1
|
Lewis AM, Recalde A, Bräsen C, Counts JA, Nussbaum P, Bost J, Schocke L, Shen L, Willard DJ, Quax TEF, Peeters E, Siebers B, Albers SV, Kelly RM. The biology of thermoacidophilic archaea from the order Sulfolobales. FEMS Microbiol Rev 2021; 45:fuaa063. [PMID: 33476388 PMCID: PMC8557808 DOI: 10.1093/femsre/fuaa063] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/26/2020] [Indexed: 12/13/2022] Open
Abstract
Thermoacidophilic archaea belonging to the order Sulfolobales thrive in extreme biotopes, such as sulfuric hot springs and ore deposits. These microorganisms have been model systems for understanding life in extreme environments, as well as for probing the evolution of both molecular genetic processes and central metabolic pathways. Thermoacidophiles, such as the Sulfolobales, use typical microbial responses to persist in hot acid (e.g. motility, stress response, biofilm formation), albeit with some unusual twists. They also exhibit unique physiological features, including iron and sulfur chemolithoautotrophy, that differentiate them from much of the microbial world. Although first discovered >50 years ago, it was not until recently that genome sequence data and facile genetic tools have been developed for species in the Sulfolobales. These advances have not only opened up ways to further probe novel features of these microbes but also paved the way for their potential biotechnological applications. Discussed here are the nuances of the thermoacidophilic lifestyle of the Sulfolobales, including their evolutionary placement, cell biology, survival strategies, genetic tools, metabolic processes and physiological attributes together with how these characteristics make thermoacidophiles ideal platforms for specialized industrial processes.
Collapse
Affiliation(s)
- April M Lewis
- Department of Chemical and Biomolecular Engineering, North Carolina State University. Raleigh, NC 27695, USA
| | - Alejandra Recalde
- Institute for Biology, Molecular Biology of Archaea, University of Freiburg, 79104 Freiburg, Germany
| | - Christopher Bräsen
- Department of Molecular Enzyme Technology and Biochemistry, Environmental Microbiology and Biotechnology, and Centre for Water and Environmental Research, University of Duisburg-Essen, 45117 Essen, Germany
| | - James A Counts
- Department of Chemical and Biomolecular Engineering, North Carolina State University. Raleigh, NC 27695, USA
| | - Phillip Nussbaum
- Institute for Biology, Molecular Biology of Archaea, University of Freiburg, 79104 Freiburg, Germany
| | - Jan Bost
- Institute for Biology, Molecular Biology of Archaea, University of Freiburg, 79104 Freiburg, Germany
| | - Larissa Schocke
- Department of Molecular Enzyme Technology and Biochemistry, Environmental Microbiology and Biotechnology, and Centre for Water and Environmental Research, University of Duisburg-Essen, 45117 Essen, Germany
| | - Lu Shen
- Department of Molecular Enzyme Technology and Biochemistry, Environmental Microbiology and Biotechnology, and Centre for Water and Environmental Research, University of Duisburg-Essen, 45117 Essen, Germany
| | - Daniel J Willard
- Department of Chemical and Biomolecular Engineering, North Carolina State University. Raleigh, NC 27695, USA
| | - Tessa E F Quax
- Archaeal Virus–Host Interactions, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Eveline Peeters
- Research Group of Microbiology, Department of Bioengineering Sciences, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Bettina Siebers
- Department of Molecular Enzyme Technology and Biochemistry, Environmental Microbiology and Biotechnology, and Centre for Water and Environmental Research, University of Duisburg-Essen, 45117 Essen, Germany
| | - Sonja-Verena Albers
- Institute for Biology, Molecular Biology of Archaea, University of Freiburg, 79104 Freiburg, Germany
| | - Robert M Kelly
- Department of Chemical and Biomolecular Engineering, North Carolina State University. Raleigh, NC 27695, USA
| |
Collapse
|
2
|
Kerk D, Mattice JF, Valdés-Tresanco ME, Noskov SY, Ng KKS, Moorhead GB. The origin and radiation of the phosphoprotein phosphatase (PPP) enzymes of Eukaryotes. Sci Rep 2021; 11:13681. [PMID: 34211082 PMCID: PMC8249667 DOI: 10.1038/s41598-021-93206-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 06/22/2021] [Indexed: 11/18/2022] Open
Abstract
Phosphoprotein phosphatase (PPP) enzymes are ubiquitous proteins involved in cellular signaling pathways and other functions. Here we have traced the origin of the PPP sequences of Eukaryotes and their radiation. Using a bacterial PPP Hidden Markov Model (HMM) we uncovered "BacterialPPP-Like" sequences in Archaea. A HMM derived from eukaryotic PPP enzymes revealed additional, unique sequences in Archaea and Bacteria that were more like the eukaryotic PPP enzymes then the bacterial PPPs. These sequences formed the basis of phylogenetic tree inference and sequence structural analysis allowing the history of these sequence types to be elucidated. Our phylogenetic tree data strongly suggest that eukaryotic PPPs ultimately arose from ancestors in the Asgard archaea. We have clarified the radiation of PPPs within Eukaryotes, substantially expanding the range of known organisms with PPP subtypes (Bsu1, PP7, PPEF/RdgC) previously thought to have a more restricted distribution. Surprisingly, sequences from the Methanosarcinaceae (Euryarchaeota) form a strongly supported sister group to eukaryotic PPPs in our phylogenetic analysis. This strongly suggests an intimate association between an Asgard ancestor and that of the Methanosarcinaceae. This is highly reminiscent of the syntrophic association recently demonstrated between the cultured Lokiarchaeal species Prometheoarchaeum and a methanogenic bacterial species.
Collapse
Affiliation(s)
- David Kerk
- Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada
| | - Jordan F Mattice
- Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada
| | - Mario E Valdés-Tresanco
- Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada
| | - Sergei Yu Noskov
- Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada
| | - Kenneth K-S Ng
- Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada
- Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Avenue, Windsor, ON, N9B 3P4, Canada
| | - Greg B Moorhead
- Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada.
| |
Collapse
|
3
|
Esser D, Hoffmann L, Pham TK, Bräsen C, Qiu W, Wright PC, Albers SV, Siebers B. Protein phosphorylation and its role in archaeal signal transduction. FEMS Microbiol Rev 2016; 40:625-47. [PMID: 27476079 PMCID: PMC5007285 DOI: 10.1093/femsre/fuw020] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2016] [Indexed: 12/23/2022] Open
Abstract
Reversible protein phosphorylation is the main mechanism of signal transduction that enables cells to rapidly respond to environmental changes by controlling the functional properties of proteins in response to external stimuli. However, whereas signal transduction is well studied in Eukaryotes and Bacteria, the knowledge in Archaea is still rather scarce. Archaea are special with regard to protein phosphorylation, due to the fact that the two best studied phyla, the Euryarchaeota and Crenarchaeaota, seem to exhibit fundamental differences in regulatory systems. Euryarchaeota (e.g. halophiles, methanogens, thermophiles), like Bacteria and Eukaryotes, rely on bacterial-type two-component signal transduction systems (phosphorylation on His and Asp), as well as on the protein phosphorylation on Ser, Thr and Tyr by Hanks-type protein kinases. Instead, Crenarchaeota (e.g. acidophiles and (hyper)thermophiles) only depend on Hanks-type protein phosphorylation. In this review, the current knowledge of reversible protein phosphorylation in Archaea is presented. It combines results from identified phosphoproteins, biochemical characterization of protein kinases and protein phosphatases as well as target enzymes and first insights into archaeal signal transduction by biochemical, genetic and polyomic studies. The authors review the current knowledge about protein phosphorylation in Archaea and its impact on signaling in this organism group.
Collapse
Affiliation(s)
- Dominik Esser
- Molecular Enzyme Technology and Biochemistry, Biofilm Centre, Faculty of Chemistry, University of Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany
| | - Lena Hoffmann
- Molecular Biology of Archaea, Institute of Biology II, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany
| | - Trong Khoa Pham
- ChELSI Institute, Department of Chemical and Biological Engineering, The University of Sheffield, Mappin Street, Sheffield S1 3JD, UK
| | - Christopher Bräsen
- Molecular Enzyme Technology and Biochemistry, Biofilm Centre, Faculty of Chemistry, University of Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany
| | - Wen Qiu
- ChELSI Institute, Department of Chemical and Biological Engineering, The University of Sheffield, Mappin Street, Sheffield S1 3JD, UK
| | - Phillip C Wright
- ChELSI Institute, Department of Chemical and Biological Engineering, The University of Sheffield, Mappin Street, Sheffield S1 3JD, UK School of Chemical Engineering and Advanced Materials, Faculty of Science, Agriculture and Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Sonja-Verena Albers
- Molecular Biology of Archaea, Institute of Biology II, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany
| | - Bettina Siebers
- Molecular Enzyme Technology and Biochemistry, Biofilm Centre, Faculty of Chemistry, University of Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany
| |
Collapse
|
4
|
Abstract
The third domain of life, the Archaea (formerly Archaebacteria), is populated by a physiologically diverse set of microorganisms, many of which reside at the ecological extremes of our global environment. Although ostensibly prokaryotic in morphology, the Archaea share much closer evolutionary ties with the Eukarya than with the superficially more similar Bacteria. Initial genomic, proteomic, and biochemical analyses have revealed the presence of "eukaryotic" protein kinases and phosphatases and an intriguing set of serine-, threonine-, and tyrosine-phosphorylated proteins in the Archaea that may offer new insights into this important regulatory mechanism.
Collapse
Affiliation(s)
- Peter J Kennelly
- From the Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061
| |
Collapse
|
5
|
Abstract
Atypical protein kinases of the RIO (right open reading frame) kinase family are found in all three domains of life, emphasizing their essential function. In all archaeal genomes sequenced to date, typically two, but at least one, members of the RIO kinase family have been identified. Although the function of RIO kinases in Archaea remains to be resolved, bioinformatics analysis (e.g. comparison of the phylogenetic distribution and gene neighbourhood analysis, as well as interaction analysis) in combination with the available phosphoproteome study of Sulfolobus solfataricus provided some first hints to the possible function as well as revealed some putative target proteins for RIO kinases in Archaea. This study suggests a possible function of archaeal RIO kinases in RNA and/or DNA binding/processing translation initiation or ribosomal biogenesis resembling the assumed physiological role in yeast.
Collapse
|
6
|
A PPM-family protein phosphatase from the thermoacidophile Thermoplasma volcanium hydrolyzes protein-bound phosphotyrosine. Extremophiles 2008; 13:371-7. [DOI: 10.1007/s00792-008-0211-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2008] [Accepted: 11/10/2008] [Indexed: 11/30/2022]
|
7
|
Li R, Potters MB, Shi L, Kennelly PJ. The protein phosphatases of Synechocystis sp. strain PCC 6803: open reading frames sll1033 and sll1387 encode enzymes that exhibit both protein-serine and protein-tyrosine phosphatase activity in vitro. J Bacteriol 2005; 187:5877-84. [PMID: 16109928 PMCID: PMC1196173 DOI: 10.1128/jb.187.17.5877-5884.2005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The open reading frames (ORFs) encoding two potential protein-serine/threonine phosphatases from the cyanobacterium Synechocystis sp. strain PCC 6803 were cloned and their protein products expressed in Escherichia coli cells. The product of ORF sll1033, SynPPM3, is a homologue of the PPM family of protein-serine/threonine phosphatases found in all eukaryotes as well as many members of the Bacteria. Surprisingly, the recombinant protein phosphatase dephosphorylated phosphotyrosine- as well as phosphoserine-containing proteins in vitro. While kinetic analyses indicate that the enzyme was more efficient at dephosphorylating the latter, replacement of Asp608 by asparagine enhanced activity toward a phosphotyrosine-containing protein fourfold. The product of ORF sll1387, SynPPP1, is the sole homolog of the PPP family of protein phosphatases encoded by the genome of Synechocystis sp. strain PCC 6803. Like many other bacterial PPPs, the enzyme dephosphorylated phosphoserine- and phosphotyrosine-containing proteins with comparable efficiencies. However, while previously described PPPs from prokaryotic organisms required the addition of exogenous metal ion cofactors, such as Mg2+ or Mn2+, for activity, recombinantly produced SynPPP1 displayed near-maximal activity in the absence of added metals. Inductively coupled plasma mass spectrometry indicated that recombinant SynPPP1 contained significant quantities, 0.32 to 0.44 mol/mole total, of Mg and Mn. In this respect, the cyanobacterial enzyme resembled eukaryotic members of the PPP family, which are metalloproteins. mRNA encoding SynPPP1 or SynPPM3 could be detected in cells grown under many, but not all, environmental conditions.
Collapse
Affiliation(s)
- Renhui Li
- Department of Biochemistry-0308, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | | | | | | |
Collapse
|
8
|
Abstract
One of the first hurdles to be negotiated in the postgenomic era involves the description of the entire protein content of the cell, the proteome. Such efforts are presently complicated by the various posttranslational modifications that proteins can experience, including glycosylation, lipid attachment, phosphorylation, methylation, disulfide bond formation, and proteolytic cleavage. Whereas these and other posttranslational protein modifications have been well characterized in Eucarya and Bacteria, posttranslational modification in Archaea has received far less attention. Although archaeal proteins can undergo posttranslational modifications reminiscent of what their eucaryal and bacterial counterparts experience, examination of archaeal posttranslational modification often reveals aspects not previously observed in the other two domains of life. In some cases, posttranslational modification allows a protein to survive the extreme conditions often encountered by Archaea. The various posttranslational modifications experienced by archaeal proteins, the molecular steps leading to these modifications, and the role played by posttranslational modification in Archaea form the focus of this review.
Collapse
Affiliation(s)
- Jerry Eichler
- Dept. of Life Sciences, Ben Gurion University, P.O. Box 653, Beersheva 84105, Israel.
| | | |
Collapse
|
9
|
Lower BH, Kennelly PJ. Open reading frame sso2387 from the archaeon Sulfolobus solfataricus encodes a polypeptide with protein-serine kinase activity. J Bacteriol 2003; 185:3436-45. [PMID: 12754243 PMCID: PMC155377 DOI: 10.1128/jb.185.11.3436-3445.2003] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2002] [Accepted: 03/21/2003] [Indexed: 11/20/2022] Open
Abstract
The predicted polypeptide product of open reading frame sso2387 from the archaeon Sulfolobus solfataricus, SsoPK2, displayed several of the sequence features conserved among the members of the "eukaryotic" protein kinase superfamily. sso2387 was cloned, and its polypeptide product was expressed in Escherichia coli. The recombinant protein, rSsoPK2, was recovered in insoluble aggregates that could be dispersed by using high concentrations (5 M) of urea. The solubilized polypeptide displayed the ability to phosphorylate itself as well as several exogenous proteins, including mixed histones, casein, bovine serum albumin, and reduced carboxyamidomethylated and maleylated lysozyme, on serine residues. The source of this activity resided in that portion of the protein displaying homology to the catalytic domain of eukaryotic protein kinases. By use of mass spectrometry, the sites of autophosphorylation were found to be located in two areas, one immediately N terminal to the region corresponding to subdomain I of eukaryotic protein kinases, and the second N terminal to the presumed activation loop located between subdomains VII and VIII. Autophosphorylation of rSsoPK2 could be uncoupled from the phosphorylation of exogenous proteins by manipulation of the temperature or mutagenic alteration of the enzyme. Autophosphorylation was detected only at temperatures >or=60 degrees C, whereas phosphorylation of exogenous proteins was detectable at 37 degrees C. Similarly, replacement of one of the potential sites of autophosphorylation, Ser(548), with alanine blocked autophosphorylation but not phosphorylation of an exogenous protein, casein.
Collapse
Affiliation(s)
- Brian H Lower
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA
| | | |
Collapse
|
10
|
Zaigler A, Schuster SC, Soppa J. Construction and usage of a onefold-coverage shotgun DNA microarray to characterize the metabolism of the archaeon Haloferax volcanii. Mol Microbiol 2003; 48:1089-105. [PMID: 12753198 DOI: 10.1046/j.1365-2958.2003.03497.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Haloferax volcanii is a moderately halophilic archaeon that can grow aerobically and anaerobically with a variety of substrates. We undertook a novel approach for the characterization of metabolic adaptations, i.e. transcriptome analysis with a onefold-coverage shotgun DNA microarray. A genomic library was constructed and converted into a polymerase chain reaction (PCR) product library, which was used to print two DNA microarrays, a 960-spot test array used for optimization of microarray analysis and a 2880-spot onefold-coverage array. H. volcanii cultures were shifted from casamino acid-based metabolism to glucose-based metabolism, and the transcriptome changes were analysed with the onefold-coverage array at five time points covering the transition phase and the onset of exponential growth with the new carbon source. About 10% of all genes were found to be more than 2.5-fold regulated at at least one time point. The genes fall into five clusters of kinetically co-regulated genes. For members of all five clusters, the results were verified by Northern blot analyses. The identity of the regulated genes was determined by sequencing. Many co-regulated genes encode proteins of common functions. Expected as well as a variety of unexpected findings allowed predictions about the central metabolism, the transport capacity and the cellular composition of H. volcanii growing on casamino acids and on glucose. The microarray analyses are in accordance with the growth rates and ribosome contents of H. volcanii growing on the two carbon sources. Analysis of the results revealed that onefold-coverage shotgun DNA microarrays are well suited to characterize the regulation of metabolic pathways as well as protein complexes in response to changes in environmental conditions.
Collapse
Affiliation(s)
- Alexander Zaigler
- J. W. Goethe-Universität, Biozentrum Niederursel, Institut für Mikrobiologie, Marie-Curie-Str 9, D-60439 Frankfurt, Germany
| | | | | |
Collapse
|
11
|
Faraone-Mennella MR, De Luca P, Giordano A, Gambacorta A, Nicolaus B, Farina B. High stability binding of poly(ADPribose) polymerase-like thermozyme from S. solfataricus with circular DNA. J Cell Biochem 2002; 85:158-66. [PMID: 11891859 DOI: 10.1002/jcb.10108] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The poly(ADPribose) polymerase-like thermozyme from the hyperthermophilic archaeon S. solfataricus was found to bind DNA with high affinity and non-specifically. Binding was independent of base composition and length of the nucleic acid, and the protein showed a slight preference for the circular structure. By using pCMV-Neo-Bam plasmid as experimental model, the behaviour of the thermozyme upon binding with either circular or linear plasmid was analyzed. pCMV-Neo-Bam has a single HindIII site that allows to obtain the linear structure after digestion with the restriction enzyme. Intrinsic tryptophan-dependent fluorescence of poly(ADPribose) polymerase-like thermozyme noticeably changed upon addition of either circular or linear plasmid, showing the same binding affinity (K=2 x 10(9) M-1). However, experiments of protection against temperature and DNase I gave evidence that the thermozyme formed more stable complexes with the circular structure than with the linear pCMV-Neo-Bam. Increasing temperature at various DNA/protein ratios had a double effect to reduce the amount of circular DNA undergoing denaturation and to split the melting point towards higher temperatures. Nil or irrelevant effect was observed with the linear form. Similarly, DNase acted preferentially on the linear plasmid/protein complexes, producing an extensive digestion even at high protein/DNA ratios, whereas the circular plasmid was protected by the thermozyme in a dose-dependent manner. The complexes formed by archaeal poly(ADPribose) polymerase (PARPss) with the circular plasmid were visualized by bandshift experiments both with ethidium bromide staining and by labelling the circular plasmid with 32P. The stability of complexes was tested as a function of enzyme concentration and in the presence of a cold competitor and of 0.1% SDS. From the performed experiments, a number of 3-10 base pairs bound per molecule of enzyme was calculated, indicating a high frequency of binding. The presence of circular DNA was also able to increase by 80% the poly(ADPribose)polymerase-like activity, as compared to 25% activation induced by the linear pCMV-Neo-Bam.
Collapse
Affiliation(s)
- Maria Rosaria Faraone-Mennella
- Dipartimento di Chimica Biologica, Facolta' di Scienze, Universita' "Federico II", Via Mezzocannone, 16, 80134 Napoli, Italy.
| | | | | | | | | | | |
Collapse
|
12
|
Ruppert U, Irmler A, Kloft N, Forchhammer K. The novel protein phosphatase PphA from Synechocystis PCC 6803 controls dephosphorylation of the signalling protein PII. Mol Microbiol 2002; 44:855-64. [PMID: 11994164 DOI: 10.1046/j.1365-2958.2002.02927.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The family of PII signal transduction proteins consists of one of the most highly conserved signalling proteins in nature. The cyanobacterial PII homologue transmits signals on the nitrogen and carbon status of the cells through phosphorylation of a seryl residue. Recently, we identified a protein phosphatase 2C (PP2C) homologue from the cyanobacterium Synechocystis PCC 6803, termed PphA, to be the cellular phospho-PII (PII-P) phosphatase. In this investigation, we characterized the enzymatic properties of PphA and investigated the regulation of its catalytic activity towards PII-P. PphA dephosphorylates phosphocasein and PII-P with similar efficiency in a strictly Mg2+- or Mn2+-dependent reaction. Low-molecular-weight phosphorylated molecules are poor substrates for PphA. Its reactivity towards PII-P, but not towards phosphocasein, is inhibited by various nucleotides, suggesting that this effect is based on specific properties of the PII protein. The inhibitory effect of ATP can be strongly enhanced by the addition of 2-oxoglutarate or oxaloacetate. At low concentrations of 2-oxoglutarate, changes in the ATP levels within the physiological range affect the degree of PII-Pase inhibition, whereas at 2-oxoglutarate levels beyond 0.1 mM, inhibition is almost complete at very low ATP levels. This suggests that PII dephosphorylation is not only sensitive to 2-oxoglutarate and oxaloacetate levels, it also integrates signals from the energy charge of the cells under specific cellular conditions.
Collapse
Affiliation(s)
- Ulrike Ruppert
- Institut für Mikrobiologie und Molekularbiologie, Justus-Liebig-Universität Giessen, Heinrich-Buff-Ring 26-32, Germany
| | | | | | | |
Collapse
|
13
|
Shi L, Kehres DG, Maguire ME. The PPP-family protein phosphatases PrpA and PrpB of Salmonella enterica serovar Typhimurium possess distinct biochemical properties. J Bacteriol 2001; 183:7053-7. [PMID: 11717262 PMCID: PMC95552 DOI: 10.1128/jb.183.24.7053-7057.2001] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Salmonella enterica serovar Typhimurium requires Mn(2+), but only a few Mn(2+)-dependent enzymes have been identified from bacteria. To characterize Mn(2+)-dependent enzymes from serovar Typhimurium, two putative PPP-family protein phosphatase genes were cloned from serovar Typhimurium and named prpA and prpB. Their DNA-derived amino acid sequences showed 61% identity to the corresponding Escherichia coli proteins and 41% identity to each other. Each phosphatase was expressed in E. coli and purified to near electrophoretic homogeneity. Both PrpA and PrpB absolutely required a divalent metal for activity. As with other phosphatases of this class, Mn(2+) had the highest affinity and stimulated the greatest activity. The apparent K(a) of PrpA for Mn(2+) of 65 microM was comparable to that for other bacterial phosphatases, but PrpB had a much higher affinity for Mn(2+) (1.3 microM). The pH optima were pH 6.5 for PrpA and pH 8 for PrpB, while the optimal temperatures were 45 to 55 degrees C for PrpA and 30 to 37 degrees C for PrpB. Each phosphatase could hydrolyze phosphorylated serine, threonine, or tyrosine residues, but their relative specific activities varied with the specific substrate tested. These differences suggest that each phosphatase is used by serovar Typhimurium under different growth or environmental conditions such as temperature or acidity.
Collapse
Affiliation(s)
- L Shi
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, USA.
| | | | | |
Collapse
|
14
|
Affiliation(s)
- P J Kennelly
- Department of Biochemistry-0308, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA.
| |
Collapse
|
15
|
Lower BH, Bischoff KM, Kennelly PJ. The archaeon Sulfolobus solfataricus contains a membrane-associated protein kinase activity that preferentially phosphorylates threonine residues in vitro. J Bacteriol 2000; 182:3452-9. [PMID: 10852877 PMCID: PMC101924 DOI: 10.1128/jb.182.12.3452-3459.2000] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The extreme acidothermophilic archaeon Sulfolobus solfataricus harbors a membrane-associated protein kinase activity. Its solubilization and stabilization required detergents, suggesting that this activity resides within an integral membrane protein. The archaeal protein kinase utilized purine nucleotides as phosphoryl donors in vitro. A noticeable preference for nucleotide triphosphates over nucleotide diphosphates and for adenyl nucleotides over the corresponding guanyl ones was observed. The molecular mass of the solubilized, partially purified enzyme was estimated to be approximately 125 kDa by gel filtration chromatography. Catalytic activity resided in a polypeptide with an apparent molecular mass of approximately 67 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Challenges with several exogenous substrates revealed the protein kinase to be relatively selective. Only casein, histone H4, reduced carboxyamidomethylated and maleylated lysozyme, and a peptide modeled after myosin light chains (KKRAARATSNVFA) were phosphorylated to appreciable levels in vitro. All of the aforementioned substrates were phosphorylated on threonine residues, while histone H4 was phosphorylated on serine as well. Substitution of serine for the phosphoacceptor threonine in the myosin light chain peptide produced a noticeably inferior substrate. The protein kinase underwent autophosphorylation on threonine and was relatively insensitive to a set of known inhibitors of "eukaryotic" protein kinases.
Collapse
Affiliation(s)
- B H Lower
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA
| | | | | |
Collapse
|
16
|
Shi L, Bischoff KM, Kennelly PJ. The icfG gene cluster of Synechocystis sp. strain PCC 6803 encodes an Rsb/Spo-like protein kinase, protein phosphatase, and two phosphoproteins. J Bacteriol 1999; 181:4761-7. [PMID: 10438742 PMCID: PMC93959 DOI: 10.1128/jb.181.16.4761-4767.1999] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A set of open reading frames (ORFs) potentially encoding signal transduction proteins are clustered around icfG, a gene implicated in the regulation of carbon metabolism, in the genome of Synechocystis sp. strain PCC 6803. slr1860 is the ORF for icfG, whose predicted product resembles the protein phosphatases SpoIIE, RsbU, and RsbX from Bacillus subtilis. Bracketing slr1860/icfG are (i) ORF slr1861, whose predicted product resembles the SpoIIAB, RsbT, and RsbW protein kinases from B. subtilis, and (ii) ORFs slr1856 and slr1859, whose predicted products resemble the respective phosphoprotein substrates for the B. subtilis protein kinases: SpoIIAA, RsbS, and RsbV. In order to determine whether the protein products encoded by these ORFs possessed the functional capabilities suggested by sequence comparisons, each was expressed in Escherichia coli as a histidine-tagged fusion protein and analyzed for its ability to participate in protein phosphorylation-dephosphorylation processes in vitro. It was observed that ORF slr1861 encoded an ATP-dependent protein kinase capable of phosphorylating Slr1856 and, albeit with noticeably lower efficiency, Slr1859. Site-directed mutagenesis suggests that Slr1861 phosphorylated these proteins on Ser-54 and Ser-57, respectively. Slr1860 exhibited divalent metal ion-dependent protein-serine phosphatase activity. It catalyzed the dephosphorylation of Slr1856, but not Slr1859, in vitro.
Collapse
Affiliation(s)
- L Shi
- Department of Biochemistry and the Institute for Genomics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061-0308, USA
| | | | | |
Collapse
|
17
|
Shi L, Carmichael WW, Kennelly PJ. Cyanobacterial PPP family protein phosphatases possess multifunctional capabilities and are resistant to microcystin-LR. J Biol Chem 1999; 274:10039-46. [PMID: 10187782 DOI: 10.1074/jbc.274.15.10039] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The structural gene for a putative PPP family protein-serine/threonine phosphatase from the microcystin-producing cyanobacterium Microcystis aeruginosa PCC 7820, pp1-cyano1, was cloned. The sequence of the predicted gene product, PP1-cyano1, was 98% identical to that of the predicted product of an open reading frame, pp1-cyano2, from a cyanobacterium that does not produce microcystins, M. aeruginosa UTEX 2063. By contrast, PP1-cyano1 displayed less than 20% identity with other PPP family protein phosphatases from eukaryotic, archaeal, or other bacterial organisms. PP1-cyano1 and PP1-cyano2 were expressed in Escherichia coli and purified to homogeneity. Both enzymes exhibited divalent metal dependent phosphohydrolase activity in vitro toward phosphoserine- and phosphotyrosine-containing proteins and 3-phosphohistidine- and phospholysine-containing amino acid homopolymers. This multifunctional potential also was apparent in samples of PP1-cyano1 and PP1-cyano2 isolated from M. aeruginosa. Catalytic activity was insensitive to okadaic acid or the cyanobacterially produced cyclic heptapeptide, microcystin-LR, both potent inhibitors of mammalian PP1 and PP2A. PP1-cyano1 and PP1-cyano2 displayed diadenosine tetraphosphatase activity in vitro. Diadenosine tetraphosphatases share conserved sequence features with PPP family protein phosphatases. The diadenosine tetraphosphatase activity of PP1-cyano1 and PP1-cyano2 confirms that these enzymes share a common catalytic mechanism.
Collapse
Affiliation(s)
- L Shi
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA
| | | | | |
Collapse
|
18
|
Mai B, Frey G, Swanson RV, Mathur EJ, Stetter KO. Molecular cloning and functional expression of a protein-serine/threonine phosphatase from the hyperthermophilic archaeon Pyrodictium abyssi TAG11. J Bacteriol 1998; 180:4030-5. [PMID: 9696747 PMCID: PMC107395 DOI: 10.1128/jb.180.16.4030-4035.1998] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
An open reading frame coding for a putative protein-serine/threonine phosphatase was identified in the hyperthermophilic archaeon Pyrodictium abyssi TAG11 and named Py-PP1. Py-PP1 was expressed in Escherichia coli, purified from inclusion bodies, and biochemically characterized. The phosphatase gene is part of an operon which may provide, for the first time, insight into a physiological role for archaeal protein phosphatases in vivo.
Collapse
Affiliation(s)
- B Mai
- Lehrstuhl für Mikrobiologie, Universität Regensburg, 93053 Regensburg, Germany
| | | | | | | | | |
Collapse
|
19
|
Solow B, Bischoff KM, Zylka MJ, Kennelly PJ. Archael phosphoproteins. Identification of a hexosephosphate mutase and the alpha-subunit of succinyl-CoA synthetase in the extreme acidothermophile Sulfolobus solfataricus. Protein Sci 1998; 7:105-11. [PMID: 9514265 PMCID: PMC2143807 DOI: 10.1002/pro.5560070111] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
When soluble extracts from the extreme acidophilic archaeon Sulfolobus solfataricus were incubated with [gamma-32P]ATP, several radiolabeled polypeptides were observed following SDS-PAGE. The most prominent of these migrated with apparent molecular masses of 14, 18, 35, 42, 46, 50, and 79 kDa. Phosphoamino acid analysis revealed that all of the proteins contained phosphoserine, with the exception of the 35-kDa one, whose protein-phosphate linkage proved labile to strong acid. The observed pattern of phosphorylation was influenced by the identity of the divalent metal ion cofactor used, Mg2+ versus Mn2+, and the choice of incubation temperature. The 35- and 50-kDa phosphoproteins were purified and their amino-terminal sequences determined. The former polypeptide's amino-terminal sequence closely matched a conserved portion of the alpha-subunit of succinyl-CoA synthetase, which forms an acid-labile phosphohistidyl enzyme intermediate during its catalytic cycle. This identification was confirmed by the ability of succinate or ADP to specifically remove the radiolabel. The 50-kDa polypeptide's sequence contained a heptapeptide motif, Phe/Pro-Gly-Thr-Asp/Ser-Gly-Val/Leu-Arg, found in a similar position in several hexosephosphate mutases. The catalytic mechanism of these mutases involves formation of a phosphoseryl enzyme intermediate. The identity of p50 as a hexosephosphate mutase was confirmed by (1) the ability of sugars and sugar phosphates to induce removal of the labeled phosphoryl group from the protein, and (2) the ability of [32P]glucose 6-phosphate to donate its phosphoryl group to the protein.
Collapse
Affiliation(s)
- B Solow
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg 24061-0308, USA
| | | | | | | |
Collapse
|
20
|
Solow B, Young JC, Kennelly PJ. Gene cloning and expression and characterization of a toxin-sensitive protein phosphatase from the methanogenic archaeon Methanosarcina thermophila TM-1. J Bacteriol 1997; 179:5072-5. [PMID: 9260948 PMCID: PMC179364 DOI: 10.1128/jb.179.16.5072-5075.1997] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
With oligonucleotides modelled after conserved regions within the protein-serine/threonine phosphatases (PPs) of the PP1/2A/2B superfamily, the gene for the archaeal protein phosphatase PP1-arch2 was identified, cloned, and sequenced from the methanogenic archaeon Methanosarcina thermophila TM-1. The DNA-derived amino acid sequence of PP1-arch2 exhibited a high degree of sequence identity, 27 to 31%, with members of the PP1/2A/2B superfamily such as PP1-arch1 from Sulfolobus solfataricus, PP1alpha from rats, PP2A from Saccharomyces cerevisiae, and PP2B from humans. The activity of the recombinant PP1-arch2 was sensitive to several naturally occurring microbial toxins known to potently inhibit eucaryal PP1 and PP2A, including microcystin-LR, okadaic acid, tautomycin, and calyculin A.
Collapse
Affiliation(s)
- B Solow
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg 24061-0308, USA
| | | | | |
Collapse
|
21
|
Kennelly PJ, Potts M. Fancy meeting you here! A fresh look at "prokaryotic" protein phosphorylation. J Bacteriol 1996; 178:4759-64. [PMID: 8759835 PMCID: PMC178254 DOI: 10.1128/jb.178.16.4759-4764.1996] [Citation(s) in RCA: 132] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Bacteria play host to a wide range of protein phosphorylation-dephosphorylation systems (Fig. 1). As little as five years ago the known systems were thought to be late-emerging and absolutely prokaryote specific. Today we know that most protein kinases and protein phosphatases are descended from a set of common, and possibly quite ancient, prototypes. Prokaryote- and eukaryote-specific protein kinases and protein phosphatases are rare and represent exceptions, not the rule as previously thought. Commonality suggests that a dynamic and versatile regulatory mechanism was first adapted to the modulation of protein function as early if not earlier than more "basic" mechanisms such as allosterism, etc. The existence of common molecular themes confirms that the microbial world offers a unique, largely untapped library and a powerful set of tools for the understanding of a regulatory mechanism which is crucial to all organisms, tools whose diversity and experimental malleability will provide new avenues for exploring and understanding key modes of cellular regulation.
Collapse
Affiliation(s)
- P J Kennelly
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg 24061-0308, USA.
| | | |
Collapse
|
22
|
Howell LD, Griffiths C, Slade LW, Potts M, Kennelly PJ. Substrate specificity of IphP, a cyanobacterial dual-specificity protein phosphatase with MAP kinase phosphatase activity. Biochemistry 1996; 35:7566-72. [PMID: 8652537 DOI: 10.1021/bi9600409] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The substrate specificity of the cyanobacterial dual-specificity protein phosphatase, IphP, was explored using a variety of potential substrates. The enzyme displayed phosphomonoesterase activity toward a broad range of peptide, protein, and low molecular weight organophosphate compounds. It displayed little or no hydrolase activity toward phosphodiesters, phosphoramides, carboxyl esters, or sulfoesters. However, it did display measurable pyrophosphatase activity, especially toward ADP and ATP. Among the low molecular weight phosphomonoesters, the presence of an aromatic ring either as part of the leaving group alcohol or immediately adjacent thereto, as in 5'-AMP, was a strong positive determinant for hydrolysis. Among peptide and protein substrates, a rough, but imperfect, correlation between charge character and hydrolysis was noted in which proteins and phosphorylation sites of an acidic nature seemed favored. Heparin affected IphP activity in a substrate-dependent manner. Toward small organophosphates, heparin had no significant effect, but it was inhibitory toward most protein and peptide substrates. However, toward phosphoseryl casein and MAP kinase, it enhanced activity as much as 10-fold. This enhancement was attributed to the ability of heparin to bind to these substrate proteins, as well as IphP, and recruit them to the same microenvironment.
Collapse
Affiliation(s)
- L D Howell
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg 24061-0308, USA
| | | | | | | | | |
Collapse
|
23
|
Leng J, Cameron AJ, Buckel S, Kennelly PJ. Isolation and cloning of a protein-serine/threonine phosphatase from an archaeon. J Bacteriol 1995; 177:6510-7. [PMID: 7592428 PMCID: PMC177503 DOI: 10.1128/jb.177.22.6510-6517.1995] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
A divalent metal ion-stimulated protein-serine/threonine phosphatase, PP1-arch, was purified approximately 1,000-fold from the extreme acidothermophilic archaeon Sulfolobus solfataricus (ATCC 35091). Purified preparations contained 40 to 70% of total protein as PP1-arch, as determined by assay-ing sodium dodecyl sulfate-polyacrylamide gels for protein phosphatase activity. The first 25 amino acids of the protein's sequence were identified, as well as an internal sequence spanning some 20 amino acids. Using this information, we cloned the gene for PP1-arch via the application of PCR and conventional cloning techniques. The gene for PP1-arch predicted a protein of 293 amino acids that bore striking resemblance to the members of the major family of protein-serine/threonine phosphatases from members of the domain Eucarya, the PP1/2A/2B superfamily. The core of the protein, spanning residues 4 to 275, possessed 29 to 31% identity with these eucaryal protein phosphatases. Of the 42 residues found to be absolutely conserved among the known eucaryal members of the PP1/2A/2B superfamily, 33 were present in PP1-arch. If highly conservative substitutions are included, this total reached 37. The great degree of sequence conservation between molecules from two distinct phylogenetic domains implies that the members of this enzyme superfamily had evolved as specialized, dedicated protein phosphatases prior to the divergence of members of the Archaea and Eucarya from one another.
Collapse
Affiliation(s)
- J Leng
- Department of Biochemistry and Anaerobic Microbiology, Virginia Polytechnic Institute and State University, Blacksburg 24061-0308, USA
| | | | | | | |
Collapse
|
24
|
Pinna LA, Donella-Deana A. Phosphorylated synthetic peptides as tools for studying protein phosphatases. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1222:415-31. [PMID: 8038211 DOI: 10.1016/0167-4889(94)90050-7] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- L A Pinna
- Department of Biological Chemistry, University of Padova, Italy
| | | |
Collapse
|
25
|
Oxenrider KA, Rasche ME, Thorsteinsson MV, Kennelly PJ. Inhibition of an archaeal protein phosphatase activity by okadaic acid, microcystin-LR, or calyculin A. FEBS Lett 1993; 331:291-5. [PMID: 8397116 DOI: 10.1016/0014-5793(93)80355-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Soluble extracts of the methanogenic archaeon, Methanosarcina thermophila TM-1, contained a divalent metal ion-stimulated protein-serine phosphatase activity. This activity was sensitive to micromolar concentrations of okadaic acid, microcystin-LR, or calyculin A, three compounds thought to be highly specific inhibitors of the type 1/2A/2B genetic superfamily of eukaryotic protein-serine/threonine phosphatases. The observation that each of these three chemically unrelated compounds inhibited this archaeal protein phosphatase activity suggests the existence of structural homology, and perhaps even common genetic ancestry, with the type 1/2A/2B superfamily of protein-serine/threonine phosphatases found in eukaryotic organisms.
Collapse
Affiliation(s)
- K A Oxenrider
- Department of Biochemistry and Anaerobic Microbiology, Virginia Polytechnic Institute and State University, Blacksburg 24061-0308
| | | | | | | |
Collapse
|
26
|
Analysis of the glycosylation and phosphorylation of the alpha-subunit of the lysosomal enzyme, beta-hexosaminidase A, by site-directed mutagenesis. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)50196-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|