1
|
Peschek J, Tuorto F. Interplay Between tRNA Modifications and Processing. J Mol Biol 2025:169198. [PMID: 40404521 DOI: 10.1016/j.jmb.2025.169198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 05/05/2025] [Accepted: 05/05/2025] [Indexed: 05/24/2025]
Abstract
Transfer RNAs play a key role during protein synthesis by decoding genetic information at the translating ribosome. During their biosynthesis, tRNA molecules undergo numerous processing steps. Moreover, tRNAs represent the RNA class that carries the largest variety and highest relative number of chemical modifications. While our functional and mechanistic understanding of these processes is primarily based on studies in yeast, the findings on dynamic tRNA maturation can be translated to higher eukaryotes including humans, particularly regarding the biochemical characterization of the multitude of enzymes involved. In this review, we summarize current knowledge on the sequential hierarchy and interplay of various processing and modification steps for mitochondrial and cytoplasmic tRNA, as well as tRNA-like structures in eukaryotic cells. We also highlight recent structural advances that shed light on the function of enzyme-tRNA complexes.
Collapse
Affiliation(s)
- Jirka Peschek
- Heidelberg University, Biochemistry Center (BZH), Heidelberg, Germany.
| | - Francesca Tuorto
- Division of Biochemistry, Mannheim Institute for Innate Immunoscience (MI3), Mannheim Cancer Center (MCC), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany.
| |
Collapse
|
2
|
Jouravleva K, Zamore PD. A guide to the biogenesis and functions of endogenous small non-coding RNAs in animals. Nat Rev Mol Cell Biol 2025; 26:347-370. [PMID: 39856370 DOI: 10.1038/s41580-024-00818-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/26/2024] [Indexed: 01/27/2025]
Abstract
Small non-coding RNAs can be categorized into two main classes: structural RNAs and regulatory RNAs. Structural RNAs, which are abundant and ubiquitously expressed, have essential roles in the maturation of pre-mRNAs, modification of rRNAs and the translation of coding transcripts. By contrast, regulatory RNAs are often expressed in a developmental-specific, tissue-specific or cell-type-specific manner and exert precise control over gene expression. Reductions in cost and improvements in the accuracy of high-throughput RNA sequencing have led to the identification of many new small RNA species. In this Review, we provide a broad discussion of the genomic origins, biogenesis and functions of structural small RNAs, including tRNAs, small nuclear RNAs (snRNAs), small nucleolar RNAs (snoRNAs), vault RNAs (vtRNAs) and Y RNAs as well as their derived RNA fragments, and of regulatory small RNAs, such as microRNAs (miRNAs), endogenous small interfering RNAs (siRNAs) and PIWI-interacting RNAs (piRNAs), in animals.
Collapse
Affiliation(s)
- Karina Jouravleva
- Laboratoire de Biologie et Modélisation de la Cellule, École Normale Supérieure de Lyon, CNRS UMR5239, Inserm U1293, Université Claude Bernard Lyon 1, Lyon, France.
| | - Phillip D Zamore
- RNA Therapeutics Institute and Howard Hughes Medical Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
3
|
Malik Y, Kulaberoglu Y, Anver S, Javidnia S, Borland G, Rivera R, Cranwell S, Medelbekova D, Svermova T, Thomson J, Broughton S, von der Haar T, Selman C, Tullet JMA, Alic N. Disruption of tRNA biogenesis enhances proteostatic resilience, improves later-life health, and promotes longevity. PLoS Biol 2024; 22:e3002853. [PMID: 39436952 PMCID: PMC11495624 DOI: 10.1371/journal.pbio.3002853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 09/20/2024] [Indexed: 10/25/2024] Open
Abstract
tRNAs are evolutionarily ancient molecular decoders essential for protein translation. In eukaryotes, tRNAs and other short, noncoding RNAs are transcribed by RNA polymerase (Pol) III, an enzyme that promotes ageing in yeast, worms, and flies. Here, we show that a partial reduction in Pol III activity specifically disrupts tRNA levels. This effect is conserved across worms, flies, and mice, where computational models indicate that it impacts mRNA decoding. In all 3 species, reduced Pol III activity increases proteostatic resilience. In worms, it activates the unfolded protein response (UPR) and direct disruption of tRNA metabolism is sufficient to recapitulate this. In flies, decreasing Pol III's transcriptional initiation on tRNA genes by a loss-of-function in the TFIIIC transcription factor robustly extends lifespan, improves proteostatic resilience and recapitulates the broad-spectrum benefits to late-life health seen following partial Pol III inhibition. We provide evidence that a partial reduction in Pol III activity impacts translation, quantitatively or qualitatively, in both worms and flies, indicating a potential mode of action. Our work demonstrates a conserved and previously unappreciated role of tRNAs in animal ageing.
Collapse
Affiliation(s)
- Yasir Malik
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Yavuz Kulaberoglu
- Institute of Healthy Ageing, Research Department of Genetics Evolution and Environment, University College London, London, United Kingdom
| | - Shajahan Anver
- Institute of Healthy Ageing, Research Department of Genetics Evolution and Environment, University College London, London, United Kingdom
| | - Sara Javidnia
- Institute of Healthy Ageing, Research Department of Genetics Evolution and Environment, University College London, London, United Kingdom
| | - Gillian Borland
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Rene Rivera
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Stephen Cranwell
- Institute of Healthy Ageing, Research Department of Genetics Evolution and Environment, University College London, London, United Kingdom
| | - Danel Medelbekova
- Institute of Healthy Ageing, Research Department of Genetics Evolution and Environment, University College London, London, United Kingdom
| | - Tatiana Svermova
- Institute of Healthy Ageing, Research Department of Genetics Evolution and Environment, University College London, London, United Kingdom
| | - Jackie Thomson
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Susan Broughton
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, United Kingdom
| | | | - Colin Selman
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | | | - Nazif Alic
- Institute of Healthy Ageing, Research Department of Genetics Evolution and Environment, University College London, London, United Kingdom
| |
Collapse
|
4
|
Held JP, Feng G, Saunders BR, Pereira CV, Burkewitz K, Patel MR. A tRNA processing enzyme is a key regulator of the mitochondrial unfolded protein response. eLife 2022; 11:71634. [PMID: 35451962 PMCID: PMC9064297 DOI: 10.7554/elife.71634] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 04/21/2022] [Indexed: 11/13/2022] Open
Abstract
The mitochondrial unfolded protein response (UPRmt) has emerged as a predominant mechanism that preserves mitochondrial function. Consequently, multiple pathways likely exist to modulate UPRmt. We discovered that the tRNA processing enzyme, homolog of ELAC2 (HOE-1), is key to UPRmt regulation in Caenorhabditis elegans. We find that nuclear HOE-1 is necessary and sufficient to robustly activate UPRmt. We show that HOE-1 acts via transcription factors ATFS-1 and DVE-1 that are crucial for UPRmt. Mechanistically, we show that HOE-1 likely mediates its effects via tRNAs, as blocking tRNA export prevents HOE-1-induced UPRmt. Interestingly, we find that HOE-1 does not act via the integrated stress response, which can be activated by uncharged tRNAs, pointing toward its reliance on a new mechanism. Finally, we show that the subcellular localization of HOE-1 is responsive to mitochondrial stress and is subject to negative regulation via ATFS-1. Together, we have discovered a novel RNA-based cellular pathway that modulates UPRmt.
Collapse
Affiliation(s)
- James P Held
- Department of Biological Sciences, Vanderbilt UniversityNashvilleUnited States
| | - Gaomin Feng
- Department of Cell and Developmental Biology, Vanderbilt UniversityNashvilleUnited States
| | - Benjamin R Saunders
- Department of Biological Sciences, Vanderbilt UniversityNashvilleUnited States
| | - Claudia V Pereira
- Department of Biological Sciences, Vanderbilt UniversityNashvilleUnited States
| | - Kristopher Burkewitz
- Department of Cell and Developmental Biology, Vanderbilt UniversityNashvilleUnited States
| | - Maulik R Patel
- Department of Biological Sciences, Vanderbilt UniversityNashvilleUnited States,Department of Cell and Developmental Biology, Vanderbilt UniversityNashvilleUnited States,Diabetes Research and Training Center, Vanderbilt University School of MedicineNashvilleUnited States
| |
Collapse
|
5
|
Wang X, Gu X, Li J, Yue L, Li D, Dong X. Characterization of the Methanomicrobial Archaeal RNase Zs for Processing the CCA-Containing tRNA Precursors. Front Microbiol 2020; 11:1851. [PMID: 32982996 PMCID: PMC7479834 DOI: 10.3389/fmicb.2020.01851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 07/15/2020] [Indexed: 01/19/2023] Open
Abstract
RNase Z is a widely distributed and usually essential endoribonuclease involved in the 3′-end maturation of transfer RNAs (tRNAs). A CCA triplet that is needed for tRNA aminoacylation in protein translation is added by a nucleotidyl-transferase after the 3′-end processing by RNase Z. However, a considerable proportion of the archaeal pre-tRNAs genetically encode a CCA motif, while the enzymatic characteristics of the archaeal RNase (aRNase) Zs in processing CCA-containing pre-tRNAs remain unclear. This study intensively characterized two methanomicrobial aRNase Zs, the Methanolobus psychrophilus mpy-RNase Z and the Methanococcus maripaludis mmp-RNase Z, particularly focusing on the properties of processing the CCA-containing pre-tRNAs, and in parallel comparison with a bacterial bsu-RNase Z from Bacillus subtilis. Kinetic analysis found that Co2+ supplementation enhanced the cleavage efficiency of mpy-RNase Z, mmp-RNase Z, and bsu-RNase Z for 1400-, 2990-, and 34-fold, respectively, and Co2+ is even more indispensable to the aRNase Zs than to bsu-RNase Z. Mg2+ also elevated the initial cleavage velocity (V0) of bsu-RNase Z for 60.5-fold. The two aRNase Zs exhibited indiscriminate efficiencies in processing CCA-containing vs. CCA-less pre-tRNAs. However, V0 of bsu-RNase Z was markedly reduced for 1520-fold by the CCA motif present in pre-tRNAs under Mg2+ supplementation, but only 5.8-fold reduced under Co2+ supplementation, suggesting Co2+ could ameliorate the CCA motif inhibition on bsu-RNase Z. By 3′-RACE, we determined that the aRNase Zs cleaved just downstream the discriminator nucleotide and the CCA triplet in CCA-less and CCA-containing pre-tRNAs, thus exposing the 3′-end for linking CCA and the genetically encoded CCA triplet, respectively. The aRNase Zs, but not bsu-RNase Z, were also able to process the intron-embedded archaeal pre-tRNAs, and even process pre-tRNAs that lack the D, T, or anticodon arm, but strictly required the acceptor stem. In summary, the two methanomicrobial aRNase Zs use cobalt as a metal ligand and process a broad spectrum of pre-tRNAs, and the characteristics would extend our understandings on aRNase Zs.
Collapse
Affiliation(s)
- Xiaoyan Wang
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, College of Basic Medicine, Hubei University of Medicine, Shiyan, China.,Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, China
| | - Xien Gu
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, College of Basic Medicine, Hubei University of Medicine, Shiyan, China
| | - Jie Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Lei Yue
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Microbial Resources, University of Chinese Academy of Sciences, Beijing, China
| | - Defeng Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Xiuzhu Dong
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Microbial Resources, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
6
|
Wu H, Liu Q, Shi H, Xie J, Zhang Q, Ouyang Z, Li N, Yang Y, Liu Z, Zhao Y, Lai C, Ruan D, Peng J, Ge W, Chen F, Fan N, Jin Q, Liang Y, Lan T, Yang X, Wang X, Lei Z, Doevendans PA, Sluijter JPG, Wang K, Li X, Lai L. Engineering CRISPR/Cpf1 with tRNA promotes genome editing capability in mammalian systems. Cell Mol Life Sci 2018; 75:3593-3607. [PMID: 29637228 PMCID: PMC11105780 DOI: 10.1007/s00018-018-2810-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 03/20/2018] [Accepted: 04/03/2018] [Indexed: 12/13/2022]
Abstract
CRISPR/Cpf1 features a number of properties that are distinct from CRISPR/Cas9 and provides an excellent alternative to Cas9 for genome editing. To date, genome engineering by CRISPR/Cpf1 has been reported only in human cells and mouse embryos of mammalian systems and its efficiency is ultimately lower than that of Cas9 proteins from Streptococcus pyogenes. The application of CRISPR/Cpf1 for targeted mutagenesis in other animal models has not been successfully verified. In this study, we designed and optimized a guide RNA (gRNA) transcription system by inserting a transfer RNA precursor (pre-tRNA) sequence downstream of the gRNA for Cpf1, protecting gRNA from immediate digestion by 3'-to-5' exonucleases. Using this new gRNAtRNA system, genome editing, including indels, large fragment deletion and precise point mutation, was induced in mammalian systems, showing significantly higher efficiency than the original Cpf1-gRNA system. With this system, gene-modified rabbits and pigs were generated by embryo injection or somatic cell nuclear transfer (SCNT) with an efficiency comparable to that of the Cas9 gRNA system. These results demonstrated that this refined gRNAtRNA system can boost the targeting capability of CRISPR/Cpf1 toolkits.
Collapse
MESH Headings
- Animals
- Animals, Genetically Modified
- Animals, Newborn
- Bacterial Proteins/genetics
- Bacterial Proteins/metabolism
- CRISPR-Cas Systems/genetics
- Cells, Cultured
- Cloning, Molecular/methods
- Cloning, Organism/methods
- Embryo, Mammalian
- Endonucleases/genetics
- Endonucleases/metabolism
- Female
- Fetus
- Gene Editing/methods
- Genome/genetics
- HEK293 Cells
- HeLa Cells
- Humans
- Male
- Mammals/embryology
- Mammals/genetics
- Mutagenesis
- Nuclear Transfer Techniques
- Pregnancy
- RNA, Guide, CRISPR-Cas Systems/genetics
- RNA, Transfer/genetics
- Rabbits
- Swine
- Swine, Miniature
Collapse
Affiliation(s)
- Han Wu
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Guangzhou Medical University, Chinese Academy of Sciences, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Qishuai Liu
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Guangzhou Medical University, Chinese Academy of Sciences, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Hui Shi
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Guangzhou Medical University, Chinese Academy of Sciences, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Jingke Xie
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Guangzhou Medical University, Chinese Academy of Sciences, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Quanjun Zhang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Guangzhou Medical University, Chinese Academy of Sciences, Guangzhou, 510530, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Zhen Ouyang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Guangzhou Medical University, Chinese Academy of Sciences, Guangzhou, 510530, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Nan Li
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Guangzhou Medical University, Chinese Academy of Sciences, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Yi Yang
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Zhaoming Liu
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Guangzhou Medical University, Chinese Academy of Sciences, Guangzhou, 510530, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Yu Zhao
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Guangzhou Medical University, Chinese Academy of Sciences, Guangzhou, 510530, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Chengdan Lai
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Guangzhou Medical University, Chinese Academy of Sciences, Guangzhou, 510530, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Degong Ruan
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Guangzhou Medical University, Chinese Academy of Sciences, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Jiangyun Peng
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Guangzhou Medical University, Chinese Academy of Sciences, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Weikai Ge
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Guangzhou Medical University, Chinese Academy of Sciences, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Fangbing Chen
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Guangzhou Medical University, Chinese Academy of Sciences, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Nana Fan
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Guangzhou Medical University, Chinese Academy of Sciences, Guangzhou, 510530, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Qin Jin
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Guangzhou Medical University, Chinese Academy of Sciences, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Yanhui Liang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Guangzhou Medical University, Chinese Academy of Sciences, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Ting Lan
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Guangzhou Medical University, Chinese Academy of Sciences, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Xiaoyu Yang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Guangzhou Medical University, Chinese Academy of Sciences, Guangzhou, 510530, China
- Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Xiaoshan Wang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Guangzhou Medical University, Chinese Academy of Sciences, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Zhiyong Lei
- Department of Cardiology, Experimental Cardiology Laboratory, University Medical Center Utrecht, 3584CX, Utrecht, The Netherlands
- Netherlands Heart Institute, 3584CX, Utrecht, The Netherlands
| | - Pieter A Doevendans
- Department of Cardiology, Experimental Cardiology Laboratory, University Medical Center Utrecht, 3584CX, Utrecht, The Netherlands
- Netherlands Heart Institute, 3584CX, Utrecht, The Netherlands
| | - Joost P G Sluijter
- Department of Cardiology, Experimental Cardiology Laboratory, University Medical Center Utrecht, 3584CX, Utrecht, The Netherlands
- Netherlands Heart Institute, 3584CX, Utrecht, The Netherlands
| | - Kepin Wang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Guangzhou Medical University, Chinese Academy of Sciences, Guangzhou, 510530, China.
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
| | - Xiaoping Li
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Guangzhou Medical University, Chinese Academy of Sciences, Guangzhou, 510530, China.
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
| | - Liangxue Lai
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Guangzhou Medical University, Chinese Academy of Sciences, Guangzhou, 510530, China.
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China.
| |
Collapse
|
7
|
Filer D, Thompson MA, Takhaveev V, Dobson AJ, Kotronaki I, Green JWM, Heinemann M, Tullet JMA, Alic N. RNA polymerase III limits longevity downstream of TORC1. Nature 2017; 552:263-267. [PMID: 29186112 PMCID: PMC5732570 DOI: 10.1038/nature25007] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 11/07/2017] [Indexed: 11/09/2022]
Abstract
Three distinct RNA polymerases (Pols) transcribe different classes of
genes in the eukaryotic nucleus1. Pol III
is the essential, evolutionarily conserved enzyme that generates short,
non-coding RNAs, including transfer RNAs (tRNAs) and 5S
ribosomal RNA (rRNA)2. Historical focus on
transcription of protein-coding genes has left the roles of Pol III in
organismal physiology relatively unexplored. The prominent regulator of Pol III
activity, Target of Rapamycin kinase Complex 1 (TORC1), is an important
longevity determinant3, raising the
question of Pol III’s involvement in ageing. Here we show that Pol III
limits lifespan downstream of TORC1. We find that a reduction in Pol III extends
chronological lifespan in yeast and organismal lifespan in worms and flies.
Inhibiting Pol III activity in the adult worm or fly gut is sufficient to extend
lifespan, and in flies, longevity can be achieved by Pol III inhibition
specifically in the intestinal stem cells (ISCs). The longevity phenotype is
associated with amelioration of age-related gut pathology and functional
decline, dampened protein synthesis and increased tolerance of proteostatic
stress. Importantly, Pol III acts downstream of TORC1 for lifespan and limiting
Pol III activity in the adult gut achieves the full longevity benefit of
systemic TORC1 inhibition. Hence, Pol III is a pivotal output of this key
nutrient signalling network for longevity; Pol III’s growth-promoting,
anabolic activity mediates the acceleration of ageing by TORC1. The evolutionary
conservation of Pol III affirms its potential as a therapeutic target.
Collapse
Affiliation(s)
- Danny Filer
- Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK
| | | | - Vakil Takhaveev
- Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, Netherlands
| | - Adam J Dobson
- Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK
| | - Ilektra Kotronaki
- Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK
| | - James W M Green
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK
| | - Matthias Heinemann
- Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, Netherlands
| | | | - Nazif Alic
- Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
8
|
Skowronek E, Grzechnik P, Späth B, Marchfelder A, Kufel J. tRNA 3' processing in yeast involves tRNase Z, Rex1, and Rrp6. RNA (NEW YORK, N.Y.) 2014; 20:115-30. [PMID: 24249226 PMCID: PMC3866640 DOI: 10.1261/rna.041467.113] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 10/24/2013] [Indexed: 05/20/2023]
Abstract
Mature tRNA 3' ends in the yeast Saccharomyces cerevisiae are generated by two pathways: endonucleolytic and exonucleolytic. Although two exonucleases, Rex1 and Rrp6, have been shown to be responsible for the exonucleolytic trimming, the identity of the endonuclease has been inferred from other systems but not confirmed in vivo. Here, we show that the yeast tRNA 3' endonuclease tRNase Z, Trz1, is catalyzing endonucleolytic tRNA 3' processing. The majority of analyzed tRNAs utilize both pathways, with a preference for the endonucleolytic one. However, 3'-end processing of precursors with long 3' trailers depends to a greater extent on Trz1. In addition to its function in the nucleus, Trz1 processes the 3' ends of mitochondrial tRNAs, contributing to the general RNA metabolism in this organelle.
Collapse
Affiliation(s)
- Ewa Skowronek
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, 02-106 Warsaw, Poland
| | - Pawel Grzechnik
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, 02-106 Warsaw, Poland
| | - Bettina Späth
- Molekulare Botanik, Universität Ulm, 89069 Ulm, Germany
| | | | - Joanna Kufel
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, 02-106 Warsaw, Poland
- Corresponding authorE-mail
| |
Collapse
|
9
|
Will S, Joshi T, Hofacker IL, Stadler PF, Backofen R. LocARNA-P: accurate boundary prediction and improved detection of structural RNAs. RNA (NEW YORK, N.Y.) 2012; 18:900-14. [PMID: 22450757 PMCID: PMC3334699 DOI: 10.1261/rna.029041.111] [Citation(s) in RCA: 269] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 01/18/2012] [Indexed: 05/18/2023]
Abstract
Current genomic screens for noncoding RNAs (ncRNAs) predict a large number of genomic regions containing potential structural ncRNAs. The analysis of these data requires highly accurate prediction of ncRNA boundaries and discrimination of promising candidate ncRNAs from weak predictions. Existing methods struggle with these goals because they rely on sequence-based multiple sequence alignments, which regularly misalign RNA structure and therefore do not support identification of structural similarities. To overcome this limitation, we compute columnwise and global reliabilities of alignments based on sequence and structure similarity; we refer to these structure-based alignment reliabilities as STARs. The columnwise STARs of alignments, or STAR profiles, provide a versatile tool for the manual and automatic analysis of ncRNAs. In particular, we improve the boundary prediction of the widely used ncRNA gene finder RNAz by a factor of 3 from a median deviation of 47 to 13 nt. Post-processing RNAz predictions, LocARNA-P's STAR score allows much stronger discrimination between true- and false-positive predictions than RNAz's own evaluation. The improved accuracy, in this scenario increased from AUC 0.71 to AUC 0.87, significantly reduces the cost of successive analysis steps. The ready-to-use software tool LocARNA-P produces structure-based multiple RNA alignments with associated columnwise STARs and predicts ncRNA boundaries. We provide additional results, a web server for LocARNA/LocARNA-P, and the software package, including documentation and a pipeline for refining screens for structural ncRNA, at http://www.bioinf.uni-freiburg.de/Supplements/LocARNA-P/.
Collapse
Affiliation(s)
- Sebastian Will
- Chair for Bioinformatics, Institute of Computer Science, Albert-Ludwigs-Universität, D-79110 Freiburg, Germany
- Computation and Biology Group, CSAIL and Mathematics Department, MIT, Cambridge, Massachusetts 02139, USA
| | - Tejal Joshi
- Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Ivo L. Hofacker
- Department of Theoretical Chemistry, University of Vienna, A-1090 Wien, Austria
| | - Peter F. Stadler
- Department of Theoretical Chemistry, University of Vienna, A-1090 Wien, Austria
- Bioinformatics Group, Department of Computer Science, Interdisciplinary Center of Bioinformatics, University of Leipzig, D-04107 Leipzig, Germany
- Max-Planck-Institute for Mathematics in the Sciences, D-04103 Leipzig, Germany
- Fraunhofer Institute for Cell Therapy and Immunology, D-04103 Leipzig, Germany
- Santa Fe Institute, Santa Fe, New Mexico 87501, USA
| | - Rolf Backofen
- Chair for Bioinformatics, Institute of Computer Science, Albert-Ludwigs-Universität, D-79110 Freiburg, Germany
- Center for Biological Signaling Studies (BIOSS), University of Freiburg, D-79104 Freiburg, Germany
| |
Collapse
|
10
|
Abstract
Swine genomic DNA segments containing repetitive sequences were isolated from a porcine genomic library using genomic DNA as a probe. Three fragments containing the repetitive sequences from two of the primary phage clones were subcloned for sequence analysis, which revealed six new PRE-1 repetitive families other than those reported earlier by Singer et al. (Nucleic Acids Research 15, 2780, 1987). The frequency of the repetitive sequences in the swine genome was estimated at 2 x 10(6) per diploid genome. Sequence analysis revealed similarities between these repetitive sequences and that of arginine-tRNA gene.
Collapse
Affiliation(s)
- H Takahashi
- Department of Animal Breeding and Genetics, National Institute of Animal Industry, Tsukuba, Japan
| | | | | |
Collapse
|
11
|
|
12
|
Karkashon S, Hopkinson A, Levinger L. tRNase Z catalysis and conserved residues on the carboxy side of the His cluster. Biochemistry 2007; 46:9380-7. [PMID: 17655328 PMCID: PMC2526284 DOI: 10.1021/bi700578v] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
tRNAs are transcribed as precursors and processed in a series of required reactions leading to aminoacylation and translation. The 3'-end trailer can be removed by the pre-tRNA processing endonuclease tRNase Z, an ancient, conserved member of the beta-lactamase superfamily of metal-dependent hydrolases. The signature sequence of this family, the His domain (HxHxDH, Motif II), and histidines in Motifs III and V and aspartate in Motif IV contribute seven side chains for the coordination of two divalent metal ions. We previously investigated the effects on catalysis of substitutions in Motif II and in the PxKxRN loop and Motif I on the amino side of Motif II. Herein, we present the effects of substitutions on the carboxy side of Motif II within Motifs III, IV, the HEAT and HST loops, and Motif V. Substitution of the Motif IV aspartate reduces catalytic efficiency more than 10,000-fold. Histidines in Motif III, V, and the HST loop are also functionally important. Strikingly, replacement of Glu in the HEAT loop with Ala reduces efficiency by approximately 1000-fold. Proximity and orientation of this Glu side chain relative to His in the HST loop and the importance of both residues for catalysis suggest that they function as a duo in proton transfer at the final stage of reaction, characteristic of the tRNase Z class of RNA endonucleases.
Collapse
Affiliation(s)
| | | | - Louis Levinger
- *to whom correspondence should be addressed: Phone: 718-262-2704 FAX: 718-262-2652
| |
Collapse
|
13
|
Redko Y, Li de la Sierra-Gallay I, Condon C. When all's zed and done: the structure and function of RNase Z in prokaryotes. Nat Rev Microbiol 2007; 5:278-86. [PMID: 17363966 DOI: 10.1038/nrmicro1622] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
RNase Z is a widely distributed and often essential endoribonuclease that is responsible for the maturation of the 3'-end of a large family of transfer RNAs (tRNAs). Although it has been the subject of study for more than 25 years, interest in this enzyme intensified dramatically with the identification of the encoding gene in 2002. This led to the discovery of RNase Z in bacteria, in which the final step in the generation of the mature 3'-end of tRNAs had previously been assumed to be catalysed by exoribonucleases. It also led inevitably to structural studies, and the recent resolution of the structure of RNase Z in complex with tRNA has provided a detailed understanding of the molecular mechanisms of RNase Z substrate recognition and cleavage. The identification of the RNase Z gene also allowed the search for alternative substrates for this enzyme to begin in earnest. In this Review, we outline the important recent developments that have contributed to our understanding of this enzyme, particularly in prokaryotes.
Collapse
Affiliation(s)
- Yulia Redko
- Centre National de Recherche Scientifique (CNRS) UPR9073 (affiliated with Université Paris VII-Denis Diderot), Institut de Biologie, Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | | | | |
Collapse
|
14
|
Zareen N, Hopkinson A, Levinger L. Residues in two homology blocks on the amino side of the tRNase Z His domain contribute unexpectedly to pre-tRNA 3' end processing. RNA (NEW YORK, N.Y.) 2006; 12:1104-15. [PMID: 16618969 PMCID: PMC1464858 DOI: 10.1261/rna.4206] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
tRNase Z, which can endonucleolytically remove pre-tRNA 3'-end trailers, possesses the signature His domain (HxHxDH; Motif II) of the beta-lactamase family of metal-dependent hydrolases. Motif II combines with Motifs III-V on its carboxy side to coordinate two divalent metal ions, constituting the catalytic core. The PxKxRN loop and Motif I on the amino side of Motif II have been suggested to modulate tRNase Z activity, including the anti-determinant effect of CCA in mature tRNA. Ala walks through these two homology blocks reveal residues in which the substitutions unexpectedly reduce catalytic efficiency. While substitutions in Motif II can drastically affect k(cat) without affecting k(M), five- to 15-fold increases in k(M) are observed with substitutions in several conserved residues in the PxKxRN loop and Motif I. These increases in k(M) suggest a model for substrate binding. Expressed tRNase Z processes mature tRNA with CCA at the 3' end approximately 80 times less efficiently than a pre-tRNA possessing natural sequence of the 3'-end trailer, due to reduced k(cat) with no effect on k(M), showing the CCA anti-determinant to be a characteristic of this enzyme.
Collapse
Affiliation(s)
- Neela Zareen
- York College of The City University of New York, Jamaica, 11451, USA
| | | | | |
Collapse
|
15
|
Yan H, Zareen N, Levinger L. Naturally occurring mutations in human mitochondrial pre-tRNASer(UCN) can affect the transfer ribonuclease Z cleavage site, processing kinetics, and substrate secondary structure. J Biol Chem 2005; 281:3926-35. [PMID: 16361254 DOI: 10.1074/jbc.m509822200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
tRNAs are transcribed as precursors with a 5' end leader and a 3' end trailer. The 5' end leader is processed by RNase P, and in most organisms in all three kingdoms, transfer ribonuclease (tRNase) Z can endonucleolytically remove the 3' end trailer. Long ((L)) and short ((S)) forms of the tRNase Z gene are present in the human genome. tRNase Z(L) processes a nuclear-encoded pre-tRNA approximately 1600-fold more efficiently than tRNase Z(S) and is predicted to have a strong mitochondrial transport signal. tRNase Z(L) could, thus, process both nuclear- and mitochondrially encoded pre-tRNAs. More than 150 pathogenesis-associated mutations have been found in the mitochondrial genome, most of them in the 22 mitochondrially encoded tRNAs. All the mutations investigated in human mitochondrial tRNA(Ser(UCN)) affect processing efficiency, and some affect the cleavage site and secondary structure. These changes could affect tRNase Z processing of mutant pre-tRNAs, perhaps contributing to mitochondrial disease.
Collapse
Affiliation(s)
- Hua Yan
- York College of The City University of New York, Jamaica, 11451, USA
| | | | | |
Collapse
|
16
|
Zareen N, Yan H, Hopkinson A, Levinger L. Residues in the conserved His domain of fruit fly tRNase Z that function in catalysis are not involved in substrate recognition or binding. J Mol Biol 2005; 350:189-99. [PMID: 15935379 DOI: 10.1016/j.jmb.2005.04.073] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2005] [Revised: 04/26/2005] [Accepted: 04/27/2005] [Indexed: 11/28/2022]
Abstract
Transfer RNAs are transcribed as precursors with extensions at both the 5' and 3' ends. RNase P removes endonucleolytically the 5' end leader. tRNase Z can remove endonucleolytically the 3' end trailer as a necessary step in tRNA maturation. CCA is not transcriptionally encoded in the tRNAs of eukaryotes, archaebacteria and some bacteria and must be added by a CCA-adding enzyme after removal of the 3' end trailer. tRNase Z is a member of the beta-lactamase family of metal-dependent hydrolases, the signature sequence of which, the conserved histidine cluster (HxHxDH), is essential for activity. Starting with baculovirus-expressed fruit fly tRNase Z, we completed an 18 residue Ala scan of the His cluster to analyze the functional landscape of this critical region. Residues in and around the His cluster fall into three categories based on effects of the substitutions on processing efficiency: substitutions in eight residues have little effect, five substitutions reduce efficiency moderately (approximately 5-50-fold), while substitutions in five conserved residues, one serine, three histidine and one aspartate, severely reduce efficiency (approximately 500-5000-fold). Wild-type and mutant dissociation constants (Kd values), determined using gel shifts, displayed no substantial differences, and were of the same order as kM (2-20 nM). Lower processing efficiencies arising from substitutions in the His domain are almost entirely due to reduced kcat values; conserved, functionally important residues within the His cluster of tRNase Z are thus involved in catalysis, and substrate recognition and binding functions must reside elsewhere in the protein.
Collapse
Affiliation(s)
- Neela Zareen
- York College of The City University of New York, 94-20 Guy R. Brewer Blvd, Jamaica, NY 11451, USA
| | | | | | | |
Collapse
|
17
|
Lee Y, Nazar RN. Terminal structure mediates 5 S rRNA stability and integration during ribosome biogenesis. J Biol Chem 2003; 278:6635-41. [PMID: 12471019 DOI: 10.1074/jbc.m212220200] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Formation of the eukaryotic ribosomal 5 S RNA-protein complex has been shown to be critical to ribosome biogenesis and has been speculated to contribute to a quality control mechanism that helps ensure that only normal precursors are processed and assembled into active ribosomes. To study the structural basis of these observations, the RNA-protein interface in the 5 S RNA-protein complex of the yeast (Saccharomyces cerevisiae) ribosome was examined based on a systematic introduction of targeted base substitutions in the RNA sequence. Most base substitutions had little or no effect on the efficiency of complex formation, but large effects were observed when changes disrupted helix I, the secondary structure formed between the interacting termini. Again, only modest effects were evident when the extended 3' end of the mature RNA molecule was altered, but essentially no complex was formed when the 5' end of the mature 5 S RNA sequence was artificially extended by one nucleotide. In vitro analyses demonstrated that this extension also dramatically altered the maturation of 5 S rRNA precursor molecules as well as the stability of the mature 5 S rRNA. Taken together, the results indicate that in the course of RNA maturation, the 5 S RNA-binding protein binds precisely over or "caps" the termini in a critical manner that protects the RNA from further degradation.
Collapse
Affiliation(s)
- Yoon Lee
- Department of Molecular Biology and Genetics, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | | |
Collapse
|
18
|
Kufel J, Tollervey D. 3'-processing of yeast tRNATrp precedes 5'-processing. RNA (NEW YORK, N.Y.) 2003; 9:202-8. [PMID: 12554863 PMCID: PMC1370386 DOI: 10.1261/rna.2145103] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2002] [Accepted: 10/21/2002] [Indexed: 05/21/2023]
Abstract
Previous analyses of eukaryotic pre-tRNAs processing have reported that 5'-cleavage by RNase P precedes 3'-maturation. Here we report that in contrast to all other yeast tRNAs analyzed to date, tRNA(Trp) undergoes 3'-maturation prior to 5'-cleavage. Despite its unusual processing pathway, pre-tRNA(Trp) resembles other pre-tRNAs, showing dependence on the essential Lsm proteins for normal processing and efficient association with the yeast La homolog, Lhp1p. tRNA(Trp) is also unusual in not requiring Lhp1p for 3' processing and stability. However, other Lhp1p-independent tRNAs, tRNA(2)(Lys) and tRNA(1)(Ile), follow the normal pathway of 5'-processing prior to 3-processing.
Collapse
Affiliation(s)
- Joanna Kufel
- Wellcome Trust Centre for Cell Biology, King's Buildings, The University of Edinburgh, Edinburgh EH9 3JR, Scotland, UK
| | | |
Collapse
|
19
|
Kufel J, Allmang C, Verdone L, Beggs JD, Tollervey D. Lsm proteins are required for normal processing of pre-tRNAs and their efficient association with La-homologous protein Lhp1p. Mol Cell Biol 2002; 22:5248-56. [PMID: 12077351 PMCID: PMC139769 DOI: 10.1128/mcb.22.14.5248-5256.2002] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Depletion of any of the five essential proteins Lsm2p to Lsm5p and Lsm8p leads to strong accumulation of all tested unspliced pre-tRNA species, as well as accumulation of 5' and 3' unprocessed species. Aberrant 3'-extended pre-tRNAs were detected, presumably due to stabilization of transcripts that fail to undergo correct transcription termination, and the accumulation of truncated tRNA fragments was also observed. Tandem affinity purification-tagged Lsm3p was associated with pre-tRNA primary transcripts and, less efficiently, with other unspliced pre-tRNA intermediates but not mature tRNAs. Association of the Saccharomyces cerevisiae La homologue Lhp1p with pre-tRNAs was reduced approximately threefold on depletion of Lsm3p or Lsm5p. The association of Lhp1p with larger RNA polymerase III transcripts, pre-RNase P RNA and the signal recognition particle RNA (scR1), was more drastically reduced. The impaired pre-tRNA processing seen on Lsm depletion is not, however, due solely to reduced Lhp1p association as evidenced by analysis of lhp1-Delta strains depleted of Lsm3p or Lsm5p. These data are consistent with roles for an Lsm complex as a chaperone that facilitates the efficient association of pre-tRNA processing factors with their substrates.
Collapse
Affiliation(s)
- Joanna Kufel
- Wellcome Trust Centre for Cell Biology, The University of Edinburgh, Edinburgh EH9 3JR, Scotland, UK
| | | | | | | | | |
Collapse
|
20
|
Yamaguchi-Shinozaki K, Shinozaki K, Sugiura M. Processing of precursor tRNAs in a chloroplast lysate. FEBS Lett 2002. [DOI: 10.1016/0014-5793(87)80127-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
21
|
Schiffer S, Helm M, Théobald-Dietrich A, Giegé R, Marchfelder A. The plant tRNA 3' processing enzyme has a broad substrate spectrum. Biochemistry 2001; 40:8264-72. [PMID: 11444972 DOI: 10.1021/bi0101953] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
To elucidate the minimal substrate for the plant nuclear tRNA 3' processing enzyme, we synthesized a set of tRNA variants, which were subsequently incubated with the nuclear tRNA 3' processing enzyme. Our experiments show that the minimal substrate for the nuclear RNase Z consists of the acceptor stem and T arm. The broad substrate spectrum of the nuclear RNase Z raises the possibility that this enzyme might have additional functions in the nucleus besides tRNA 3' processing. Incubation of tRNA variants with the plant mitochondrial enzyme revealed that the organellar counterpart of the nuclear enzyme has a much narrower substrate spectrum. The mitochondrial RNase Z only tolerates deletion of anticodon and variable arms and only with a drastic reduction in cleavage efficiency, indicating that the mitochondrial activity can only cleave bona fide tRNA substrates efficiently. Both enzymes prefer precursors containing short 3' trailers over extended 3' additional sequences. Determination of cleavage sites showed that the cleavage site is not shifted in any of the tRNA variant precursors.
Collapse
Affiliation(s)
- S Schiffer
- Molekulare Botanik, Universität Ulm, 89069 Ulm, Germany
| | | | | | | | | |
Collapse
|
22
|
The Transcription of Genes. Biochemistry 2001. [DOI: 10.1016/b978-012492543-4/50031-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
23
|
Mohan A, Levinger L. The effects of matrices of paired substitutions in mid-acceptor stem on Drosophila tRNA(His) structure and end-processing. J Mol Biol 2000; 303:605-16. [PMID: 11054295 DOI: 10.1006/jmbi.2000.4162] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
End-maturation reactions, in which the 5' end leader and 3' end trailer of precursor tRNA are removed by RNase P and 3'-tRNase, respectively, are early, essential steps in eukaryotic precursor tRNA processing. End-processing enzymes may be expected to contact the acceptor stem of tRNA due to its proximity to both cleavage sites. We constructed matrices of pair-wise substitutions in mid-acceptor stem at nt 3/70 and 4/69 of Drosophila tRNA(His) and analyzed their ability to be processed by Drosophila RNase P and 3'-tRNase. In accord with our earlier study of D/T loop processing matrices, we find that tRNA end processing enzymes respond to sequence changes differently. More processing defects were observed with 3'-tRNase than with RNase P, and substitutions at 4/69 reduced processing more than those at 3/70. We evaluated tRNA folding using structure probing nucleases and investigated the contribution of K(M) and V(Max) to the processing efficiency of selected variants. In one substitution (C3A), mis-folding correlates with processing defects. In another (C69A), a disruption of structure appears to be transmitted laterally to both ends of the acceptor stem. Poor processing of C69A by RNase P is due entirely to a reduction in V(Max), but for 3'-tRNase, it is due to an increase in K(M).
Collapse
Affiliation(s)
- A Mohan
- Natural Sciences/Biology, York College of The City University of New York, New York, Jamaica, 11451, USA
| | | |
Collapse
|
24
|
Nashimoto M, Wesemann DR, Geary S, Tamura M, Kaspar RL. Long 5' leaders inhibit removal of a 3' trailer from a precursor tRNA by mammalian tRNA 3' processing endoribonuclease. Nucleic Acids Res 1999; 27:2770-6. [PMID: 10373595 PMCID: PMC148487 DOI: 10.1093/nar/27.13.2770] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Mammalian tRNA 3' processing endoribonuclease (3' tRNase) can remove a 3' trailer from various pre-tRNAs without 5' leader nucleotides. To examine how 5[prime] leader sequences affect 3' processing efficiency, we performed in vitro 3' processing reactions with purified pig 3' tRNase and pre-tRNAArgs containing a 13-nt 3' trailer and a 5[prime] leader of various lengths. The 3' processing was slightly stimulated by 5[prime] leaders containing up to 7 nt, whereas leaders of 9 nt or longer severely inhibited the reaction. Structure probing indicated that the 5' leader sequences had little effect on pre-tRNA folding. Similar results were obtained using pre-tRNA(Val)s containing a 5' leader of various lengths. We also investigated whether 3'tRNase can remove 3' trailers that are stably base-paired with 5' leaders to form an extended acceptor stem. Even such small 5' leaders as 3 and 6 nt, when base-paired with a 3' trailer, severely hindered removal of the 3' trailer by 3' tRNase.
Collapse
Affiliation(s)
- M Nashimoto
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA.
| | | | | | | | | |
Collapse
|
25
|
Nashimoto M, Tamura M, Kaspar RL. Selection of cleavage site by mammalian tRNA 3' processing endoribonuclease. J Mol Biol 1999; 287:727-40. [PMID: 10191141 DOI: 10.1006/jmbi.1999.2639] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mammalian tRNA 3' processing endoribonuclease (3' tRNase) removes 3' trailers from pre-tRNAs by cleaving the RNA immediately downstream of the discriminator nucleotide. Although 3' tRNase can recognize and cleave any target RNA that forms a pre-tRNA-like complex with another RNA, in some cases cleavage occurs at multiple sites near the discriminator. We investigated what features of pre-tRNA determine the cleavage site using various pre-tRNAArg variants and purified pig enzyme. Because the T stem-loop and the acceptor stem plus a 3' trailer are sufficient for recognition by 3' tRNase, we constructed variants that had additions and/or deletions of base-pairs in the T stem and/or the acceptor stem. Pre-tRNAs lacking one and two acceptor stem base-pairs were cleaved one and two nucleotides and two and three nucleotides, respectively, downstream of the discriminator. On the other hand, pre-tRNA variants containing extra acceptor stem base-pairs were cleaved only after the discriminator. The cleavage site was shifted to one and two nucleotides downstream of the discriminator by deleting one base-pair from the T stem, but was not changed by additional base-pairs in the T stem. Pre-tRNA variants that contained an eight base-pair acceptor stem plus a six base-pair T stem, an eight base-pair acceptor stem plus a four base-pair T stem, or a six base-pair acceptor stem plus a six base-pair T stem were all cleaved after the original nucleotide. In general, pre-tRNA variants containing a total of more than 11 bp in the acceptor stem and the T stem were cleaved only after the discriminator, and pre-tRNA variants with a total of N bp (N is less than 12) were cleaved 12-N and 13-N nt downstream of the discriminator. Cleavage efficiency of the variants decreased depending on the degree of structural changes from the authentic pre-tRNA. This suggests that the numbers of base-pairs of both the acceptor stem and the T stem are important for recognition and cleavage by 3' tRNase.
Collapse
Affiliation(s)
- M Nashimoto
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, 84602, USA.
| | | | | |
Collapse
|
26
|
Levinger L, Bourne R, Kolla S, Cylin E, Russell K, Wang X, Mohan A. Matrices of paired substitutions show the effects of tRNA D/T loop sequence on Drosophila RNase P and 3'-tRNase processing. J Biol Chem 1998; 273:1015-25. [PMID: 9422763 DOI: 10.1074/jbc.273.2.1015] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Drosophila RNase P and 3'-tRNase endonucleolytically process the 5' and 3' ends of tRNA precursors. We examined the processing kinetics of normal substrates and the inhibitory effect of the tRNA product on both processing reactions. The product is not a good RNase P inhibitor, with a KI approximately 7 times greater than the substrate KM of approximately 200 nM and is a better inhibitor of 3'-tRNase, with a KI approximately two times the KM of approximately 80 nM. We generated matrices of substitutions at positions G18/U55 and G19/C56 (two contiguous universally conserved D/T loop base pairs) in Drosophila tRNAHis precursors. More than half the variants display a significant reduction in their ability to be processed by RNase P and 3'-tRNase. Minimal substrates with deleted D and anticodon stems could be processed by RNase P and 3'-tRNase much like full-length substrates, indicating that D/T loop contacts and D arm/enzyme contacts are not required by either enzyme. Selected tRNAs that were poor substrates for one or both enzymes were further analyzed using Michaelis-Menten kinetics and by structure probing. Processing reductions arise principally due to an increase in KM with relatively little change in Vmax, consistent with the remote location of the sequence and structure changes from the processing site for both enzymes. Local changes in variant tRNA susceptibility to RNase T1 and RNase A did not coincide with processing disabilities.
Collapse
Affiliation(s)
- L Levinger
- Natural Sciences/Biology, York College of the City University of New York, Jamaica, New York 11451, USA.
| | | | | | | | | | | | | |
Collapse
|
27
|
Kunzmann A, Brennicke A, Marchfelder A. 5' end maturation and RNA editing have to precede tRNA 3' processing in plant mitochondria. Proc Natl Acad Sci U S A 1998; 95:108-13. [PMID: 9419337 PMCID: PMC18142 DOI: 10.1073/pnas.95.1.108] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We report the characterization and partial purification of potato mitochondrial RNase Z, an endonuclease that generates mature tRNA 3' ends. The enzyme consists of one (or more) protein(s) without RNA subunits. Products of the processing reaction are tRNA molecules with 3' terminal hydroxyl groups and 3' trailers with 5' terminal phosphates. The main processing sites are located immediately 3' to the discriminator and one nucleotide further downstream. This endonucleolytic processing at and close to the tRNA 3' end in potato mitochondria suggests a higher similarity to the eukaryotic than to the prokaryotic tRNA 3' processing pathway. Partial purification and separation of RNase Z from the 5' processing activity RNase P allowed us to determine biochemical characteristics of the enzyme. The activity is stable over broad pH and temperature ranges, with peak activity at pH 8 and 30 degrees C. Optimal concentrations for MgCl2 and KCl are 5 mM and 30 mM, respectively. The potato mitochondrial RNase Z accepts only tRNA precursors with mature 5' ends. The precursor for tRNAPhe requires RNA editing for efficient processing by RNase Z.
Collapse
Affiliation(s)
- A Kunzmann
- Allgemeine Botanik, Universität Ulm, Albert-Einstein-Allee 11, D-89069 Ulm, Germany
| | | | | |
Collapse
|
28
|
Abstract
The maturation of the ribosomal 5 S RNA in Saccharomyces cerevisiae is examined based on the expression of mutant 5 S rRNA genes, in vivo, and a parallel analysis of RNA processing, in vitro. Both types of analysis indicate that 5 S rRNA processing is not dependent on the nucleotide sequence of either the external transcribed spacer or the mature 5 S rRNA. The results further indicate the RNA is processed by an exonuclease activity which is limited primarily or entirely by helix I, the secondary structure formed between the mature and interacting termini. The 5 S RNA binding protein (YL3) also appears not to influence directly the maturation process, but rather to play a role in protecting the rRNA from further degradation by "housekeeping" nucleases. Taken together, the results continue to support a "quality control" function which helps to ensure that during maturation only normal precursors are processed and assembled into active ribosomes.
Collapse
Affiliation(s)
- Y Lee
- Department of Molecular Biology and Genetics, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | | |
Collapse
|
29
|
Papadimitriou A, Gross HJ. Pre-tRNA 3'-processing in Saccharomyces cerevisiae. Purification and characterization of exo- and endoribonucleases. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 242:747-59. [PMID: 9022706 DOI: 10.1111/j.1432-1033.1996.0747r.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We investigated ribonucleases from Saccharomyces cerevisiae which are active in pre-tRNA 3'-processing in vitro. Two pre-tRNA 3'-exonucleases with molecular masses of 33 and 60 kDa, two pre-tRNA 3'-endonucleases with molecular masses of 45 kDa/60 kDa and 55 kDa and 70-kDa 3'-pre-tRNase were purified from yeast whole cell extracts by several successive chromatographic purification steps. The purified exonucleases are non-processive 3'-exonucleases that catalyze the exonucleolytic processing of 3'-trailer sequences of pre-tRNAs to produce mature tRNAs. The 45-kDa/60-kDa 3'-endonuclease is tRNA-specific and catalyzes the processing of pre-tRNAs in a single endonucleolytic step. Two isoenzymes of this activity (p45 and p60) were identified by chromatography. The second endonuclease, p55, is dependent on monovalent ions and cleaves about three nucleotides downstream the mature 3'-end. All of the purified 3'-pre-tRNases accept homologous as well as heterologous pre-tRNA substrates. Pre-tRNAs carrying a 5'-leader are processed with almost the same efficiency as those lacking this 5'-leader. Mature tRNAs carrying the CCA 3'-sequence and tRNA pseudogene products carrying mutations in the mature domain are processed by the 3'-exonucleases, not by the 3'-endonucleases. The specific endonuclease p45/p60 discriminates between UUUOH as a 3'-flank, which is cleaved, and the CCA 3'-end of mature tRNAs, which is not cleaved. This study suggests that several 3'-pre-tRNases are active on tRNA precursors in vitro and might therefore in pre-tRNA 3'-processing in yeast, partly in a cooperative manner.
Collapse
Affiliation(s)
- A Papadimitriou
- Institut für Biochemie, Bayerische Julius-Maximilians-Universität, Biozentrum, Würzburg, Germany
| | | |
Collapse
|
30
|
Rotondo G, Frendewey D. Purification and characterization of the Pac1 ribonuclease of Schizosaccharomyces pombe. Nucleic Acids Res 1996; 24:2377-86. [PMID: 8710510 PMCID: PMC145943 DOI: 10.1093/nar/24.12.2377] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The pac1+ gene of the fission yeast Schizosaccharomyces pombe is essential for viability and its overexpression induces sterility and suppresses mutations in the pat1+ and snm1+ genes. The pac1+ gene encodes a protein that is structurally similar to RNase III from Escherichia coli, but its normal function is unknown. We report here the purification and characterization of the Pac1 protein after overexpression in E. coli. The purified protein is a highly active, double-strand-specific endoribonuclease that converts long double-stranded RNAs into short oligonucleotides and also cleaves a small hairpin RNA substrate. The Pac1 RNase is inhibited by a variety of double- and single-stranded polynucleotides, but polycytidylic acid greatly enhances activity and also promotes cleavage specificity. The Pac1 RNase produces 5'-phosphate termini and requires Mg2+; Mn2+ supports activity but causes a loss of cleavage specificity. Optimal activity was obtained at pH 8.5, at low ionic strength, in the presence of a reducing agent. The enzyme is relatively insensitive to N-ethylmaleimide but is strongly inhibited by ethidium bromide and vanadyl ribonucleoside complexes. The properties of the Pac1 RNase support the hypothesis that it is a eukaryotic homolog of RNase III.
Collapse
Affiliation(s)
- G Rotondo
- Department of Microbiology, New York University School of Medicine, NY 10016, USA
| | | |
Collapse
|
31
|
Lee Y, Melekhovets YF, Nazar RN. Termination as a factor in "quality control" during ribosome biogenesis. J Biol Chem 1995; 270:28003-5. [PMID: 7499281 DOI: 10.1074/jbc.270.47.28003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
In eukaryotes, nascent rDNA and 5 S rRNA gene transcripts undergo 3'-end processing after termination. Mutations in which terminator sequences in these ribosomal RNA genes are deleted completely result in highly unstable transcripts, which are not properly processed and integrated into stable ribosome structure. Mutations that retard RNA processing by extending the 3' external transcribed spacer or by introducing additional secondary structure in the spacers have a similar effect on stable transcript integration. The results indicate that proper termination coupled with efficient rRNA processing acts as a "quality control" process, which helps to ensure that only normal rRNA precursors are effectively processed and assembled into active ribosomes.
Collapse
Affiliation(s)
- Y Lee
- Department of Molecular Biology and Genetics, University of Guelph, Ontario, Canada
| | | | | |
Collapse
|
32
|
Levinger L, Vasisht V, Greene V, Bourne R, Birk A, Kolla S. Sequence and structure requirements for Drosophila tRNA 5'- and 3'-end processing. J Biol Chem 1995; 270:18903-9. [PMID: 7642547 DOI: 10.1074/jbc.270.32.18903] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Eukaryotic tRNAs are processed at their 5'- and 3'- ends by endonucleases RNase P and 3'-tRNase, respectively. We have prepared substrates for both enzymes, separated the activities from a Drosophila extract, and designed variant tRNAs to assess the effects of sequence and structure on processing. Mutations affect these reactions in similar ways; thus, RNase P and 3'-tRNase probably require similar substrate structures to maintain the catalytic fit. RNase P is more sensitive to substrate substitutions than 3'-tRNase. In three of the four stems, one substitution prevents both processing reactions while the opposite one has less effect; anticodon stem substitutions hardly affect processing, and double substitution intended to restore base pairing also restore processing to the wild type rate. Structure probing suggests that tRNA misfolding sometimes coincides with reduced processing. In other cases, processing inhibition probably results from specific unfavorable stem appositions leading to local helix deformation. A single T loop substitution disrupts the tertiary D-T loop interaction and reduces processing. We have thus begun mapping tRNA processing determinants on the global, local, and tertiary structure levels.
Collapse
Affiliation(s)
- L Levinger
- Department of Natural Sciences/Biology, York College of the City University of New York, Jamaica 11451, USA
| | | | | | | | | | | |
Collapse
|
33
|
Stathopoulos C, Kalpaxis DL, Drainas D. Partial purification and characterization of RNase P from Dictyostelium discoideum. EUROPEAN JOURNAL OF BIOCHEMISTRY 1995; 228:976-80. [PMID: 7737203 DOI: 10.1111/j.1432-1033.1995.tb20349.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Ribonuclease P (RNase P) from Dictyostelium discoideum has been purified 470-fold. D. discoideum RNase P cleaves the precursor to Schizosaccharomyces pombe suppressor tRNA(Ser) at the same site as S. pombe RNase P, producing the mature 5' end of tRNA(Ser). pH and temperature optima for enzyme activity are 7.6 and 37 degrees C, respectively. The enzyme shows optimal activity in the presence of 5 mM MgCl2 and 10 mM NH4Cl or 5 mM KCl. The apparent Km for the S. pombe tRNA precursor derived from the supS1 tRNA(Ser) gene is 240 nM, and the apparent Vmax is 3.6 pmol/min. Inhibition of D. discoideum RNase P by proteinase K and micrococcal nuclease strongly indicates that the activity requires both protein and RNA components. In cesium sulfate density gradients, the enzyme has a buoyant density of 1.23 g/ml, indicating a low RNA/protein ratio for the holoenzyme.
Collapse
Affiliation(s)
- C Stathopoulos
- Laboratory of Biological Chemistry, School of Medicine, University of Patras, Rio-Patras, Greece
| | | | | |
Collapse
|
34
|
Ragnini A, Frontali L. Ordered processing of the polygenic transcripts from a mitochondrial tRNA gene cluster in K. lactis. Curr Genet 1994; 25:342-9. [PMID: 8082177 DOI: 10.1007/bf00351488] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In Saccharomyces cerevisiae, transcription of the mitochondrial genome starts at multiple initiation sites and is followed by the processing of multigenic transcripts at the 5' and 3' termini of tRNA sequences and in some intergenic regions. We have used a comparative approach to investigate the structure and function of the latter processing sites. We present here an analysis of the transcripts of a cluster of tRNA genes from the mitochondrial genome of Kluyveromyces lactis. The gene order of this cluster is the same as that of the cluster in S. cerevisiae but the sequence of the intergenic regions is different. A detailed analysis of transcripts has been performed using S1 mapping and primer extension techniques. The results can be summarized as follows: (1) transcription of the cluster very probably starts at initiation sites having the nonanucleotide sequence TTATAAGTA (which acts as a promoter in S. cerevisiae) and yields polygenic transcripts; (2) processing of these transcripts seems to occur through an ordered pathway of endonucleolytic events in which some tRNA sequences are preferentially excised and some endonucleolytic cuts occur more readily than others; (3) in two intergenic regions, strong signals indicate the existence of processing events. The sequences around these sites are similar in sequence and localization to S. cerevisiae intergenic processing sites, indicating a possible functional importance in maintaining a conserved order of tRNA genes in different species of yeasts.
Collapse
Affiliation(s)
- A Ragnini
- Department of Cell and Developmental Biology, University of Rome La Sapienza, Italy
| | | |
Collapse
|
35
|
An exonuclease requiring an intact helical stem for specificity produces the 3' end of Acanthamoeba castellanii 5 S RNA. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)35807-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
36
|
Furter R, Snaith M, Gillespie DE, Hall BD. Endonucleolytic cleavage of a long 3'-trailer sequence in a nuclear yeast suppressor tRNA. Biochemistry 1992; 31:10817-24. [PMID: 1384700 DOI: 10.1021/bi00159a024] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Transcripts of Saccharomyces cerevisiae nuclear tRNA genes are normally terminated within a few nucleotides of the tRNA coding region, in contrast to mitochondrially encoded tRNAs, which are contained within polycistronic transcripts and thus require 3'-processing by mitochondrial endonucleases. We show that 3'-processing activities capable of removing artificially extended 3'-trailer sequences from some tRNA substrates are also present in the yeast nucleus. Correct 3'-processing in vivo resulted in the formation of functional suppressor tRNA. The 3'-processing activities were also identified in vitro through analysis of transcription-processing products in cell-free yeast S-100 extracts. Comparison of several pre-tRNA substrates showed that the tRNA structure played a major role in determining the processability of a substrate but that the nature of the 3'-trailer sequence also modulated the rate of 3'-processing. Pre-tRNA containing mitochondrial tRNA(Val) sequence was a good substrate for in vitro processing, independent of its 3'-trailer. A 200-nt-long pre-tRNA, encoding the nuclear SUP4 tRNA gene and a mitochondrial 3'-trailer, was processed in yeast S-100 extract in a multistep pathway into mature-sized tRNA(Tyr). Part of the 3'-processing was due to an endonuclease which cleaved near or precisely at the 3'-end of the coding region of the tRNA. A short sequence around this endonucleolytic 3'-cleavage site was crucial for the formation of active suppressor tRNA in vivo. A 9-nt-long sequence motif derived from the mitochondrial 3'-trailer allowed processing, while sequences derived from lacZ or pBR322 DNA were processed neither in vitro nor in vivo.
Collapse
MESH Headings
- Base Sequence
- Cell Nucleus/chemistry
- Endonucleases/metabolism
- Molecular Sequence Data
- Mutagenesis
- RNA/chemistry
- RNA/metabolism
- RNA Precursors/chemistry
- RNA Precursors/metabolism
- RNA, Fungal/chemistry
- RNA, Fungal/metabolism
- RNA, Mitochondrial
- RNA, Transfer/chemistry
- RNA, Transfer/metabolism
- RNA, Transfer, Val/chemistry
- RNA, Transfer, Val/metabolism
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/ultrastructure
- Suppression, Genetic
Collapse
Affiliation(s)
- R Furter
- Department of Genetics, University of Washington, Seattle 98195
| | | | | | | |
Collapse
|
37
|
Jayanthi GP, Van Tuyle GC. Characterization of ribonuclease P isolated from rat liver cytosol. Arch Biochem Biophys 1992; 296:264-70. [PMID: 1605634 DOI: 10.1016/0003-9861(92)90571-d] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Rat liver ribonuclease P was isolated from a cytosolic fraction and shown to have optimal activity in the presence of 1 mM MgCl2 and 150-200 mM KCl using Escherchia coli pre-tRNA(Tyr) as substrate. In cesium sulfate isopycnic density gradients, the enzyme had a buoyant density of 1.36 g/ml, indicating that it is a ribonucleoprotein complex. Analysis of the RNAs in the enzyme sample purified through two successive Cs2SO4 density gradient steps revealed the copurification of two major species of RNA (RRP1 and RRP2) along with several less abundant RNAs. Rat liver ribonuclease P activity was insensitive to micrococcal nuclease pretreatment. However, the nuclease-treated preparations contained several incompletely degraded RNA species that may have been sufficient to support the ribonuclease P activity. When RNase A was substituted for micrococcal nuclease, the ribonuclease P activity was diminished by greater than 90%, suggesting the requirement for an RNA subunit for activity.
Collapse
Affiliation(s)
- G P Jayanthi
- Department of Biochemistry and Molecular Biophysics, Virginia Commonwealth University, Richmond 23298
| | | |
Collapse
|
38
|
Preiser PR, Levinger LF. In vitro processing of Drosophila melanogaster 5 S ribosomal RNA. 3' end effects and requirement for internal domains of mature 5 S RNA. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(20)89476-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
39
|
French BT, Trewyn RW. Modification of the anticodon wobble position of tRNA(Ala) in vitro does not require 5' or 3' processing. Gene 1990; 96:301-4. [PMID: 2176640 DOI: 10.1016/0378-1119(90)90268-v] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Maturation of eukaryotic tRNA molecules requires nuclear processing as well as nuclear and cytoplasmic modification of specific nucleotides. Nucleotide modifications within the anticodon are found in the majority of all tRNAs and are among the last maturation events to occur in vivo. We show that 5' and 3' processing of SP6 polymerase-generated transcripts are not necessary for the in vitro modification of A----I in the anticodon of tRNA(Ala).
Collapse
Affiliation(s)
- B T French
- Comprehensive Cancer Center, Ohio State University, Columbus 43210
| | | |
Collapse
|
40
|
Hanic-Joyce P, Gray M. Processing of transfer RNA precursors in a wheat mitochondrial extract. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(18)77417-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
41
|
Deutscher MP. Ribonucleases, tRNA nucleotidyltransferase, and the 3' processing of tRNA. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1990; 39:209-40. [PMID: 2247609 DOI: 10.1016/s0079-6603(08)60628-5] [Citation(s) in RCA: 111] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- M P Deutscher
- Department of Biochemistry, University of Connecticut Health Center, Farmington 06032
| |
Collapse
|
42
|
|
43
|
Campbell DA, Suyama Y, Simpson L. Genomic organisation of nuclear tRNAGly and tRNALeu genes in Trypanosoma brucei. Mol Biochem Parasitol 1989; 37:257-62. [PMID: 2608100 DOI: 10.1016/0166-6851(89)90157-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We have isolated a 0.3-kb HaeIII restriction fragment from Trypanosoma brucei which contains two tRNA genes. Secondary structure models predict that the two genes identified encode tRNA molecules which specify glycine (anticodon UCC) and leucine (anticodon CAG). The two genes are separated by 86 nucleotides, transcribed in the same direction and contain features of conventional RNA polymerase III transcription units. Southern blot analysis indicates the presence of multicopy tRNa gene families in T. brucei.
Collapse
Affiliation(s)
- D A Campbell
- Department of Microbiology and Immunology, UCLA School of Medicine 90024
| | | | | |
Collapse
|
44
|
Thomann HU, Schmutzler C, Hüdepohl U, Blow M, Gross HJ. Genes, variant genes and pseudogenes of the human tRNA(Val) gene family. Expression and pre-tRNA maturation in vitro. J Mol Biol 1989; 209:505-23. [PMID: 2585499 DOI: 10.1016/0022-2836(89)90590-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Nine different members of the human tRNA(Val) gene family have been cloned and characterized. Only four of the genes code for one of the known tRNA(Val) isoacceptors. The remaining five genes carry mutations, which in two cases even affect the normal three-dimensional tRNA structure. Each of the genes is transcribed by polymerase III in a HeLa cell nuclear extract, but their transcription efficiencies differ by up to an order of magnitude. Conserved sequences immediately flanking the structural genes that could serve as extragenic control elements were not detected. However, short sequences in the 5' flanking region of two genes show striking similarity with sequences upstream from two Drosophila melanogaster tRNA(Val) genes. Each of the human tRNA(Val) genes has multiple, i.e. two to four, transcription initiation sites. In most cases, transcription termination is caused by oligo(T) sequences downstream from the structural genes. However, the signal sequences ATCTT and CTTCTT also serve as effective polymerase III transcription terminators. The precursors derived from the four tRNA(Val) genes coding for known isoacceptors and those derived from two mutant genes are processed first at their 3' and subsequently at their 5' ends to yield mature tRNAs. The precursor derived from a third mutant gene is incompletely maturated at its 3' end, presumably as a consequence of base-pairing between 5' and 3' flanking sequences. Finally, precursors encoded by the genes that carry mutations affecting the tRNA tertiary structure are completely resistant to 5' and 3' processing.
Collapse
Affiliation(s)
- H U Thomann
- Institut für Biochemie, Bayerische Julius-Maximilians-Universität, Würzburg, Federal Republic of Germany
| | | | | | | | | |
Collapse
|
45
|
Biosynthesis of tRNA in yeast mitochondria. An endonuclease is responsible for the 3′-processing of tRNA precursors. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(18)68294-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
46
|
Manam S, Van Tuyle G. Separation and characterization of 5'- and 3'-tRNA processing nucleases from rat liver mitochondria. J Biol Chem 1987. [DOI: 10.1016/s0021-9258(18)61108-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
47
|
Castaño JG, Ornberg R, Koster JG, Tobian JA, Zasloff M. Eukaryotic pre-tRNA 5' processing nuclease: copurification with a complex cylindrical particle. Cell 1986; 46:377-85. [PMID: 3637121 DOI: 10.1016/0092-8674(86)90658-6] [Citation(s) in RCA: 92] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In eukaryotes pre-tRNA species are processed at the 5' end by an endonuclease. Here we describe the first characterization of the structure of a eukaryotic pre-tRNA 5' processing endonuclease. The 5' pre-tRNAase, isolated from X. laevis ovaries, copurifies with a 16S macromolecular complex consisting of at least 14 polypeptides ranging in MW from about 20,000 to 32,000. These polypeptides comprise a cylindrical particle, apparently organized as a stack of four rings, similar or identical to a ubiquitous eukaryotic subcellular particle described in the literature over the past 15 years. Similar copurification is observed for the enzyme from HeLa cells, suggesting that the X. laevis enzyme is representative of a general class of eukaryotic pre-tRNA 5' processing nuclease.
Collapse
|
48
|
Willis I, Frendewey D, Nichols M, Hottinger-Werlen A, Schaack J, Söll D. A single base change in the intron of a serine tRNA affects the rate of RNase P cleavage in vitro and suppressor activity in vivo in Saccharomyces cerevisiae. J Biol Chem 1986. [DOI: 10.1016/s0021-9258(17)38465-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
49
|
Castaño JG, Tobian JA, Zasloff M. Purification and characterization of an endonuclease from Xenopus laevis ovaries which accurately processes the 3‘ terminus of human pre-tRNA-Met(i) (3‘ pre-tRNase). J Biol Chem 1985. [DOI: 10.1016/s0021-9258(17)39449-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|