1
|
Vigoda MB, Argaman L, Kournos M, Margalit H. Unraveling the interplay between a small RNA and RNase E in bacteria. Nucleic Acids Res 2024; 52:8947-8966. [PMID: 39036964 PMCID: PMC11347164 DOI: 10.1093/nar/gkae621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 06/28/2024] [Accepted: 07/03/2024] [Indexed: 07/23/2024] Open
Abstract
Small RNAs (sRNAs) are major regulators of gene expression in bacteria, exerting their regulation primarily via base pairing with their target transcripts and modulating translation. Accumulating evidence suggest that sRNAs can also affect the stability of their target transcripts by altering their accessibility to endoribonucleases. Yet, the effects of sRNAs on transcript stability and the mechanisms underlying them have not been studied in wide scale. Here we employ large-scale RNA-seq-based methodologies in the model bacterium Escherichia coli to quantitatively study the functional interaction between a sRNA and an endoribonuclease in regulating gene expression, using the well-established sRNA, GcvB, and the major endoribonuclease, RNase E. Studying single and double mutants of gcvB and rne and analysing their RNA-seq results by the Double Mutant Cycle approach, we infer distinct modes of the interplay between GcvB and RNase E. Transcriptome-wide mapping of RNase E cleavage sites provides further support to the results of the RNA-seq analysis, identifying cleavage sites in targets in which the functional interaction between GcvB and RNase E is evident. Together, our results indicate that the most dominant mode of GcvB-RNase E functional interaction is GcvB enhancement of RNase E cleavage, which varies in its magnitude between different targets.
Collapse
Affiliation(s)
- Meshi Barsheshet Vigoda
- Department of Microbiology and Molecular Genetics, IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Liron Argaman
- Department of Microbiology and Molecular Genetics, IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Mark Kournos
- Department of Microbiology and Molecular Genetics, IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Hanah Margalit
- Department of Microbiology and Molecular Genetics, IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| |
Collapse
|
2
|
Zhang J, Landick R. A Two-Way Street: Regulatory Interplay between RNA Polymerase and Nascent RNA Structure. Trends Biochem Sci 2016; 41:293-310. [PMID: 26822487 DOI: 10.1016/j.tibs.2015.12.009] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 12/21/2015] [Accepted: 12/22/2015] [Indexed: 02/06/2023]
Abstract
The vectorial (5'-to-3' at varying velocity) synthesis of RNA by cellular RNA polymerases (RNAPs) creates a rugged kinetic landscape, demarcated by frequent, sometimes long-lived, pauses. In addition to myriad gene-regulatory roles, these pauses temporally and spatially program the co-transcriptional, hierarchical folding of biologically active RNAs. Conversely, these RNA structures, which form inside or near the RNA exit channel, interact with the polymerase and adjacent protein factors to influence RNA synthesis by modulating pausing, termination, antitermination, and slippage. Here, we review the evolutionary origin, mechanistic underpinnings, and regulatory consequences of this interplay between RNAP and nascent RNA structure. We categorize and rationalize the extensive linkage between the transcriptional machinery and its product, and provide a framework for future studies.
Collapse
Affiliation(s)
- Jinwei Zhang
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA.
| | - Robert Landick
- Departments of Biochemistry and Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
3
|
Li R, Zhang Q, Li J, Shi H. Effects of cooperation between translating ribosome and RNA polymerase on termination efficiency of the Rho-independent terminator. Nucleic Acids Res 2015; 44:2554-63. [PMID: 26602687 PMCID: PMC4824070 DOI: 10.1093/nar/gkv1285] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 11/05/2015] [Indexed: 01/25/2023] Open
Abstract
An experimental system was designed to measure in vivo termination efficiency (TE) of the Rho-independent terminator and position–function relations were quantified for the terminator tR2 in Escherichia coli. The terminator function was almost completely repressed when tR2 was located several base pairs downstream from the gene, and TE gradually increased to maximum values with the increasing distance between the gene and terminator. This TE–distance relation reflected a stochastic coupling of the ribosome and RNA polymerase (RNAP). Terminators located in the first 100 bp of the coding region can function efficiently. However, functional repression was observed when the terminator was located in the latter part of the coding region, and the degree of repression was determined by transcriptional and translational dynamics. These results may help to elucidate mechanisms of Rho-independent termination and reveal genomic locations of terminators and functions of the sequence that precedes terminators. These observations may have important applications in synthetic biology.
Collapse
Affiliation(s)
- Rui Li
- State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Qing Zhang
- State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Junbai Li
- Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China National Center for Nanoscience and Technology, Beijing 100190, China
| | - Hualin Shi
- State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
4
|
Abstract
This review focuses on more recent studies concerning the systems biology of branched-chain amino acid biosynthesis, that is, the pathway-specific and global metabolic and genetic regulatory networks that enable the cell to adjust branched-chain amino acid synthesis rates to changing nutritional and environmental conditions. It begins with an overview of the enzymatic steps and metabolic regulatory mechanisms of the pathways and descriptions of the genetic regulatory mechanisms of the individual operons of the isoleucine-leucine-valine (ilv) regulon. This is followed by more-detailed discussions of recent evidence that global control mechanisms that coordinate the expression of the operons of this regulon with one another and the growth conditions of the cell are mediated by changes in DNA supercoiling that occur in response to changes in cellular energy charge levels that, in turn, are modulated by nutrient and environmental signals. Since the parallel pathways for isoleucine and valine biosynthesis are catalyzed by a single set of enzymes, and because the AHAS-catalyzed reaction is the first step specific for valine biosynthesis but the second step of isoleucine biosynthesis, valine inhibition of a single enzyme for this enzymatic step might compromise the cell for isoleucine or result in the accumulation of toxic intermediates. The operon-specific regulatory mechanisms of the operons of the ilv regulon are discussed in the review followed by a consideration and brief review of global regulatory proteins such as integration host factor (IHF), Lrp, and CAP (CRP) that affect the expression of these operons.
Collapse
|
5
|
Larson MH, Mooney RA, Peters JM, Windgassen T, Nayak D, Gross CA, Block SM, Greenleaf WJ, Landick R, Weissman JS. A pause sequence enriched at translation start sites drives transcription dynamics in vivo. Science 2014; 344:1042-7. [PMID: 24789973 DOI: 10.1126/science.1251871] [Citation(s) in RCA: 253] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Transcription by RNA polymerase (RNAP) is interrupted by pauses that play diverse regulatory roles. Although individual pauses have been studied in vitro, the determinants of pauses in vivo and their distribution throughout the bacterial genome remain unknown. Using nascent transcript sequencing, we identified a 16-nucleotide consensus pause sequence in Escherichia coli that accounts for known regulatory pause sites as well as ~20,000 new in vivo pause sites. In vitro single-molecule and ensemble analyses demonstrate that these pauses result from RNAP-nucleic acid interactions that inhibit next-nucleotide addition. The consensus sequence also leads to pausing by RNAPs from diverse lineages and is enriched at translation start sites in both E. coli and Bacillus subtilis. Our results thus reveal a conserved mechanism unifying known and newly identified pause events.
Collapse
Affiliation(s)
- Matthew H Larson
- Department of Cellular and Molecular Pharmacology, Howard Hughes Medical Institute, California Institute for Quantitative Biosciences, Center for RNA Systems Biology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Rachel A Mooney
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706, USA
| | - Jason M Peters
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Tricia Windgassen
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706, USA
| | - Dhananjaya Nayak
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706, USA
| | - Carol A Gross
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Steven M Block
- Department of Biological Sciences, Stanford University, Stanford, CA 94025, USA. Department of Applied Physics; Stanford University, Stanford, CA 94025, USA
| | | | - Robert Landick
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706, USA. Department of Bacteriology, University of Wisconsin, Madison, WI 53706, USA.
| | - Jonathan S Weissman
- Department of Cellular and Molecular Pharmacology, Howard Hughes Medical Institute, California Institute for Quantitative Biosciences, Center for RNA Systems Biology, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
6
|
Development of a "modular" scheme to describe the kinetics of transcript elongation by RNA polymerase. Biophys J 2011; 101:1155-65. [PMID: 21889453 DOI: 10.1016/j.bpj.2011.07.042] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Revised: 06/20/2011] [Accepted: 07/22/2011] [Indexed: 11/22/2022] Open
Abstract
Transcript elongation by RNA polymerase involves the sequential appearance of several alternative and off-pathway states of the transcript elongation complex (TEC), and this complicates modeling of the kinetics of the transcription elongation process. Based on solutions of the chemical master equation for such transcription systems as a function of time, we here develop a modular scheme for simulating such kinetic transcription data. This scheme deals explicitly with the problem of TEC desynchronization as transcript synthesis proceeds, and develops kinetic modules to permit the various alternative states of the TECs (paused states, backtracked states, arrested states, and terminated states) to be introduced one-by-one as needed. In this way, we can set up a comprehensive kinetic model of appropriate complexity to fit the known transcriptional properties of any given DNA template and set of experimental conditions, including regulatory cofactors. In the companion article, this modular scheme is successfully used to model kinetic transcription elongation data obtained by bulk-gel electrophoresis quenching procedures and real-time surface plasmon resonance methods from a template of known sequence that contains defined pause, stall, and termination sites.
Collapse
|
7
|
|
8
|
Tedin K, Norel F. Comparison of DeltarelA strains of Escherichia coli and Salmonella enterica serovar Typhimurium suggests a role for ppGpp in attenuation regulation of branched-chain amino acid biosynthesis. J Bacteriol 2001; 183:6184-96. [PMID: 11591661 PMCID: PMC100096 DOI: 10.1128/jb.183.21.6184-6196.2001] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The growth recovery of Escherichia coli K-12 and Salmonella enterica serovar Typhimurium DeltarelA mutants were compared after nutritional downshifts requiring derepression of the branched-chain amino acid pathways. Because wild-type E. coli K-12 and S. enterica serovar Typhimurium LT2 strains are defective in the expression of the genes encoding the branch point acetohydroxy acid synthetase II (ilvGM) and III (ilvIH) isozymes, respectively, DeltarelA derivatives corrected for these mutations were also examined. Results indicate that reduced expression of the known global regulatory factors involved in branched-chain amino acid biosynthesis cannot completely explain the observed growth recovery defects of the DeltarelA strains. In the E. coli K-12 MG1655 DeltarelA background, correction of the preexisting rph-1 allele which causes pyrimidine limitations resulted in complete loss of growth recovery. S. enterica serovar Typhimurium LT2 DeltarelA strains were fully complemented by elevated basal ppGpp levels in an S. enterica serovar Typhimurium LT2 DeltarelA spoT1 mutant or in a strain harboring an RNA polymerase mutation conferring a reduced RNA chain elongation rate. The results are best explained by a dependence on the basal levels of ppGpp, which are determined by relA-dependent changes in tRNA synthesis resulting from amino acid starvations. Expression of the branched-chain amino acid operons is suggested to require changes in the RNA chain elongation rate of the RNA polymerase, which can be achieved either by elevation of the basal ppGpp levels or, in the case of the E. coli K-12 MG1655 strain, through pyrimidine limitations which partially compensate for reduced ppGpp levels. Roles for ppGpp in branched-chain amino acid biosynthesis are discussed in terms of effects on the synthesis of known global regulatory proteins and current models for the control of global RNA synthesis by ppGpp.
Collapse
Affiliation(s)
- K Tedin
- Unité de Génétique des Bactéries Intracellulaires, Institut Pasteur, F-75724 Paris Cedex 15, France.
| | | |
Collapse
|
9
|
The Transcription of Genes. Biochemistry 2001. [DOI: 10.1016/b978-012492543-4/50031-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
10
|
Rhee KY, Senear DF, Hatfield GW. Activation of gene expression by a ligand-induced conformational change of a protein-DNA complex. J Biol Chem 1998; 273:11257-66. [PMID: 9556617 DOI: 10.1074/jbc.273.18.11257] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
IlvY protein binds cooperatively to tandem operator sites in the divergent, overlapping, promoter-regulatory region of the ilvYC operon of Escherichia coli. IlvY positively regulates the expression of the ilvC gene in an inducer-dependent manner and negatively regulates the transcription of its own divergently transcribed structural gene in an inducer-independent manner. Although binding of IlvY protein to the tandem operators is sufficient to repress ilvY promoter-specific transcription, it is not sufficient to activate transcription from the ilvC promoter. Activation of ilvC promoter-specific transcription requires the additional binding of a small molecule inducer to the IlvY protein-DNA complex. The binding of inducer to IlvY protein does not affect the affinity of IlvY protein for the tandem operator sites. It does, however, cause a conformational change of the IlvY protein-DNA complex, which is correlated with the partial relief of an IlvY protein-induced bend of the DNA helix in the ilvC promoter region. This structural change in the IlvY protein-DNA complex results in a 100-fold increase in the affinity of RNA polymerase binding at the ilvC promoter site. The ability of a protein to regulate gene expression by ligand-responsive modulation of a protein-DNA structure is an emerging theme in gene regulation.
Collapse
Affiliation(s)
- K Y Rhee
- Department of Microbiology and Molecular Genetics, University of California, Irvine, California 92697, USA
| | | | | |
Collapse
|
11
|
Rhee KY, Parekh BS, Hatfield GW. Leucine-responsive regulatory protein-DNA interactions in the leader region of the ilvGMEDA operon of Escherichia coli. J Biol Chem 1996; 271:26499-507. [PMID: 8900118 DOI: 10.1074/jbc.271.43.26499] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The leucine-responsive regulatory protein (Lrp) regulates the expression of many operons in Escherichia coli including several involved in the metabolism of the branched-chain amino acids, L-isoleucine, L-valine, and L-leucine. The ilvGMEDA operon contains the genes for four of the five enzymes of the common pathway for the biosynthesis of these amino acids. A high affinity, consensus-like Lrp-DNA binding site has been identified at an unusual position in the leader region of this operon 226 base pairs downstream of the transcriptional initiation site between the attenuator and the ilvG gene. Binding to this site facilitates the cooperative binding of a second Lrp protomer to an adjacent, upstream, secondary site. At higher Lrp concentrations, binding to a third site is observed. Chemical, enzymatic, and alkylation protection and interference footprinting experiments demonstrate that the Lrp homodimer contacts the DNA helix at symmetrical half-sites present in adjacent major grooves and that the primary and secondary binding sites are separated by one helical turn and aligned along the same face of the DNA helix. In vivo, Lrp represses transcription through the leader-attenuator region of the ilvGMEDA operon. Lrp-dependent production of attenuated RNA transcripts is also observed in vitro. No transcriptional effects are observed, in vivo or in vitro, in the absence of an intact Lrp primary binding site. A possible physiological role for Lrp in the regulation of ilvGMEDA operon expression is discussed.
Collapse
Affiliation(s)
- K Y Rhee
- Department of Microbiology and Molecular Genetics, College of Medicine, University of California, Irvine, California 92697, USA
| | | | | |
Collapse
|
12
|
Parekh BS, Sheridan SD, Hatfield GW. Effects of integration host factor and DNA supercoiling on transcription from the ilvPG promoter of Escherichia coli. J Biol Chem 1996; 271:20258-64. [PMID: 8702758 DOI: 10.1074/jbc.271.34.20258] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Integration host factor (IHF) activates transcription from the ilvPG promoter by severely distorting the DNA helix in an upstream region of a supercoiled DNA template in a way that alters the structure of the DNA in the downstream promoter region and facilitates open complex formation. In this report, the in vivo and in vitro influence of DNA supercoiling on transcription from this promoter is examined. In the absence of IHF, promoter activity increases with increased DNA supercoiling. In the presence of IHF, the same increases in superhelical DNA densities result in larger increases in promoter activity until a maximal activation of 5-fold is obtained. However, the relative transcriptional activities of the promoter in the presence and absence of IHF at any given DNA superhelical density remains the same. Thus, IHF and increased DNA supercoiling activate transcription by different mechanisms. Also, IHF binds with equal affinities to its target site on linear and supercoiled DNA templates. Therefore, IHF binding does not activate transcription simply by increasing the local negative supercoiling of the DNA helix in the downstream promoter region or by differential binding to relaxed and supercoiled DNA templates.
Collapse
Affiliation(s)
- B S Parekh
- Department of Microbiology and Molecular Genetics, College of Medicine, University of California, Irvine, California 92697, USA
| | | | | |
Collapse
|
13
|
Lee DN, Landick R. Structure of RNA and DNA chains in paused transcription complexes containing Escherichia coli RNA polymerase. J Mol Biol 1992; 228:759-77. [PMID: 1281887 DOI: 10.1016/0022-2836(92)90862-e] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
RNA polymerases pause conspicuously at certain positions on a DNA template. At the well-studied pause sites in the attenuation control regions that precede the trp and his operons, both formation of secondary structure in the nascent transcript and the DNA sequence immediately downstream contribute to pausing. The mechanisms of these effects are unknown. We report here studies on the structure of the RNA and DNA strands in purified trp and his paused transcription complexes in comparison to ten elongation complexes halted by nucleoside triphosphate deprivation. A 14 to 22 nucleotide region of the DNA strands was accessible to modification by KMnO4 or diethylpyrocarbonate in both the paused and halted transcription complexes. However, the region in front of the nucleotide-addition site was reactive only in some halted complexes. In both types of complexes, approximately eight nucleotides on the template strand immediately preceding the 3' end were protected from modification. We also examined the sensitivity of the nascent transcript to RNase A and found that the 3'-proximal eight nucleotide region could be cleaved without complete loss of the potential for elongation. However, a model RNA:DNA hybrid designed to mimic a hybrid in the transcription complex could also be cleaved under similar conditions. Together, the results suggest that the 3'-proximal eight nucleotides of transcript may pair with the DNA template and that this structure is not disrupted by hairpin formation at a pause site. Rather, pausing may result from distinct interactions between RNA polymerase and both the pause RNA hairpin and the downstream DNA sequence.
Collapse
Affiliation(s)
- D N Lee
- Department of Biology, Washington University, St Louis, MO 63130
| | | |
Collapse
|
14
|
Chen JW, Bennett DC, Umbarger HE. Specificity of attenuation control in the ilvGMEDA operon of Escherichia coli K-12. J Bacteriol 1991; 173:2328-40. [PMID: 1706705 PMCID: PMC207786 DOI: 10.1128/jb.173.7.2328-2340.1991] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Three different approaches were used to examine the regulatory effects of the amino acids specified by the peptide-coding region of the leader transcript of the ilvGMEDA operon of Escherichia coli K-12. Gene expression was examined in strains carrying an ilvGMED'-lac operon fusion. In one approach, auxotrophic derivatives were starved of single amino acids for brief periods, and the burst of beta-galactosidase synthesis upon adding the missing amino acid was determined. Auxotrophic derivatives were also grown for brief periods with a limited supply of one amino acid (derepression experiments). Finally, prototrophic strains were grown in minimal medium supplemented with single and multiple supplements of the chosen amino acids. Although codons for arginine, serine, and proline are interspersed among the codons for the three branched-chain (regulatory) amino acids, they appeared to have no effect when added in excess to prototrophs or when supplied in restricted amounts to auxotrophs. Deletions removing the terminator stem from the leader removed all ilv-specific control, indicating that the attenuation mechanism is the sole mechanism for ilv-specific control.
Collapse
Affiliation(s)
- J W Chen
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907
| | | | | |
Collapse
|
15
|
Chen JW, Harms E, Umbarger HE. Mutations replacing the leucine codons or altering the length of the amino acid-coding portion of the ilvGMEDA leader region of Escherichia coli. J Bacteriol 1991; 173:2341-53. [PMID: 2007556 PMCID: PMC207787 DOI: 10.1128/jb.173.7.2341-2353.1991] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The specificity of regulation by attenuation of the ilvGMEDA operon of Escherichia coli was examined by making alterations in the peptide-coding portion of the leader region. The effects of the alterations on attenuation control were monitored by operon fusions with the lacZ or cat gene. Substitution of the tandem leucine codons with arginine codons did not result in arginine control of attenuation even though the altered leader transcripts contained three consecutive arginine codons. Substitution of the single leucine codon with a proline codon at position 10 of the putative peptide, which had been shown to be important in the regulation of the Serratia marcescens ilv operon, did not result in control of attenuation by proline. Since the formation of neither proline nor arginine biosynthetic enzymes is regulated by attenuation control, the effect of tandem phenylalanine codons in place of the tandem leucine codons was examined and found not to result in control by phenylalanine supply. The latter failure may have been due to a configuration in the secondary structure of the protector stem of the leader transcript different from that of the wild-type transcript. The results of the study favored the idea that the lead ribosome does not initiate translation of the leader transcript until after the RNA polymerase has reached the pause site (117 bases into the leader region).
Collapse
Affiliation(s)
- J W Chen
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907
| | | | | |
Collapse
|
16
|
Transcription attenuation-mediated control of leu operon expression: influence of the number of Leu control codons. J Bacteriol 1991; 173:1634-41. [PMID: 1999384 PMCID: PMC207312 DOI: 10.1128/jb.173.5.1634-1641.1991] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Four adjacent Leu codons within the leu leader RNA are critically important in transcription attenuation-mediated control of leu operon expression in Salmonella typhimurium and Escherichia coli (P. W. Carter, D. L. Weiss, H. L. Weith, and J. M. Calvo, J. Bacteriol. 162:943-949, 1985). The leader region from S. typhimurium was altered by site-directed mutagenesis to produce constructs having between one and seven adjacent Leu codons, all CUA. leu operon expression was measured in strains containing six of these constructs, each integrated into the chromosome in a single copy. Operon expression was sufficiently high that all strains grew in minimal medium unsupplemented by leucine. Expression of the operon was measured in strains cultured in such a way that their growth was limited by the intracellular concentration of either leucine or of leucyl-tRNA. In general, the leu operon for each construct responded similarly to the parent construct in terms of the degree of expression as a function of the degree of limitation. However, a strain containing (CUA)1 and, to a certain extent, a strain having (CUA)2 responded somewhat more sluggishly and strains containing (CUA)6 and (CUA)7 responded more sensitively to limitations than did the parent construct. In addition, DNA fragments containing the leu promoter and leader region were used as templates in in vitro transcription reactions employing purified RNA polymerase. With nucleoside triphosphate concentrations of 200 microM, RNA polymerase paused during transcription of the leu leader region at a site about 95 bp downstream from the site of transcription initiation. The halftimes of the pause were 1 min at 37 degrees C and 3 min at 22 degrees C. The pause was lengthened substantially when the GTP concentration was lowered to 20 micromoles. Our results are interpreted most easily in terms of an all-or-none model. Given two Leu control codons, the operon responds with nearly maximum output over a wide range of leucine limitation, and that outcome does not change much with increasing numbers of control codons.
Collapse
|
17
|
|
18
|
The Salmonella typhimurium his operon leader region contains an RNA hairpin-dependent transcription pause site. J Biol Chem 1989. [DOI: 10.1016/s0021-9258(19)47132-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
19
|
Harms E, Umbarger HE. Role of codon choice in the leader region of the ilvGMEDA operon of Serratia marcescens. J Bacteriol 1987; 169:5668-77. [PMID: 2824442 PMCID: PMC214033 DOI: 10.1128/jb.169.12.5668-5677.1987] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Leucine participates in multivalent repression of the Serratia marcescens ilvGMEDA operon by attenuation (J.-H. Hsu, E. Harms, and H.E. Umbarger, J. Bacteriol. 164:217-222, 1985), although there is only one single leucine codon that could be involved in this type of control. This leucine codon is the rarely used CUA. The contribution of this leucine codon to the control of transcription by attenuation was examined by replacing it with the commonly used leucine codon CUG and with a nonregulatory proline codon, CCG. These changes left intact the proposed secondary structure of the leader. The effects of the codon changes were assessed by placing the mutant leader regions upstream of the ilvGME structural genes or the cat gene and measuring acetohydroxy acid synthase II, transaminase B, or chloramphenicol acetyltransferase activities in cells grown under limiting and repressing conditions. The presence of the common leucine codon in place of the rare leucine codon reduced derepression by about 70%. Eliminating the leucine codon by converting it to proline abolished leucine control. Furthermore, a possible context effect of the adjacent upstream serine codon on leucine control was examined by changing it into a glycine codon.
Collapse
Affiliation(s)
- E Harms
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907
| | | |
Collapse
|
20
|
Rokeach LA, Kassavetis GA, Zyskind JW. RNA polymerase pauses in vitro within the Escherichia coli origin of replication at the same sites where termination occurs in vivo. J Biol Chem 1987. [DOI: 10.1016/s0021-9258(18)48232-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
21
|
Cenatiempo Y, Deville F, Brot N, Weissbach H. In vitro expression of the Escherichia coli nusA-infB operon. J Biol Chem 1987. [DOI: 10.1016/s0021-9258(19)75902-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|