1
|
Agnestisia R, Suzuki T, Ono A, Nakamura L, Nezu I, Tanaka Y, Aiso H, Ishiguri F, Yokota S. Lignin-degrading enzymes from a pathogenic canker-rot fungus Inonotus obliquus strain IO-B2. AMB Express 2023; 13:59. [PMID: 37302091 DOI: 10.1186/s13568-023-01566-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 06/02/2023] [Indexed: 06/13/2023] Open
Abstract
Inonotus obliquus is a pathogenic fungus found in living trees and has been widely used as a traditional medicine for cancer therapy. Although lignocellulose-degrading enzymes are involved in the early stages of host infection, the parasitic life cycle of this fungus has not been fully understood. In this study, we aimed to investigate the activities of laccase (Lac), manganese peroxidase (MnP), and lignin peroxidase (LiP) from I. obliquus cultivated in Kirk's medium. The fungus was subjected to genome sequencing, and genes related to wood degradation were identified. The draft genome sequence of this fungus comprised 21,203 predicted protein-coding genes, of which 134 were estimated to be related to wood degradation. Among these, 47 genes associated with lignin degradation were found to have the highest number of mnp genes. Furthermore, we cloned the cDNA encoding a putative MnP, referred to as IoMnP1, and characterized its molecular structure. The results show that IoMnP1 has catalytic properties analogous to MnP. Phylogenetic analysis also confirmed that IoMnP1 was closely related to the MnPs from Pyrrhoderma noxium, Fomitiporia mediterranea, and Sanghuangporus baumii, which belong to the same family of Hymenochaetaceae. From the above results, we suggest that IoMnP1 is a member of MnPs.
Collapse
Affiliation(s)
- Retno Agnestisia
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509, Japan
- School of Agriculture, Utsunomiya University, Utsunomiya, Tochigi, 321-8505, Japan
- Faculty of Mathematics and Natural Sciences, Universitas Palangka Raya, Palangka Raya, 73111, Indonesia
| | - Tomohiro Suzuki
- School of Agriculture, Utsunomiya University, Utsunomiya, Tochigi, 321-8505, Japan.
- Center for Bioscience Research and Education, Utsunomiya University, Utsunomiya, Tochigi, 321-8505, Japan.
| | - Akiko Ono
- Center for Bioscience Research and Education, Utsunomiya University, Utsunomiya, Tochigi, 321-8505, Japan
| | - Luna Nakamura
- Center for Bioscience Research and Education, Utsunomiya University, Utsunomiya, Tochigi, 321-8505, Japan
| | - Ikumi Nezu
- School of Agriculture, Utsunomiya University, Utsunomiya, Tochigi, 321-8505, Japan
| | - Yuki Tanaka
- Center for Bioscience Research and Education, Utsunomiya University, Utsunomiya, Tochigi, 321-8505, Japan
| | - Haruna Aiso
- Faculty of Agricultural Production and Management, Shizuoka Professional University of Agriculture, Iwata, Shizuoka, 438-0803, Japan
| | - Futoshi Ishiguri
- School of Agriculture, Utsunomiya University, Utsunomiya, Tochigi, 321-8505, Japan
| | - Shinso Yokota
- School of Agriculture, Utsunomiya University, Utsunomiya, Tochigi, 321-8505, Japan.
| |
Collapse
|
2
|
El Enshasy HA, Hanapi SZ, Abdelgalil SA, Malek RA, Pareek A. Mycoremediation: Decolourization Potential of Fungal Ligninolytic Enzymes. Fungal Biol 2017. [DOI: 10.1007/978-3-319-68957-9_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
3
|
Lee H, Jang Y, Lee YM, Lee H, Kim GH, Kim JJ. Enhanced removal of PAHs by Peniophora incarnata and ascertainment of its novel ligninolytic enzyme genes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2015; 164:10-8. [PMID: 26342262 DOI: 10.1016/j.jenvman.2015.08.036] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 07/06/2015] [Accepted: 08/24/2015] [Indexed: 05/24/2023]
Abstract
The hazardous effects of the PAHs should be managed by removal using white rot fungal ligninolytic enzymes. The white rot fungus Peniophora incarnataKUC8836 was stimulated to produce ligninolytic enzymes in a liquid medium by the addition of four substances: 0.5 g L(-1) Tween 80, 70 mg L(-1) CuSO4·5H2O, 10 mg L(-1) MnSO4·H2O, and 0.3 g L(-1) veratryl alcohol. The experiments were carried out in two different media: basal salt and 2% malt extract (ME) liquid medium. Under the experimental conditions, both laccase and manganese-dependent peroxidase (MnP) demonstrated with the highest activities in 2% ME liquid medium following the addition of Tween 80. The biodegradation of anthracene and pyrene was significantly enhanced by the induced ligninolytic enzymes when Tween 80 was added. Tween 80 is a viable co-substrate for P. incarnata, as it enhances the ability of P. incarnata to manage effective biodegradation of PAHs. Most of all, the novel laccase and MnP genes ascertained in this study, showed that the genes were involved in the production of ligninolytic enzymes from P. incarnataKUC8836.
Collapse
Affiliation(s)
- Hwanhwi Lee
- Division of Environmental Science & Ecological Engineering, Korea University, Republic of Korea
| | - Yeongseon Jang
- Division of Wood Chemistry & Microbiology, Korea Forest Research Institute, Republic of Korea
| | - Young Min Lee
- Division of Environmental Science & Ecological Engineering, Korea University, Republic of Korea
| | - Hanbyul Lee
- Division of Environmental Science & Ecological Engineering, Korea University, Republic of Korea
| | - Gyu-Hyeok Kim
- Division of Environmental Science & Ecological Engineering, Korea University, Republic of Korea
| | - Jae-Jin Kim
- Division of Environmental Science & Ecological Engineering, Korea University, Republic of Korea.
| |
Collapse
|
4
|
Singh D, Chen S. The white-rot fungus Phanerochaete chrysosporium: conditions for the production of lignin-degrading enzymes. Appl Microbiol Biotechnol 2008; 81:399-417. [PMID: 18810426 DOI: 10.1007/s00253-008-1706-9] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2008] [Revised: 07/10/2008] [Accepted: 09/03/2008] [Indexed: 11/24/2022]
Abstract
Investigating optimal conditions for lignin-degrading peroxidases production by Phanerochaete chrysosporium (P. chrysosporium) has been a topic for numerous researches. The capability of P. chrysosporium for producing lignin peroxidases (LiPs) and manganese peroxidases (MnPs) makes it a model organism of lignin-degrading enzymes production. Focusing on compiling and identifying the factors that affect LiP and MnP production by P. chrysosporium, this critical review summarized the main findings of about 200 related research articles. The major difficulty in using this organism for enzyme production is the instability of its productivity. This is largely due to the poor understanding of the regulatory mechanisms of P. chrysosporium responding to different nutrient sources in the culture medium, such as metal elements, detergents, lignin materials, etc. In addition to presenting the major conclusions and gaps of the current knowledge on lignin-degrading peroxidases production by P. chrysosporium, this review has also suggested further work, such as correlating the overexpression of the intra and extracellular proteins to the nutrients and other culture conditions to discover the regulatory cascade in the lignin-degrading peroxidases production process, which may contribute to the creation of improved P. chrysosporium strains leading to stable enzyme production.
Collapse
Affiliation(s)
- Deepak Singh
- Department of Biological Systems Engineering and Center for Bioproducts and Bioenergy, Washington State University, L.J. Smith 213, Pullman, WA 99163, USA
| | | |
Collapse
|
5
|
Saline-dependent regulation of manganese peroxidase genes in the hypersaline-tolerant white rot fungus Phlebia sp. strain MG-60. Appl Environ Microbiol 2008; 74:2709-16. [PMID: 18310430 DOI: 10.1128/aem.02257-07] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The expression pattern of manganese peroxidases (MnPs) in nitrogen-limited cultures of the saline-tolerant fungus Phlebia sp. strain MG-60 is differentially regulated under hypersaline conditions at the mRNA level. When MG-60 was cultured in nitrogen-limited medium (LNM) containing 3% (wt/vol) sea salts (LN-SSM), higher activity of MnPs was observed than that observed in normal medium (LNM). Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis demonstrated that two MnP isoenzymes were de novo synthesized in the culture of LN-SSM. Three MnP-encoding genes (MGmnp1, MGmnp2, and MGmnp3) were isolated by reverse transcription (RT)-PCR and rapid amplification of cDNA ends PCR techniques. The corresponding isozymes were identified by peptide mass fingerprinting analysis. MnP isozymes encoded by MGmnp2 and MGmnp3 were observed mainly in LN-SSM. Real-time RT-PCR analysis revealed high levels of MGmnp2 and MGmnp3 transcripts in LN-SSM 48 h after the addition of 2% NaCl. The induction of MnP production and the accumulation of gene transcripts by saline were well correlated in the presence of Mn(2+). However, in the absence of Mn(2+), there was no clear correlation between mnp transcripts levels and MnP activity, suggesting posttranscriptional regulation by Mn(2+).
Collapse
|
6
|
Kersten P, Cullen D. Extracellular oxidative systems of the lignin-degrading Basidiomycete Phanerochaete chrysosporium. Fungal Genet Biol 2007; 44:77-87. [PMID: 16971147 DOI: 10.1016/j.fgb.2006.07.007] [Citation(s) in RCA: 182] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2006] [Accepted: 07/20/2006] [Indexed: 11/17/2022]
Abstract
The US Department of Energy has assembled a high quality draft genome of Phanerochaete chrysosporium, a white rot Basidiomycete capable of completely degrading all major components of plant cell walls including cellulose, hemicellulose and lignin. Hundreds of sequences are predicted to encode extracellular enzymes including an impressive number of oxidative enzymes potentially involved in lignocellulose degradation. Herein, we summarize the number, organization, and expression of genes encoding peroxidases, copper radical oxidases, FAD-dependent oxidases, and multicopper oxidases. Possibly relevant to extracellular oxidative systems are genes involved in posttranslational processes and a large number of hypothetical proteins.
Collapse
Affiliation(s)
- Phil Kersten
- Forest Products Laboratory, USDA, One Gifford Pinchot Drive, Madison, WI 53705, USA
| | | |
Collapse
|
7
|
Ma B, Mayfield MB, Godfrey BJ, Gold MH. Novel promoter sequence required for manganese regulation of manganese peroxidase isozyme 1 gene expression in Phanerochaete chrysosporium. EUKARYOTIC CELL 2005; 3:579-88. [PMID: 15189980 PMCID: PMC420142 DOI: 10.1128/ec.3.3.579-588.2004] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Manganese peroxidase (MnP) is a major, extracellular component of the lignin-degrading system produced by the wood-rotting basidiomycetous fungus Phanerochaete chrysosporium. The transcription of MnP-encoding genes (mnps) in P. chrysosporium occurs as a secondary metabolic event, triggered by nutrient-nitrogen limitation. In addition, mnp expression occurs only under Mn2+ supplementation. Using a reporter system based on the enhanced green fluorescent protein gene (egfp), we have characterized the P. chrysosporium mnp1 promoter by examining the effects of deletion, replacement, and translocation mutations on mnp1 promoter-directed egfp expression. The 1,528-bp mnp1 promoter fragment drives egfp expression only under Mn2+-sufficient, nitrogen-limiting conditions, as required for endogenous MnP production. However, deletion of a 48-bp fragment, residing 521 bp upstream of the translation start codon in the mnp1 promoter, or replacement of this fragment with an unrelated sequence resulted in egfp expression under nitrogen limitation, both in the absence and presence of exogenous Mn2+. Translocation of the 48-bp fragment to a site 120 bp downstream of its original location resulted in Mn2+-dependent egfp expression under conditions similar to those observed with the wild-type mnp1 promoter. These results suggest that the 48-bp fragment contains at least one Mn2+-responsive cis element. Additional promoter-deletion experiments suggested that the Mn2+ element(s) is located within the 33-bp sequence at the 3' end of the 48-bp fragment. This is the first promoter sequence containing a Mn2+-responsive element(s) to be characterized in any eukaryotic organism.
Collapse
Affiliation(s)
- Biao Ma
- Department of Biochemistry and Molecular Biology, OGI School of Science and Engineering, Oregon Health & Science University, 20000 N.W. Walker Rd., Beaverton, OR 97006-8921, USA
| | | | | | | |
Collapse
|
8
|
Phanerochaete chrysosporium Genomics. ACTA ACUST UNITED AC 2005. [DOI: 10.1016/s1874-5334(05)80016-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
9
|
Hoshino F, Kajino T, Sugiyama H, Asami O, Takahashi H. Thermally stable and hydrogen peroxide tolerant manganese peroxidase (MnP) from Lenzites betulinus. FEBS Lett 2002; 530:249-52. [PMID: 12387901 DOI: 10.1016/s0014-5793(02)03454-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A thermally stable and hydrogen peroxide tolerant manganese peroxidase (MnP) was purified from the culture medium of Lenzites betulinus by ion exchange chromatography, gel filtration and isoelectric focusing chromatography. The MnP purified from L. betulinus (L-MnP) has a molecular mass of 40 kDa and its isoelectric point was determined to be 6.2. The first 19 amino acids at the N-terminal end of the L-MnP sequence were found to exhibit 74% identity with those of a Phlebia radiata MnP. L-MnP was proved to have the highest hydrogen peroxide tolerance among MnPs reported so far. It retained more than 60% of the initial activity after thermal treatment at 60 degrees C for 60 min, and also retained more than 60% of the initial activity after exposure to 10 mM hydrogen peroxide for 5 min at 37 degrees C.
Collapse
Affiliation(s)
- Fumihiko Hoshino
- Toyota Central R&D Labs Inc., 41-1, Yokomichi, Nagakute, Aichi 480-1192, Japan
| | | | | | | | | |
Collapse
|
10
|
Goodin DB, McRee DE. The Asp-His-iron triad of cytochrome c peroxidase controls the reduction potential electronic structure, and coupling of the tryptophan free radical to the heme. Biochemistry 2002. [DOI: 10.1021/bi00064a014] [Citation(s) in RCA: 206] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Van Aken B, Agathos SN. Biodegradation of nitro-substituted explosives by white-rot fungi: a mechanistic approach. ADVANCES IN APPLIED MICROBIOLOGY 2002; 48:1-77. [PMID: 11677677 DOI: 10.1016/s0065-2164(01)48000-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- B Van Aken
- Department of Civil and Environmental Engineering, University of Iowa, Iowa City, Iowa 52242, USA
| | | |
Collapse
|
12
|
Martı́nez AT. Molecular biology and structure-function of lignin-degrading heme peroxidases. Enzyme Microb Technol 2002. [DOI: 10.1016/s0141-0229(01)00521-x] [Citation(s) in RCA: 238] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Nomura N, Deguchi T, Shigeno-Akutsu Y, Nakajima-Kambe T, Nakahara T. Gene structures and catalytic mechanisms of microbial enzymes able to biodegrade the synthetic solid polymers nylon and polyester polyurethane. Biotechnol Genet Eng Rev 2002; 18:125-47. [PMID: 11530686 DOI: 10.1080/02648725.2001.10648011] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- N Nomura
- Institute of Applied Biochemistry, University of Tsukuba, Tsukuba, Ibaraki 305-0006, Japan.
| | | | | | | | | |
Collapse
|
14
|
Mester T, Tien M. Engineering of a manganese-binding site in lignin peroxidase isozyme H8 from Phanerochaete chrysosporium. Biochem Biophys Res Commun 2001; 284:723-8. [PMID: 11396962 DOI: 10.1006/bbrc.2001.5015] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A Mn(2+)-binding site was created in the recombinant lignin peroxidase isozyme H8 from Phanerochaete chrysosporium. In fungal Mn peroxidase, the Mn-binding site is composed of Glu35, Glu39, and Asp179. We generated a similar site in lignin peroxidase by generating an anionic binding site. We generated three mutations: Asn182Asp, Asp183Lys, and Ala36Glu. Its activity, veratryl alcohol, and Mn(2+) oxidation were compared to those of native recombinant enzyme and to fungal Mn peroxidase isozyme H4, respectively. The mutated enzyme was able to oxidize Mn(2+) and still retain its ability to oxidize veratryl alcohol. Steady-state results indicate that the enzyme's ability to oxidize veratryl alcohol was lowered slightly. The K(m) for Mn(2+) was determined to be 1.57 mM and the k(cat) = 5.45 s(-1). These results indicate that the mutated lignin peroxidase is less effective in Mn(2+) oxidation that the wild type fungal enzyme. The pH optima of veratryl alcohol and Mn oxidation were altered by the mutation. They are one unit of pH value higher than those of recombinant H8 and wild type fungal Mn peroxidase isozyme H4.
Collapse
Affiliation(s)
- T Mester
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | |
Collapse
|
15
|
Ma B, Mayfield MB, Gold MH. The green fluorescent protein gene functions as a reporter of gene expression in Phanerochaete chrysosporium. Appl Environ Microbiol 2001; 67:948-55. [PMID: 11157267 PMCID: PMC92671 DOI: 10.1128/aem.67.2.948-955.2001] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2000] [Accepted: 11/03/2000] [Indexed: 11/20/2022] Open
Abstract
The enhanced green fluorescent protein (GFP) gene (egfp) was used as a reporter of gene expression driven by the glyceraldehyde-p-dehydrogenase (gpd) gene promoter and the manganese peroxidase isozyme 1 (mnp1) gene promoter in Phanerochaete chrysosporium. Four different constructs were prepared. pUGGM3' and pUGiGM3' contain the P. chrysosporium gpd promoter fused upstream of the egfp coding region, and pUMGM3' and pUMiGM3' contain the P. chrysosporium mnp1 promoter fused upstream of the egfp gene. In all constructs, the egfp gene was followed by the mnp1 gene 3' untranslated region. In pUGGM3' and pUMGM3', the promoters were fused directly with egfp, whereas in pUGiGM3' and pUMiGM3', following the promoters, the first exon (6 bp), the first intron (55 bp), and part of the second exon (9 bp) of the gpd gene were inserted at the 5' end of the egfp gene. All constructs were ligated into a plasmid containing the ura1 gene of Schizophyllum commune as a selectable marker and were used to transform a Ural1 auxotrophic strain of P. chrysosporium to prototrophy. Crude cell extracts were examined for GFP fluorescence, and where appropriate, the extracellular fluid was examined for MnP activity. The transformants containing a construct with an intron 5' of the egfp gene (pUGiGM3' and pUMiGM3') exhibited maximal fluorescence under the appropriate conditions. The transformants containing constructs with no introns exhibited minimal or no fluorescence. Northern (RNA) blots indicated that the insertion of a 5' intron resulted in more egfp RNA than was found in transformants carrying an intronless egfp. These results suggest that the presence of a 5' intron affects the expression of the egfp gene in P. chrysosporium. The expression of GFP in the transformants carrying pUMiGM3' paralled the expression of endogenous mnp with respect to nitrogen and Mn levels, suggesting that this construct will be useful in studying cis-acting elements in the mnp1 gene promoter.
Collapse
Affiliation(s)
- B Ma
- Department of Biochemistry and Molecular Biology, Oregon Graduate Institute of Science and Technology, Beaverton, Oregon 97006-8921, USA
| | | | | |
Collapse
|
16
|
Gelpke MD, Youngs HL, Gold MH. Role of arginine 177 in the MnII binding site of manganese peroxidase. Studies with R177D, R177E, R177N, and R177Q mutants. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:7038-45. [PMID: 11106414 DOI: 10.1046/j.1432-1327.2000.01798.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Previously, we reported that Arg177 is involved in MnII binding at the MnII binding site of manganese peroxidase isozyme 1 (MnP1) of Phanerochaete chrysosporium by examining two mutants: R177A and R177K. We now report on additional mutants: R177D, R177E, R177N, and R177Q. These new mutant enzymes were produced by homologous expression in P. chrysosporium and were purified to homogeneity. The molecular mass and the UV/visible spectra of the ferric and oxidized intermediates of the mutant enzymes were similar to those of the wild-type enzyme, suggesting proper folding, heme insertion, and preservation of the heme environment. However, steady-state and transient-state kinetic analyses demonstrate significantly altered characteristics of MnII oxidation by these new mutant enzymes. Increased dissociation constants (Kd) and apparent Km values for MnII suggest that these mutations at Arg177 decrease binding of MnII to the enzyme. These lowered binding efficiencies, as observed with the R177A and R177K mutants, suggest that the salt-bridge between Arg177 and the MnII binding ligand Glu35 is disrupted in these new mutants. Decreased kcat values for MnII oxidation, decreased second-order rate constants for compound I reduction (k2app), and decreased first-order rate constants for compound II reduction (k3) indicate that these new mutations also decrease the electron-transfer rate. This decrease in rate constants for compounds I and II reduction was not observed in our previous study on the R177A and R177K mutations. The lower rate constants suggest that, even with high MnII concentrations, the MnII binding geometries may be altered in the MnII binding site of these new mutants. These new results, combined with the results from our previous study, clearly indicate a role for Arg177 in promoting efficient MnII binding and oxidation by MnP.
Collapse
Affiliation(s)
- M D Gelpke
- Department of Biochemistry and Molecular Biology, Oregon Graduate Institute of Science and Technology, Beaverton, OR 97006-8921, USA
| | | | | |
Collapse
|
17
|
Youngs HL, Moënne-Loccoz P, Loehr TM, Gold MH. Formation of a bis(histidyl) heme iron complex in manganese peroxidase at high pH and restoration of the native enzyme structure by calcium. Biochemistry 2000; 39:9994-10000. [PMID: 10933820 DOI: 10.1021/bi000679j] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Manganese peroxidase (MnP) from Phanerochaete chrysosporium undergoes a pH-dependent conformational change evidenced by changes in the electronic absorption spectrum. This high- to low-spin alkaline transition occurs at approximately 2 pH units lower in an F190I mutant MnP when compared to the wild-type enzyme. Herein, we provide evidence that these spectral changes are attributable to the formation of a bis(histidyl) heme iron complex in both proteins at high pH. The resonance Raman (RR) spectra of both ferric proteins at high pH are similar, indicating similar heme environments in both proteins, and resemble that of ferric cytochrome b(558), a protein that contains a bis-His iron complex. Upon reduction with dithionite at high pH, the visible spectra of both the wild-type and F190I MnP exhibit absorption maxima at 429, 529, and 558 nm, resembling the absorption spectrum of ferrous cytochrome b(558). RR spectra of the reduced wild-type and F190I mutant proteins at high pH are also similar to the RR spectrum of ferrous cytochrome b(558), further suggesting that the alkaline low-spin species is a bis(histidyl) heme derivative. No shift in the low-frequency RR bands was observed in 75% (18)O-labeled water, indicating that the low-spin species is most likely not a hydroxo-heme derivative. Electronic and RR spectra also indicate that addition of Ca(2+) to either the ferric or ferrous enzymes at high pH completely restores the high-spin pentacoordinate species. Other divalent metals, such as Mn(2+), Mg(2+), Zn(2+), or Cd(2+), do not restore the enzyme under the conditions studied.
Collapse
Affiliation(s)
- H L Youngs
- Department of Biochemistry and Molecular Biology, Oregon Graduate Institute of Science and Technology, Beaverton, Oregon 97006-8921, USA
| | | | | | | |
Collapse
|
18
|
Timofeevski SL, Nie G, Reading NS, Aust SD. Substrate specificity of lignin peroxidase and a S168W variant of manganese peroxidase. Arch Biochem Biophys 2000; 373:147-53. [PMID: 10620333 DOI: 10.1006/abbi.1999.1562] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Lignin peroxidase (LiP) and manganese peroxidase (MnP) are structurally similar heme-containing enzymes secreted by white-rot fungi. Unlike MnP, which is only specific for Mn(2+), LiP has broad substrate specificity, but it is not known if this versatility is due to multiple substrate-binding sites. We report here that a S168W variant of MnP from Phanerochaete chrysosporium not only retained full Mn(2+) oxidase activity, but also, unlike native or recombinant MnP, oxidized a multitude of LiP substrates, including small molecule and polymeric substrates. The kinetics of oxidation of most nonpolymeric substrates by the MnP variant and LiP were similar. The stoichiometries for veratryl alcohol oxidation by these two enzymes were identical. Some readily oxidizable substrates, such as guaiacol and ferrocyanide, were oxidized by MnP S168W and LiP both specifically and nonspecifically while recombinant MnP oxidized these substrates only nonspecifically. The functional similarities between this MnP variant and LiP provide evidence for the broad substrate specificity of a single oxidation site near the surface tryptophan.
Collapse
Affiliation(s)
- S L Timofeevski
- Biotechnology Center, Utah State University, Logan, Utah, 84322-4705, USA
| | | | | | | |
Collapse
|
19
|
Ruiz-Dueñas FJ, Martínez MJ, Martínez AT. Heterologous expression of Pleurotus eryngii peroxidase confirms its ability to oxidize Mn(2+) and different aromatic substrates. Appl Environ Microbiol 1999; 65:4705-7. [PMID: 10508113 PMCID: PMC91631 DOI: 10.1128/aem.65.10.4705-4707.1999] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A versatile ligninolytic peroxidase has been cloned from Pleurotus eryngii and its allelic variant MnPL2 expressed in Aspergillus nidulans, with properties similar to those of the mature enzyme from P. eryngii. These include the ability to oxidize Mn(2+) and aromatic substrates, confirming that this is a new peroxidase type sharing catalytic properties of lignin peroxidase and manganese peroxidase.
Collapse
Affiliation(s)
- F J Ruiz-Dueñas
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, E-28006 Madrid, Spain
| | | | | |
Collapse
|
20
|
Sollewijn Gelpke MD, Moënne-Loccoz P, Gold MH. Arginine 177 is involved in Mn(II) binding by manganese peroxidase. Biochemistry 1999; 38:11482-9. [PMID: 10471300 DOI: 10.1021/bi990943c] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Site-directed mutations R177A and R177K in the gene encoding manganese peroxidase isozyme 1 (mnp1) from Phanerochaete chrysosporium were generated. The mutant enzymes were expressed in P. chrysosporium during primary metabolic growth under the control of the glyceraldehyde-3-phosphate dehydrogenase gene promoter, purified to homogeneity, and characterized by spectroscopic and kinetic methods. The UV-vis spectra of the ferric and oxidized states and resonance Raman spectra of the ferric state were similar to those of the wild-type enzyme, indicating that the heme environment was not significantly affected by the mutations at Arg177. Apparent K(m) values for Mn(II) were approximately 20-fold greater for the R177A and R177K MnPs than for wild-type MnP. However, the apparent K(m) values for the substrates, H(2)O(2) and ferrocyanide, and the k(cat) values for Mn(II) and ferrocyanide oxidation were similar to those of the wild-type enzyme. The second-order rate constants for compound I (MnPI) reduction of the mutant MnPs by Mn(II) were approximately 10-fold lower than for wild-type MnP. In addition, the K(D) values calculated from the first-order plots of MnP compound II (MnPII) reduction by Mn(II) for the mutant enzymes were approximately 22-fold greater than for wild-type MnP. In contrast, the first-order rate constants for MnPII reduction by Mn(II) were similar for the mutant and wild-type MnPs. Furthermore, second-order rate constants for the wild-type and mutant enzymes for MnPI formation, for MnPI reduction by bromide, and for MnPI and MnPII reduction by ferrocyanide were not significantly changed. These results indicate that both the R177A and R177K mutations specifically affect the binding of Mn, whereas the rate of electron transfer from Mn(II) to the oxidized heme apparently is not affected.
Collapse
Affiliation(s)
- M D Sollewijn Gelpke
- Department of Biochemistry and Molecular Biology, Oregon Graduate Institute of Science and Technology, Beaverton 97006-8921, USA
| | | | | |
Collapse
|
21
|
Whitwam RE, Koduri RS, Natan M, Tien M. Role of axial ligands in the reactivity of Mn peroxidase from Phanerochaete chrysosporium. Biochemistry 1999; 38:9608-16. [PMID: 10423238 DOI: 10.1021/bi982568e] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Site-directed mutagenesis was performed on Mn peroxidase (MnP) from the white-rot fungus Phanerochaete chrysosporium to investigate the role of the axial ligand hydrogen-bonding network on heme reactivity. D242 is hydrogen bonded to the proximal His of MnP; in other peroxidases, this conserved Asp, in turn, is hydrogen bonded to a Trp. In MnP and other fungal peroxidases, the Trp is replaced by a Phe (F190). Both residues are thought to have a direct influence on the electronic environment of the catalytic center. To study only the active mutants at D242 and F190, we used degenerate oligonucleotides allowing us to screen all 19 possible amino acid mutants at these positions. Two mutants at D242 passed our screen, D242E and D242S. Both mutations impaired only the functioning of compound II. The reactions of the ferric enzyme with H(2)O(2) were unaffected by the mutations, as were the reactions of compound I with reducing substrates. The D242S and D242E mutations reduced the first-order rate constant for the reaction of MnP compound II with chelated Mn(2+) from 233 s(-1) (wild type) to 154 s(-1) and 107 s(-1), respectively. Three F190 mutants passed our screen, F190V, F190L, and F190W. Similar to mutants at D242, these mutants largely affected the function of compound II. The F190V mutation increased the first-order rate constant for the reduction of compound II by chelated Mn(2+) to 320 s(-1). The F190L mutation decreased this rate to 137 s(-1). The F190W mutant was not very stable, but at pH 6.0, this mutation decreased the rate of compound II reduction by Mn(2+) from 140 s(-1) in the wild type to 36 s(-1). There was no indication that the F190W mutant was capable of forming a protein-centered Trp cation radical. All the mutations altered the midpoint potential of the Fe(3+)/Fe(2+) couple of the enzyme, as calculated from cyclic voltammagrams of the proteins. The values were shifted from -96 mV in the wild-type enzyme to -123 mV in D242S, -162 mV in D242E, -82 mV in F190L, -173 mV in F190V, and -51 mV in F190W. Collectively, these results demonstrate that D242 and F190 in MnP influence the electronic environment around the heme and that the reactions of compound II are far more sensitive to this influence than the reduction of compound I.
Collapse
Affiliation(s)
- R E Whitwam
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park 16802, USA
| | | | | | | |
Collapse
|
22
|
Leonowicz A, Matuszewska A, Luterek J, Ziegenhagen D, Wojtaś-Wasilewska M, Cho NS, Hofrichter M, Rogalski J. Biodegradation of lignin by white rot fungi. Fungal Genet Biol 1999; 27:175-85. [PMID: 10441443 DOI: 10.1006/fgbi.1999.1150] [Citation(s) in RCA: 195] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A review is presented related to the biochemistry of lignocellulose transformation. The biodegradation of wood constituents is currently understood as a multienzymatic process with the mediation of small molecules; therefore, this review will focus on the roles of these small molecular compounds and radicals working in concert with enzymes. Wood rotting basidiomycetous fungi penetrate wood and lead to more easily metabolized, carbohydrate constituents of the complex. Having a versatile machinery of enzymes, the white rot fungi are able to attack directly the "lignin barrier." They also use a multienzyme system including so-called "feed back" type enzymes, allowing for simultaneous transformation of both lignin and cellulose. These enzymes may function separately or cooperatively.
Collapse
Affiliation(s)
- A Leonowicz
- Department of Biochemistry, Maria Curie-Sklodowska University, Lublin, Pl-20031, Poland
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Nie G, Reading NS, Aust SD. Relative stability of recombinant versus native peroxidases from Phanerochaete chrysosporium. Arch Biochem Biophys 1999; 365:328-34. [PMID: 10328828 DOI: 10.1006/abbi.1999.1180] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Two types of glycosylated peroxidases are secreted by the white-rot fungus Phanerochaete chrysosporium, lignin peroxidase (LiP) and manganese peroxidase (MnP). The thermal stabilities of recombinant LiPH2, LiPH8, and MnPH4, which were expressed without glycosylation in Escherichia coli, were lower than those of corresponding native peroxidases isolated from P. chrysosporium. Recovery of thermally inactivated recombinant enzyme activities was higher than with that of the thermally inactivated native peroxidases. Removal of N-linked glycans from native LiPH8 and MnPH4 did not affect enzyme activities or thermal stabilities of the enzymes. Although LiPH2, LiPH8, and MnPH4 contained O-linked glycans, only the O-linked glycans from MnPH4 could be removed by O-glycosidase, and the glycan-depleted MnPH4 exhibited essentially the same activity as nondeglycosylated MnPH4, but thermal stability decreased. Periodate-treated MnPH4 exhibited even lower thermal stability than O-glycosidase treated MnPH4. The role of O-linked glycans in protein stability was also evidenced with LiPH2 and LiPH8. Based on these data, we propose that neither N- nor O-linked glycans are likely to have a direct role in enzyme activity of native LiPH2, LiPH8, and MnPH4 and that only O-linked glycans may play a crucial role in protein stability of native peroxidases.
Collapse
Affiliation(s)
- G Nie
- Biotechnology Center, Utah State University, Logan, Utah, 84322-4705, USA
| | | | | |
Collapse
|
24
|
Timofeevski SL, Nie G, Reading NS, Aust SD. Addition of veratryl alcohol oxidase activity to manganese peroxidase by site-directed mutagenesis. Biochem Biophys Res Commun 1999; 256:500-4. [PMID: 10080927 DOI: 10.1006/bbrc.1999.0360] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Manganese peroxidase and lignin peroxidase are ligninolytic heme-containing enzymes secreted by the white-rot fungus Phanerochaete chrysosporium. Despite structural similarity, these peroxidases oxidize different substrates. Veratryl alcohol is a typical substrate for lignin peroxidase, while manganese peroxidase oxidizes chelated Mn2+. By a single mutation, S168W, we have added veratryl alcohol oxidase activity to recombinant manganese peroxidase expressed in Escherichia coli. The kcat for veratryl alcohol oxidation was 11 s-1, Km for veratryl alcohol approximately 0.49 mM, and Km for hydrogen peroxide approximately 25 microM at pH 2.3. The Km for veratryl alcohol was higher and Km for hydrogen peroxide was lower for this manganese peroxidase mutant compared to two recombinant lignin peroxidase isoenzymes. The mutant retained full manganese peroxidase activity and the kcat was approximately 2.6 x 10(2) s-1 at pH 4.3. Consistent with relative activities with respect to these substrates, Mn2+ strongly inhibited veratryl alcohol oxidation. The single productive mutation in manganese peroxidase suggested that this surface tryptophan residue (W171) in lignin peroxidase is involved in catalysis.
Collapse
Affiliation(s)
- S L Timofeevski
- Biotechnology Center, Utah State University, Logan, Utah, 84322-4705, USA
| | | | | | | |
Collapse
|
25
|
Ruiz-Dueñas FJ, Martínez MJ, Martínez AT. Molecular characterization of a novel peroxidase isolated from the ligninolytic fungus Pleurotus eryngii. Mol Microbiol 1999; 31:223-35. [PMID: 9987124 DOI: 10.1046/j.1365-2958.1999.01164.x] [Citation(s) in RCA: 136] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A haem peroxidase different from other microbial, plant and animal peroxidases is described. The enzyme is secreted as two isoforms by dikaryotic Pleurotus eryngii in peptone-containing liquid medium. The corresponding gene, which presents 15 introns and encodes a 361-amino-acid protein with a 30-amino-acid signal peptide, was isolated as two alleles corresponding to the two isoforms. The alleles differ in three amino acid residues and in a seven nucleotide deletion affecting a single metal response element in the promoter. When compared with Phanerochaete chrysosporium peroxidases, the new enzyme appears closer to lignin peroxidase (LiP) than to Mn-dependent peroxidase (MnP) isoenzymes (58-60% and 55% identity respectively). The molecular model built using crystal structures of three fungal peroxidases as templates, also showed high structural affinity with LiP (C alpha-distance 1.2 A). However, this peroxidase includes a Mn2+ binding site formed by three acidic residues (E36, E40 and D175) near the haem internal propionate, which accounts for the ability to oxidize Mn2+. Its capability to oxidize aromatic substrates could involve interactions with aromatic residues at the edge of the haem channel. Another possibility is long-range electron transfer, e.g. from W164, which occupies the same position of LiP W171 recently reported as involved in the catalytic cycle of LiP.
Collapse
Affiliation(s)
- F J Ruiz-Dueñas
- Department of Molecular Microbiology, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | | | | |
Collapse
|
26
|
Mester T, Field JA. Characterization of a novel manganese peroxidase-lignin peroxidase hybrid isozyme produced by Bjerkandera species strain BOS55 in the absence of manganese. J Biol Chem 1998; 273:15412-7. [PMID: 9624124 DOI: 10.1074/jbc.273.25.15412] [Citation(s) in RCA: 163] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A novel manganese-dependent peroxidase (MnP) isozyme produced in manganese-free cultures of Bjerkandera sp. strain BOS55 was purified and characterized. The production of the enzyme was greatly stimulated by the exogenous addition of various physiological organic acids such as glycolate, glyoxylate, and oxalate. The physical properties of the enzyme are similar to those of MnP isozymes from different white rot fungi (Mr = 43,000, pI 3.88, and epsilon407 nm = 123 mM-1 cm-1). The Bjerkandera MnP was efficient in the oxidation of Mn(II), as indicated by the kinetic constants (low Km of 51 microM and turnover number of 59 s-1). Furthermore, the isozyme was able to oxidize various substrates in the absence of manganese, such as 2,6-dimethoxyphenol, guaiacol, ABTS, 3-hydroxyanthranilic acid, and o- and p-anisidine. An interesting characteristic of the isozyme was its ability to oxidize nonphenolic substrates, veratryl alcohol and 1,4-dimethoxybenzene, without manganese addition. The affinity for veratryl alcohol (Km = 116 microM) and its turnover number (2.8 s-1) are comparable to those of lignin peroxidase (LiP) isozymes from other white rot fungi. Manganese at concentrations greater than 0.1 mM severely inhibited the oxidation of veratryl alcohol. The results suggest that this single isozyme is a hybrid between MnP and LiP found in other white rot fungi. The N-terminal amino acid sequence showed a very high homology to those of both MnP and LiP isozymes from Trametes versicolor.
Collapse
Affiliation(s)
- T Mester
- Division of Industrial Microbiology, Department of Food Technology and Nutrition Sciences, Wageningen Agricultural University, P. O. Box 8129, 6700 EV Wageningen, The Netherlands.
| | | |
Collapse
|
27
|
Gettemy JM, Ma B, Alic M, Gold MH. Reverse transcription-PCR analysis of the regulation of the manganese peroxidase gene family. Appl Environ Microbiol 1998; 64:569-74. [PMID: 9464395 PMCID: PMC106084 DOI: 10.1128/aem.64.2.569-574.1998] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Manganese peroxidase (MnP) gene expression in the lignin-degrading fungus Phanerochaete chrysosporium is regulated by nutrient nitrogen levels and by Mn(II), the substrate for the enzyme, as well as by heat shock and other factors. Reverse transcription-PCR (RT-PCR) of total RNA can distinguish the mRNAs of each of the three sequenced P. chrysosporium mnp genes, i.e., mnp1, mnp2, and mnp3. Quantitative RT-PCR demonstrates that each of the three transcripts is present at a similar low basal level in nitrogen-sufficient cultures, with or without Mn, and in nitrogen-limited cultures lacking Mn. However, in 5-day-old, nitrogen-limited, stationary cultures supplemented with 180 microM Mn, the levels of the mnp1 and mnp2 transcripts increased approximately 100- and 1,700-fold, respectively, over basal levels. In contrast, under these conditions, the level of the mnp3 transcript did not increase significantly over the basal level. Quantitative RT-PCR of total RNA extracted from nitrogen-deficient, Mn-supplemented cultures on days 2 through 7 demonstrates that whereas the mnp1 transcript was present at relatively low levels on days 3 through 7, the mnp2 transcript level peaked on day 5 and the mnp3 transcript level peaked on day 3. Comparison of total RNA extracted on day 5 from nitrogen-deficient, Mn-supplemented stationary and agitated cultures indicates that in stationary cultures, mnp2 was the major expressed mnp gene, whereas in large agitated cultures, mnp1 was the major expressed mnp gene.
Collapse
Affiliation(s)
- J M Gettemy
- Department of Biochemistry and Molecular Biology, Oregon Graduate Institute of Science and Technology, Portland 97291-1000, USA
| | | | | | | |
Collapse
|
28
|
Sheng D, Gold MH. Haloperoxidase activity of manganese peroxidase from Phanerochaete chrysosporium. Arch Biochem Biophys 1997; 345:126-34. [PMID: 9281319 DOI: 10.1006/abbi.1997.0217] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Manganese peroxidase (MnP) from Phanerochaete chrysosporium exhibits haloperoxidase activity at low pH. In the presence of hydrogen peroxide, MnP oxidizes bromide and iodide as measured by the formation of tribromide and triiodide complexes and the halogenation of various organic substrates. The optimum pHs for bromide and iodide oxidation are 2.5 and 3.0, respectively. Transient-state kinetic studies show that the reaction between MnP compound I and bromide or iodide occurs via a single two-electron step process, obeying second-order kinetics. The second-order rate constants for MnP compound I reduction by bromide and iodide are (4.1 +/- 0.2) x 10(3) and (1.1 +/- 0.1) x 10(5) m-1 s-1, respectively, at pH 3.0. MnP brominates a variety of aromatic substrates, including veratryl (3,4-di-methoxybenzyl) alcohol (I) to produce of 2-bromo-4,5-dimethoxybenzyl alcohol (II). MnP also hydrobrominates cinnamic acid (VI) to produce 2-bromo-3-hydroxyphenylpropionic acid (VII). With 3,4-dimethoxycinnamic acid (III) as the substrate, two bromination products are identified: trans-2-bromo-1-(3, 4-dimethoxyphenyl) ethylene (IV) and 2-bromo-3-(3, 4-dimethoxyphenyl)-3-hydroxypropionic acid (V). MnP also brominates 1,3-dicarbonyl compounds such as monochlorodimedone and malonic acid. Incubation of MnP with bromide and H2O2 in the absence of organic substrates results in enzyme inactivation. MnP binds halides to produce characteristic optical difference spectra. From these spectra, apparent dissociation constants at pH 3.0 are determined to be 0.13, 20, and 45 mm for fluoride, chloride, and bromide, respectively.
Collapse
Affiliation(s)
- D Sheng
- Department of Biochemistry and Molecular Biology, Oregon Graduate Institute of Science and Technology, Portland, Oregon 97291-1000, USA
| | | |
Collapse
|
29
|
Sundaramoorthy M, Kishi K, Gold MH, Poulos TL. Crystal structures of substrate binding site mutants of manganese peroxidase. J Biol Chem 1997; 272:17574-80. [PMID: 9211904 DOI: 10.1074/jbc.272.28.17574] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Manganese peroxidase (MnP), an extracellular heme enzyme from the lignin-degrading basidiomycetous fungus, Phanerochaete chrysosporium, catalyzes the oxidation of MnII to MnIII. The latter, acting as a diffusible redox mediator, is capable of oxidizing a variety of lignin model compounds. The proposed MnII binding site of MnP consists of a heme propionate, three acidic ligands (Glu-35, Glu-39, and Asp-179), and two water molecules. Using crystallographic methods, this binding site was probed by altering the amount of MnII bound to the protein. Crystals grown in the absence of MnII, or in the presence of EDTA, exhibited diminished electron density at this site. Crystals grown in excess MnII exhibited increased electron density at the proposed binding site but nowhere else in the protein. This suggests that there is only one major MnII binding site in MnP. Crystal structures of a single mutant (D179N) and a double mutant (E35Q,D179N) at this site were determined. The mutant structures lack a cation at the MnII binding site. The structure of the MnII binding site is altered significantly in both mutants, resulting in increased access to the solvent and substrate.
Collapse
Affiliation(s)
- M Sundaramoorthy
- Department of Molecular Biology & Biochemistry and Physiology & Biophysics, University of California, Irvine, California 92697-3900, USA
| | | | | | | |
Collapse
|
30
|
Kishi K, Hildebrand DP, Kusters-van Someren M, Gettemy J, Mauk AG, Gold MH. Site-directed mutations at phenylalanine-190 of manganese peroxidase: effects on stability, function, and coordination. Biochemistry 1997; 36:4268-77. [PMID: 9100022 DOI: 10.1021/bi962627t] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A series of site-directed mutants, F190Y, F190L, F190I, and F190A, in the gene encoding manganese peroxidase isozyme 1 (mnp1) from Phanerochaete chrysosporium was generated by overlap extension with the polymerase chain reaction. The mutant genes were expressed in P. chrysosporium during primary metabolic growth under the control of the glyceraldehyde-3-phosphate dehydrogenase promoter. The manganese peroxidase variants (MnPs) were purified and characterized by kinetic and spectroscopic methods. At pH 4.5, the UV-vis spectra of the ferric and oxidized states of the mutant proteins were very similar to those of the wild-type enzyme. Steady-state kinetic analyses showed that the apparent Km and k(cat) values for MnII and H2O2 also were similar to the corresponding values for the wild-type MnP. The apparent Km and k(cat) values for ferrocyanide oxidation by MnP were not affected by the F190Y, F190L, or F190I mutations; however, the apparent Km value for ferrocyanide oxidation by the F190A mutant MnP was approximately 1/8 of that for the wild-type enzyme. Likewise, the apparent k(cat) value for ferrocyanide oxidation by the MnP F190A mutant was approximately 4-fold greater than the corresponding k(cat) for the wild-type MnP. The stabilities of both the native and oxidized states of MnP were significantly affected by several of the mutations at Phe190. Replacement of Phe190 by either Ile or Ala significantly destabilized the resultant proteins to thermal denaturation. Moreover, the rates of spontaneous reduction of the oxidized intermediates, MnP compounds I and II, were dramatically increased for the F190A mutant relative to the rates observed for the wild-type enzyme. The spectroscopic properties of the wild-type and F190 mutant MnPs were examined as a function of pH. At room temperature, increasing pH from 5.0 to 8.5 induced a FeIII high- to low-spin transition for all of the MnP proteins. This transition may involve direct coordination of the distal His residue to the heme iron to produce bishistidinyl coordination as suggested by magnetic circular dichroism spectroscopy. The pH at which this transition occurred was considerably lower for the F190A and F190I variants and suggests that Phe190 plays a critical role in stabilizing the heme environment of MnP.
Collapse
Affiliation(s)
- K Kishi
- Department of Chemistry, Biochemistry, and Molecular Biology, Oregon Graduate Institute of Science and Technology, Portland 97291-1000, USA
| | | | | | | | | | | |
Collapse
|
31
|
Yaver DS, Golightly EJ. Cloning and characterization of three laccase genes from the white-rot basidiomycete Trametes villosa: genomic organization of the laccase gene family. Gene 1996; 181:95-102. [PMID: 8973314 DOI: 10.1016/s0378-1119(96)00480-5] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Three laccase genes were isolated from the white-rot basidiomycete Trametes villosa (Tv). The predicted protein products have 63-71% identity to the previously cloned Tv laccase genes lcc1 and lcc2. The genes lcc3, lcc4 and lcc5 contain 12, 10 and 11 introns, respectively. The position of several of the introns is conserved among all 5 genes. The 5 genes appear to be differentially regulated, and message has only been detected for lcc1 and lcc2. The karyotype of Tv was determined by CHEF, and 8 bands ranging in size from approximately 5.7 to 2.2 Mb were resolved of which 2 appear to be doublets. The 5 laccase genes have been mapped to specific bands resolved by CHEF. The lcc1 and lcc2 genes hybridize to a band of approximately 5.7 Mb. The lcc4 and lcc5 genes are on a chromosome of approximately 3.7 Mb, and lcc3 is on a chromosome of approximately 2.8 Mb.
Collapse
Affiliation(s)
- D S Yaver
- Department of Molecular Biology, Novo Nordisk Biotech, Davis, CA 95616, USA.
| | | |
Collapse
|
32
|
Matsubara M, Suzuki J, Deguchi T, Miura M, Kitaoka Y. Characterization of manganese peroxidases from the hyperlignolytic fungus IZU-154. Appl Environ Microbiol 1996; 62:4066-72. [PMID: 8899997 PMCID: PMC168228 DOI: 10.1128/aem.62.11.4066-4072.1996] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Four isozymes of manganese peroxidase (MnP) were identified in the culture fluid of the hyperlignolytic fungus IZU-154 under nitrogen starvation conditions. One of them was purified and characterized kinetically. The specific activity and Kcat/K(m) value of the MnP from IZU-154 were 1.6 times higher than those of the MnP from a typical lignin-degrading fungus, Phanerochaete chrysosporium. Two cDNAs encoding MnP isozymes from IZU-154 were isolated. The coding sequence of the two cDNAs, IZ-MnP1 cDNA and IZ-MnP2 cDNA, were 1,152 (384 amino acids) and 1,155 (385 amino acids) bp in length, respectively. They exhibit 96.2% identity at the nucleotide level and 95.1% identity at the amino acid level. Southern blot analysis indicated that two MnP isozyme genes exist in IZU-154 genomic DNA. The primary structures of two MnPs from IZU-154 were similar to those of MnPs from P. chrysosporium. The amino acid sequences including the important residues identified in MnPs from P. chrysosporium, such as the manganese-binding residues, the calcium-binding residues, the disulfide bonds, and the N-glycosylation site, were conserved in the two deduced IZ-MnPs. However, several discrepancies were found in the context around the distal histidine residue between MnP from IZU-154 and MnP from P. chrysosporium, which likely led to the difference in the kinetic parameters for MnP function.
Collapse
Affiliation(s)
- M Matsubara
- Biotechnology Research Section, Bio-Technology Laboratory, Kobe Steel, Ltd., Japan
| | | | | | | | | |
Collapse
|
33
|
Kishi K, Kusters-van Someren M, Mayfield MB, Sun J, Loehr TM, Gold MH. Characterization of manganese(II) binding site mutants of manganese peroxidase. Biochemistry 1996; 35:8986-94. [PMID: 8688436 DOI: 10.1021/bi960679c] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
A series of site-directed mutants, E35Q, E39Q, and E35Q-D179N, in the gene encoding manganese peroxidase isozyme 1 (mnp1) from Phanerochaete chrysosporium, was created by overlap extension, using the polymerase chain reaction. The mutant genes were expressed in P. chrysosporium during primary metabolic growth under the control of the glyceraldehyde-3-phosphate dehydrogenase promoter. The mutant manganese peroxidases (MnPs) were purified and characterized. The molecular masses of the mutant proteins, as well as UV-vis spectral features of their oxidized states, were very similar to those of the wild-type enzyme. Resonance Raman spectral results indicated that the heme environment of the mutant MnP proteins also was similar to that of the wild-type protein. Steady-state kinetic analyses of the E35Q and E39Q mutant MnPs yielded K(m) values for the substrate MnII that were approximately 50-fold greater than the corresponding K(m) value for the wild-type enzyme. Likewise, the kcat values for MnII oxidation were approximately 300-fold lower than that for wild-type MnP. With the E35Q-D179N double mutant, the K(m) value for MnII was approximately 120-fold greater, and the kcat value was approximately 1000-fold less than that for the wild-type MnP1. Transient-state kinetic analysis of the reduction of MnP compound II by MnII allowed the determination of the equilibrium dissociation constants (KD) and first- order rate constants for the mutant proteins. The KD values were approximately 100-fold higher for the single mutants and approximately 200-fold higher for the double mutant, as compared with the wild-type enzyme. The first-order rate constants for the single and double mutants were approximately 200-fold and approximately 4000-fold less, respectively, than that of the wild-type enzyme. In contrast, the K(m) values for H2O2 and the rates of compound I formation were similar for the mutant and wild-type MnPs. The second-order rate constants for p-cresol and ferrocyanide reduction of the mutant compounds II also were similar to those of the wild-type enzyme.
Collapse
Affiliation(s)
- K Kishi
- Department of Chemistry, Biochemistry, and Molecular Biology, Oregon Graduate Institute of Science & Technology, Portland 97291-1000, USA
| | | | | | | | | | | |
Collapse
|
34
|
Bogan BW, Schoenike B, Lamar RT, Cullen D. Manganese peroxidase mRNA and enzyme activity levels during bioremediation of polycyclic aromatic hydrocarbon-contaminated soil with Phanerochaete chrysosporium. Appl Environ Microbiol 1996; 62:2381-6. [PMID: 8779576 PMCID: PMC168019 DOI: 10.1128/aem.62.7.2381-2386.1996] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
mRNA extraction from soil and quantitation by competitive reverse transcription-PCR were combined to study the expression of three manganese peroxidase (MnP) genes during removal of polycyclic aromatic hydrocarbons from cultures of Phanerochaete chrysosporium grown in presterilized soil. Periods of high mnp transcript levels and extractable MnP enzyme activity were temporally correlated, although separated by a short (1- to 2-day) lag period. This time frame also coincided with maximal rates of fluorene oxidation and chrysene disappearance in soil cultures, supporting the hypothesis that high ionization potential polycyclic aromatic hydrocarbons are oxidized in soil via MnP-dependent mechanisms. The patterns of transcript abundance over time in soil-grown P. chrysosporium were similar for all three of the mnp mRNAs studied, indicating that transcription of this gene family may be coordinately regulated under these growth conditions.
Collapse
Affiliation(s)
- B W Bogan
- Department of Cell and Molecular Biology, University of Wisconsin-Madison 53706, USA
| | | | | | | |
Collapse
|
35
|
Johansson T, Nyman PO. A cluster of genes encoding major isozymes of lignin peroxidase and manganese peroxidase from the white-rot fungus Trametes versicolor. Gene 1996; 170:31-8. [PMID: 8621085 DOI: 10.1016/0378-1119(95)00846-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A gene cluster from the white-rot basidiomycete Trametes (Coriolus) versicolor (Tv) PRL 572 containing three structural genes, LPGIII, LPGIV and MPGI, was characterized. The genes are arranged in the same transcriptional direction, within a 10-kb region, and found to encode quantitatively dominant isozymes of lignin peroxidase (LP) and manganese peroxidase (MP). The second gene in sequence, LPGIV, predicts a 346-amino-acid (aa) mature polypeptide (36.9 kDa, pI 4.31) which is identical with the partial aa sequence information available on the LP12 isozyme (43.1 kDa, pI 3.27). The first gene, LPGIII, encodes a 341-aa polypeptide (36.1 kDa, pI 3.93) which has not been identified at the protein level. However, the similarity of LPGIV would suggest that the predicted product is an LP-type enzyme. LPGIII and LPGIV are homologous to the tandemly arranged genes LPGII and LPGI, respectively, recently described by Jönsson and Nyman [Biochim. Biophys. Acta 1218 (1994) 408-412]. The homologous genes, LPGIII/LPGII and LPGIV/LPGI, are 99% and 96% identical in sequence, respectively, and are predicted to encode identical polypeptides, since base substitutions in the predicted exons are all synonymous. The third gene, MPGI, is different in intron-exon organization and predicted to be disrupted by five rather than six introns, as are the LP genes. The deduced polypeptide, 339 aa in size (35.9 kDa, pI 4.07), is identical with the partial aa sequence information available for isozyme MP2 (44.5 kDa, pI 3.09). The MPGI- and LPGIV-encoded polypeptides are 70% identical in sequence which suggests that MP and LP from Tv may be regarded as members of the same family within the plant peroxidase superfamily. Most importantly, this study identifies a gene encoding the MP2 isozyme, and further shows that genes encoding MP and LP can be closely linked on the chromosome and may be coordinately transcribed.
Collapse
Affiliation(s)
- T Johansson
- Department of Biochemistry, Lund University, Sweden.
| | | |
Collapse
|
36
|
Martínez MJ, Ruiz-Dueñas FJ, Guillén F, Martínez AT. Purification and catalytic properties of two manganese peroxidase isoenzymes from Pleurotus eryngii. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 237:424-32. [PMID: 8647081 DOI: 10.1111/j.1432-1033.1996.0424k.x] [Citation(s) in RCA: 224] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The ligninolytic basidiomycetes Pleurotus eryngii, Pleurotus ostreatus, Pleurotus pulmonarius and Pleurotus sajor-caju did not exhibit detectable levels of manganese peroxidase (MP) when grown in liquid media with ammonium tartrate as N source. However, after examination of cells grown on different organic N-based media, high MP activity was obtained in peptone medium, up to nearly 3 U/ml in cultures of P. eryngii. Moreover, Mn2+ supplementation was not used to produce MP, since all Mn2+ concentrations assayed (1-4000 microM) inhibited production of this enzyme in liquid medium. Two MP isoenzymes were purified to homogeneity from shaken or stationary cultures of P. eryngii grown in peptone medium. The purification process (which included chromatography on Biorad Q-cartridge, Sephacryl S-200 and Mono-Q) attained 56% activity yield with a purification factor of 25. The isoenzymes differed in pI (3.75 and 3.65), N-terminal sequence and some catalytic properties. They were in some aspects (e.g, molecular mass of 43 kDa) similar to Phanerochaete chrysosporium MP but exhibited some distinct characteristics, including Mn(2+)-independent peroxidase activities against 2,6-dimethoxyphenol and veratryl alcohol, and higher resistance to H2O2. Recent studies have shown that MP are ubiquitous enzymes in ligninolytic fungi, but the results obtained suggest that differences in catalytic properties probably exist between different Mn(2+)-oxidizing peroxidases produced by these fungi.
Collapse
Affiliation(s)
- M J Martínez
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | | | | | | |
Collapse
|
37
|
Stewart P, Whitwam RE, Kersten PJ, Cullen D, Tien M. Efficient expression of a Phanerochaete chrysosporium manganese peroxidase gene in Aspergillus oryzae. Appl Environ Microbiol 1996; 62:860-4. [PMID: 8975615 PMCID: PMC167852 DOI: 10.1128/aem.62.3.860-864.1996] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
A manganese peroxidase gene (mnp1) from Phanerochaete chrysosporium was efficiently expressed in Aspergillus oryzae. Expression was achieved by fusing the mature cDNA of mnp1 with the A. oryzae Taka amylase promoter and secretion signal. The 3' untranslated region of the glucoamylase gene of Aspergillus awamori provided the terminator. The recombinant protein (rMnP) was secreted in an active form, permitting rapid detection and purification. Physical and kinetic properties of rMnP were similar to those of the native protein. The A. oryzae expression system is well suited for both mechanistic and site-directed mutagenesis studies.
Collapse
Affiliation(s)
- P Stewart
- Department of Bacteriology, University of Wisconsin, Madison 53706, USA
| | | | | | | | | |
Collapse
|
38
|
Asada Y, Watanabe A, Irie T, Nakayama T, Kuwahara M. Structures of genomic and complementary DNAs coding for Pleurotus ostreatus manganese (II) peroxidase. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1251:205-9. [PMID: 7669812 DOI: 10.1016/0167-4838(95)00102-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
To study the mechanism of regulation and structure/function relationship of the Pleurotus ostreatus manganese (II) peroxidase (MnP), we amplified the full-length genomic and complementary DNAs for the major isozyme of the MnP mainly by the cassette-primer PCR technique and then sequenced them. The cDNA contained an open reading frame of 1083 bp encoding for a polypeptide of 361 amino-acid residues, including the suggested signal peptide of 29 amino-acid residues with a prepro structure. The predicted amino-acid sequence of the protein shared several common characteristics with those of fungal lignin and manganese (II) peroxidases. We could find a suggested metal response element and two heat-shock element-like sequences in the 5'-flanking region of the structural gene. The structural gene contained 15 introns, many of which lie identical to those in lignin peroxidase genes rather than to those in the known MnP genes.
Collapse
Affiliation(s)
- Y Asada
- Department of Bioresource Science, Faculty of Agriculture, Kagawa University, Japan
| | | | | | | | | |
Collapse
|
39
|
Ishikawa T, Sakai K, Takeda T, Shigeoka S. Cloning and expression of cDNA encoding a new type of ascorbate peroxidase from spinach. FEBS Lett 1995; 367:28-32. [PMID: 7601279 DOI: 10.1016/0014-5793(95)00539-l] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A cDNA clone (SAP1) encoding a peroxidase was isolated from a spinach cDNA library using monoclonal antibodies raised against Euglena ascorbate peroxidase. The deduced amino acid sequence of SAP1 had higher homology with the cytosolic ascorbate peroxidases from plant sources than with bacterial peroxidases and classical plant peroxidases. The peroxidase activity of recombinant SAP1 protein expressed in E. coli was 1.6-fold higher with ascorbate than with guaiacol, which was similar to those of endogenous cytosolic ascorbate peroxidases. Here we conclude that SAP1 belongs to a new type of ascorbate peroxidase from spinach.
Collapse
Affiliation(s)
- T Ishikawa
- Department of Food and Nutrition, Faculty of Agriculture, Kinki University, Nara, Japan
| | | | | | | |
Collapse
|
40
|
Broda P, Birch PR, Brooks PR, Sims PF. PCR-mediated analysis of lignocellulolytic gene transcription by Phanerochaete chrysosporium: substrate-dependent differential expression within gene families. Appl Environ Microbiol 1995; 61:2358-64. [PMID: 7793956 PMCID: PMC167507 DOI: 10.1128/aem.61.6.2358-2364.1995] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We compare the kinetics of appearance of supernatant enzyme activities (lignin peroxidase, manganese peroxidase, and cellulase) and gene expression (LIG, mnp, and cbhI gene families and the unique cbhII gene) in Phanerochaete chrysosporium ME446 when grown on four different carbon sources: ball-milled straw, representing the natural substrate lignocellulose; Avicel as a crystalline cellulose; and high and low concentrations of glucose, in all cases with limiting nitrogen. PCR-based technology utilizing pairs of primers specific for particular genes showed that there is differential expression between and within the families. There were a number of instances of mRNA species being present only on a single day, implying tight regulation of lignocellulose degradation at the mRNA level. The patterns of extracellular enzyme activities and mnp and cbh gene expression are similar whereas LIG gene expression can be detected when no corresponding enzyme activity is observed in the extracellular supernatant. The enzyme produced under these conditions is presumably sequestered by the mycelium and is likely to be functionally significant. Another striking result is that cellulose, in the form of Avicel, elicits the expression of three LIG gene for which there is no expression under the same conditions with the other carbon sources.
Collapse
Affiliation(s)
- P Broda
- Department of Biochemistry and Applied Molecular Biology, University of Manchester Institute of Science and Technology, United Kingdom
| | | | | | | |
Collapse
|
41
|
Selvaggini C, Salmona M, De Gioia L. Manganese peroxidase from Phanerochaete chrysosporium. A homology-based molecular model. EUROPEAN JOURNAL OF BIOCHEMISTRY 1995; 228:955-61. [PMID: 7737200 DOI: 10.1111/j.1432-1033.1995.0955m.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A detailed three-dimensional model of manganese peroxidase was constructed using lignine peroxidase as the structural scaffold. This is the only protein in the peroxidase family except for cytochrome c peroxidase for which a resolved crystal structure is available. The model was built using the following procedure: (a) structurally preserved regions were derived from similar regions in the sequence alignment of the two proteins; (b) non-similar regions were modelled by searching a set of resolved protein structures for fragments which fitted in geometrically and choosing the best fitting fragment. Side chains were constructed by calculating rotamer-rotamer interaction energies and minimizing intramolecular energy. Model refinement was performed by molecular mechanics calculation. The quality of the model was assessed on the basis of the propensity of the amino acids to be inserted into regular secondary-structure elements and to be exposed to solvent. All the lignine peroxidase regions not used for model construction because of the lack of similarity, except the helix fragment Leu261-Phe269, correspond to external loops, suggesting reliable modelling. The manganese peroxidase model structure was analyzed in detail and several functionally relevant structural features were predicted, the most important being: (a) the very close structural similarity between lignine and manganese peroxidase active sites, suggesting a similar mode of hydrogen peroxide activation; (b) the substitution of polar residues for the hydrophobic amino acids exposed at the edge of the channel involved in substrate recognition in lignine peroxidase, suggesting that manganese peroxidase does not directly bind aromatic substrates; (c) the location of residues potentially able to bind Mn2+, spatially positioned on the side of the 3-CH3 heme edge.
Collapse
Affiliation(s)
- C Selvaggini
- Istituto di Ricerche Farmacologiche Mario Negri, Milano, Italy
| | | | | |
Collapse
|
42
|
Limongi P, Kjalke M, Vind J, Tams JW, Johansson T, Welinder KG. Disulfide bonds and glycosylation in fungal peroxidases. EUROPEAN JOURNAL OF BIOCHEMISTRY 1995; 227:270-6. [PMID: 7851395 DOI: 10.1111/j.1432-1033.1995.tb20384.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Four conserved disulfide bonds and N-linked and O-linked glycans of extracellular fungal peroxidases have been identified from studies of a lignin and a manganese peroxidase from Trametes versicolor, and from Coprinus cinereus peroxidase (CIP) and recombinant C. cinereus peroxidase (rCIP) expressed in Aspergillus oryzae. The eight cysteine residues are linked 1-3, 2-7, 4-5 and 6-8, and are located differently from the four conserved disulfide bridges present in the homologous plant peroxidases. CIP and rCIP were identical in their glycosylation pattern, although the extent of glycan chain heterogeneity depended on the fermentation batch. CIP and rCIP have one N-linked glycan composed only of GlcNAc and Man at residue Asn142, and two O-linked glycans near the C-terminus. The major glycoform consists of single Man residues at Thr331 and at Ser338. T. versicolor lignin isoperoxidase TvLP10 contains a single N-linked glycan composed of (GlcNAc)2Man5 bound to Asn103, whereas (GlcNAc)2Man3 was found in T. versicolor manganese isoperoxidase TvMP2 at the same position. In addition, mass spectrometry of the C-terminal peptide of TvMP2 indicated the presence of five Man residues in O-linked glycans. No phosphate was found in these fungal peroxidases.
Collapse
Affiliation(s)
- P Limongi
- Department of Protein Chemistry, University of Copenhagen, Denmark
| | | | | | | | | | | |
Collapse
|
43
|
Reiser J, Muheim A, Hardegger M, Frank G, Fiechter A. Aryl-alcohol dehydrogenase from the white-rot fungus Phanerochaete chrysosporium. Gene cloning, sequence analysis, expression, and purification of the recombinant enzyme. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)46907-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
44
|
Orth AB, Rzhetskaya M, Cullen D, Tien M. Characterization of a cDNA encoding a manganese peroxidase from Phanerochaete chrysosporium: genomic organization of lignin and manganese peroxidase-encoding genes. Gene 1994; 148:161-5. [PMID: 7926830 DOI: 10.1016/0378-1119(94)90251-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Two heme proteins, manganese peroxidase (MnP) and lignin peroxidase (LiP), play key roles in the fungal depolymerization of lignin. Many cDNA and genomic clones encoding these peroxidases have been published. We report here on the cDNA lambda MP-2 encoding the MnP isozyme H3 from Phanerochaete chrysosporium strain BKM-F-1767. We also demonstrate that the MnP-encoding gene, lambda MP-1, encoding isozyme H4, and lambda MP-2 reside on separate chromosomes from each other and from the LiP-encoding genes. From these results, it is apparent that lambda MP-2 is not linked to lambda MP-1 or other genes believed to be involved in lignin depolymerization, such as the LiP and glyoxal oxidase.
Collapse
Affiliation(s)
- A B Orth
- Department of Molecular and Cell Biology, Pennsylvania State University, University Park 16803
| | | | | | | |
Collapse
|
45
|
Jönsson L, Becker HG, Nyman PO. A novel type of peroxidase gene from the white-rot fungus Trametes versicolor. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1207:255-9. [PMID: 8075158 DOI: 10.1016/0167-4838(94)00083-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The wood-decaying fungus Trametes versicolor secretes a large number of peroxidase isozymes, presumed to partake in the degradation of lignin. From enzymic studies, two types of peroxidases have been distinguished: lignin peroxidases and manganese peroxidases. We here report the finding of a T. versicolor peroxidase gene, PG V, which displays several features not observed in previously studied peroxidase genes from white-rot fungi, such as a high number of introns (12). Eight of the 12 introns have positions equivalent to introns of peroxidase genes from another white-rot fungus, Phanerochaete chrysosporium. The gene structure of PG V appears to be primarily related to known lignin peroxidase genes, while the encoded mature 339-residue protein has several characteristics in common with manganese peroxidases. Analyses further indicate that PG V encodes a Ser instead of an Asn at a position regarded as invariant within the enzyme superfamily, with the side chain involved in hydrogen bonding with the distal His.
Collapse
Affiliation(s)
- L Jönsson
- Chemical Center, University of Lund, Sweden
| | | | | |
Collapse
|
46
|
Mayfield MB, Godfrey BJ, Gold MH. Characterization of the mnp2 gene encoding manganese peroxidase isozyme 2 from the basidiomycete Phanerochaete chrysosporium. Gene 1994; 142:231-5. [PMID: 8194756 DOI: 10.1016/0378-1119(94)90266-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The nucleotide (nt) sequence of a gene (mnp2) encoding manganese peroxidase isozyme 2 (MnP-2) from Phanerochaete chrysosporium was determined. The sequence of 3297 bp includes 1287 bp of 5'-flanking sequence and 490 bp 3' to the stop codon. Comparison of cDNA and genomic sequences indicates seven introns varying in size from 50-55 bp. The 5' upstream region of the mnp2 gene contains a TATAA element, three inverted CCAAT elements (ATTGG), six putative heat-shock elements (HSE) and three putative metal response elements (MRE) (TGCRCNC), all located within 1100-bp upstream from the start codon. The positions of the putative HSE and MRE in the promoter region of mnp2 are compared with the corresponding sequences in the mnp1 gene promoter. A Northern blot probed with a fragment specific for the mnp2 gene suggests that the transcription of mnp2 is regulated by Mn ions.
Collapse
Affiliation(s)
- M B Mayfield
- Department of Chemistry, Biochemistry, and Molecular Biology, Oregon Graduate Institute of Science & Technology, Portland 97291-1000
| | | | | |
Collapse
|
47
|
Godfrey BJ, Akileswaran L, Gold MH. A reporter gene construct for studying the regulation of manganese peroxidase gene expression. Appl Environ Microbiol 1994; 60:1353-8. [PMID: 8017922 PMCID: PMC201481 DOI: 10.1128/aem.60.4.1353-1358.1994] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The orotidylate decarboxylase (ODase) gene (ura1) from Schizophyllum commune was utilized as a reporter for studying Mn regulation of the manganese peroxidase (MnP) gene (mnp) from the lignin-degrading basidiomycete Phanerochaete chrysosporium. A 1,500-bp fragment of the mnp1 promoter was fused upstream of the coding region of the ODase gene in a plasmid (pAMO) containing the S. commune ade5 gene as a selectable marker. pAMO was used to transform a P. chrysosporium ade1 ura11 mutant lacking endogenous ODase activity. When the P. chrysosporium transformant was grown in nitrogen-limited, Mn(II)-sufficient cultures, ODase activity was detected only during secondary metabolic growth and the pattern of ODase expression was similar to that of endogenous MnP. When Mn was added to 6-day-old nitrogen-limited, Mn-deficient cultures, both ODase activity and MnP activity were induced synchronously with maximal activity at 30 h. Growth in high-nitrogen-concentration medium suppressed the induction of both the ODase and endogenous MnP. These results indicate that this promoter-reporter construct can be used to study the regulation of the mnp gene.
Collapse
Affiliation(s)
- B J Godfrey
- Department of Chemistry, Biochemistry, and Molecular Biology, Oregon Graduate Institute of Science and Technology, Portland 97291-1000
| | | | | |
Collapse
|
48
|
Cancel AM, Orth AB, Tien M. Lignin and veratryl alcohol are not inducers of the ligninolytic system of Phanerochaete chrysosporium. Appl Environ Microbiol 1993; 59:2909-13. [PMID: 8215363 PMCID: PMC182385 DOI: 10.1128/aem.59.9.2909-2913.1993] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Phanerochaete chrysosporium is a white rot fungus which secretes a family of lignin-degrading enzymes under nutrient limitation. In this work, we investigated the roles of veratryl alcohol and lignin in the ligninolytic system of P. chrysosporium BKM-F-1767 cultures grown under nitrogen-limited conditions. Cultures supplemented with 0.4 to 2 mM veratryl alcohol showed increased lignin peroxidase activity. Addition of veratryl alcohol had no effect on Mn-dependent peroxidase activity and inhibited glyoxal oxidase activity. Azure-casein analysis of acidic proteases in the extracellular fluid showed that protease activity decreased during the early stages of secondary metabolism while lignin peroxidase activity was at its peak, suggesting that proteolysis was not involved in the regulation of lignin peroxidase activity during early secondary metabolism. In cultures supplemented with lignin or veratryl alcohol, no induction of mRNA coding for lignin peroxidase H2 or H8 was observed. Veratryl alcohol protected lignin peroxidase isozymes H2 and H8 from inactivation by H2O2. We conclude that veratryl alcohol acts as a stabilizer of lignin peroxidase activity and not as an inducer of lignin peroxidase synthesis.
Collapse
Affiliation(s)
- A M Cancel
- Department of Molecular and Cell Biology, Pennsylvania State University, University Park 16802
| | | | | |
Collapse
|
49
|
|
50
|
Abstract
Lignin and manganese peroxidases are secreted by the basidiomycete Phanerochaete chrysosporium during secondary metabolism. These enzymes play major roles in lignin degradation. The active site amino acid sequence of these lignin-degrading peroxidases is similar to that of horseradish peroxidase (HRP) and cytochrome c peroxidase (CcP). The mechanism by which they oxidize substrates also appears to be the similar. pH has a similar effect on lignin peroxidase compound I formation as on HRP or CcP; however, the pKa controlling compound I formation for lignin peroxidase appears to be much lower. Lignin-degrading peroxidases are able to catalyze the oxidation of substrates with high redox potential. This unique ability is consistent with a heme active site of low electron density, which is indicated by high redox potential.
Collapse
Affiliation(s)
- D Cai
- Department of Molecular and Cell Biology, Pennsylvania State University, University Park 16802
| | | |
Collapse
|