collapse
Affiliation(s)
- Emmanuelle Delagoutte
- Institute of Molecular Biology and Department of Chemistry, University of Oregon, Eugene, OR 97403, USA
| | | |
Collapse
|
12
|
Trakselis MA, Berdis AJ, Benkovic SJ. Examination of the role of the clamp-loader and ATP hydrolysis in the formation of the bacteriophage T4 polymerase holoenzyme. J Mol Biol 2003; 326:435-51. [PMID: 12559912 DOI: 10.1016/s0022-2836(02)01330-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Transient kinetic analyses further support the role of the clamp-loader in bacteriophage T4 as a catalyst which loads the clamp onto DNA through the sequential hydrolysis of two molecules of ATP before and after addition of DNA. Additional rapid-quench and pulse-chase experiments have documented this stoichiometry. The events of ATP hydrolysis have been related to the opening/closing of the clamp protein through fluorescence resonance energy transfer (FRET). In the absence of a hydrolysable form of ATP, the distance across the subunit interface of the clamp does not increase as measured by intramolecular FRET, suggesting gp45 cannot be loaded onto DNA. Therefore, ATP hydrolysis by the clamp-loader appears to open the clamp wide enough to encircle DNA easily. Two additional molecules of ATP then are hydrolyzed to close the clamp onto DNA. The presence of an intermolecular FRET signal indicated that the dissociation of the clamp-loader from this complex occurred after guiding the polymerase onto the correct face of the clamp bound to DNA. The final holoenzyme complex consists of the clamp, DNA, and the polymerase. Although this sequential assembly mechanism can be generally applied to most other replication systems studied to date, the specifics of ATP utilization seem to vary across replication systems.
Collapse
Affiliation(s)
- Michael A Trakselis
- Department of Chemistry, 415 Wartik Laboratory, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | |
Collapse
|
13
|
Delagoutte E, von Hippel PH. Molecular mechanisms of the functional coupling of the helicase (gp41) and polymerase (gp43) of bacteriophage T4 within the DNA replication fork. Biochemistry 2001; 40:4459-77. [PMID: 11284703 DOI: 10.1021/bi001306l] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Processive strand-displacement DNA synthesis with the T4 replication system requires functional "coupling" between the DNA polymerase (gp43) and the helicase (gp41). To define the physical basis of this functional coupling, we have used analytical ultracentrifugation to show that gp43 is a monomeric species at physiological protein concentrations and that gp41 and gp43 do not physically interact in the absence of DNA, suggesting that the functional coupling between gp41 and gp43 depends significantly on interactions modulated by the replication fork DNA. Results from strand-displacement DNA synthesis show that a minimal gp41-gp43 replication complex can perform strand-displacement synthesis at approximately 90 nts/s in a solution containing poly(ethylene glycol) to drive helicase loading. In contrast, neither the Klenow fragment of Escherichia coli DNA polymerase I nor the T7 DNA polymerase, both of which are nonprocessive polymerases, can carry out strand-displacement DNA synthesis with gp41, suggesting that the functional helicase-polymerase coupling may require the homologous system. However, we show that a heterologous helicase-polymerase pair can work if the polymerase is processive. Strand-displacement DNA synthesis using the gp41 helicase with the T4 DNA polymerase holoenzyme or the phage T7 DNA polymerase-thioredoxin complex, both of which are processive, proceeds at the rate of approximately 250 nts/s. However, replication fork assembly is less efficient with the heterologous helicase-polymerase pair. Therefore, a processive (homologous or heterologous) "trailing" DNA polymerase is sufficient to improve gp41 processivity and unwinding activity in the elongation stage of the helicase reaction, and specific T4 helicase-polymerase coupling becomes significant only in the assembly (or initiation) stage.
Collapse
Affiliation(s)
- E Delagoutte
- Institute of Molecular Biology and Department of Chemistry, University of Oregon, Eugene, Oregon 97403, USA
| | | |
Collapse
|
14
|
Abstract
A strikingly large number of the proteins involved in DNA metabolism adopt a toroidal -- or ring-shaped -- quaternary structure, even though they have completely unrelated functions. Given that these proteins all use DNA as a substrate, their convergence to one shape is probably not a coincidence. Ring-forming proteins may have been selected during evolution for advantages conferred by the toroidal shape on their interactions with DNA.
Collapse
Affiliation(s)
- M M Hingorani
- The Rockefeller University, 1230 York Avenue, New York, New York 10021, USA.
| | | |
Collapse
|
15
|
Jing DH, Dong F, Latham GJ, von Hippel PH. Interactions of bacteriophage T4-coded primase (gp61) with the T4 replication helicase (gp41) and DNA in primosome formation. J Biol Chem 1999; 274:27287-98. [PMID: 10480949 DOI: 10.1074/jbc.274.38.27287] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
One primase (gp61) and six helicase (gp41) subunits interact to form the bacteriophage T4-coded primosome at the DNA replication fork. In order to map some of the detailed interactions of the primase within the primosome, we have constructed and characterized variants of the gp61 primase that carry kinase tags at either the N or the C terminus of the polypeptide chain. These tagged gp61 constructs have been probed using several analytical methods. Proteolytic digestion and protein kinase protection experiments show that specific interactions with single-stranded DNA and the T4 helicase hexamer significantly protect both the N- and the C-terminal regions of the T4 primase polypeptide chain against modification by these procedures and that this protection becomes more pronounced when the primase is assembled within the complete ternary primosome complex. Additional discrete sites of both protection and apparent hypersensitivity along the gp61 polypeptide chain have also been mapped by proteolytic footprinting reactions for the binary helicase-primase complex and in the three component primosome. These studies provide a detailed map of a number of gp61 contact positions within the primosome and reveal interactions that may be important in the structure and function of this central component of the T4 DNA replication complex.
Collapse
Affiliation(s)
- D H Jing
- Institute of Molecular Biology and Department of Chemistry, University of Oregon, Eugene, Oregon 97403, USA
| | | | | | | |
Collapse
|
16
|
Berdis AJ, Benkovic SJ. Mechanism of bacteriophage T4 DNA holoenzyme assembly: the 44/62 protein acts as a molecular motor. Biochemistry 1997; 36:2733-43. [PMID: 9062100 DOI: 10.1021/bi962139l] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The role of ATP hydrolysis by the 44/62 protein in formation of the stable holoenzyme DNA replication complex has been further elucidated by specifically examining the role that the 44/62 protein plays in loading the 45 protein onto the DNA substrate. A stable phospho-45 protein or phosphorylated holoenzyme complex was not detected or isolated, suggesting that the 44/62 protein may not act as a protein kinase. Product and dead-end inhibition data are consistent with an ordered kinetic mechanism with respect to product release in which phosphate is released from the 44/62 protein prior to ADP. Positional isotope effect studies support this mechanism and failed to demonstrate that ATP hydrolysis by the 44/62 protein is reversible. Steady-state ATPase assays using aluminum tetrafluoride as an inhibitor are also consistent with release of ADP being partially rate-limiting. Aluminum tetrafluoride acts to trap ADP on the enzyme after turnover, forming a stable transition state analog that dissociates slowly from the enzyme. Processive DNA synthesis does not occur using the accessory proteins in the presence of pre- or post-hydrolysis analogs of ATP nor in the presence of ADP-AlF4, indicating that turnover of the 44/62 protein is absolutely required for formation of the holoenzyme complex. Collectively, data obtained regarding ATP hydrolysis by the 44/62 protein are described in terms of the clamp loading protein functioning as a molecular motor, similar to other systems including myosin and kinesin.
Collapse
Affiliation(s)
- A J Berdis
- Department of Chemistry, The Pennsylvania State University, University Park 16802-6300, USA
| | | |
Collapse
|
17
|
Dong F, Weitzel SE, von Hippel PH. A coupled complex of T4 DNA replication helicase (gp41) and polymerase (gp43) can perform rapid and processive DNA strand-displacement synthesis. Proc Natl Acad Sci U S A 1996; 93:14456-61. [PMID: 8962073 PMCID: PMC26154 DOI: 10.1073/pnas.93.25.14456] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
We have developed a coupled helicase-polymerase DNA unwinding assay and have used it to monitor the rate of double-stranded DNA unwinding catalyzed by the phage T4 DNA replication helicase (gp41). This procedure can be used to follow helicase activity in subpopulations in systems in which the unwinding-synthesis reaction is not synchronized on all the substrate-template molecules. We show that T4 replication helicase (gp41) and polymerase (gp43) can be assembled onto a loading site located near the end of a long double-stranded DNA template in the presence of a macro-molecular crowding agent, and that this coupled "two-protein" system can carry out ATP-dependent strand displacement DNA synthesis at physiological rates (400 to 500 bp per sec) and with high processivity in the absence of other T4 DNA replication proteins. These results suggest that a direct helicase-polymerase interaction may be central to fast and processive double-stranded DNA replication, and lead us to reconsider the roles of the other replication proteins in processivity control.
Collapse
Affiliation(s)
- F Dong
- Institute of Molecular Biology, University of Oregon, Eugene 97403-1129, USA
| | | | | |
Collapse
|
18
|
Berdis AJ, Benkovic SJ. Role of adenosine 5'-triphosphate hydrolysis in the assembly of the bacteriophage T4 DNA replication holoenzyme complex. Biochemistry 1996; 35:9253-65. [PMID: 8703931 DOI: 10.1021/bi952569w] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Steady-state and pre-steady-state rates of ATP hydrolysis by the 44/62 accessory protein were determined to elucidate the role of ATP hydrolysis in bacteriophage T4 holoenzyme complex formation. Steady-state ATPase measurements of the 44/62 protein under various combinations of 45 protein, DNA substrate, and T4 exo- polymerase indicate that although the 44/62 protein synergistically hydrolyzes ATP in the presence of 45 protein and DNA substrate, the ATPase activity of 44/62 is diminished substantially upon the formation of the holoenzyme complex. The decrease in activity is primarily in kcat while the K(m) for ATP is changed unsubstantially by the various combinations. Data suggest that the decrease in the rate of ATP hydrolysis upon the addition of T4 exo- polymerase in the presence of 45 protein and DNA substrate is due to formation of a stable holoenzyme complex consisting of only the 45 protein and T4 exo- polymerase in a 1:1 ratio. The 44/62 protein acts catalytically to load 45 protein onto the DNA substrate and does not remain a component of the holoenzyme complex. Pre-steady-state kinetic analysis of the ATP hydrolysis reaction catalyzed by the 44/62 protein loading the 45 protein onto the DNA substrate in the absence or presence of polymerase is biphasic, in which a burst in ATP hydrolysis precedes the steady-state rate of ATP hydrolysis. An identical burst in ATP consumption is obtained under either condition, indicating that ATP hydrolysis is not required to load polymerase into the holoenzyme complex. The data suggest one turnover of ATP at each of the four ATPase active sites of the 44/62 protein per 45 protein loaded. ATP hydrolysis by the 44/62 protein under conditions of holoenzyme complex formation is the rate-limiting step in holoenzyme complex formation. The process of holoenzyme formation appears to be identical for leading and lagging strand synthesis.
Collapse
Affiliation(s)
- A J Berdis
- Department of Chemistry, 152 Davey Laboratory, Pennsylvania State University, University Park 16802-6300, USA
| | | |
Collapse
|
19
|
Kaboord BF, Benkovic SJ. Dual role of the 44/62 protein as a matchmaker protein and DNA polymerase chaperone during assembly of the bacteriophage T4 holoenzyme complex. Biochemistry 1996; 35:1084-92. [PMID: 8547244 DOI: 10.1021/bi9520747] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Processive DNA synthesis in the bacteriophage T4 system requires the formation of a holoenzyme complex composed of the T4 DNA polymerase and the 44/62 and 45 accessory proteins. While ATP hydrolysis by the 44/62 protein is essential for holoenzyme formation, the role of the sliding clamp or processivity factor is attributed to the 45 protein. Beyond the need for ATP hydrolysis, the exact role of the 44/62 protein in complex assembly has not been clearly defined. In this paper, we have investigated the kinetics of complex assembly in the presence of both saturating and substoichiometric concentrations of the 44/62 protein. Under saturating conditions, complex assembly is 100% efficient, with all of the polymerase bound in a processive complex. Under conditions of limiting 44/62 protein, the 44/62 protein can act catalytically to assemble the 45 protein and polymerase into a productive complex. However, kinetic simulations indicate that a significant fraction of polymerase is sequestered in a nonproductive complex with the 45 protein. Thus, a second role for the 44/62 protein during complex assembly is that of a chaperone protein to ensure productive pol.45.DNA complex formation. We have also investigated the stability of the 45 protein on the DNA. The off rate of 0.003 s-1 for the 45 protein closely parallels that of the holoenzyme complex. Therefore, disassembly of the complex appears to involve the coordinated dissociation of both the 45 protein and the polymerase from the DNA.
Collapse
Affiliation(s)
- B F Kaboord
- Department of Chemistry, Pennsylvania State University, University Park 16802, USA
| | | |
Collapse
|
20
|
Kaboord BF, Benkovic SJ. Accessory proteins function as matchmakers in the assembly of the T4 DNA polymerase holoenzyme. Curr Biol 1995; 5:149-57. [PMID: 7743178 DOI: 10.1016/s0960-9822(95)00036-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
BACKGROUND During bacteriophage T4 DNA replication, the 44/62 and 45 accessory proteins combine with the DNA polymerase to form a processive holoenzyme complex. Formation of this complex is dependent upon ATP hydrolysis by the 44/62 protein. It is uncertain, however, whether the 44/62 protein remains with the 45 protein as part of this protein 'sliding clamp' during DNA synthesis, or whether it is required only for complex assembly. RESULTS To address this tissue, we have stoichiometrically assembled a processive T4 DNA polymerase holoenzyme complex, capable of strand-displacement synthesis, on a forked primer/template. By titrating the 44/62 protein to substoichiometric concentrations, we have shown that it can act catalytically to load on to the primer/template the 45 protein, which, in turn, combines with the DNA polymerase to form a processive complex. Two distinct complex species are formed: most of the complexes are highly stable, with a half life of 7 minutes, whereas the remainder have a half-life of 0.4 minutes. Precipitation of the protein-DNA complexes, followed by western blot analysis, verified that the complexes contain the DNA polymerase and 45 proteins, but not the 44/62 protein. CONCLUSION Using physiological protein concentrations, we have shown that the composition of the T4 protein sliding clamp consists solely of the 45 protein. The role of the 44/62 protein is that of a molecular matchmaker, in that it serves to load the 45 protein onto the DNA but does not remain an essential component of the processive complex.
Collapse
Affiliation(s)
- B F Kaboord
- Pennsylvania State University, Department of Chemistry, University Park 16802, USA
| | | |
Collapse
|
21
|
Nossal NG, Hinton DM, Hobbs LJ, Spacciapoli P. Purification of bacteriophage T4 DNA replication proteins. Methods Enzymol 1995; 262:560-84. [PMID: 8594379 DOI: 10.1016/0076-6879(95)62045-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- N G Nossal
- Laboratory of Molecular and Cellular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20893-0830, USA
| | | | | | | |
Collapse
|
22
|
Krishna TS, Kong XP, Gary S, Burgers PM, Kuriyan J. Crystal structure of the eukaryotic DNA polymerase processivity factor PCNA. Cell 1994; 79:1233-43. [PMID: 8001157 DOI: 10.1016/0092-8674(94)90014-0] [Citation(s) in RCA: 695] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The crystal structure of the processivity factor required by eukaryotic DNA polymerase delta, proliferating cell nuclear antigen (PCNA) from S. cerevisiae, has been determined at 2.3 A resolution. Three PCNA molecules, each containing two topologically identical domains, are tightly associated to form a closed ring. The dimensions and electrostatic properties of the ring suggest that PCNA encircles duplex DNA, providing a DNA-bound platform for the attachment of the polymerase. The trimeric PCNA ring is strikingly similar to the dimeric ring formed by the beta subunit (processivity factor) of E. coli DNA polymerase III holoenzyme, with which it shares no significant sequence identity. This structural correspondence further substantiates the mechanistic connection between eukaryotic and prokaryotic DNA replication that has been suggested on biochemical grounds.
Collapse
Affiliation(s)
- T S Krishna
- Laboratories of Molecular BIophysics, Rockefeller University, New York, New York 10021
| | | | | | | | | |
Collapse
|
23
|
Chin YE, Snow ET, Christie NT. A single stranded DNA binding protein isolated from HeLa cells facilitates Ni2+ activation of DNA polymerases in vitro. Biochemistry 1994; 33:15141-8. [PMID: 7999774 DOI: 10.1021/bi00254a025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The divalent nickel ion (Ni2+) is one of several metal ions that can substitute for Mg2+ in the activation of DNA polymerases in vitro, but usually with very low efficiency. We have purified and partially characterized a Ni(2+)-binding protein (p40) from HeLa cell extracts that can specifically enhance the polymerase activity of DNA polymerase alpha (pol alpha) and other DNA polymerases in response to Ni2+. This protein, with a molecular mass of 40 kDa, is a single stranded DNA binding protein that binds to a M13 DNA template-primer with an optimum stoichiometry of approximately 90 equiv of protein per equiv of DNA template and enhances the affinity of pol alpha for the primer-template. In the presence of Ni2+, p40 exhibits an increased affinity for DNA. The p40 increased by 3- to 6-fold the rates at which pol alpha and the Klenow fragment of Escherichia coli DNA polymerase I (KF) replicate different DNA templates in response to Ni2+. The low processivity of Ni(2+)-activated pol on primed M13 ssDNA was also enhanced by the presence of p40. The rates of Ni(2+)-dependent replication by inherently more processive enzymes, DNA polymerase delta and T4 DNA polymerase, were not significantly increased by p40 when M13 ssDNA was used as a template; however, p40 did increase the activity of T4 polymerase on an activated calf thymus DNA template. The protein did not stimulate Mg(2+)-activated DNA replication.
Collapse
Affiliation(s)
- Y E Chin
- Department of Environmental Medicine, New York University Medical Center, Tuxedo 10987
| | | | | |
Collapse
|
24
|
|
25
|
The slow dissociation of the T4 DNA polymerase holoenzyme when stalled by nucleotide omission. An indication of a highly processive enzyme. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(19)51070-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
26
|
Hacker K, Alberts B. The rapid dissociation of the T4 DNA polymerase holoenzyme when stopped by a DNA hairpin helix. A model for polymerase release following the termination of each Okazaki fragment. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(19)51071-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
27
|
Affiliation(s)
- P H Von Hippel
- Institute of Molecular Biology, University of Oregon, Eugene 97403
| | | | | |
Collapse
|
28
|
Bridgewater LC, Manning FC, Woo ES, Patierno SR. DNA polymerase arrest by adducted trivalent chromium. Mol Carcinog 1994; 9:122-33. [PMID: 8142016 DOI: 10.1002/mc.2940090304] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Carcinogenic chromium (Cr6+) enters cells via the sulfate transport system and undergoes intracellular reduction to trivalent chromium, which strongly adducts to DNA. In this study, the effect of adducted trivalent chromium on in vitro DNA synthesis was analyzed with a polymerase-arrest assay in which prematurely terminated replication products were separated on a DNA sequencing gel. A synthetic DNA replication template was treated with increasing concentrations of chromium(III) chloride. The two lowest chromium doses used resulted in biologically relevant adduct levels (6 and 21 adducts per 1,000 DNA nucleotides) comparable with those measured in nuclear matrix DNA from cells treated with a 50% cytotoxic dose of sodium chromate in vivo. In vitro replication of the chromium-treated template DNA using the Sequenase version 2.0 T7 DNA polymerase (United States Biochemical Corp., Cleveland, OH) resulted in dose-dependent polymerase arrest beginning at the lowest adduct levels analyzed. The pattern of polymerase arrest remained consistent as chromium adduct levels increased, with the most intense arrest sites occurring 1 base upstream of guanine residues on the template strand. Replication by the DNA polymerase I large (Klenow) fragment as well as by unmodified T7 DNA polymerase also resulted in similar chromium-induced polymerase arrest. Interstrand cross-linking between complementary strands was detected in template DNA containing 62, 111, and 223 chromium adducts per 1,000 DNA nucleotides but not in template containing 6 or 21 adducts per 1,000 DNA nucleotides, in which arrest nevertheless did occur. Low-level, dose-dependent interstrand cross-linking between primer and template DNA, however, was detectable even at the lowest chromium dose analyzed. Since only 9% of chromium adducts resulted in polymerase arrest in this system, we hypothesized that arrest occurred when the enzyme encountered chromium-mediated interstrand DNA-DNA cross-links between either the template and a separate DNA molecule or the template and its complementary strand in the same molecule. These results suggest that the obstruction of DNA replication by chromium-mediated DNA-DNA cross-links is a potential mechanism of chromium-induced genotoxicity in vivo.
Collapse
Affiliation(s)
- L C Bridgewater
- Department of Pharmacology, George Washington University Medical Center, Washington, District of Columbia 20037
| | | | | | | |
Collapse
|
29
|
Spacciapoli P, Nossal N. A single mutation in bacteriophage T4 DNA polymerase (A737V, tsL141) decreases its processivity as a polymerase and increases its processivity as a 3‘–>5‘ exonuclease. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)42370-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
30
|
Zhuang W, Prohofsky EW. Hot phonon induced bond breaking: Application to the advance of a replicating fork in DNA. PHYSICAL REVIEW LETTERS 1993; 71:2150-2153. [PMID: 10054595 DOI: 10.1103/physrevlett.71.2150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
|
31
|
Hockensmith J, Kubasek W, Evertsz E, Mesner L, von Hippel P. Laser cross-linking of proteins to nucleic acids. II. Interactions of the bacteriophage T4 DNA replication polymerase accessory proteins complex with DNA. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)82315-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
32
|
Abstract
Molecular matchmakers are a class of proteins that use the energy released from the hydrolysis of adenosine triphosphate to cause a conformational change in one or both components of a DNA binding protein pair to promote formation of a metastable DNA-protein complex. After matchmaking the matchmaker dissociates from the complex, permitting the matched protein to engage in other protein-protein interactions to bring about the effector function. Matchmaking is most commonly used under circumstances that require targeted, high-avidity DNA binding without relying solely on sequence specificity. Molecular matchmaking is an extensively used mechanism in repair, replication, and transcription and most likely in recombination and transposition reactions, too.
Collapse
Affiliation(s)
- A Sancar
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill 27599
| | | |
Collapse
|
33
|
Matthews JT, Terry BJ, Field AK. The structure and function of the HSV DNA replication proteins: defining novel antiviral targets. Antiviral Res 1993; 20:89-114. [PMID: 8384825 DOI: 10.1016/0166-3542(93)90001-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The absolute dependence of herpes simplex virus (HSV) replication on HSV DNA polymerase and six other viral-encoded replication proteins implies that specific inhibitors of these proteins' functions would be potent antiviral agents. The only currently licensed anti-herpes simplex drug, acyclovir, is an inhibitor of HSV DNA polymerase and is widely held to block viral replication primarily by specifically inhibiting viral DNA replication. In spite of the substantial advance in HSV therapy in recent years through the introduction of acyclovir, this anti-HSV compound and most of the other compounds under pharmaceutical development are substrate analogs. Since antiviral drug resistance has become an issue of increasing clinical importance, the need for structurally unrelated agents which incorporate novel mechanisms of viral inhibition is apparent. Understanding the structure and function of herpesvirus DNA polymerase and its interaction with the other six essential replication proteins at the replication origin should assist us in designing the next generation of therapeutic agents. The sequences of these proteins have been deduced and the proteins themselves have been expressed and purified in a variety of systems. The current challenge, therefore, is to use the available information about these proteins to identify and develop new, exquisitely specific antiviral therapeutics. In this review, we have summarized the current approaches and the results of structure/function studies of the herpes virus proteins essential for DNA replication, with the goal of more precisely defining novel antiviral targets.
Collapse
Affiliation(s)
- J T Matthews
- Department of Virology, Bristol-Myers Squibb Pharmaceutical Research Institute, Princeton, NJ 08543
| | | | | |
Collapse
|
34
|
Chen YZ, Zhuang W, Prohofsky EW. Energy flow considerations and thermal fluctuational opening of DNA base pairs at a replicating fork: unwinding consistent with observed replication rates. J Biomol Struct Dyn 1992; 10:415-27. [PMID: 1466817 DOI: 10.1080/07391102.1992.10508656] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The effect of an open loop of various sizes on the thermal stability of the adjoining intact base pairs in a duplex DNA chain is studied in a lattice model of Poly(dG).Poly(dC). We find that for a Y-shaped fork configuration the thermal fluctuation at the fork is so enhanced that the life time of the adjoining base pair is much smaller than the 1 millisecond time scale associated with helicase separation of a base pair in some systems. Our analysis indicates that thermal fluctuational base pair opening may be of importance in facilitating the enzyme unwinding process during chain elongation of a replicating DNA. It is most likely that the thermal fluctuational opening of the base pair at the junction of a replicating fork is fast enough so that a DNA unwinding enzyme can encounter an unstacked base pair with reasonable probability. This conclusion can explain several experimental observations regarding the temporal relationship between ATP hydrolysis by accessory proteins and primer elongation by a holoenzyme complex in ssDNA. We also discuss a mechanism by which the energy associated with ATP hydrolysis may enhance the thermal driven base opening mechanism.
Collapse
Affiliation(s)
- Y Z Chen
- Department of Physics, Purdue University, West Lafayette, IN 47907
| | | | | |
Collapse
|
35
|
|
36
|
Herendeen DR, Kassavetis GA, Geiduschek EP. A transcriptional enhancer whose function imposes a requirement that proteins track along DNA. Science 1992; 256:1298-303. [PMID: 1598572 DOI: 10.1126/science.1598572] [Citation(s) in RCA: 104] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Transcriptional regulation of the bacteriophage T4 late genes requires the participation of three DNA polymerase accessory proteins that are encoded by T4 genes 44, 62, and 45, and that act at an enhancer-like site. Transcriptional activation by these DNA replication proteins also requires the function of an RNA polymerase-bound coactivator protein that is encoded by T4 gene 33 and a promoter recognition protein that is encoded by T4 gene 55. Transcriptional activation in DNA constructs, in which the enhancer and a T4 late promoter can be segregated on two rings of a DNA catenane, has now been analyzed. The ability of an interposed DNA-binding protein to affect communication between the enhancer and the promoter was also examined. Together, these experiments demonstrate that this transcription-activating signal is conveyed between its enhancer and a T4 late promoter by a DNA-tracking mechanism. Alternative activation mechanisms relying entirely on through-space interactions of enhancer-bound and promoter-bound proteins are excluded.
Collapse
Affiliation(s)
- D R Herendeen
- Department of Biology, University of California, San Diego, La Jolla 92093-0634
| | | | | |
Collapse
|
37
|
Gogol EP, Young MC, Kubasek WL, Jarvis TC, von Hippel PH. Cryoelectron microscopic visualization of functional subassemblies of the bacteriophage T4 DNA replication complex. J Mol Biol 1992; 224:395-412. [PMID: 1532838 DOI: 10.1016/0022-2836(92)91003-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A specific complex of proteins involved in bacteriophage T4 replication has been visualized by cryoelectron microscopy as distinctive structures in association with DNA. Formation of these structures, which we term "hash-marks" for their characteristic appearance in association with DNA, requires the presence of the T4 polymerase accessory proteins (the products of T4 genes 44, 45 and 62), ATP and appropriate DNA cofactors. ATP hydrolysis by the DNA-stimulated ATPase activity of the accessory proteins is required for visualization of the hash-mark structures. If ATP hydrolysis is stopped by chelation of Mg2+, by dilution with a non-hydrolyzable ATP analogue, or by exhaustion of the ATP supply, the DNA-associated structures disappear within seconds to minutes, indicating that they have a finite and relatively short lifetime. The labile nature of the structures makes their study by more conventional methods of electron microscopy, as well as by most other structural approaches, difficult if not impossible. Addition of T4 gene 32 protein increases the number of hash-mark structures, as well as increasing the rate of ATP hydrolysis. Using plasmid DNA in either a native (supercoiled) or enzymatically modified state, we have shown that nicked or gapped DNA is required as a cofactor for hash-mark formation. Stimulation of the ATPase activity of the accessory proteins has a similar cofactor requirement. These conditions for the formation and visualization of the structures parallel those required for the action of these complexes in promoting the enzymatic activity of the T4 DNA polymerase, as well as the transcription of late T4 genes. Substructure in the hash-marks has been examined by image analysis, which reveals a variation in the projected density of the subunits comprising the structures. The three-dimensional size of the hash-marks, modeled as a solid ellipsoid, is consistent with that of the gene 44/62 protein subcomplex. Density variations suggest an arrangement of subunits, either tetragonal or trigonal, viewed from a variety of angles about the DNA axis. The hash-mark structures often appear in clusters, even in DNA that has a single nick. We interpret this distribution as the result of one-dimensional translocation of the hash-marks along the DNA after their ATP-dependent initial association with, and injection into, the DNA at nicks or gaps.
Collapse
Affiliation(s)
- E P Gogol
- Institute of Molecular Biology, University of Oregon, Eugene 97403
| | | | | | | | | |
Collapse
|
38
|
Korangy F, Julin D. A mutation in the consensus ATP-binding sequence of the RecD subunit reduces the processivity of the RecBCD enzyme from Escherichia coli. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)50698-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
39
|
Kozak M. A consideration of alternative models for the initiation of translation in eukaryotes. Crit Rev Biochem Mol Biol 1992; 27:385-402. [PMID: 1521462 DOI: 10.3109/10409239209082567] [Citation(s) in RCA: 114] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Although recent biochemical and genetic investigations have produced some insights into the mechanism of initiation of translation in eukaryotic cells, two aspects of the initiation process remain controversial. One unsettled issue concerns a variety of functions that have been proposed for mRNA binding proteins, including some initiation factors. The need to distinguish between specific and nonspecific binding of proteins to mRNA is discussed herein. The possibility that certain initiation factors might act as RNA helicases is evaluated along with other ideas about the functions of mRNA- and ATP-binding factors. A second controversial issue concerns the universality of the scanning mechanism for initiation of translation. According to the conventional scanning model, the initial contact between eukaryotic ribosomes and mRNA occurs exclusively at the 5' terminus of the message, which is usually capped. The existence of uncapped mRNAs among a few plant and animal viruses has prompted a vigorous search for other modes of initiation. An "internal initiation" mechanism, first proposed for picornaviruses, has received considerable attention. Although a large body of evidence has been adduced in support of such a mechanism, many of the experiments appear flawed or inconclusive. Some suggestions are given for improving experiments designed to test the internal initiation hypothesis.
Collapse
Affiliation(s)
- M Kozak
- Department of Biochemistry, University of Medicine and Dentistry of New Jersey, Piscataway 08854
| |
Collapse
|
40
|
Geiduschek EP. Two prokaryotic transcriptional enhancer systems. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1992; 43:109-33. [PMID: 1410444 DOI: 10.1016/s0079-6603(08)61046-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- E P Geiduschek
- Department of Biology, University of California, San Diego, La Jolla 92093
| |
Collapse
|