1
|
Kumar S, Masison DC. Hsp70-nucleotide exchange factor (NEF) Fes1 has non-NEF roles in degradation of gluconeogenic enzymes and cell wall integrity. PLoS Genet 2019; 15:e1008219. [PMID: 31242183 PMCID: PMC6615629 DOI: 10.1371/journal.pgen.1008219] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/09/2019] [Accepted: 05/28/2019] [Indexed: 12/03/2022] Open
Abstract
Fes1 is a conserved armadillo repeat-containing Hsp70 nucleotide exchange factor important for growth at high temperature, proteasomal protein degradation and prion propagation. Depleting or mutating Fes1 induces a stress response and causes defects in these processes that are ascribed solely to disruption of Fes1 regulation of Hsp70. Here, we find Fes1 was essential for degradation of gluconeogenic enzymes by the vacuole import and degradation (Vid) pathway and for cell wall integrity (CWI), which is crucial for growth at high temperature. Unexpectedly, Fes1 mutants defective in physical or functional interaction with Hsp70 retained activities that support Vid and CWI. Fes1 and the Fes1 mutants bound to the Vid substrate Fbp1 in vitro and captured Slt2, a signaling kinase that regulates CWI, from cell lysates. Our data show that the armadillo domain of Fes1 binds proteins other than Hsp70, that Fes1 has important Hsp70-independent roles in the cell, and that major growth defects caused by depleting Fes1 are due to loss of these functions rather than to loss of Hsp70 regulation. We uncovered diverse functions of Fes1 beyond its defined role in regulating Hsp70, which points to possible multi-functionality among its conserved counterparts in other organisms or organelles. Fes1, a yeast homolog of human nucleotide exchange factor HspBP1, binds and regulates Hsp70, a universally conserved protein that helps maintain health of proteins in cells. Fes1 is believed to function only by helping Hsp70 release ADP and substrates and cells lacking Fes1 are sick. We find Fes1 is essential for protein degradation by a vacuolar pathway (Vid) and for cell wall integrity (CWI), and it interacts with a Vid substrate and a regulator of CWI. Fes1 mutants that cannot regulate Hsp70 can still support Vid and CWI, interact with proteins involved in these processes and restore cell health. Thus, Fes1 binds proteins other than Hsp70 and has important functions beyond regulating Hsp70 that are needed for optimal cell fitness.
Collapse
Affiliation(s)
- Shailesh Kumar
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Daniel C. Masison
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
2
|
Chen Y, Nielsen J. Flux control through protein phosphorylation in yeast. FEMS Yeast Res 2017; 16:fow096. [PMID: 27797916 DOI: 10.1093/femsyr/fow096] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2016] [Indexed: 01/26/2023] Open
Abstract
Protein phosphorylation is one of the most important mechanisms regulating metabolism as it can directly modify metabolic enzymes by the addition of phosphate groups. Attributed to such a rapid and reversible mechanism, cells can adjust metabolism rapidly in response to temporal changes. The yeast Saccharomyces cerevisiae, a widely used cell factory and model organism, is reported to show frequent phosphorylation events in metabolism. Studying protein phosphorylation in S. cerevisiae allows for gaining new insight into the function of regulatory networks, which may enable improved metabolic engineering as well as identify mechanisms underlying human metabolic diseases. Here we collect functional phosphorylation events of 41 enzymes involved in yeast metabolism and demonstrate functional mechanisms and the application of this information in metabolic engineering. From a systems biology perspective, we describe the development of phosphoproteomics in yeast as well as approaches to analysing the phosphoproteomics data. Finally, we focus on integrated analyses with other omics data sets and genome-scale metabolic models. Despite the advances, future studies improving both experimental technologies and computational approaches are imperative to expand the current knowledge of protein phosphorylation in S. cerevisiae.
Collapse
Affiliation(s)
- Yu Chen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China.,Department of Biology and Biological Engineering, Chalmers University of Technology, SE412 96 Gothenburg, Sweden
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE412 96 Gothenburg, Sweden.,Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK2800 Kgs. Lyngby, Denmark
| |
Collapse
|
3
|
Braun B, Pfirrmann T, Menssen R, Hofmann K, Scheel H, Wolf DH. Gid9, a second RING finger protein contributes to the ubiquitin ligase activity of the Gid complex required for catabolite degradation. FEBS Lett 2011; 585:3856-61. [PMID: 22044534 DOI: 10.1016/j.febslet.2011.10.038] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 10/20/2011] [Accepted: 10/23/2011] [Indexed: 10/15/2022]
Abstract
The two major antagonistic pathways of carbon metabolism in cells, glycolysis and gluconeogenesis, are tightly regulated. In the eukaryotic model organism Saccharomyces cerevisiae the switch from gluconeogenesis to glycolysis is brought about by proteasomal degradation of the gluconeogenic enzyme fructose-1,6-bisphosphatase. The ubiquitin ligase responsible for polyubiquitylation of fructose-1,6-bisphosphatase is the Gid complex. This complex consists of seven subunits of which subunit Gid2/Rmd5 contains a RING finger domain providing E3 ligase activity. Here we identify an additional subunit containing a degenerated RING finger, Gid9/Fyv10. This subunit binds to Gid2/Rmd5. A mutation in the degenerated RING finger of Gid9/Fyv10 abolishes polyubiquitylation and degradation of three enzymes specific for gluconeogenesis.
Collapse
Affiliation(s)
- Bernhard Braun
- Institut für Biochemie, Universität Stuttgart, Stuttgart, Germany
| | | | | | | | | | | |
Collapse
|
4
|
Barbin L, Eisele F, Santt O, Wolf DH. The Cdc48-Ufd1-Npl4 complex is central in ubiquitin-proteasome triggered catabolite degradation of fructose-1,6-bisphosphatase. Biochem Biophys Res Commun 2010; 394:335-41. [PMID: 20206597 DOI: 10.1016/j.bbrc.2010.03.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2010] [Accepted: 03/02/2010] [Indexed: 10/19/2022]
Abstract
The switch from gluconeogenesis to glycolysis in yeast has been shown to require ubiquitin-proteasome dependent elimination of the key enzyme fructose-1,6-bisphosphatase (FBPase). Prior to proteasomal degradation, polyubiquitination of the enzyme occurs via the ubiquitin-conjugating enzymes Ubc1, Ubc4, Ubc5 and Ubc8 in conjunction with a novel multi-subunit ubiquitin ligase, the Gid complex. As an additional machinery required for the catabolite degradation process, we identified the trimeric Cdc48(Ufd1-Npl4) complex and the ubiquitin receptors Dsk2 and Rad23. We show that this machinery acts between polyubiquitination of FBPase and its degradation by the proteasome.
Collapse
Affiliation(s)
- Lise Barbin
- Institut für Biochemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | | | | | | |
Collapse
|
5
|
Xie C, Bondarenko VE, Morales MJ, Strauss HC. Closed-state inactivation in Kv4.3 isoforms is differentially modulated by protein kinase C. Am J Physiol Cell Physiol 2009; 297:C1236-48. [PMID: 19675305 DOI: 10.1152/ajpcell.00144.2009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Kv4.3, with its complex open- and closed-state inactivation (CSI) characteristics, is a primary contributor to early cardiac repolarization. The two alternatively spliced forms, Kv4.3-short (Kv4.3-S) and Kv4.3-long (Kv4.3-L), differ by the presence of a 19-amino acid insert downstream from the sixth transmembrane segment. The isoforms are similar kinetically; however, the longer form has a unique PKC phosphorylation site. To test the possibility that inactivation is differentially regulated by phosphorylation, we expressed the Kv4.3 isoforms in Xenopus oocytes and examined changes in their inactivation properties after stimulation of PKC activity. Whereas there was no difference in open-state inactivation, there were profound differences in CSI. In Kv4.3-S, PMA reduced the magnitude of CSI by 24% after 14.4 s at -50 mV. In contrast, the magnitude of CSI in Kv4.3-L increased by 25% under the same conditions. Mutation of a putatively phosphorylated threonine (T504) to aspartic acid within a PKC consensus recognition sequence unique to Kv4.3-L eliminated the PMA response. The change in CSI was independent of the intervention used to increase PKC activity; identical results were obtained with either PMA or injected purified PKC. Our previously published 11-state model closely simulated our experimental data. Our data demonstrate isoform-specific regulation of CSI by PKC in Kv4.3 and show that the carboxy terminus of Kv4.3 plays an important role in regulation of CSI.
Collapse
Affiliation(s)
- Chang Xie
- Key Laboratory of Molecular Biophysics, Huazhong University of Science and Technology, Ministry of Education, College of Life Science and Technology, Wuhan, Hubei, China
| | | | | | | |
Collapse
|
6
|
Santt O, Pfirrmann T, Braun B, Juretschke J, Kimmig P, Scheel H, Hofmann K, Thumm M, Wolf DH. The yeast GID complex, a novel ubiquitin ligase (E3) involved in the regulation of carbohydrate metabolism. Mol Biol Cell 2008; 19:3323-33. [PMID: 18508925 PMCID: PMC2488282 DOI: 10.1091/mbc.e08-03-0328] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2008] [Revised: 05/13/2008] [Accepted: 05/19/2008] [Indexed: 01/01/2023] Open
Abstract
Glucose-dependent regulation of carbon metabolism is a subject of intensive studies. We have previously shown that the switch from gluconeogenesis to glycolysis is associated with ubiquitin-proteasome linked elimination of the key enzyme fructose-1,6-bisphosphatase. Seven glucose induced degradation deficient (Gid)-proteins found previously in a genomic screen were shown to form a complex that binds FBPase. One of the subunits, Gid2/Rmd5, contains a degenerated RING finger domain. In an in vitro assay, heterologous expression of GST-Gid2 leads to polyubiquitination of proteins. In addition, we show that a mutation in the degenerated RING domain of Gid2/Rmd5 abolishes fructose-1,6-bisphosphatase polyubiquitination and elimination in vivo. Six Gid proteins are present in gluconeogenic cells. A seventh protein, Gid4/Vid24, occurs upon glucose addition to gluconeogenic cells and is afterwards eliminated. Forcing abnormal expression of Gid4/Vid24 in gluconeogenic cells leads to fructose-1,6-bisphosphatase degradation. This suggests that Gid4/Vid24 initiates fructose-1,6-bisphosphatase polyubiquitination by the Gid complex and its subsequent elimination by the proteasome. We also show that an additional gluconeogenic enzyme, phosphoenolpyruvate carboxykinase, is subject to Gid complex-dependent degradation. Our study uncovers a new type of ubiquitin ligase complex composed of novel subunits involved in carbohydrate metabolism and identifies Gid4/Vid24 as a major regulator of this E3.
Collapse
Affiliation(s)
- Olivier Santt
- *Institut für Biochemie, Universität Stuttgart, 70569 Stuttgart, Germany; and
| | - Thorsten Pfirrmann
- *Institut für Biochemie, Universität Stuttgart, 70569 Stuttgart, Germany; and
| | - Bernhard Braun
- *Institut für Biochemie, Universität Stuttgart, 70569 Stuttgart, Germany; and
| | | | - Philipp Kimmig
- *Institut für Biochemie, Universität Stuttgart, 70569 Stuttgart, Germany; and
| | | | | | - Michael Thumm
- *Institut für Biochemie, Universität Stuttgart, 70569 Stuttgart, Germany; and
| | - Dieter H. Wolf
- *Institut für Biochemie, Universität Stuttgart, 70569 Stuttgart, Germany; and
| |
Collapse
|
7
|
Kobayashi M, Takatani N, Tanigawa M, Omata T. Posttranslational regulation of nitrate assimilation in the cyanobacterium Synechocystis sp. strain PCC 6803. J Bacteriol 2005; 187:498-506. [PMID: 15629921 PMCID: PMC543532 DOI: 10.1128/jb.187.2.498-506.2005] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Posttranslational regulation of nitrate assimilation was studied in the cyanobacterium Synechocystis sp. strain PCC 6803. The ABC-type nitrate and nitrite bispecific transporter encoded by the nrtABCD genes was completely inhibited by ammonium as in Synechococcus elongatus strain PCC 7942. Nitrate reductase was insensitive to ammonium, while it is inhibited in the Synechococcus strain. Nitrite reductase was also insensitive to ammonium. The inhibition of nitrate and nitrite transport required the PII protein (glnB gene product) and the C-terminal domain of NrtC, one of the two ATP-binding subunits of the transporter, as in the Synechococcus strain. Mutants expressing the PII derivatives in which Ala or Glu is substituted for the conserved Ser49, which has been shown to be the phosphorylation site in the Synechococcus strain, showed ammonium-promoted inhibition of nitrate uptake like that of the wild-type strain. The S49A and S49E substitutions in GlnB did not affect the regulation of the nitrate and nitrite transporter in Synechococcus either. These results indicated that the presence or absence of negative electric charge at the 49th position does not affect the activity of the PII protein to regulate the cyanobacterial ABC-type nitrate and nitrite transporter according to the cellular nitrogen status. This finding suggested that the permanent inhibition of nitrate assimilation by an S49A derivative of PII, as was previously reported for Synechococcus elongatus strain PCC 7942, is likely to have resulted from inhibition of nitrate reductase rather than the nitrate and nitrite transporter.
Collapse
Affiliation(s)
- Masaki Kobayashi
- Laboratory of Molecular Plant Physiology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | | | | | | |
Collapse
|
8
|
Dennis RA, Rhodey M, McCammon MT. Yeast mutants of glucose metabolism with defects in the coordinate regulation of carbon assimilation. Arch Biochem Biophys 1999; 365:279-88. [PMID: 10328823 DOI: 10.1006/abbi.1999.1163] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The enzymes of the glyoxylate cycle and gluconeogenesis are tightly regulated by transcriptional, posttranscriptional, and posttranslational mechanisms in Saccharomyces cerevisiae. We have previously identified four genes, ACN8, ACN9, ACN17, and ACN18, whose mutant phenotype includes two- to fourfold elevated levels of enzymes of the glyoxylate cycle, gluconeogenesis, and acetyl-CoA metabolism. The affected enzymes are elevated on nonfermentable carbon sources but are still fully repressed by glucose. Catabolite inactivation of the cytosolic malate dehydrogenase is not affected in the mutants. Instead, the phenotype appeared to be manifested primarily at the level of transcription. The ACN8, ACN17, and ACN18 genes were isolated by functional complementation of the respective mutant's inability to utilize acetate as a carbon and energy source, and these genes were shown to encode subunits of metabolic enzymes. ACN8 was identical to FBP1, which encodes the gluconeogenic enzyme, fructose 1,6-bisphosphatase, while ACN17 and ACN18 were identical to the SDH2 and SDH4 genes, respectively, that encode subunits of the respiratory chain and tricarboxylic acid cycle enzyme, succinate dehydrogenase. Mutants defective in other glyoxylate cycle and gluconeogenic enzymes also display the elevated enzyme phenotype, indicating that the enzyme superinduction is a general property of gluconeogenic dysfunction. Glucose 6-phosphate levels were diminished in the mutants, suggesting that endogenous glucose synthesis can regulate the expression of gluconeogenic enzymes.
Collapse
Affiliation(s)
- R A Dennis
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, 72205, USA
| | | | | |
Collapse
|
9
|
Toroser D, McMichael R, Krause KP, Kurreck J, Sonnewald U, Stitt M, Huber SC. Site-directed mutagenesis of serine 158 demonstrates its role in spinach leaf sucrose-phosphate synthase modulation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 1999; 17:407-13. [PMID: 10205897 DOI: 10.1046/j.1365-313x.1999.00389.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Site-directed mutagenesis of spinach sucrose-phosphate synthase (SPS) was performed to investigate the role of Ser158 in the modulation of spinach leaf SPS. Tobacco plants expressing the spinach wild-type (WT), S158A, S158T and S157F/S158E SPS transgenes were produced. Expression of transgenes appeared not to reduce expression of the tobacco host SPS. SPS activity in the WT and the S158T SPS transgenics showed light/dark modulation, whereas the S158A and S157F/S158E mutants were not similarly light/dark modulated: the S158A mutant enzyme was not inactivated in the dark, and the S157F/S158E was not activated in the light. The inability to modulate the activity of the S158A mutant enzyme by protein phosphorylation was demonstrated in vitro. The WT spinach enzyme immunopurified from dark transgenic tobacco leaves had a low initial activation state, and could be activated by PP2A and subsequently inactivated by SPS-kinase plus ATP. Rapid purification of the S158A mutant enzyme from dark leaves of transgenic plants using spinach-specific monoclonal antibodies yielded enzyme that had a high initial activation state, and pre-incubation with leaf PP2A or ATP plus SPS-kinase (the PKIII enzyme) caused little modulation of activity. The results demonstrate the regulatory significance of Ser158 as the major site responsible for dark inactivation of spinach SPS in vivo, and indicate that the significance of phosphorylation is the introduction of a negative charge at the Ser158 position.
Collapse
Affiliation(s)
- D Toroser
- US Department of Agriculture, Agricultural Research Service, Raleigh, NC 27607, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Hämmerle M, Bauer J, Rose M, Szallies A, Thumm M, Düsterhus S, Mecke D, Entian KD, Wolf DH. Proteins of newly isolated mutants and the amino-terminal proline are essential for ubiquitin-proteasome-catalyzed catabolite degradation of fructose-1,6-bisphosphatase of Saccharomyces cerevisiae. J Biol Chem 1998; 273:25000-5. [PMID: 9737955 DOI: 10.1074/jbc.273.39.25000] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Addition of glucose to cells of the yeast Saccharomyces cerevisiae growing on a non-fermentable carbon source leads to selective and rapid degradation of fructose-1,6-bisphosphatase. This so called catabolite inactivation of the enzyme is brought about by the ubiquitin-proteasome system. To identify additional components of the catabolite inactivation machinery, we isolated three mutant strains, gid1, gid2, and gid3, defective in glucose-induced degradation of fructose-1,6-bisphospha-tase. All mutant strains show in addition a defect in catabolite inactivation of three other gluconeogenic enzymes: cytosolic malate dehydrogenase, isocitrate lyase, and phosphoenolpyruvate carboxykinase. These findings indicate a common mechanism for the inactivation of all four enzymes. The mutants were also impaired in degradation of short-lived N-end rule substrates, which are degraded via the ubiquitin-proteasome system. Site-directed mutagenesis of the amino-terminal proline residue yielded fructose-1,6-bisphosphatase forms that were no longer degraded via the ubiquitin-proteasome pathway. All amino termini other than proline made fructose-1,6-bisphosphatase inaccessible to degradation. However, the exchange of the amino-terminal proline had no effect on the phosphorylation of the mutated enzyme. Our findings suggest an essential function of the amino-terminal proline residue for the degradation process of fructose-1,6-bisphosphatase. Phosphorylation of the enzyme was not necessary for degradation to occur.
Collapse
Affiliation(s)
- M Hämmerle
- Institut für Biochemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Müller S, Zimmermann FK, Boles E. Mutant studies of phosphofructo-2-kinases do not reveal an essential role of fructose-2,6-bisphosphate in the regulation of carbon fluxes in yeast cells. MICROBIOLOGY (READING, ENGLAND) 1997; 143 ( Pt 9):3055-3061. [PMID: 9308187 DOI: 10.1099/00221287-143-9-3055] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The effect of the allosteric regulator fructose-2,6-bisphosphate (F2,6bP) on the regulation of carbohydrate metabolism was investigated in vivo with Saccharomyces cerevisiae mutants containing no, very high or unregulated 6-phosphofructo-2-kinase activity. Simultaneous overproduction of F2,6bP and 6-phosphofructo-1-kinase activity did not increase the glycolytic flux to ethanol. Overexpression of fructose-1,6-bisphosphatase during growth on glucose in a mutant strain devoid of F2,6bP did not cause pronounced effects on the cells. Moreover, high levels of F2,6bP during growth on ethanol in a strain with a highly active 6-phosphofructo-2-kinase enzyme did not affect either carbon flux to glycogen or growth rate. Site-directed mutagenesis of 6-phosphofructo-2-kinase (Pfk26) revealed that serine 644 is involved in the activation of Pfk26 by protein kinase A phosphorylation, but that, additionally, the enzyme can be further activated by phosphorylation of another amino acid residue. The results demonstrate that F2,6bP is not needed to sustain an adequate glycolytic flux under fermentative conditions, but rather is concerned with the homeostasis of metabolite concentrations. Moreover, they fail to indicate a physiological significance for inhibition of fructose-1,6-bisphosphatase by F2,6bP.
Collapse
Affiliation(s)
- Susanne Müller
- Institut for Mikrobiologie und Genetik, Technische Hochschule Darmstadt, Schnittspahnstr. 10, D-64287 Darmstadt, Germany
| | - Friedrich K Zimmermann
- Institut for Mikrobiologie und Genetik, Technische Hochschule Darmstadt, Schnittspahnstr. 10, D-64287 Darmstadt, Germany
| | - Eckhard Boles
- Institut for Mikrobiologie und Genetik, Technische Hochschule Darmstadt, Schnittspahnstr. 10, D-64287 Darmstadt, Germany
| |
Collapse
|
12
|
Norais N, Hall JA, Gross L, Tang D, Kaur S, Chamberlain SH, Burke RL, Marcus F. Evidence for a phosphorylation site in cytomegalovirus glycoprotein gB. J Virol 1996; 70:5716-9. [PMID: 8764095 PMCID: PMC190541 DOI: 10.1128/jvi.70.8.5716-5719.1996] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
As part of our vaccine program, we have purified a recombinant form of human cytomegalovirus glycoprotein B that is able to induce high titers of virus-neutralizing antibodies. The isolated protein was found to be phosphorylated at a serine residue in position -7 from the C terminus of the protein. The corresponding synthetic peptide, HLKDSDEEENV, was an efficient in vitro substrate of casein kinase II.
Collapse
Affiliation(s)
- N Norais
- Chiron Corporation, Emeryville, California 94608, USA
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
Protein phosphorylation is one of the major signal transduction mechanisms for controlling and regulating intracellular processes. Phosphorylation of specific hydroxylated amino acid side chains (Ser, Thr, Tyr) by protein kinases can activate numerous enzymes; this effect can be reversed by the action of protein phosphatases. Here we report ab initio (HF/6-31G and Becke3LYP/6-31G) and semiempirical (PM3) molecular orbital calculations pertinent to the ion pair formation of the phosphorylated amino acids with the basic side chains of Lys and Arg. Methyl-, ethyl-, and phenylphosphate, as well as methylamine and methylguanidinium were used as model compounds for the phosphorylated and basic amino acids, respectively. Phosphorylated amino acids were calculated as mono- and divalent anions. Our results indicate that the PSer/PThr ion pair interaction energies are stronger than those with PTyr. Moreover, the interaction energies with the amino group of Lys are generally more favorable than with the guanidinium group of Arg. The Lys amino groups form stable bifurcated hydrogen bonded structures; while the Arg guanidinium group can form a bidentate hydrogen bonded structure. Reasonable values for the interaction free energies in aqueous solution were obtained for some complexes by the inclusion of a solvent reaction field in the computation (PM3-SM3).
Collapse
Affiliation(s)
- J Mavri
- BIOSON Research Institute, Department of Biophysical Chemistry, University of Groningen, The Netherlands
| | | |
Collapse
|
14
|
Regulation of the cystic fibrosis transmembrane conductance regulator Cl- channel by negative charge in the R domain. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(20)80723-6] [Citation(s) in RCA: 106] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
15
|
Zaror I, Marcus F, Moyer DL, Tung J, Shuster JR. Fructose-1,6-bisphosphatase of the yeast Kluyveromyces lactis. EUROPEAN JOURNAL OF BIOCHEMISTRY 1993; 212:193-9. [PMID: 8383039 DOI: 10.1111/j.1432-1033.1993.tb17650.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The fructose-1,6-bisphosphatase [Fru(1,6)P2ase] gene of the budding yeast, Kluyveromyces lactis, was cloned and sequenced. The gene encodes one open reading frame predicting a 354-amino-acid polypeptide. The polypeptide is different from other Fru(1,6)P2ases in that it contains a short amino-acid-insert region close to a basic residue located at the binding site for the allosteric inhibitor AMP. Comparison of the biochemical properties of the K. lactis enzyme with its closest homolog, the Saccharomyces cerevisiae Fru(1,6)P2ase (74% amino acid identity), reveals that the K. lactis enzyme is significantly less sensitive to AMP (Ki = 540 microM) than the S. cerevisiae enzyme (Ki = 190 microM). However, studies with a K. lactis Fru(1,6)P2ase mutant, in which the insert region (amino acids 152-160) was deleted by site-directed mutagenesis [(des-152-160)Fru(1,6)P2ase], showed that the mutant enzyme had higher sensitivity to AMP inhibition (Ki = 280 microM) than the control K. lactis enzyme. Thus, the nine-amino-acid insert region appears to be responsible for the decreased AMP inhibition shown by the K. lactis wild-type enzyme. Catabolite-repression and catabolite-inactivation studies show that, unlike the complete repression of FBP1 mRNA and inactivation of enzyme activity by glucose seen in S. cerevisiae, mRNA levels and enzyme activity of K. lactis Fru(1,6)P2ase decreased only about 2-4-fold due to the presence of glucose in the cell-culture medium.
Collapse
Affiliation(s)
- I Zaror
- Chiron Corporation, Emeryville, CA 94608
| | | | | | | | | |
Collapse
|
16
|
Minard K, McAlister-Henn L. Glucose-induced degradation of the MDH2 isozyme of malate dehydrogenase in yeast. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)41948-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
17
|
Site-directed mutagenesis of the phosphorylatable serine (Ser8) in C4 phosphoenolpyruvate carboxylase from sorghum. The effect of negative charge at position 8. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)41844-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
18
|
Kurland I, el-Maghrabi M, Correia J, Pilkis S. Rat liver 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase. Properties of phospho- and dephospho- forms and of two mutants in which Ser32 has been changed by site-directed mutagenesis. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)42851-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
19
|
Witters LA, Watts TD. Yeast acetyl-CoA carboxylase: in vitro phosphorylation by mammalian and yeast protein kinases. Biochem Biophys Res Commun 1990; 169:369-76. [PMID: 1972618 DOI: 10.1016/0006-291x(90)90341-j] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Acetyl-CoA carboxylase (ACC) is regulated in mammalian tissues, in part, by multisite enzyme phosphorylation. Yeast ACC (Y-ACC) has been highly purified from S. cerevisiae by monomeric avidin-Sepharose chromatography, revealing an enzyme subunit species of molecular mass 265,000 Da. Unlike mammalian enzyme, Y-ACC is citrate-independent, and reacts weakly or not at all with a panel of anti-rat liver ACC antibodies. Like rat ACC, Y-ACC is rapidly phosphorylated and inactivated by two mammalian carboxylase kinases, the cAMP-dependent protein kinase and 5'-AMP-stimulated kinase. It is also phosphorylated by rat liver casein kinase II, but without any change in catalytic activity. Three major yeast protein kinases active on ACC have been fractionated; all co-elute with kinases active on casein, but each appears to be a distinct catalytic species. Like the mammalian casein kinases, however, phosphorylation of ACC by these yeast kinases does not alter yeast ACC activity. Taken together, these data indicate that Y-ACC possesses at least two classes of phosphorylation sites, one or more of which acutely regulates enzyme activity. Alterations in Y-ACC phosphorylation in yeast, as in mammalian tissues, could be an important modulator of the rates of fatty acid synthesis.
Collapse
Affiliation(s)
- L A Witters
- Department of Medicine, Dartmouth Medical School, Hanover, NH 03756
| | | |
Collapse
|
20
|
Street AJ, Blackwood E, Lüscher B, Eisenman RN. Mutational analysis of the carboxy-terminal casein kinase II phosphorylation site in human c-myc. Curr Top Microbiol Immunol 1990; 166:251-8. [PMID: 2073805 DOI: 10.1007/978-3-642-75889-8_31] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Myc proteins are phosphorylated within two critical regions by casein kinase II (CKII): the central acidic domain and a carboxy-terminal region bordering the basic region-helix-loop-helix segment. In order to test whether the carboxy-terminal phosphorylation site was functionally important we introduced three types of mutations into this region. Two of the mutations would be expected to prevent phosphorylation and minimize negative charge while the third introduced a permanent negative charge. The Myc CKII site mutants were cloned into a retroviral vector and were shown to be efficiently expressed in several different cell types. In one mutant we directly demonstrated loss of the phosphorylation site. When the Myc mutants were used in a cooperative transformation assay of Rat-1 cells with the bcr-abl oncogene we were unable to detect a significant difference in transformation efficiency between wild-type Myc and any of the mutants. While the CKII site is non-functional in this assay, the high levels of Myc produced may have overridden potential CKII regulation.
Collapse
Affiliation(s)
- A J Street
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98104
| | | | | | | |
Collapse
|
21
|
Abstract
This review briefly surveys the literature on the nature, regulation, genetics, and molecular biology of the major energy-yielding pathways in yeasts, with emphasis on Saccharomyces cerevisiae. While sugar metabolism has received the lion's share of attention from workers in this field because of its bearing on the production of ethanol and other metabolites, more attention is now being paid to ethanol metabolism and the regulation of aerobic metabolism by fermentable and nonfermentable substrates. The utility of yeast as a highly manipulable organism and the discovery that yeast metabolic pathways are subject to the same types of control as those of higher cells open up many opportunities in such diverse areas as molecular evolution and cancer research.
Collapse
Affiliation(s)
- C Wills
- Department of Biology, University of California, San Diego, La Jolla
| |
Collapse
|
22
|
Andrés V, García-Salguero L, Gómez ME, Aragón JJ. Allosteric inhibition of Dictyostelium discoideum fructose-1,6-bisphosphatase by fructose 2,6-bisphosphate. FEBS Lett 1988; 241:51-4. [PMID: 2848725 DOI: 10.1016/0014-5793(88)81029-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
It has been found that the inhibition of Dictyostelium discoideum fructose-1,6-bisphosphatase by fructose 2,6-P2 greatly diminished when the pH was raised to the range 8.5-9.5, which resulted in a marked decrease of the affinity for the inhibitor with no change in the Km for the substrate. This provides evidence for the involvement of an allosteric site for fructose 2,6-P2. Moreover, the fact that excess substrate inhibition also decreased at the pH values for minimal fructose 2,6-P2 inhibition, and was essentially abolished in the presence of fructose 2,6-P2, strongly suggests that this inhibition takes place by binding of fructose 1,6-P2 as a weak analogue of the physiological effector fructose 2,6-P2.
Collapse
Affiliation(s)
- V Andrés
- Instituto de Investigaciones Biomédicas del CSIC, Departamento de Bioquímica de la Facultad de Medicina de la Universidad Autónoma, Madrid, Spain
| | | | | | | |
Collapse
|
23
|
Rose M, Entian KD, Hofmann L, Vogel RF, Mecke D. Irreversible inactivation of Saccharomyces cerevisiae fructose-1,6-bisphosphatase independent of protein phosphorylation at Ser11. FEBS Lett 1988; 241:55-9. [PMID: 2848726 DOI: 10.1016/0014-5793(88)81030-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The fructose-1,6-bisphosphatase gene was used with multicopy plasmids to study rapid reversible and irreversible inactivation after addition of glucose to derepressed Saccharomyces cerevisiae cells. Both inactivation systems could inactivate the enzyme, even if 20-fold over-expressed. The putative serine residue, at which fructose-1,6-bisphosphatase is phosphorylated, was changed to an alanine residue without notably affecting the catalytic activity. No rapid reversible inactivation was observed with the mutated enzyme. Nonetheless, the modified enzyme was still irreversibly inactivated, clearly demonstrating that phosphorylation is an independent regulatory circuit that reduces fructose-1,6-bisphosphatase activity within seconds. Furthermore, irreversible glucose inactivation was not triggered by phosphorylation of the enzyme.
Collapse
Affiliation(s)
- M Rose
- Medizinisch-Naturwissenschaftliches Forschungszentrum, Universität Tübingen, FRG
| | | | | | | | | |
Collapse
|