1
|
Einarsdóttir O, McDonald W, Funatogawa C, Szundi I, Woodruff WH, Dyer RB. The pathway of O₂to the active site in heme-copper oxidases. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1847:109-18. [PMID: 24998308 DOI: 10.1016/j.bbabio.2014.06.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 06/24/2014] [Indexed: 11/16/2022]
Abstract
The route of O₂to and from the high-spin heme in heme-copper oxidases has generally been believed to emulate that of carbon monoxide (CO). Time-resolved and stationary infrared experiments in our laboratories of the fully reduced CO-bound enzymes, as well as transient optical absorption saturation kinetics studies as a function of CO pressure, have provided strong support for CO binding to CuB⁺ on the pathway to and from the high-spin heme. The presence of CO on CuB⁺ suggests that O₂binding may be compromised in CO flow-flash experiments. Time-resolved optical absorption studies show that the rate of O₂and NO binding in the bovine enzyme (1 × 10⁸M⁻¹s⁻¹) is unaffected by the presence of CO, which is consistent with the rapid dissociation (t½ = 1.5μs) of CO from CuB⁺. In contrast, in Thermus thermophilus (Tt) cytochrome ba3 the O₂and NO binding to heme a3 slows by an order of magnitude in the presence of CO (from 1 × 10⁹ to 1 × 10⁸M⁻¹s⁻¹), but is still considerably faster (~10μs at 1atm O₂) than the CO off-rate from CuB in the absence of O₂(milliseconds). These results show that traditional CO flow-flash experiments do not give accurate results for the physiological binding of O₂and NO in Tt ba3, namely, in the absence of CO. They also raise the question whether in CO flow-flash experiments on Tt ba3 the presence of CO on CuB⁺ impedes the binding of O₂to CuB⁺ or, if O₂does not bind to CuB⁺ prior to heme a3, whether the CuB⁺-CO complex sterically restricts access of O₂to the heme. Both possibilities are discussed, and we argue that O₂binds directly to heme a3 in Tt ba3, causing CO to dissociate from CuB⁺ in a concerted manner through steric and/or electronic effects. This would allow CuB⁺ to function as an electron donor during the fast (5μs) breaking of the OO bond. These results suggest that the binding of CO to CuB⁺ on the path to and from heme a3 may not be applicable to O₂and NO in all heme-copper oxidases. This article is part of a Special Issue entitled: Vibrational spectroscopies and bioenergetic systems.
Collapse
Affiliation(s)
- Olöf Einarsdóttir
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA.
| | - William McDonald
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA
| | - Chie Funatogawa
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA
| | - Istvan Szundi
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA
| | | | - R Brian Dyer
- Department of Chemistry, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
2
|
Brocato S, Lau C, Atanassov P. Mechanistic study of direct electron transfer in bilirubin oxidase. Electrochim Acta 2012. [DOI: 10.1016/j.electacta.2011.11.074] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
3
|
Tiefenbrunn T, Liu W, Chen Y, Katritch V, Stout CD, Fee JA, Cherezov V. High resolution structure of the ba3 cytochrome c oxidase from Thermus thermophilus in a lipidic environment. PLoS One 2011; 6:e22348. [PMID: 21814577 PMCID: PMC3141039 DOI: 10.1371/journal.pone.0022348] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Accepted: 06/20/2011] [Indexed: 11/26/2022] Open
Abstract
The fundamental chemistry underpinning aerobic life on Earth involves reduction of dioxygen to water with concomitant proton translocation. This process is catalyzed by members of the heme-copper oxidase (HCO) superfamily. Despite the availability of crystal structures for all types of HCO, the mode of action for this enzyme is not understood at the atomic level, namely how vectorial H+ and e- transport are coupled. Toward addressing this problem, we report wild type and A120F mutant structures of the ba3-type cytochrome c oxidase from Thermus thermophilus at 1.8 Å resolution. The enzyme has been crystallized from the lipidic cubic phase, which mimics the biological membrane environment. The structures reveal 20 ordered lipid molecules that occupy binding sites on the protein surface or mediate crystal packing interfaces. The interior of the protein encloses 53 water molecules, including 3 trapped in the designated K-path of proton transfer and 8 in a cluster seen also in A-type enzymes that likely functions in egress of product water and proton translocation. The hydrophobic O2-uptake channel, connecting the active site to the lipid bilayer, contains a single water molecule nearest the CuB atom but otherwise exhibits no residual electron density. The active site contains strong electron density for a pair of bonded atoms bridging the heme Fea3 and CuB atoms that is best modeled as peroxide. The structure of ba3-oxidase reveals new information about the positioning of the enzyme within the membrane and the nature of its interactions with lipid molecules. The atomic resolution details provide insight into the mechanisms of electron transfer, oxygen diffusion into the active site, reduction of oxygen to water, and pumping of protons across the membrane. The development of a robust system for production of ba3-oxidase crystals diffracting to high resolution, together with an established expression system for generating mutants, opens the door for systematic structure-function studies.
Collapse
Affiliation(s)
- Theresa Tiefenbrunn
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Wei Liu
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Ying Chen
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Vsevolod Katritch
- Skaggs School of Pharmacy & Pharmaceutical Sciences and San Diego Supercomputer Center, University of California, San Diego, La Jolla, California, United States of America
| | - C. David Stout
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - James A. Fee
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California, United States of America
- * E-mail: (VC); (JF)
| | - Vadim Cherezov
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California, United States of America
- * E-mail: (VC); (JF)
| |
Collapse
|
4
|
Elucidation of Electron- Transfer Pathways in Copper and Iron Proteins by Pulse Radiolysis Experiments. ACTA ACUST UNITED AC 2008. [DOI: 10.1002/9780470144428.ch1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
5
|
Fujita K, Chan JM, Bollinger JA, Alvarez ML, Dooley DM. Anaerobic purification, characterization and preliminary mechanistic study of recombinant nitrous oxide reductase from Achromobacter cycloclastes. J Inorg Biochem 2007; 101:1836-44. [PMID: 17681606 DOI: 10.1016/j.jinorgbio.2007.06.029] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2007] [Revised: 06/04/2007] [Accepted: 06/06/2007] [Indexed: 11/20/2022]
Abstract
An overexpression system for nitrous oxide reductase (N(2)OR), an enzyme that catalyzes the conversion of N(2)O to N(2) and H(2)O, has been developed in Achromobacter cycloclastes. Anaerobically purified A. cycloclastes recombinant N(2)OR (AcN(2)OR) has on average 4.5 Cu and 1.2 S per monomer. Upon reduction by methyl viologen, AcN(2)OR displays a high specific activity: 124 U/mg at 25 degrees C. Anaerobically purified AcN(2)OR displays a unique absorption spectrum. UV-visible and EPR spectra, combined with kinetics studies, indicate that the as-purified form of the enzyme is predominately a mixture of the fully-reduced Cu(Z)=[4Cu(I)] state and the Cu(Z)=[3Cu(I).Cu(II)] state, with the latter readily reducible by reduced forms of viologens. CD spectra of the as-purified AcN(2)OR over a range of pH values reveal perturbations of the protein conformation induced by pH variations, although the principal secondary structure elements are largely unaltered. Further, the activity of AcN(2)OR in D(2)O is significantly decreased compared with that in H(2)O, indicative of a significant solvent isotope effect on N(2)O reduction. These data are in good agreement with conclusions reached in recent studies on the effect of pH on catalysis by N(2)OR [K. Fujita, D.M. Dooley, Inorg. Chem. 46 (2007) 613-615].
Collapse
Affiliation(s)
- Koyu Fujita
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, USA
| | | | | | | | | |
Collapse
|
6
|
Treuffet J, Kubarych KJ, Lambry JC, Pilet E, Masson JB, Martin JL, Vos MH, Joffre M, Alexandrou A. Direct observation of ligand transfer and bond formation in cytochrome c oxidase by using mid-infrared chirped-pulse upconversion. Proc Natl Acad Sci U S A 2007; 104:15705-10. [PMID: 17895387 PMCID: PMC2000433 DOI: 10.1073/pnas.0703279104] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2007] [Indexed: 11/18/2022] Open
Abstract
We have implemented the recently demonstrated technique of chirped-pulse upconversion of midinfrared femtosecond pulses into the visible in a visible pump-midinfrared probe experiment for high-resolution, high-sensitivity measurements over a broad spectral range. We have succeeded in time-resolving the CO ligand transfer process from the heme Fe to the neighboring Cu(B) atom in the bimetallic active site of mammalian cytochrome c oxidase, which was known to proceed in <1 ps, using the full CO vibrational signature of Fe-CO bond breaking and Cu(B)-CO bond formation. Our differential transmission results show a delayed onset of the appearance of the Cu(B)-bound species (200 fs), followed by a 450-fs exponential rise. Trajectories calculated by using molecular-dynamics simulations with a Morse potential for the Cu(B)-C interaction display a similar behavior. Both experimental and calculated data strongly suggest a ballistic contribution to the transfer process.
Collapse
Affiliation(s)
- Johanne Treuffet
- Laboratoire d'Optique et Biosciences, Ecole Polytechnique, Centre National de la Recherche Scientifique and Institut National de la Santé et de la Recherche Médicale U696, 91128 Palaiseau, France
| | - Kevin J. Kubarych
- Laboratoire d'Optique et Biosciences, Ecole Polytechnique, Centre National de la Recherche Scientifique and Institut National de la Santé et de la Recherche Médicale U696, 91128 Palaiseau, France
| | - Jean-Christophe Lambry
- Laboratoire d'Optique et Biosciences, Ecole Polytechnique, Centre National de la Recherche Scientifique and Institut National de la Santé et de la Recherche Médicale U696, 91128 Palaiseau, France
| | - Eric Pilet
- Laboratoire d'Optique et Biosciences, Ecole Polytechnique, Centre National de la Recherche Scientifique and Institut National de la Santé et de la Recherche Médicale U696, 91128 Palaiseau, France
| | - Jean-Baptiste Masson
- Laboratoire d'Optique et Biosciences, Ecole Polytechnique, Centre National de la Recherche Scientifique and Institut National de la Santé et de la Recherche Médicale U696, 91128 Palaiseau, France
| | - Jean-Louis Martin
- Laboratoire d'Optique et Biosciences, Ecole Polytechnique, Centre National de la Recherche Scientifique and Institut National de la Santé et de la Recherche Médicale U696, 91128 Palaiseau, France
| | - Marten H. Vos
- Laboratoire d'Optique et Biosciences, Ecole Polytechnique, Centre National de la Recherche Scientifique and Institut National de la Santé et de la Recherche Médicale U696, 91128 Palaiseau, France
| | - Manuel Joffre
- Laboratoire d'Optique et Biosciences, Ecole Polytechnique, Centre National de la Recherche Scientifique and Institut National de la Santé et de la Recherche Médicale U696, 91128 Palaiseau, France
| | - Antigoni Alexandrou
- Laboratoire d'Optique et Biosciences, Ecole Polytechnique, Centre National de la Recherche Scientifique and Institut National de la Santé et de la Recherche Médicale U696, 91128 Palaiseau, France
| |
Collapse
|
7
|
Farver O, Grell E, Ludwig B, Michel H, Pecht I. Rates and Equilibrium of CuA to heme a electron transfer in Paracoccus denitrificans cytochrome c oxidase. Biophys J 2005; 90:2131-7. [PMID: 16387770 PMCID: PMC1386791 DOI: 10.1529/biophysj.105.075440] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Intramolecular electron transfer between CuA and heme a in solubilized bacterial (Paracoccus denitrificans) cytochrome c oxidase was investigated by pulse radiolysis. CuA, the initial electron acceptor, was reduced by 1-methylnicotinamide radicals in a diffusion-controlled reaction, as monitored by absorption changes at 825 nm, followed by partial restoration of the absorption and paralleled by an increase in the heme a absorption at 605 nm. The latter observations indicate partial reoxidation of the CuA center and the concomitant reduction of heme a. The rate constants for heme a reduction and CuA reoxidation were identical within experimental error and independent of the enzyme concentration and its degree of reduction, demonstrating that a fast intramolecular electron equilibration is taking place between CuA and heme a. The rate constants for CuA --> heme a ET and the reverse heme a --> CuA process were found to be 20,400 s(-1) and 10,030 s(-1), respectively, at 25 degrees C and pH 7.5, which corresponds to an equilibrium constant of 2.0. Thermodynamic and activation parameters of these intramolecular ET reactions were determined. The significance of the results, particularly the low activation barriers, is discussed within the framework of the enzyme's known three-dimensional structure, potential ET pathways, and the calculated reorganization energies.
Collapse
Affiliation(s)
- Ole Farver
- Institute of Analytical Chemistry, The Danish University of Pharmaceutical Sciences, 2100 Copenhagen, Denmark.
| | | | | | | | | |
Collapse
|
8
|
Koutsoupakis C, Soulimane T, Varotsis C. Probing the Q-proton pathway of ba3-cytochrome c oxidase by time-resolved Fourier transform infrared spectroscopy. Biophys J 2004; 86:2438-44. [PMID: 15041681 PMCID: PMC1304092 DOI: 10.1016/s0006-3495(04)74300-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In cytochrome c oxidase, the terminal respiratory enzyme, electron transfers are strongly coupled to proton movements within the enzyme. Two proton pathways (K and D) containing water molecules and hydrophobic amino acids have been identified and suggested to be involved in the proton translocation from the mitochondrial matrix or the bacterial cytoplasm into the active site. In addition to the K and D proton pathways, a third proton pathway (Q) has been identified only in ba3-cytochrome c oxidase from Thermus thermophilus, and consists of residues that are highly conserved in all structurally known heme-copper oxidases. The Q pathway starts from the cytoplasmic side of the membrane and leads through the axial heme a3 ligand His-384 to the propionate of the heme a3 pyrrol ring A, and then via Asn-366 and Asp-372 to the water pool. We have applied FTIR and time-resolved step-scan Fourier transform infrared (TRS2-FTIR) spectroscopies to investigate the protonation/deprotonation events in the Q-proton pathway at ambient temperature. The photolysis of CO from heme a3 and its transient binding to CuB is dynamically linked to structural changes that can be tentatively attributed to ring A propionate of heme a3 (1695/1708 cm(-1)) and to deprotonation of Asp-372 (1726 cm(-1)). The implications of these results with respect to the role of the ring A propionate of heme a3-Asp372-H2O site as a proton carrier to the exit/output proton channel (H2O pool) that is conserved among all structurally known heme-copper oxidases, and is part of the Q-proton pathway in ba3-cytochrome c oxidase, are discussed.
Collapse
|
9
|
Einarsdóttir O, Szundi I. Time-resolved optical absorption studies of cytochrome oxidase dynamics. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2004; 1655:263-73. [PMID: 15100041 DOI: 10.1016/j.bbabio.2003.07.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2003] [Accepted: 07/31/2003] [Indexed: 10/26/2022]
Abstract
Time-resolved spectroscopic studies in our laboratory of bovine heart cytochrome c oxidase dynamics are summarized. Intramolecular electron transfer was investigated upon photolysis of CO from the mixed-valence enzyme, by pulse radiolysis, and upon light-induced electron injection into the cytochrome c/cytochrome oxidase complex from a novel photoactivatable dye. The reduction of dioxygen to water was monitored by a gated multichannel analyzer using the CO flow-flash method or a synthetic caged dioxygen carrier. The pH dependence of the intermediate spectra suggests a mechanism of dioxygen reduction more complex than the conventional unidirectional sequential scheme. A branched model is proposed, in which one branch produces the P form and the other branch the F form. The rate of exchange between the two branches is pH-dependent. A cross-linked histidine-phenol was synthesized and characterized to explore the role of the cross-linked His-Tyr cofactor in the function of the enzyme. Time-resolved optical absorption spectra, EPR and FTIR spectra of the compound generated after UV photolysis indicated the presence of a radical residing primarily on the phenoxyl ring. The relevance of these results to cytochrome oxidase function is discussed.
Collapse
Affiliation(s)
- Olöf Einarsdóttir
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA.
| | | |
Collapse
|
10
|
McMahon BH, Fabian M, Tomson F, Causgrove TP, Bailey JA, Rein FN, Dyer RB, Palmer G, Gennis RB, Woodruff WH. FTIR studies of internal proton transfer reactions linked to inter-heme electron transfer in bovine cytochrome c oxidase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2004; 1655:321-31. [PMID: 15100047 DOI: 10.1016/j.bbabio.2004.01.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2003] [Revised: 01/29/2004] [Accepted: 01/29/2004] [Indexed: 10/26/2022]
Abstract
FTIR difference spectroscopy is used to reveal changes in the internal structure and amino acid protonation states of bovine cytochrome c oxidase (CcO) that occur upon photolysis of the CO adduct of the two-electron reduced (mixed valence, MV) and four-electron reduced (fully reduced, FR) forms of the enzyme. FTIR difference spectra were obtained in D(2)O (pH 6-9.3) between the MV-CO adduct (heme a(3) and Cu(B) reduced; heme a and Cu(A) oxidized) and a photostationary state in which the MV-CO enzyme is photodissociated under constant illumination. In the photostationary state, part of the enzyme population has heme a(3) oxidized and heme a reduced. In MV-CO, the frequency of the stretch mode of CO bound to ferrous heme a(3) decreases from 1965.3 cm(-1) at pH* </=7 to 1963.7 cm(-1) at pH* 9.3. In the CO adduct of the fully reduced enzyme (FR-CO), the CO stretching frequency is observed at 1963.46+/-0.05 cm(-1), independent of pH. This indicates that in MV-CO there is a group proximal to heme a that deprotonates with a pK(a) of about 8.3, but that remains protonated over the entire pH* range 6-9.3 in FR-CO. The pK(a) of this group is therefore strongly coupled to the redox state of heme a. Following photodissociation of CO from heme a(3) in MV oxidases, the extent of electron transfer from heme a(3) to heme a shows a pH-dependent phase between pH 7 and 9, and a pH-independent phase at all pH's. The FTIR difference spectrum resulting from photolysis of MV-CO exhibits vibrational features of the protein backbone and side chains associated with (1) the loss of CO by the a(3) heme in the absence of electron transfer, (2) the pH-independent phase of the electron transfer, and (3) the pH-dependent phase of the electron transfer. Many infrared features change intensity or frequency during both electron transfer phases and thus appear as positive or negative features in the difference spectra. In particular, a negative band at 1735 cm(-1) and a positive band at 1412 cm(-1) are consistent with the deprotonation of the acidic residue E242. Positive features at 1552 and 1661 cm(-1) are due to amide backbone modes. Other positive and negative features between 1600 and 1700 cm(-1) are consistent with redox-induced shifts in heme formyl vibrations, and the redox-linked protonation of an arginine residue, accompanying electron transfer from heme a(3) to heme a. An arginine could be the residue responsible for the pH-dependent shift in the carbonyl frequency of MV-CO. Specific possibilities as to the functional significance of these observations are discussed.
Collapse
Affiliation(s)
- Benjamin H McMahon
- Chemistry Division, Bioscience Division, and Center for Nonlinear Studies, Los Alamos National Laboratory, Michelson Res., Bioscience Division, Los Alamos, NM 87545, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Iwaki M, Breton J, Rich PR. ATR-FTIR difference spectroscopy of the P(M) intermediate of bovine cytochrome c oxidase. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1555:116-21. [PMID: 12206902 DOI: 10.1016/s0005-2728(02)00265-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Perfusion-induced attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy was used to investigate changes induced in protein and cofactors of bovine cytochrome c oxidase when it was converted from the oxidised state to the catalytic P(M) intermediate. The transition was induced in a film of detergent-depleted 'fast' oxidase with a buffer containing CO and O(2). The extent of formation of the P(M) state was quantitated simultaneously by monitoring formation of its characteristic 607-nm band with a scanned visible beam reflected off the top surface of the prism. The P(M) minus O FTIR difference spectrum is distinctly different from the redox spectra reported to date and includes features that can be assigned to changes of haem a(3) and surrounding protein. Tentative assignments are made based on vibrational data of related proteins and model compounds.
Collapse
Affiliation(s)
- Masayo Iwaki
- The Glynn Laboratory of Bioenergetics, Department of Biology, University College London, UK
| | | | | |
Collapse
|
12
|
Affiliation(s)
- O Einarsdóttir
- Department of Chemistry and Biochemistry, University of California, Santa Cruz 95064, USA
| |
Collapse
|
13
|
Allen LA, Zhao XJ, Caughey W, Poyton RO. Isoforms of yeast cytochrome c oxidase subunit V affect the binuclear reaction center and alter the kinetics of interaction with the isoforms of yeast cytochrome c. J Biol Chem 1995; 270:110-8. [PMID: 7814361 DOI: 10.1074/jbc.270.1.110] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Subunit V, one of the nuclear-coded subunits of yeast cytochrome c oxidase, has two isoforms, Va and Vb. These alter the in vivo intramolecular rates of electron transfer within the holoenzyme (Waterland, R. A., Basu, A., Chance, B., and Poyton, R. O. (1991) J. Biol. Chem. 266, 4180-4186). The isozyme with Vb has a higher turnover rate and a higher intramolecular transfer rate than the isozyme with Va. To determine how these isoforms affect catalysis, we have examined their effects on the binuclear reaction center and on the interaction between cytochrome c oxidase and the two isoforms, iso-1 and iso-2, of yeast cytochrome c. Infrared spectroscopy of carbon monoxide liganded to heme a3 has revealed a single conformer for the binuclear reaction center in the isozyme with Vb but two discrete conformers in the isozyme with Va. The kinetics of interaction for all four pairwise combinations of isozymes with each subunit V isoform and the two cytochrome c isoforms are biphasic, with high and low affinity electron transfer reactions. In general, the isoforms of cytochrome c and subunit V do not alter the Km but do affect the TNmax. The TNmax for isozymes carrying Vb are higher at both high and low affinity sites for each cytochrome c isoform. Iso-1-cytochrome c supports a higher TNmax than Iso-2-cytochrome c. Surprisingly, the combinatorial effect of both sets of isoforms on TNmax is minimized with the pairs of isoforms (iso-1-cytochrome c and subunit Va or iso-2 and subunit Vb) that are co-expressed in cells. Together, these findings support the conclusion that the subunit V isoforms modulate catalysis and suggest that they do so by affecting the environment or structure of the binuclear reaction center. They also suggest that the coexpression of the two cytochrome c isoforms with two subunit V isoforms serves to minimize differences in electron transfer rates brought about by the subunit V isoforms.
Collapse
Affiliation(s)
- L A Allen
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder 80309
| | | | | | | |
Collapse
|
14
|
Larsen RW. Peroxide-induced spectral perturbations of the 280-nm absorption band of cytochrome c oxidase. FEBS Lett 1994; 352:365-8. [PMID: 7926003 DOI: 10.1016/0014-5793(94)00999-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
It is now widely believed that the first two electrons transferred to the dioxygen reduction site in cytochrome c oxidase (CcO) are not coupled to proton translocation. The activation of the pump cycle correlates with the binding of dioxygen to the binuclear center. In order to investigate conformational changes in CcO associated with the formation of dioxygen intermediates during the catalytic cycle of CcO, the effects of hydrogen peroxide binding to CcO have been examined using UV optical absorption and second derivative techniques. Our data indicates that in the presence low concentrations of H2O2 (2:1 molar ratio) an initial CcO-peroxide species is formed in which the 280-nm absorption band is red shifted. This red shift occurs prior to spectral changes associated with H2O2 binding to cytochrome a3. Upon addition of higher concentrations of H2O2 (> 10 equivalents of H2O2 per equivalent of CcO) oxidized CcO is converted to F-state enzyme with no corresponding shift at 280 nm. It is suggested that H2O2 initially binds to CuB2+ resulting in a conformational change in the enzyme giving rise to a red-shifted 280 nm band. The absence of any conformational changes in F-state enzyme is consistent with the lack of bridging interactions with CuB2+ in this intermediate.
Collapse
Affiliation(s)
- R W Larsen
- Department of Chemistry, University of Hawaii at Manoa, Honolulu 96822
| |
Collapse
|
15
|
Lodder AL, Wever R, van Gelder BF. Effects of cytochrome c on the oxidation of reduced cytochrome c oxidase by hydrogen peroxide. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1185:303-10. [PMID: 8180234 DOI: 10.1016/0005-2728(94)90245-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The oxidation of the redox centres in reduced cytochrome c oxidase by hydrogen peroxide was studied by stopped-flow spectrophotometry in the absence and presence of reduced cytochrome c. The oxidation rate of cytochrome a decreased in the presence of cytochrome c. This effect was more pronounced at low than at high ionic strength. Cytochrome c did not influence the time-course of the oxidation of CuA or cytochrome a3. The oxidation of cytochrome c itself was faster at low ionic strength. The results suggest that the effect of cytochrome c is caused by re-reduction of cytochrome a by cytochrome c, the rate of which is dependent upon the ionic strength. We conclude that cytochrome a and cytochrome c are in equilibrium and that the equilibrium constant depends on the ionic strength. At low ionic strength, as a complex is formed between cytochrome c and cytochrome c oxidase, cytochrome a is more reduced than at high ionic strength conditions, when no such complex exists. Since CuA is oxidized at the same rate whether cytochrome c is present or not, we conclude that electron transfer from cytochrome a or cytochrome c to CuA is slower than electron transfer from CuA to cytochrome a or/and to the cytochrome a2-CuB couple.
Collapse
Affiliation(s)
- A L Lodder
- E.C. Slater Institute, University of Amsterdam, The Netherlands
| | | | | |
Collapse
|
16
|
Uno T, Mogi T, Tsubaki M, Nishimura Y, Anraku Y. Resonance Raman and Fourier transform infrared studies on the subunit I histidine mutants of the cytochrome bo complex in Escherichia coli. Molecular structure of redox metal centers. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)32659-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
17
|
Dyer RB, Peterson KA, Stoutland PO, Woodruff WH. Picosecond infrared study of the photodynamics of carbonmonoxy-cytochrome c oxidase. Biochemistry 1994; 33:500-7. [PMID: 8286380 DOI: 10.1021/bi00168a015] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Time-resolved infrared (TRIR) techniques have been employed to study the reactions of carbon monoxide with the cytochrome alpha 3-Cu(B) site of cytochrome c oxidase (CcO). The ligation dynamics immediately following photodissociation have been investigated using picosecond TRIR spectroscopy and linear dichroism. The rate of photoinitiated transfer of CO from cytochrome alpha 3 to CuB was measured directly by monitoring the development of the transient CuBCO absorption. In less than 1 ps, a stationary CuBCO spectrum develops, which together with the CO infrared linear dichroism is constant until the CO dissociates from CuB on a microsecond time scale. These observations indicate that the CO is transferred between metals and reaches its equilibrium conformation in less than 1 ps. This unprecedented ligand transfer rate has profound implications with regard to the structure and dynamics of the cytochrome alpha 3-CuB site, the functional architecture of the protein, and coordination dynamics in general.
Collapse
Affiliation(s)
- R B Dyer
- Chemical Sciences and Technology Division (CST), Los Alamos National Laboratory, New Mexico 87545
| | | | | | | |
Collapse
|
18
|
Woodruff WH. Coordination dynamics of heme-copper oxidases. The ligand shuttle and the control and coupling of electron transfer and proton translocation. J Bioenerg Biomembr 1993; 25:177-88. [PMID: 8389750 DOI: 10.1007/bf00762859] [Citation(s) in RCA: 108] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Results are presented which, taken with evidence developed by others, suggest a general mechanism for the entry and binding of exogenous ligands (including O2) at the "binuclear site" (CuBFea3) of the heme-copper oxidases. The mechanism includes a "ligand shuttle" wherein the obligatory way station for incoming ligands is CuB and the binding of exogenous ligands at this site triggers the exchange and displacement of endogenous ligands at Fea3. It is suggested that these ligand shuttle reactions might be functionally important in providing a coupling mechanism for electron transfer and proton translocation. Scenarios as to how this might happen are delineated.
Collapse
Affiliation(s)
- W H Woodruff
- Spectroscopy and Biochemistry Group, Los Alamos National Laboratory, New Mexico 87545
| |
Collapse
|
19
|
Caughey WS, Dong A, Sampath V, Yoshikawa S, Zhao XJ. Probing heart cytochrome c oxidase structure and function by infrared spectroscopy. J Bioenerg Biomembr 1993; 25:81-91. [PMID: 8389753 DOI: 10.1007/bf00762850] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
IR spectra directly probe specific vibrators in bovine heart cytochrome c oxidase, yielding quantitative as well as qualitative information on structures and reactions at these vibrators. C-O IR spectra reveal that CO binds to Fe2+ a3 as two conformers each in isolated immobile environments sensitive to Fea and/or CuA oxidation state but remarkably insensitive to pH, medium, anesthetics, and other factors that affect activity. C-N IR spectra reveal that the one CN- that binds to fully and partially oxidized enzyme can be in three different structures. These structures vary in relative amounts with redox level, thereby reflecting dynamic electron exchange among Fea, CuA, and CuB with associated changes in protein conformation of likely significance in O2 reduction and H(+)-pumping. Azide IR spectra also reflect redox-dependent long-range effects. The amide I IR bands, due to C-O vibrators of peptide linkages and composed of multiple bands derived from different secondary structures, reveal high levels of alpha-helix (approximately 60%) and subtle changes with redox level and exposure to anesthetics. N2O IR spectra reveal that these anesthetic molecules at clinically relevant levels occupy three sites of different polarity within the enzyme as the enzyme is reversibly, but only partially, inhibited.
Collapse
Affiliation(s)
- W S Caughey
- Department of Biochemistry, Colorado State University, Fort Collins 80523
| | | | | | | | | |
Collapse
|
20
|
Hosler JP, Ferguson-Miller S, Calhoun MW, Thomas JW, Hill J, Lemieux L, Ma J, Georgiou C, Fetter J, Shapleigh J. Insight into the active-site structure and function of cytochrome oxidase by analysis of site-directed mutants of bacterial cytochrome aa3 and cytochrome bo. J Bioenerg Biomembr 1993; 25:121-36. [PMID: 8389745 DOI: 10.1007/bf00762854] [Citation(s) in RCA: 214] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Cytochrome aa3 of Rhodobacter sphaeroides and cytochrome bo of E. coli are useful models of the more complex cytochrome c oxidase of eukaryotes, as demonstrated by the genetic, spectroscopic, and functional studies reviewed here. A summary of site-directed mutants of conserved residues in these two enzymes is presented and discussed in terms of a current model of the structure of the metal centers and evidence for regions of the protein likely to be involved in proton transfer. The model of ligation of the heme a3 (or o)-CuB center, in which both hemes are bound to helix X of subunit I, has important implications for the pathways and control of electron transfer.
Collapse
Affiliation(s)
- J P Hosler
- Department of Biochemistry, Michigan State University, East Lansing 48824
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Rousseau DL, Ching Y, Wang J. Proton translocation in cytochrome c oxidase: redox linkage through proximal ligand exchange on cytochrome a3. J Bioenerg Biomembr 1993; 25:165-76. [PMID: 8389749 DOI: 10.1007/bf00762858] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
An analysis of resonance Raman scattering data from CO-bound cytochrome c oxidase and from the photodissociated enzyme indicates that histidine may not be coordinated to the iron atom of cytochrome a3 in the CO-bound form of the enzyme. Instead, the data suggest that either a water molecule or a different amino acid residue occupies the proximal ligand position. From these data, it is postulated that ligand exchange on cytochrome a3 can occur under physiological conditions. Studies of mutant hemoglobins have demonstrated that tyrosinate binds preferentially to histidine in the ferric forms of the proteins. In cytochrome c oxidase tyrosine residues are located near the histidine residues recently implicated in coordination to cytochrome a3 (Shapleigh et al., 1992; Hosler et al., this volume). Expanding on these concepts, we propose a model for proton translocation at the O2-binding site based on proximal ligand exchange between tyrosine and histidine on cytochrome a3. The pumping steps take place at the level of the peroxy intermediate and at the level of the ferryl intermediate in the catalytic cycle and are thereby consistent with the recent results of Wilkstrom (1989) who found that proton pumping occurs only at these two steps. It is shown that the model may be readily extended to account for the pumping of two protons at each of the steps.
Collapse
Affiliation(s)
- D L Rousseau
- AT&T Bell Laboratories, Murray Hill, New Jersey 07974
| | | | | |
Collapse
|
22
|
Shinzawa-Itoh K, Yamashita H, Yoshikawa S, Fukumoto Y, Abe T, Tsukihara T. Single crystals of bovine heart cytochrome c oxidase at fully oxidized resting, fully reduced and CO-bound fully reduced states are isomorphous with each other. J Mol Biol 1992; 228:987-90. [PMID: 1335086 DOI: 10.1016/0022-2836(92)90883-l] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Fully reduced and CO-bound fully reduced forms of cytochrome c oxidase from beef heart muscle were crystallized in the presence of sodium ascorbate under N2 or CO atmosphere. Hexagonal bipyramidal and tetragonal crystals were obtained for both forms depending on buffer species. The hexagonal bipyramidal crystals, as large as 0.6 mm in the largest dimension, diffracted X-rays at 7 A resolution, showing an identical space group and cell dimension, P6(2) or P6(4) and a = b = 209 A, c = 283 A, respectively. These parameters coincide with those for crystals of the fully oxidized resting enzyme. This result suggests that a large conformational change, like a subunit arrangement, is not induced by the redox change and/or binding of CO (and possibly O2) to heme a3.
Collapse
Affiliation(s)
- K Shinzawa-Itoh
- Department of Life Science, Himeji Institute of Technology, Hyogo, Japan
| | | | | | | | | | | |
Collapse
|
23
|
Chapter 9 Cytochrome oxidase: notes on structure and mechanism. MOLECULAR MECHANISMS IN BIOENERGETICS 1992. [DOI: 10.1016/s0167-7306(08)60177-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
24
|
Pettingill T, Strange R, Blackburn N. Carbonmonoxy dopamine beta-hydroxylase. Structural characterization by Fourier transform infrared, fluorescence, and x-ray absorption spectroscopy. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(19)47331-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
25
|
Abstract
This article tries to be a compact summary of some recent research on cytochromecoxidase (EC 1.9.3.1), an important enzyme in membrane bioenergetics. Cytochrome oxidase is the terminal catalyst of the mitochondrial respiratory chain. It uses the electrons flowing through the chain to reduce oxygen molecules to water. Four electrons and four protons are consumed in the reduction of O2to two molecules of water (Fig. 1). Cytochrome oxidase contains four redoxactive metal centres. Two of these are copper atoms, two haem A groups. These four centres are employed in the dioxygen-binding site and in the electron-transferring pathways from cytochromec. The enzyme is also called cytochromeaa3, because the protein-bound haems are functionally and spectroscopically different.
Collapse
Affiliation(s)
- M Saraste
- Department of Medical Chemistry, University of Helsinki, Finland
| |
Collapse
|
26
|
Direct detection of a dioxygen adduct of cytochrome a3 in the mixed valence cytochrome oxidase/dioxygen reaction. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)38567-9] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
27
|
Infrared evidence of cyanide binding to iron and copper sites in bovine heart cytochrome c oxidase. Implications regarding oxygen reduction. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)39023-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
28
|
Capitanio N, De Nitto E, Villani G, Capitanio G, Papa S. Protonmotive activity of cytochrome c oxidase: control of oxidoreduction of the heme centers by the protonmotive force in the reconstituted beef heart enzyme. Biochemistry 1990; 29:2939-45. [PMID: 2159780 DOI: 10.1021/bi00464a008] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
This paper contributes to the characterization of partial steps of electron and proton transfer in mitochondrial cytochrome c oxidase with respect to their membrane arrangement and involvement in energy-linked protonmotive activity. It is shown that delta psi controls electron flow from cytochrome c to heme a is consistent with the view that the latter center is buried in the membrane in a central position. The pressure exerted by delta psi on oxidation of heme alpha 3 by O2 indicates also that this center is buried in the membrane at some distance from the inner side and is consistent with observations showing that protons consumed in the reduction of O2 to H2O derive from the inner space. Electron flow from heme alpha to heme alpha 3 is shown to be specifically controlled by delta pH and in particular by the pH of the inner phase. Analysis of the effect of DCCD treatment of oxidase vesicles reveals that concentrations of this reagent which result in selective modification of subunit III (Prochaska et al., 1981) produce inhibition of redox-linked proton release. Higher concentrations of DCCD which result also in modification of subunits II and IV (Prochaska et al., 1981) cause inhibition of the pH-dependent electron-transfer step from heme alpha to heme alpha 3.
Collapse
Affiliation(s)
- N Capitanio
- Institute of Medical Biochemistry and Chemistry, University of Bari, Italy
| | | | | | | | | |
Collapse
|
29
|
Han S, Ching YC, Rousseau DL. Primary intermediate in the reaction of mixed-valence cytochrome c oxidase with oxygen. Biochemistry 1990; 29:1380-4. [PMID: 2159336 DOI: 10.1021/bi00458a006] [Citation(s) in RCA: 33] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The reaction of dioxygen with mixed-valence cytochrome c oxidase was followed in a rapid-mixing continuous-flow apparatus. The optical absorption difference spectrum and a kinetic analysis confirm the presence of the primary oxygen intermediate in the 0-100-microseconds time window. The resonance Raman spectrum of the iron-dioxygen stretching mode (568 cm-1) supplies evidence that the degree of electron transfer from the iron atom to the dioxygen is similar to that in oxy complexes of other heme proteins. Thus, the Fe-O2 bond does not display any unique structural features that could account for the rapid reduction of dioxygen to water. Furthermore, the frequency of the iron-dioxygen stretching mode is the same as that of the primary intermediate in the fully reduced enzyme, indicating that the oxidation state of cytochrome a plays no role in controlling the initial properties of the oxygen binding site.
Collapse
Affiliation(s)
- S Han
- AT&T Bell Laboratories, Murray Hill, New Jersey 07974
| | | | | |
Collapse
|
30
|
An infrared study of the binding and photodissociation of carbon monoxide in cytochrome ba3 from Thermus thermophilus. J Biol Chem 1989. [DOI: 10.1016/s0021-9258(19)81627-7] [Citation(s) in RCA: 65] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
31
|
Shimada H, Dong A, Matsushima-Hibiya Y, Ishimura Y, Caughey WS. Distal His----Arg mutation in bovine myoglobin results in a ligand binding site similar to the abnormal beta site of hemoglobin Zurich (beta 63 His----Arg). Biochem Biophys Res Commun 1989; 158:110-4. [PMID: 2912443 DOI: 10.1016/s0006-291x(89)80184-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Carbon monoxide binding to a myoglobin mutant with distal arginine in place of histidine has been examined. The mutant is derived from a cDNA clone for Mb mRNA from fetal bovine skeletal muscle. The mutation only slightly perturbs visible/Soret spectra whereas the infrared spectrum of liganded CO is greatly modified to become nearly identical to Hb Zurich beta-subunit spectrum. The mutant IR spectra differ substantially from spectra of wild-type MbCO and normal HbCO beta-subunit. For both the Mb and the Hb the distal His----Arg mutation increases the affinity for CO and reduces the number of observed conformers. These results demonstrate that this mutation greatly reduces the differences between Mb and Hb in the structure and properties of its ligand binding sites.
Collapse
Affiliation(s)
- H Shimada
- Department of Biochemistry, School of Medicine, Keio University, Tokyo, Japan
| | | | | | | | | |
Collapse
|
32
|
Affiliation(s)
- G L Yewey
- Department of Biochemistry, Colorado State University, Fort Collins 80523
| | | |
Collapse
|