1
|
Mallu ACT, Sivagurunathan S, Paul D, Aggarwal H, Nathan AA, Manikandan A, Ravi MM, Boppana R, Jagavelu K, Santra MK, Dixit M. Feeding enhances fibronectin adherence of quiescent lymphocytes through non-canonical insulin signalling. Immunology 2023; 170:60-82. [PMID: 37185810 DOI: 10.1111/imm.13652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 04/10/2023] [Indexed: 05/17/2023] Open
Abstract
Nutritional availability during fasting and refeeding affects the temporal redistribution of lymphoid and myeloid immune cells among the circulating and tissue-resident pools. Conversely, nutritional imbalance and impaired glucose metabolism are associated with chronic inflammation, aberrant immunity and anomalous leukocyte trafficking. Despite being exposed to periodic alterations in blood insulin levels upon fasting and feeding, studies exploring the physiological effects of these hormonal changes on quiescent immune cell function and trafficking are scanty. Here, we report that oral glucose load in mice and healthy men enhances the adherence of circulating peripheral blood mononuclear cells (PBMCs) and lymphocytes to fibronectin. Adherence to fibronectin is also observed upon regular intake of breakfast following overnight fasting in healthy subjects. This glucose load-induced phenomenon is abrogated in streptozotocin-injected mice that lack insulin. Intra-vital microscopy in mice demonstrated that oral glucose feeding enhances the homing of PBMCs to injured blood vessels in vivo. Furthermore, employing flow cytometry, Western blotting and adhesion assays for PBMCs and Jurkat-T cells, we elucidate that insulin enhances fibronectin adherence of quiescent lymphocytes through non-canonical signalling involving insulin-like growth factor-1 receptor (IGF-1R) autophosphorylation, phospholipase C gamma-1 (PLCγ-1) Tyr783 phosphorylation and inside-out activation of β-integrins respectively. Our findings uncover the physiological relevance of post-prandial insulin spikes in regulating the adherence and trafficking of circulating quiescent T-cells through fibronectin-integrin interaction.
Collapse
Affiliation(s)
- Abhiram Charan Tej Mallu
- Centre of Excellence (CoE) in Molecular Medicine, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - Sivapriya Sivagurunathan
- Centre of Excellence (CoE) in Molecular Medicine, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - Debasish Paul
- National Centre for Cell Science, Savitribai Phule Pune University Campus, Pune, India
| | - Hobby Aggarwal
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Abel Arul Nathan
- Centre of Excellence (CoE) in Molecular Medicine, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - Amrutha Manikandan
- Centre of Excellence (CoE) in Molecular Medicine, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - Mahalakshmi M Ravi
- Institute Hospital, Indian Institute of Technology Madras, Chennai, India
| | - Ramanamurthy Boppana
- National Centre for Cell Science, Savitribai Phule Pune University Campus, Pune, India
| | | | - Manas Kumar Santra
- National Centre for Cell Science, Savitribai Phule Pune University Campus, Pune, India
| | - Madhulika Dixit
- Centre of Excellence (CoE) in Molecular Medicine, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| |
Collapse
|
2
|
Nandedkar-Kulkarni N, Esakov E, Gregg B, Atkinson MA, Rogers DG, Horner JD, Singer K, Lundy SK, Felton JL, Al-Huniti T, Kalinoski AN, Morran MP, Gupta NK, Bretz JD, Balaji S, Chen T, McInerney MF. Insulin Receptor-Expressing T Cells Appear in Individuals at Risk for Type 1 Diabetes and Can Move into the Pancreas in C57BL/6 Transgenic Mice. THE JOURNAL OF IMMUNOLOGY 2021; 206:1443-1453. [PMID: 33658296 DOI: 10.4049/jimmunol.1900357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 01/19/2021] [Indexed: 01/04/2023]
Abstract
Insulin receptor (IR) expression on the T cell surface can indicate an activated state; however, the IR is also chemotactic, enabling T cells with high IR expression to physically move toward insulin. In humans with type 1 diabetes (T1D) and the NOD mouse model, a T cell-mediated autoimmune destruction of insulin-producing pancreatic β cells occurs. In previous work, when purified IR+ and IR- T cells were sorted from diabetic NOD mice and transferred into irradiated nondiabetic NOD mice, only those that received IR+ T cells developed insulitis and diabetes. In this study, peripheral blood samples from individuals with T1D (new onset to 14 y of duration), relatives at high-risk for T1D, defined by positivity for islet autoantibodies, and healthy controls were examined for frequency of IR+ T cells. High-risk individuals had significantly higher numbers of IR+ T cells as compared with those with T1D (p < 0.01) and controls (p < 0.001); however, the percentage of IR+ T cells in circulation did not differ significantly between T1D and control subjects. With the hypothesis that IR+ T cells traffic to the pancreas in T1D, we developed a (to our knowledge) novel mouse model exhibiting a FLAG-tagged mouse IR on T cells on the C57BL/6 background, which is not susceptible to developing T1D. Interestingly, these C57BL/6-CD3FLAGmIR/mfm mice showed evidence of increased IR+ T cell trafficking into the islets compared with C57BL/6 controls (p < 0.001). This transgenic animal model provides a (to our knowledge) novel platform for investigating the influence of IR expression on T cell trafficking and the development of insulitis.
Collapse
Affiliation(s)
- Neha Nandedkar-Kulkarni
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614
| | - Emily Esakov
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614
| | - Brigid Gregg
- Division of Pediatric Endocrinology, Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI 48109.,Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI 48109
| | - Mark A Atkinson
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610.,Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL 32610.,University of Florida Diabetes Institute, University of Florida, Gainesville, FL 32610
| | - Douglas G Rogers
- Center for Pediatric and Adolescent Endocrinology, Cleveland Clinic Foundation, Cleveland, OH 44053
| | - James D Horner
- Department of Pediatrics, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614
| | - Kanakadurga Singer
- Division of Pediatric Endocrinology, Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI 48109.,Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Steven K Lundy
- Division of Rheumatology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Jamie L Felton
- Department of Pediatric Endocrinology and Diabetology, Indiana University School of Medicine, Indiana University, Indianapolis, IN 46202.,Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Tasneem Al-Huniti
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614
| | - Andrea Nestor Kalinoski
- Department of Surgery, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614
| | - Michael P Morran
- Department of Surgery, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614
| | - Nirdesh K Gupta
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614
| | - James D Bretz
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614
| | - Swapnaa Balaji
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614
| | - Tian Chen
- Department of Mathematics and Statistics, College of Natural Sciences and Mathematics, University of Toledo, Toledo, OH 43606; and
| | - Marcia F McInerney
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614; .,Center for Diabetes and Endocrine Research, University of Toledo, Toledo, OH 43614
| |
Collapse
|
3
|
Mallu ACT, Vasudevan M, Allanki S, Nathan AA, Ravi MM, Ramanathan GS, Pradeepa R, Mohan V, Dixit M. Prediabetes uncovers differential gene expression at fasting and in response to oral glucose load in immune cells. Clin Nutr 2020; 40:1247-1259. [PMID: 32863060 DOI: 10.1016/j.clnu.2020.08.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/04/2020] [Accepted: 08/06/2020] [Indexed: 01/04/2023]
Abstract
BACKGROUND AND OBJECTIVE Metabolic disorders including diabetes are associated with immune cell dysfunction. However, the effect of normal glucose metabolism or impairment thereof on immune cell gene expression is not well known. Hence, in this cross-sectional pilot study, we sought to determine the differences in gene expression in the peripheral blood mono-nuclear cells (PBMCs) of normal glucose tolerant (NGT) and prediabetic (PD) Asian Indian men, at fasting and in response to 75 g oral glucose load. METHODS Illumina HT12 bead chip-based microarray was performed on PBMCs at fasting and 2-h post load conditions for NGT (N = 6) and PD (N = 9) subjects. Following normalization and due quality control of the raw data, differentially expressed genes (DEGs) under different conditions within and across the two groups were identified using GeneSpring GX V12.0 software. Paired and unpaired Student's t-tests were applied along with fold change cut-offs for appropriate comparisons. Validation of the microarray data was carried out through real-time qPCR analysis. Significantly regulated biological pathways were analyzed by employing DEGs and DAVID resource. Deconvolution of the DEGs between NGT and PD subjects at fasting was performed using CIBERSORT and genes involved in regulatory T-cell (Treg) function were further analyzed for biological significance. RESULTS Glucose load specifically altered the expression of 112 genes in NGT and 356 genes in PD subjects. Biological significance analysis revealed transient up-regulation of innate and adaptive immune response related genes following oral glucose load in NGT individuals, which was not observed in PD subjects. Instead, in the PD group, glucose load led to an increase in the expression of pro-atherogenic and anti-angiogenic genes. Comparison of gene expression at fasting state in PD versus NGT revealed 21,707 differentially expressed genes. Biological significance analysis of the immune function related genes between these two groups (at fasting) revealed higher gene expression of members of the TLR signaling, MHC class II molecules, and T-cell receptor, chemotaxis and adhesion pathways in PD subjects. Expression of interferon-γ (IFN-γ) and TNFα was higher and that of type-1 interferons and TGF-β was lower at fasting state in PD subjects compared to NGT. Additionally, expression of multiple proteasome subunits and protein arginine methyl transferase genes (PRMTs) were higher and that of Treg specific genes was significantly distinct at fasting in PD subjects compared to NGT. CONCLUSION Prediabetes uncovers constitutive TLR activation, enhanced IFN-γ signaling, and Treg dysfunction at fasting along with altered gene expression response to oral glucose load.
Collapse
Affiliation(s)
- Abhiram Charan Tej Mallu
- Laboratory of Vascular Biology, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | | | - Srinivas Allanki
- Laboratory of Vascular Biology, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - Abel Arul Nathan
- Laboratory of Vascular Biology, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - Mahalakshmi M Ravi
- Institute Hospital, Indian Institute of Technology Madras, Chennai, India
| | | | - Rajendra Pradeepa
- Department of Diabetology, Madras Diabetes Research Foundation and Dr. Mohan's Diabetes Specialties Centre, Chennai, India
| | - Viswanathan Mohan
- Department of Diabetology, Madras Diabetes Research Foundation and Dr. Mohan's Diabetes Specialties Centre, Chennai, India
| | - Madhulika Dixit
- Laboratory of Vascular Biology, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India.
| |
Collapse
|
4
|
Csaba G. Hormones in the immune system and their possible role. A critical review. Acta Microbiol Immunol Hung 2014; 61:241-60. [PMID: 25261940 DOI: 10.1556/amicr.61.2014.3.1] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Immune cells synthesize, store and secrete hormones, which are identical with the hormones of the endocrine glands. These are: the POMC hormones (ACTH, endorphin), the thyroid system hormones (TRH, TSH, T3), growth hormone (GH), prolactin, melatonin, histamine, serotonin, catecholamines, GnRH, LHRH, hCG, renin, VIP, ANG II. This means that the immune cells contain all of the hormones, which were searched at all and they also have receptors for these hormones. From this point of view the immune cells are similar to the unicells (Tetrahymena), so it can be supposed that these cells retained the properties characteristic at a low level of phylogeny while other cells during the evolution accumulated to form endocrine glands. In contrast to the glandular endocrine cells, immune cells are polyproducers and polyreceivers. As they are mobile cells, they are able to transport the stored hormone to different places (packed transport) or attracted by local factors, accumulate in the neighborhood of the target, synthesizing and secreting hormones locally. This is taking place, e.g. in the case of endorphin, where the accumulating immune cells calms pain caused by the inflammation. The targeted packed transport is more economical than the hormone-pouring to the blood circulation of glandular endocrines and the targeting also cares the other receptor-bearing cells timely not needed the effect. Mostly the immune-effects of immune-cell derived hormones were studied (except endorphin), however, it is not exactly cleared, while the system could have scarcely studied important roles in other cases. The evolutionary aspects and the known as well, as possible roles of immune-endocrine system and their hormones are listed and discussed.
Collapse
Affiliation(s)
- György Csaba
- 1 Semmelweis University Department of Genetics, Cell and Immunobiology Budapest Hungary
| |
Collapse
|
5
|
Csaba G. [The immuno-endocrine system. A new endocrine theory: the problem of the packed transport]. Orv Hetil 2011; 152:777-84. [PMID: 21540150 DOI: 10.1556/oh.2011.29122] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Since the eighties of the last century hormone content was justified in immune cells (lymphocytes, granulocytes, monocytes, macrophages and mast cells), which produce, store and secrete these hormones. Although the amount of these materials in immune cells is relatively small, the mass of the producers (immune cells) is so large, that the phenomenon must be considered from endocrinological point of view, underlying the important differences between the "classical" and immuno-endocrine systems. Cells of the classic (built-in) endocrine system are mono-producers, while immune cells can synthesize many types of hormones (polyproducers). In addition, these cells can transport the whole hormone-producing machinery to the site of need, producing a local effect. This can be observed, for example, in the case of endorphin producing immune cells during inflammation and during early pregnancy around the chorionic villi. Hormone producing immune cells also have receptors for many hormones, so that they are poly-receivers. Via hormone producing and receiving capacity there is a bidirectional connection between the neuro-endocrine and immuno-endocrine systems. In addition, there is a network inside the immuno-endocrine system. The packed transport theory attempts to explain the mechanism and importance of the immuno-endocrine system.
Collapse
Affiliation(s)
- György Csaba
- Semmelweis Egyetem, Általános Orvostudományi Kar, Genetikai, Sejt- és Immunbiológiai Intézet Budapest.
| |
Collapse
|
6
|
Maratou E, Dimitriadis G, Kollias A, Boutati E, Lambadiari V, Mitrou P, Raptis SA. Glucose transporter expression on the plasma membrane of resting and activated white blood cells. Eur J Clin Invest 2007; 37:282-90. [PMID: 17373964 DOI: 10.1111/j.1365-2362.2007.01786.x] [Citation(s) in RCA: 180] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
BACKGROUND In white blood cells (WBC), the increase in glucose utilization is a prominent feature during immune response and this depends on the function of specific glucose transporter (GLUT) isoforms. The objective was to examine the effects of activation by Phorbol 12-myristate 13-acetate (PMA) or lipopolysaccharide (LPS) and insulin on the expression of GLUT isoforms in all subpopulations of WBC. MATERIALS AND METHODS Blood was withdrawn from 27 healthy subjects. The expression of GLUT1, GLUT3 and GLUT4 on the plasma membrane of resting and activated monocytes, T- and B-lymphocytes and polymorphonuclear cells (PMNs) was determined in the absence and presence of physiological concentrations of insulin, by flow cytometry. RESULTS GLUT1 did not respond to insulin in either resting or PMA/LPS activated state. In the resting state, monocytes and B-lymphocytes increased the abundance of GLUT3 and GLUT4 on their plasma membrane in response to insulin; in contrast, T-lymphocytes and PMNs were unresponsive to insulin. In the activated state, monocytes, B- and T- lymphocytes increased the expression of all three GLUT isoforms on their plasma membrane, whilst PMNs increased only GLUT1 and GLUT3; in all WBC, insulin augmented the expression of GLUT4 and GLUT3 isoforms in addition to the stimulation provided by the PMA or LPS treatment alone. CONCLUSION Activation of WBC leads to increased expression of GLUT1, GLUT3 and GLUT4 isoforms on their plasma membrane; this process was further augmented by insulin. During infection, these mechanisms may help to redistribute glucose as a potential source of energy away from peripheral tissues and direct it towards cells that mediate the immune response and are therefore crucial to survival.
Collapse
Affiliation(s)
- E Maratou
- Hellenic National Diabetes Center, Athens, Greece
| | | | | | | | | | | | | |
Collapse
|
7
|
Bonder CS, Ajuebor MN, Zbytnuik LD, Kubes P, Swain MG. Essential Role for Neutrophil Recruitment to the Liver in Concanavalin A-Induced Hepatitis. THE JOURNAL OF IMMUNOLOGY 2003; 172:45-53. [PMID: 14688308 DOI: 10.4049/jimmunol.172.1.45] [Citation(s) in RCA: 154] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Leukocyte infiltration into the liver is paramount to the development of liver injury in hepatitis. Hepatitis occurring after the administration of Con A in mice is felt to be a T lymphocyte-mediated disease. In this study, we report that neutrophils are the key initiators of lymphocyte recruitment and liver injury caused by Con A. The objectives of this study were to investigate the involvement of neutrophils in Con A-induced hepatitis in vivo via intravital microscopy. After Con A administration, we observed a significant increase in leukocyte rolling flux, a decrease in rolling velocity, and an increase in leukocyte adhesion to the hepatic microvasculature. Fluorescence microscopy identified that within 4 h of Con A administration only a minority of the recruited leukocytes were T lymphocytes. Furthermore, immunohistochemistry showed a significant increase in neutrophils recruited to the liver post-Con A treatment in association with liver cell damage, as reflected by elevated serum alanine aminotransferase levels. Using flow cytometry, we observed that Con A could bind directly to neutrophils, which resulted in a shedding of L-selectin, an increase in beta(2)-integrin expression, and the production of reactive oxidants. Following neutrophil depletion, a significant inhibition of Con A-induced CD4+ T lymphocyte recruitment to the liver resulted and complete reduction in hepatic injury, as assessed by serum alanine aminotransferase levels. In summary, the present data support the concept that neutrophils play an important and previously unrecognized role in governing Con A-induced CD4+ T cell recruitment to the liver and the subsequent development of hepatitis.
Collapse
Affiliation(s)
- Claudine S Bonder
- Immunology Research Group, Department of Physiology and Biophysics, Faculty of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta T2N 4N1, Canada
| | | | | | | | | |
Collapse
|
8
|
Eriksson JW, Lönnroth P, Wesslau C, Smith U. Insulin promotes and cyclic adenosine 3',5'-monophosphate impairs functional insertion of insulin receptors in the plasma membrane of rat adipocytes: evidence for opposing effects of tyrosine and serine/threonine phosphorylation. Endocrinology 1997; 138:607-12. [PMID: 9002993 DOI: 10.1210/endo.138.2.4948] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The aim of the present study was to elucidate events in the plasma membrane (PM) associated with the previously described effect of insulin to rapidly enhance the number of cell surface insulin binding sites in rat adipocytes. [125I]insulin was cross-linked to cell surface insulin receptors of intact cells that had been preincubated with or without insulin. Subsequently prepared PM displayed a approximately 3-fold increase in bound [125I]insulin when cells had been pretreated with 6 nM insulin for 20 min compared to membranes from control cells, and SDS-PAGE with autoradiography showed that this occurred at the insulin receptor alpha-subunit. The magnitude of the effect was similar to that found for insulin binding to intact cells that had been preincubated with insulin. In contrast, the insulin binding capacity in the PM was not affected by prior treatment of cells with insulin when assessed with the addition of [125I]insulin directly to solubilized PM; this suggests an unchanged total number of PM receptors. Thus, the enhancement of cell surface insulin binding capacity produced by insulin is not due to the translocation of receptors, but instead appears to be confined to receptors already present in the PM. The addition of phospholipase C (from Clostridium perfringens), which cleaves PM phospholipids, mimicked the effect of insulin to enhance cell surface binding in adipocytes, and this suggests a pool of cryptic PM receptors. Both the nonmetabolizable cAMP analog N6-monobutyryl cAMP (N6-mbcAMP) and the serine/threonine phosphatase inhibitor okadaic acid abolished the effect of concomitant insulin treatment to increase binding capacity. In contrast, the tyrosine phosphatase inhibitor vanadate increased insulin binding even in the presence of okadaic acid or N6-mbcAMP. The effect of N6-mbcAMP to impair cell surface insulin binding was also evident in the presence of a peptide derived from the major histocompatibility complex type I that effectively impairs receptor internalization, but the amount of PM receptors assessed by immunoblot was unaltered. Taken together, the data suggest that insulin exposure leads to the uncovering of cryptic receptors associated with the PM. It is also suggested that tyrosine phosphorylation promotes this process, whereas enhanced serine phosphorylation, e.g. produced by cAMP, impairs the functional insertion of the receptors, rendering them unable to bind insulin.
Collapse
Affiliation(s)
- J W Eriksson
- Lundberg Laboratory for Diabetes Research, Department of Medicine, Sahlgrenska University Hospital, Goteborg, Sweden
| | | | | | | |
Collapse
|
9
|
Abstract
Insulin is a polypeptide hormone consisting of 51 amino acids. Insulin promotes a variety of anabolic enzymatic pathways and inhibits many catabolic enzymatic pathways involved in energy storage, as well as in synthesis of structural tissue proteins. In addition, insulin serves as a growth factor, modulating mitogenesis, growth and differentiation. Insulin mediates all of its effects by initially binding and activating its specific cell-surface receptor. Conformational changes induced by insulin binding lead to activation of intrinsic receptor tyrosine kinase. Thus, the study of tyrosine kinase inhibitors, whether synthetically produced or purified from microorganisms or humans, has led to elucidation of molecular details of physiological insulin signaling.
Collapse
Affiliation(s)
- P R Srinivas
- Department of Internal Medicine, Wayne State University, Detroit, MI 48201
| | | |
Collapse
|
10
|
|