1
|
Wright BA, Kvansakul M, Schierwater B, Humbert PO. Cell polarity signalling at the birth of multicellularity: What can we learn from the first animals. Front Cell Dev Biol 2022; 10:1024489. [PMID: 36506100 PMCID: PMC9729800 DOI: 10.3389/fcell.2022.1024489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 10/31/2022] [Indexed: 11/25/2022] Open
Abstract
The innovation of multicellularity has driven the unparalleled evolution of animals (Metazoa). But how is a multicellular organism formed and how is its architecture maintained faithfully? The defining properties and rules required for the establishment of the architecture of multicellular organisms include the development of adhesive cell interactions, orientation of division axis, and the ability to reposition daughter cells over long distances. Central to all these properties is the ability to generate asymmetry (polarity), coordinated by a highly conserved set of proteins known as cell polarity regulators. The cell polarity complexes, Scribble, Par and Crumbs, are considered to be a metazoan innovation with apicobasal polarity and adherens junctions both believed to be present in all animals. A better understanding of the fundamental mechanisms regulating cell polarity and tissue architecture should provide key insights into the development and regeneration of all animals including humans. Here we review what is currently known about cell polarity and its control in the most basal metazoans, and how these first examples of multicellular life can inform us about the core mechanisms of tissue organisation and repair, and ultimately diseases of tissue organisation, such as cancer.
Collapse
Affiliation(s)
- Bree A. Wright
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Marc Kvansakul
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia,Research Centre for Molecular Cancer Prevention, La Trobe University, Melbourne, VIC, Australia
| | - Bernd Schierwater
- Institute of Animal Ecology and Evolution, University of Veterinary Medicine Hannover, Foundation, Bünteweg, Hannover, Germany
| | - Patrick O. Humbert
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia,Research Centre for Molecular Cancer Prevention, La Trobe University, Melbourne, VIC, Australia,Department of Biochemistry and Pharmacology, University of Melbourne, Melbourne, VIC, Australia,Department of Clinical Pathology, University of Melbourne, Melbourne, VIC, Australia,*Correspondence: Patrick O. Humbert,
| |
Collapse
|
2
|
Rumley JD, Preston EA, Cook D, Peng FL, Zacharias AL, Wu L, Jileaeva I, Murray JI. pop-1/TCF, ref-2/ZIC and T-box factors regulate the development of anterior cells in the C. elegans embryo. Dev Biol 2022; 489:34-46. [PMID: 35660370 PMCID: PMC9378603 DOI: 10.1016/j.ydbio.2022.05.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/21/2022] [Accepted: 05/26/2022] [Indexed: 11/25/2022]
Abstract
Patterning of the anterior-posterior axis is fundamental to animal development. The Wnt pathway plays a major role in this process by activating the expression of posterior genes in animals from worms to humans. This observation raises the question of whether the Wnt pathway or other regulators control the expression of the many anterior-expressed genes. We found that the expression of five anterior-specific genes in Caenorhabditis elegans embryos depends on the Wnt pathway effectors pop-1/TCF and sys-1/β-catenin. We focused further on one of these anterior genes, ref-2/ZIC, a conserved transcription factor expressed in multiple anterior lineages. Live imaging of ref-2 mutant embryos identified defects in cell division timing and position in anterior lineages. Cis-regulatory dissection identified three ref-2 transcriptional enhancers, one of which is necessary and sufficient for anterior-specific expression. This enhancer is activated by the T-box transcription factors TBX-37 and TBX-38, and surprisingly, concatemerized TBX-37/38 binding sites are sufficient to drive anterior-biased expression alone, despite the broad expression of TBX-37 and TBX-38. Taken together, our results highlight the diverse mechanisms used to regulate anterior expression patterns in the embryo.
Collapse
Affiliation(s)
- Jonathan D Rumley
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Elicia A Preston
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Dylan Cook
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Felicia L Peng
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Amanda L Zacharias
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Lucy Wu
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ilona Jileaeva
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - John Isaac Murray
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
3
|
Cabello J, Sämann J, Gómez-Orte E, Erazo T, Coppa A, Pujol A, Büssing I, Schulze B, Lizcano JM, Ferrer I, Baumeister R, Dalfo E. PDR-1/hParkin negatively regulates the phagocytosis of apoptotic cell corpses in Caenorhabditis elegans. Cell Death Dis 2014; 5:e1120. [PMID: 24625979 PMCID: PMC3973248 DOI: 10.1038/cddis.2014.57] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 12/23/2013] [Accepted: 01/22/2014] [Indexed: 12/28/2022]
Abstract
Apoptotic cell death is an integral part of cell turnover in many tissues, and proper corpse clearance is vital to maintaining tissue homeostasis in all multicellular organisms. Even in tissues with high cellular turnover, apoptotic cells are rarely seen because of efficient clearance mechanisms in healthy individuals. In Caenorhabditis elegans, two parallel and partly redundant conserved pathways act in cell corpse engulfment. The pathway for cytoskeletal rearrangement requires the small GTPase CED-10 Rac1 acting for an efficient surround of the dead cell. The CED-10 Rac pathway is also required for the proper migration of the distal tip cells (DTCs) during the development of the C. elegans gonad. Parkin, the mammalian homolog of the C. elegans PDR-1, interacts with Rac1 in aged human brain and it is also implicated with actin dynamics and cytoskeletal rearrangements in Parkinsons's disease, suggesting that it might act on engulfment. Our genetic and biochemical studies indicate that PDR-1 inhibits apoptotic cell engulfment and DTC migration by ubiquitylating CED-10 for degradation.
Collapse
Affiliation(s)
- J Cabello
- CIBIR (Centre for Biomedical Research of La Rioja), C/Piqueras 98, Logroño 26006, Spain
| | - J Sämann
- Bioinformatics and Molecular Genetics (Faculty of Biology), Center for Biochemistry and Molecular Cell Research (Faculty of Medicine), Schänzlestrasse 1, Freiburg 79104, Germany
| | - E Gómez-Orte
- CIBIR (Centre for Biomedical Research of La Rioja), C/Piqueras 98, Logroño 26006, Spain
| | - T Erazo
- Institut de Neurociències, Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, Barcelona 08193, Spain
| | - A Coppa
- Neurometabolic Diseases Laboratory, Institut D'Investigació Biomèdica de Bellvitge (IDIBELL), Hospital Duran i Reynals, L'Hospitalet de Llobregat, Barcelona 08907, Spain
| | - A Pujol
- 1] Neurometabolic Diseases Laboratory, Institut D'Investigació Biomèdica de Bellvitge (IDIBELL), Hospital Duran i Reynals, L'Hospitalet de Llobregat, Barcelona 08907, Spain [2] ICREA (Institució Catalana de Recerca i Estudis avançats), Barcelona, Spain [3] Institute of Neuropathology, University Hospitall Bellvitge - University of Barcelona - IDIBELL, L'Hospitalet de Llobregat, Ciberned, Spain [4] CIBERER (Centro de Investigación Biomédica en Enfermedades Raras), C/ Álvaro de Bazán, 10 Bajo, Valencia 46010, Spain
| | - I Büssing
- Bioinformatics and Molecular Genetics (Faculty of Biology), Center for Biochemistry and Molecular Cell Research (Faculty of Medicine), Schänzlestrasse 1, Freiburg 79104, Germany
| | - B Schulze
- Bioinformatics and Molecular Genetics (Faculty of Biology), Center for Biochemistry and Molecular Cell Research (Faculty of Medicine), Schänzlestrasse 1, Freiburg 79104, Germany
| | - J M Lizcano
- Institut de Neurociències, Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, Barcelona 08193, Spain
| | - I Ferrer
- Institute of Neuropathology, University Hospitall Bellvitge - University of Barcelona - IDIBELL, L'Hospitalet de Llobregat, Ciberned, Spain
| | - R Baumeister
- 1] Bioinformatics and Molecular Genetics (Faculty of Biology), Center for Biochemistry and Molecular Cell Research (Faculty of Medicine), Schänzlestrasse 1, Freiburg 79104, Germany [2] Centre for Biological Signaling Studies (bioss), University of Freiburg, Freiburg 79104, Germany [3] FRIAS Freiburg Institute for Advanced Studies, Section Life Sciences (LIFENET), University of Freiburg, Schaenzlestrasse 1, Freiburg 79104, Germany
| | - E Dalfo
- 1] Bioinformatics and Molecular Genetics (Faculty of Biology), Center for Biochemistry and Molecular Cell Research (Faculty of Medicine), Schänzlestrasse 1, Freiburg 79104, Germany [2] Neurometabolic Diseases Laboratory, Institut D'Investigació Biomèdica de Bellvitge (IDIBELL), Hospital Duran i Reynals, L'Hospitalet de Llobregat, Barcelona 08907, Spain [3] Institute of Neuropathology, University Hospitall Bellvitge - University of Barcelona - IDIBELL, L'Hospitalet de Llobregat, Ciberned, Spain [4] CIBERER (Centro de Investigación Biomédica en Enfermedades Raras), C/ Álvaro de Bazán, 10 Bajo, Valencia 46010, Spain
| |
Collapse
|
4
|
Mádi A, Mikkat S, Koy C, Ringel B, Thiesen HJ, Glocker MO. Mass spectrometric proteome analysis suggests anaerobic shift in metabolism of Dauer larvae of Caenorhabditis elegans. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2008; 1784:1763-70. [PMID: 18620082 DOI: 10.1016/j.bbapap.2008.05.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2008] [Revised: 05/27/2008] [Accepted: 05/28/2008] [Indexed: 10/21/2022]
Abstract
The Dauer larva is a non-feeding alternative larval stage of some nematodes specialized for long-term survival and dispersal. In this study we compared proteome maps obtained from Dauer larvae with those from the corresponding third larval stage (L3) of the feeding life cycle of C. elegans wild-type strain N2. We demonstrate at the protein level that altered metabolism may participate in longevity determination of Dauers. We detected huge amounts of alcohol dehydrogenase (CE12212) and aldehyde dehydrogenase (CE29809) in Dauer animals, indicating highly active fermentative pathways. Inorganic pyrophosphatase (CE05448) that enables to metabolize pyrophosphate as a high-energy source was over-expressed in Dauers. An interesting differentially expressed protein was phosphatidylethanolamine-binding protein (CE38516) that was found in high abundance in samples from Dauer larvae. Protein synthesis may be lowered in Dauer animals by the reduced expression of splicing factor rsp-3 (CE31089) and methionyl-tRNA synthase (CE34219). We observed significantly lower amounts of the pepsin-like aspartyl protease 1 (CE21681) in non-feeding Dauers, which is in agreement with reduced nutrient digestion. Finally, the hypothetical protein R08E5.2 (CE33294) was present in high abundance in L3 animals.
Collapse
Affiliation(s)
- András Mádi
- Proteome Center Rostock, University of Rostock, Schillingallee 69, D-18057 Rostock, Germany
| | | | | | | | | | | |
Collapse
|
5
|
de Curtis I. Functions of Rac GTPases during neuronal development. Dev Neurosci 2008; 30:47-58. [PMID: 18075254 DOI: 10.1159/000109851] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2006] [Accepted: 02/27/2007] [Indexed: 12/11/2022] Open
Abstract
The small GTPases of the Rho family are important regulators of the actin cytoskeleton and are critical for several aspects of neuronal development including the establishment of neuronal polarity, extension of axon and dendrites, neurite branching, axonal navigation and synapse formation. The aim of this review is to present evidence supporting the function of Rac and Rac-related proteins in different aspects of neuronal maturation, based on work performed with organisms including nematodes, Drosophila, Xenopus and mice, and with primary cultures of developing neurons. Three of the 4 vertebrate Rac-related genes, namely Rac1, Rac3 and RhoG, are expressed in the nervous system, and several data support an essential role of all 3 GTPases in distinct aspects of neuronal development and function. Two important points emerge from the analysis presented: highly homologous Rac-related proteins may perform different functions in the developing nervous system; on the other hand, the data also indicate that similar GTPases may perform redundant functions in vivo.
Collapse
Affiliation(s)
- Ivan de Curtis
- Cell Adhesion Unit, San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
6
|
Norman KR, Fazzio RT, Mellem JE, Espelt MV, Strange K, Beckerle MC, Maricq AV. The Rho/Rac-family guanine nucleotide exchange factor VAV-1 regulates rhythmic behaviors in C. elegans. Cell 2005; 123:119-32. [PMID: 16213217 DOI: 10.1016/j.cell.2005.08.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2004] [Revised: 06/04/2005] [Accepted: 08/05/2005] [Indexed: 11/27/2022]
Abstract
Rhythmic behaviors are a fundamental feature of all organisms. Pharyngeal pumping, the defecation cycle, and gonadal-sheath-cell contractions are three well-characterized rhythmic behaviors in the nematode C. elegans. The periodicities of the rhythms range from subsecond (pharynx) to seconds (gonadal sheath) to minutes (defecation). However, the molecular mechanisms underlying these rhythmic behaviors are not well understood. Here, we show that the C. elegans Rho/Rac-family guanine nucleotide exchange factor, VAV-1, which is homologous to the mammalian Vav proto-oncogene, has a crucial role in all three behaviors. vav-1 mutants die as larvae because VAV-1 function is required in the pharynx for synchronous contraction of the musculature. In addition, ovulation and the defecation cycle are abnormal and arrhythmic. We show that Rho/Rac-family GTPases and the signaling molecule inositol triphosphate (IP(3)) act downstream of VAV-1 signaling and that the VAV-1 pathway modulates rhythmic behaviors by dynamically regulating the concentration of intracellular Ca(2+).
Collapse
Affiliation(s)
- Kenneth R Norman
- Department of Biology, University of Utah, Salt Lake City, Utah 84112, USA
| | | | | | | | | | | | | |
Collapse
|
7
|
Caruso ME, Jenna S, Beaulne S, Lee EH, Bergeron A, Chauve C, Roby P, Rual JF, Hill DE, Vidal M, Bossé R, Chevet E. Biochemical clustering of monomeric GTPases of the Ras superfamily. Mol Cell Proteomics 2005; 4:936-44. [PMID: 15814614 DOI: 10.1074/mcp.m500025-mcp200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
To date phylogeny has been used to compare entire families of proteins based on their nucleotide or amino acid sequence. Here we developed a novel analytical platform allowing a systematic comparison of protein families based on their biochemical properties. This approach was validated on the Rho subfamily of GTPases. We used two high throughput methods, referred to as AlphaScreen and FlashPlate, to measure nucleotide binding capacity, exchange, and hydrolysis activities of small monomeric GTPases. These two technologies have the characteristics to be very sensitive and to allow homogenous and high throughput assays. To analyze and integrate the data obtained, we developed an algorithm that allows the classification of GTPases according to their enzymatic activities. Integration and hierarchical clustering of these results revealed unexpected features of the small Rho GTPases when compared with primary sequence-based trees. Hence we propose a novel phylobiochemical classification of the Ras superfamily of GTPases.
Collapse
Affiliation(s)
- Marie-Elaine Caruso
- Organelle Signaling Laboratory, Department of Surgery and Montreal Proteomics Network, McGill University, Montreal, Quebec H3A 2B2, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Abstract
During embryonic development, polarized epithelial cells are either formed during cleavage or formed from mesenchymal cells. Because the formation of epithelia during embryogenesis has to occur with high fidelity to ensure proper development, embryos allow a functional approach to study epithelial cell polarization in vivo. In particular, genetic model organisms have greatly advanced our understanding of the generation and maintenance of epithelial cell polarity. Many novel and important polarity genes have been identified and characterized in invertebrate systems, like Drosophila melanogaster and Caenorhabditis elegans. With the rapid identification of mammalian homologues of these invertebrate polarity genes, it has become clear that many important protein domains, single proteins and even entire protein complexes are evolutionarily conserved. It is to be expected that the field of epithelial cell polarity is just experiencing the 'top of the iceberg' of a large protein network that is fundamental for the specific adhesive, cell signalling and transport functions of epithelial cells.
Collapse
Affiliation(s)
- H-Arno J Müller
- Institut für Genetik, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, Düsseldorf D-40225, Germany.
| | | |
Collapse
|
9
|
Kubiseski TJ, Culotti J, Pawson T. Functional analysis of the Caenorhabditis elegans UNC-73B PH domain demonstrates a role in activation of the Rac GTPase in vitro and axon guidance in vivo. Mol Cell Biol 2003; 23:6823-35. [PMID: 12972602 PMCID: PMC193939 DOI: 10.1128/mcb.23.19.6823-6835.2003] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The Caenorhabditis elegans UNC-73B protein regulates axon guidance through its ability to act as a guanine nucleotide exchange factor (GEF) for the CeRAC/MIG-2 GTPases. Like other GEFs for Rho family GTPases, UNC-73B has a Dbl homology (DH) catalytic domain, followed by a C-terminal pleckstrin homology (PH) domain. We have explored whether the PH domain cooperates with the adjacent DH domain to promote UNC-73B GEF activity and axonal pathfinding. We show that the UNC-73B PH domain binds preferentially to monophosphorylated phosphatidylinositides in vitro. Replacement of residues Lys1420 and Arg1422 with Glu residues within the PH domain impaired this phospholipid binding but did not affect the in vitro catalytic activity of the DH domain. In contrast, a mutant UNC-73B protein with a Trp1502-to-Ala substitution in the PH domain still interacted with phosphorylated phosphatidylinositides but had lost its GEF activity. UNC-73B minigenes containing these mutations were microinjected into C. elegans and transferred to unc-73(e936) mutant worms. Unlike the wild-type protein, neither PH domain mutant was able to rescue the unc-73 axon guidance defect. These results suggest that the UNC-73B PH domain plays distinct roles in targeting and promoting GEF activity towards the Rac GTPase, both of which are important for the directed movements of motorneurons in vivo.
Collapse
Affiliation(s)
- Terrance J Kubiseski
- Samuel Lunenfeld Research Institute of Mt. Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
| | | | | |
Collapse
|
10
|
Lucas JM, Nikolic I, Hens MD. cDNA cloning, sequence comparison, and developmental expression of Xenopus rac1. Mech Dev 2002; 115:113-6. [PMID: 12049773 DOI: 10.1016/s0925-4773(02)00117-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The Rho family of small GTP-binding proteins are important signaling molecules that regulate the dynamics of the actin cytoskeleton and mediate changes in cell morphology and motility. Here, we describe the temporal and spatial patterns of expression of the Rho family member, rac, during the development of the amphibian, Xenopus laevis. We also present the deduced amino acid sequence of Xenopus rac (Xrac). At the amino acid level, Xrac is highly conserved relative to previously characterized rac homologs, and is nearly identical to human rac1. RNase protection assays and Western blot analysis indicate that Xrac mRNA and protein are present from fertilization through tailbud stages of development. Whole-mount in situ hybridizations show that Xrac transcripts are especially abundant in cells of the involuting marginal zone, and later, in the cranial neural crest, the developing central nervous system, and in the somites. The remarkable degree of evolutionary conservation observed in the Xrac primary structure together with its high level of expression in cells and structures critical to morphogenesis suggest a functionally important role for this Rho family member in early vertebrate development.
Collapse
Affiliation(s)
- Jennifer M Lucas
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27402, USA
| | | | | |
Collapse
|
11
|
Soto MC, Qadota H, Kasuya K, Inoue M, Tsuboi D, Mello CC, Kaibuchi K. The GEX-2 and GEX-3 proteins are required for tissue morphogenesis and cell migrations in C. elegans. Genes Dev 2002; 16:620-32. [PMID: 11877381 PMCID: PMC155352 DOI: 10.1101/gad.955702] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
During body morphogenesis precisely coordinated cell movements and cell shape changes organize the newly differentiated cells of an embryo into functional tissues. Here we describe two genes, gex-2 and gex-3, whose activities are necessary for initial steps of body morphogenesis in Caenorhabditis elegans. In the absence of gex-2 and gex-3 activities, cells differentiate properly but fail to become organized. The external hypodermal cells fail to spread over and enclose the embryo and instead cluster on the dorsal side. Postembryonically gex-3 activity is required for egg laying and for proper morphogenesis of the gonad. GEX-2 and GEX-3 proteins colocalize to cell boundaries and appear to directly interact. GEX-2 and GEX-3 are highly conserved, with vertebrate homologs implicated in binding the small GTPase Rac and a GEX-3 Drosophila homolog, HEM2/NAP1/KETTE, that interacts genetically with Rac pathway mutants. Our findings suggest that GEX-2 and GEX-3 may function at cell boundaries to regulate cell migrations and cell shape changes required for proper morphogenesis and development.
Collapse
Affiliation(s)
- Martha C Soto
- Program in Molecular Medicine and Cell Biology, Howard Hughes Medical Institute, University of Massachusetts Cancer Center, Worcester, Massachusetts 01605, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Wu YC, Tsai MC, Cheng LC, Chou CJ, Weng NY. C. elegans CED-12 acts in the conserved crkII/DOCK180/Rac pathway to control cell migration and cell corpse engulfment. Dev Cell 2001; 1:491-502. [PMID: 11703940 DOI: 10.1016/s1534-5807(01)00056-9] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
We have identified and characterized a novel C. elegans gene, ced-12, that functions in the conserved GTPase signaling pathway mediated by CED-2/Crkll, CED-5/DOCK180, and CED-10/Rac to control cell migration and phagocytosis of apoptotic cells. We provide evidence that ced-12 likely acts upstream of ced-10 during cell migration and phagocytosis and that CED-12 physically interacts with CED-5 and forms a ternary complex with CED-2 in vitro. We propose that the formation and localization of a CED-2-CED-5-CED-12 ternary complex to the plasma membrane activates CED-10, leading to the cytoskeletal reorganization that occurs in the polarized extension of cell surfaces in engulfing cells and migrating cells. We suggest that CED-12 counterparts in higher organisms regulate cytoskeleton dynamics, as CED-12 does in C. elegans.
Collapse
Affiliation(s)
- Y C Wu
- Department of Zoology, National Taiwan University, Taipei.
| | | | | | | | | |
Collapse
|
13
|
Mádi A, Kele Z, Janáky T, Punyiczki M, Fésüs L. Identification of Protein Substrates for Transglutaminase in Caenorhabditis elegans. Biochem Biophys Res Commun 2001; 283:964-8. [PMID: 11350079 DOI: 10.1006/bbrc.2001.4872] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Transglutaminase-dependent cross-linking of proteins leads to protein polymerisation that confers stability as well as resistance to mechanical disruption and chemical attack. Various transglutaminases have been implicated in a wide range of biological phenomena occurring in both extracellular and intracellular compartments, but further clarification of the physiological role of these enzymes requires identification of possible substrate molecules. Here we report the detection, purification, and identification of two proteins, enolase and ATP synthase alpha subunit as glutamine donor protein substrates for the transglutaminase of the nematode Caenorhabditis elegans.
Collapse
Affiliation(s)
- A Mádi
- Signal Transduction and Apoptosis Research Group of the Hungarian Academy of Sciences, University of Debrecen, Nagyerdei krt. 98, Debrecen, H-4012, Hungary
| | | | | | | | | |
Collapse
|
14
|
Reddien PW, Horvitz HR. CED-2/CrkII and CED-10/Rac control phagocytosis and cell migration in Caenorhabditis elegans. Nat Cell Biol 2000; 2:131-6. [PMID: 10707082 DOI: 10.1038/35004000] [Citation(s) in RCA: 318] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Engulfment of apoptotic cells in Caenorhabditis elegans is controlled by two partially redundant pathways. Mutations in genes in one of these pathways, defined by the genes ced-2, ced-5 and ced-10, result in defects both in the engulfment of dying cells and in the migrations of the two distal tip cells of the developing gonad. Here we find that ced-2 and ced-10 encode proteins similar to the human adaptor protein CrkII and the human GTPase Rac, respectively. Together with the previous observation that ced-5 encodes a protein similar to human DOCK180, our findings define a signalling pathway that controls phagocytosis and cell migration. We provide evidence that CED-2 and CED-10 function in engulfing rather than dying cells to control the phagocytosis of cell corpses, that CED-2 and CED-5 physically interact, and that ced-10 probably functions downstream of ced-2 and ced-5. We propose that CED-2/CrkII and CED-5/DOCK180 function to activate CED-10/Rac in a GTPase signalling pathway that controls the polarized extension of cell surfaces.
Collapse
Affiliation(s)
- P W Reddien
- Howard Hughes Medical Institute, Department of Biology, 68-425, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | | |
Collapse
|
15
|
Yap SF, Chen W, Lim L. Molecular characterization of the Caenorhabditis elegans Rho GDP-dissociation inhibitor. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 266:1090-100. [PMID: 10583406 DOI: 10.1046/j.1432-1327.1999.00953.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
GDP-dissociation inhibitors (GDIs) form one of the classes of regulatory proteins that modulate the cycling of the Ras superfamily of GTPases between active GTP-bound and inactive GDP-bound states. We report here the characterization of the Caenorhabditis elegans RhoGDI (CeRhoGDI) as part of our investigations into Rho-GTPase signalling pathways that are involved in nematode development. CeRhoGDI is a 23-kDa protein that is localized predominantly in the cytosol. CeRhoGDI interacts only with the lipid-modified forms of C. elegans Rho-GTPases, CeRhoA, CeRac1 and Cdc42Ce, in vitro and is able to solubilize the membrane-bound forms of these GTPases. CeRhoGDI recognizes the GTPases in both GTP- and GDP-bound forms; hence it inhibits both the guanine-nucleotide dissociation and GTP-hydrolysis activities. The inhibitory activity towards the GTP-bound GTPases is weak compared with that towards GDP-bound GTPases. CeRhoGDI is expressed throughout development and is highly expressed in marginal and vulval epithelial cells, in sperm cells and spicules. Taken together, our results suggest that CeRhoGDI may be involved in specific morphogenetic events mediated by the C. elegans Rho-GTPases.
Collapse
Affiliation(s)
- S F Yap
- Glaxo-IMCB Group, Institute of Molecular and Cell Biology, Singapore
| | | | | |
Collapse
|
16
|
Wissmann A, Ingles J, Mains PE. The Caenorhabditis elegans mel-11 myosin phosphatase regulatory subunit affects tissue contraction in the somatic gonad and the embryonic epidermis and genetically interacts with the Rac signaling pathway. Dev Biol 1999; 209:111-27. [PMID: 10208747 DOI: 10.1006/dbio.1999.9242] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Caenorhabditis elegans embryonic elongation is driven by cell shape changes that cause a contraction of the epidermal cell layer enclosing the embryo. We have previously shown that this process requires a Rho-associated kinase (LET-502) and is opposed by the activity of a myosin phosphatase regulatory subunit (MEL-11). We now extend our characterization and show that mel-11 activity is required both in the epidermis during embryonic elongation and in the spermatheca of the adult somatic gonad. let-502 and mel-11 reporter gene constructs show reciprocal expression patterns in the embryonic epidermis and the spermatheca, and mutations of the two genes have opposite effects in these two tissues. These results are consistent with let-502 and mel-11 mediating tissue contraction and relaxation, respectively. We also find that mel-11 embryonic inviability is genetically enhanced by mutations in a Rac signaling pathway, suggesting that Rac potentiates or acts in parallel with the activity of the myosin phosphatase complex. Since Rho has been implicated in promoting cellular contraction, our results support a mechanism by which epithelial morphogenesis is regulated by the counteracting activities of Rho and Rac.
Collapse
Affiliation(s)
- A Wissmann
- Department of Biochemistry and Molecular Biology, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1, Canada
| | | | | |
Collapse
|
17
|
Abstract
It is becoming increasingly clear that the complex family of Rho-related GTPases and their associated regulators and targets are essential mediators of a variety of morphogenetic events required for normal development of multicellular organisms. It is worth noting that the results obtained thus far indicate that the Rho family proteins are largely associated with the regulation of morphogenesis, as opposed to other essential developmental processes such as cell proliferation and cell fate determination. Accumulating evidence also suggests that the role of these proteins and their associated signaling pathways in morphogenesis is in many, but not necessarily all, cases related to their ability to affect the organization of the actin cytoskeleton. Thus, these in vivo observations have served to corroborate similar findings in numerous cultured cell studies. As described, the power of genetics, particularly in Drosophila and C. elegans, has been critical to the recent identification and functional characterization of several Rho family signaling components. Moreover, evidence suggests that the highly evolutionarily conserved structures of many of these proteins translate into conservation of function as well. Thus, it will be possible, in many cases, to extrapolate the findings in the simple systems described herein to higher eukaryotes, including humans. Expanding use of these genetic model systems to dissect Rho-mediated signaling pathways in vivo will undoubtedly lead to a flood of new insights into the organization and function of these pathways in the coming years, especially in development. As the C. elegans genome sequencing effort nears completion and with the Drosophila genome project well underway, the identification of novel relevant genes will proceed with even greater speed. In addition, the rapidly expanding use of mouse knockout strategies, combined with recent developments in the associated knockout technology, will also contribute greatly to the investigation of mammalain Rho signaling pathways and their roles in development.
Collapse
Affiliation(s)
- J Settleman
- Massachusetts General Hospital Cancer Center, Charlestown, USA
| |
Collapse
|
18
|
Aspbury RA, Prescott MC, Fisher MJ, Rees HH. Isoprenylation of polypeptides in the nematode Caenorhabditis elegans. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1392:265-75. [PMID: 9630668 DOI: 10.1016/s0005-2760(98)00040-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Covalent modification of eucaryotic proteins, involving addition of isoprenyl groups, is a widespread phenomenon. Here we provide direct evidence for this form of covalent modification in the free-living nematode, Caenorhabditis elegans. Following incubation in the presence of [3H]mevalonolactone, specific C. elegans polypeptides became labelled in both aqueous and detergent (Triton X-114)-enriched extracts. Chemical and GC-MS analysis of modifying groups, cleaved from C. elegans polypeptides, revealed that geranylgeranylation and, to a lesser extent, farnesylation of target polypeptides occurred. Immunoblot analysis provided preliminary evidence that the ras-like let-60 polypeptide was a target for isoprenylation in C. elegans.
Collapse
Affiliation(s)
- R A Aspbury
- Department of Biochemistry, University of Liverpool, PO Box 147, Liverpool L69 3BX, UK
| | | | | | | |
Collapse
|
19
|
Zipkin ID, Kindt RM, Kenyon CJ. Role of a new Rho family member in cell migration and axon guidance in C. elegans. Cell 1997; 90:883-94. [PMID: 9298900 DOI: 10.1016/s0092-8674(00)80353-0] [Citation(s) in RCA: 205] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Rho family GTPases are thought to regulate actin-dependent processes, but their functions in vivo are still poorly understood. We have investigated the function of a new, widely expressed Rho family member in C. elegans by analyzing mutations in the endogenous gene. Activated and null alleles all inhibit cell migration, demonstrating that this protein is required for cell migration in vivo. Only a small subset of the migrations inhibited by activating mutations are inhibited by null mutations, suggesting that considerable functional redundancy exists within this system. Our findings support this conclusion and show that mig-2 functions redundantly with another pathway to regulate nuclear migration. Surprisingly, activated alleles also cause misguided axon growth, suggesting that Rho family GTPases may couple guidance cues to process outgrowth.
Collapse
Affiliation(s)
- I D Zipkin
- Department of Biochemistry and Biophysics, University of California, San Francisco 94143-0554, USA
| | | | | |
Collapse
|
20
|
Wissmann A, Ingles J, McGhee JD, Mains PE. Caenorhabditis elegans LET-502 is related to Rho-binding kinases and human myotonic dystrophy kinase and interacts genetically with a homolog of the regulatory subunit of smooth muscle myosin phosphatase to affect cell shape. Genes Dev 1997; 11:409-22. [PMID: 9042856 DOI: 10.1101/gad.11.4.409] [Citation(s) in RCA: 143] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We have identified two genes associated with the hypodermal cell shape changes that occur during elongation of the Caenorhabditis elegans embryo. The first gene, called let-502, encodes a protein with high similarity to Rho-binding Ser/Thr kinases and to human myotonic dystrophy kinase (DM-kinase). Strong mutations in let-502 block embryonic elongation, and let-502 reporter constructs are expressed in hypodermal cells at the elongation stage of development. The second gene, mel-11, was identified by mutations that act as extragenic suppressors of let-502. mel-11 encodes a protein similar to the 110- to 133-kD regulatory subunits of vertebrate smooth muscle myosin-associated phosphatase (PP-1M). We suggest that the LET-502 kinase and the MEL-11 phosphatase subunit act in a pathway linking a signal generated by the small GTP-binding protein Rho to a myosin-based hypodermal contractile system that drives embryonic elongation. LET-502 may directly regulate the activity of the MEL-11 containing phosphatase complex and the similarity between LET-502 and DM-kinase suggests a similar function for DM-kinase.
Collapse
Affiliation(s)
- A Wissmann
- University of Calgary, Department of Medical Biochemistry, Alberta, Canada.
| | | | | | | |
Collapse
|
21
|
Chen W, Yap SF, Lim L. Isolation of the gene coding for Caenorhabditis elegans Rac2 homologue, a Ras-related small GTP-binding protein. Gene 1996; 180:217-9. [PMID: 8973370 DOI: 10.1016/s0378-1119(96)00414-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
When screening a Caenorhabditis elegans genomic library using the human Rac1 cDNA as probe, a hybridizing fragment of 2.7 kb was isolated which contained four exons with high sequence similarity to CeRac1, coding for the nematode homologue of the Ras-related small GTP-binding protein Rac1. The putative translational product of 195 amino acids (aa) from the exons displayed 88% identity to the sequence of CeRac1. Interestingly, three alterations were found in the N-terminal "effector domain' (residues 22-45) which hitherto was identical among all known Rac p21s, suggesting that CeRac2 might have different targets/functions for nematode development. Additionally, an insertion of 4 aa was found in the hypervariable region at the C terminus of CeRac2.
Collapse
Affiliation(s)
- W Chen
- Glaxo-IMCB Group, National University of Singapore, Singapore
| | | | | |
Collapse
|
22
|
Chen W, Chen S, Yap SF, Lim L. The Caenorhabditis elegans p21-activated kinase (CePAK) colocalizes with CeRac1 and CDC42Ce at hypodermal cell boundaries during embryo elongation. J Biol Chem 1996; 271:26362-8. [PMID: 8824291 DOI: 10.1074/jbc.271.42.26362] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The p21-activated kinase (PAK) is a downstream target of Rac and CDC42, members of the Ras-related Rho subfamily, that mediates signaling pathway leading to cytoskeletal reorganization. To investigate its function in Caenorhabditis elegans development, we have isolated the cDNA coding for the p21-activated kinase homologue (CePAK) from a C. elegans embryonic cDNA library. This 2.35-kilobase pair cDNA encodes a polypeptide of 572 amino acid residues, with the highly conserved N-terminal p21-binding and the C-terminal kinase domains. Similar to its mammalian and Drosophila counterparts, the CePAK protein expressed in E. coli exhibits binding activity toward GTP-bound CeRac1 and CDC42Ce. Polyclonal antibodies raised against the recombinant CePAK recognize a specific 70-kDa protein from embryonic extracts that displays CeRac1/CDC42Ce-binding and kinase activities. Immunofluorescence analysis indicates that CePAK is specifically expressed at the hypodermal cell boundaries during embryonic body elongation, which involves dramatic cytoskeletal reorganization. Interestingly, CeRac1 and CDC42Ce are found at the same location, which might point to their common involvement in hypodermal cell fusion, a crucial morphogenetic event for nematode development.
Collapse
Affiliation(s)
- W Chen
- Glaxo-IMCB Group, Institute of Molecular & Cell Biology, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260, Republic of Singapore
| | | | | | | |
Collapse
|
23
|
Abstract
Entamoeba histolytica (Eh), the parasite that causes amebic dysentery, is the only protozoan that phagocytoses bacteria, epithelial cells and red blood cells. Numerous low-molecular weight GTP-binding proteins, called p21rac, are implicated in signal transduction and actin polymerization during phagocytosis by macrophages and Dictyostelium discoideum (Dd). Here, molecular cloning techniques were used to obtain four Eh rac genes that encoded putative p21rac, as well as segments of two Eh rac pseudogenes. The predicted Eh p21rac, which share 55-81% amino acid (aa) identities with each other, include one that closely resembles the p21rac1 of man, Dd, Drosophila melanogaster and Caenorhabditis elegans; two that resemble the p21racC of Dd; and one that is unique. An alignment of the Eh rac ORF with other rac family proteins reveals multiple aa that distinguish p21rac1, p21racC and p21cdc42. We conclude that the Eh genes encoding amebic p21rac, which are the first identified from a protozoan parasite, are numerous and heterogeneous.
Collapse
Affiliation(s)
- A Lohia
- Department of Biochemistry, Bose Institute, Calcutta, India
| | | |
Collapse
|
24
|
Delmer DP, Pear JR, Andrawis A, Stalker DM. Genes encoding small GTP-binding proteins analogous to mammalian rac are preferentially expressed in developing cotton fibers. MOLECULAR & GENERAL GENETICS : MGG 1995; 248:43-51. [PMID: 7651326 DOI: 10.1007/bf02456612] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In animals, the small GTP-binding proteins, Rac and Rho, of the ras superfamily participate in the signal transduction pathway that regulates the organization of the actin cytoskeleton. We report here on the characterization of two distinct cDNA clones isolated from a cotton fiber cDNA library that code for homologs of animal Rac proteins. Using gene-specific probes, we have determined that amphidiploid cotton contains two genes that code for each of the two Rac proteins, designated Rac13 and Rac9, respectively. The gene for Rac13 shows highly enhanced expression in developing cotton fibers, with maximal expression occurring at the time of transition between primary and secondary wall synthesis. This is also the time at which reorganization of the cytoskeleton occurs, and thus the pattern of expression of Rac13 is consistent with its possible role, analogous to animal Rac, in the signal transduction pathway that controls cytoskeletal organization.
Collapse
Affiliation(s)
- D P Delmer
- Department of Botany, Hebrew University of Jerusalem, Israel
| | | | | | | |
Collapse
|
25
|
Manser E, Leung T, Lim L. Identification of GTPase-activating proteins by nitrocellulose overlay assay. Methods Enzymol 1995; 256:130-9. [PMID: 7476426 DOI: 10.1016/0076-6879(95)56018-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- E Manser
- Institute of Molecular and Cell Biology, National University of Singapore
| | | | | |
Collapse
|
26
|
Chen W, Lim L. The Caenorhabditis elegans small GTP-binding protein RhoA is enriched in the nerve ring and sensory neurons during larval development. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)31648-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
27
|
Chen W, Blanc J, Lim L. Characterization of a promiscuous GTPase-activating protein that has a Bcr-related domain from Caenorhabditis elegans. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)42184-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
28
|
Chen W, Lim H, Lim L. The CDC42 homologue from Caenorhabditis elegans. Complementation of yeast mutation. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(19)38649-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|