1
|
de Oliveira GAP, Rocha CB, Marques MDA, Cordeiro Y, Sorenson MM, Foguel D, Silva JL, Suarez MC. Insights into the Intramolecular Coupling between the N- and C-Domains of Troponin C Derived from High-Pressure, Fluorescence, Nuclear Magnetic Resonance, and Small-Angle X-ray Scattering Studies. Biochemistry 2012; 52:28-40. [DOI: 10.1021/bi301139d] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Guilherme A. P. de Oliveira
- Programa de
Biologia Estrutural,
Instituto de Bioquímica Médica, Instituto Nacional de
Biologia Estrutural e Bioimagem, Centro Nacional de Ressonância
Magnética Nuclear Jiri Jonas, Universidade Federal do Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil
| | - Cristiane B. Rocha
- UNIRIO-Universidade Federal do Estado do Rio de Janeiro, CCBS-Centro de
Ciências Biológicas e da Saúde, Instituto Biomédico-IB,
Departamento de Bioquímica, Rua Frei Caneca 94-Centro, Rio
de Janeiro, Brazil
| | - Mayra de A. Marques
- Programa de
Biologia Estrutural,
Instituto de Bioquímica Médica, Instituto Nacional de
Biologia Estrutural e Bioimagem, Centro Nacional de Ressonância
Magnética Nuclear Jiri Jonas, Universidade Federal do Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil
| | - Yraima Cordeiro
- Faculdade
de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro,
Brazil
| | - Martha M. Sorenson
- Programa de
Biologia Estrutural,
Instituto de Bioquímica Médica, Instituto Nacional de
Biologia Estrutural e Bioimagem, Centro Nacional de Ressonância
Magnética Nuclear Jiri Jonas, Universidade Federal do Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil
| | - Débora Foguel
- Programa de
Biologia Estrutural,
Instituto de Bioquímica Médica, Instituto Nacional de
Biologia Estrutural e Bioimagem, Centro Nacional de Ressonância
Magnética Nuclear Jiri Jonas, Universidade Federal do Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil
| | - Jerson L. Silva
- Programa de
Biologia Estrutural,
Instituto de Bioquímica Médica, Instituto Nacional de
Biologia Estrutural e Bioimagem, Centro Nacional de Ressonância
Magnética Nuclear Jiri Jonas, Universidade Federal do Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil
| | - Marisa C. Suarez
- Programa de
Biologia Estrutural,
Instituto de Bioquímica Médica, Instituto Nacional de
Biologia Estrutural e Bioimagem, Centro Nacional de Ressonância
Magnética Nuclear Jiri Jonas, Universidade Federal do Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil
- Programa de Biologia
Estrutural,
Instituto de Bioquímica Médica-Polo Xerém, Universidade Federal do Rio de Janeiro, Xerém,
Brazil
| |
Collapse
|
2
|
Zhang Z, Akhter S, Mottl S, Jin JP. Calcium-regulated conformational change in the C-terminal end segment of troponin I and its binding to tropomyosin. FEBS J 2011; 278:3348-59. [PMID: 21777381 DOI: 10.1111/j.1742-4658.2011.08250.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The troponin complex plays an essential role in the thin filament regulation of striated muscle contraction. Of the three subunits of troponin, troponin I (TnI) is the actomyosin ATPase inhibitory subunit and its effect is released upon Ca(2+) binding to troponin C. The exon-8-encoded C-terminal end segment represented by the last 24 amino acids of cardiac TnI is highly conserved and is critical to the inhibitory function of troponin. Here, we investigated the function and calcium regulation of the C-terminal end segment of TnI. A TnI model molecule was labeled with Alexa Fluor 532 at a Cys engineered at the C-terminal end and used to reconstitute the tertiary troponin complex. A Ca(2+) -regulated conformational change in the C-terminus of TnI was shown by a sigmoid-shape fluorescence intensity titration curve similar to that of the CD calcium titration curve of troponin C. Such corresponding Ca(2+) responses are consistent with the function of troponin as a coordinated molecular switch. Reconstituted troponin complex containing a mini-troponin T lacking its two tropomyosin-binding sites showed a saturable binding to tropomyosin at pCa 9 but not at pCa 4. This Ca(2+) -regulated binding was diminished when the C-terminal 19 amino acids of cardiac TnI were removed. These results provided novel evidence for suggesting that the C-terminal end segment of TnI participates in the Ca(2+) regulation of muscle thin filament through interaction with tropomyosin.
Collapse
Affiliation(s)
- Zhiling Zhang
- Evanston Northwestern Healthcare and Northwestern University, Evanston, IL, USA
| | | | | | | |
Collapse
|
3
|
Pearson DS, Swartz DR, Geeves MA. Fast pressure jumps can perturb calcium and magnesium binding to troponin C F29W. Biochemistry 2008; 47:12146-58. [PMID: 18942859 PMCID: PMC2655140 DOI: 10.1021/bi801150w] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have used rapid pressure jump and stopped-flow fluorometry to investigate calcium and magnesium binding to F29W chicken skeletal troponin C. Increased pressure perturbed calcium binding to the N-terminal sites in the presence and absence of magnesium and provided an estimate for the volume change upon calcium binding (-12 mL/mol). We observed a biphasic response to a pressure change which was characterized by fast and slow reciprocal relaxation times of the order 1000/s and 100/s. Between pCa 8-5.4 and at troponin C concentrations of 8-28 muM, the slow relaxation times were invariant, indicating that a protein isomerization was rate-limiting. The fast event was only detected over a very narrow pCa range (5.6-5.4). We have devised a model based on a Monod-Wyman-Changeux cooperative mechanism with volume changes of -9 and +6 mL/mol for the calcium binding to the regulatory sites and closed to open protein isomerization steps, respectively. In the absence of magnesium, we discovered that calcium binding to the C-terminal sites could be detected, despite their position distal to the calcium-sensitive tryptophan, with a volume change of +25 mL/mol. We used this novel observation to measure competitive magnesium binding to the C-terminal sites and deduced an affinity in the range 200-300 muM (and a volume change of +35 mL/mol). This affinity is an order of magnitude tighter than equilibrium fluorescence data suggest based on a model of direct competitive binding. Magnesium thus indirectly modulates binding to the N-terminal sites, which may act as a fine-tuning mechanism in vivo.
Collapse
Affiliation(s)
| | - Darl R. Swartz
- Dept of Animal Sciences, Purdue University, West Lafayette, IN
| | | |
Collapse
|
4
|
Sun YB, Brandmeier B, Irving M. Structural changes in troponin in response to Ca2+ and myosin binding to thin filaments during activation of skeletal muscle. Proc Natl Acad Sci U S A 2006; 103:17771-6. [PMID: 17101992 PMCID: PMC1693822 DOI: 10.1073/pnas.0605430103] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Contraction of skeletal and cardiac muscle is regulated by Ca2+ -dependent structural changes in troponin that control the interaction between myosin and actin. We measured the orientations of troponin domains in skeletal muscle fibers using polarized fluorescence from bifunctional rhodamine probes on the C and E helices of troponin C. The C helix, in the regulatory head domain, tilts by approximately 30 degrees when muscle is activated in physiological conditions, with a Ca2+ -sensitivity similar to that of active force. Complete inhibition of active force did not affect C-helix orientation, and binding of rigor myosin heads did not affect its orientation at saturating [Ca2+]. The E helix, in the IT arm of troponin, tilted by approximately 10 degrees on activation, and this was reduced to only 3 degrees when active force was inhibited. Binding of rigor myosin heads produced a larger tilt of the E helix. Thus, in situ, the regulatory head acts as a pure Ca2+ -sensor, whereas the IT arm is primarily sensitive to myosin head binding. The polarized fluorescence data from active muscle are consistent with an in vitro structure of the troponin core complex in which the D and E helices of troponin C are collinear. The present data were used to orient this structure in the fiber and suggest that the IT arm is at approximately 30 degrees to the filament axis in active muscle. In relaxed muscle, the IT arm tilts to approximately 40 degrees but the D/E helix linker melts, allowing the regulatory head to tilt through a larger angle.
Collapse
Affiliation(s)
- Yin-Biao Sun
- *Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, United Kingdom; and
| | - Birgit Brandmeier
- Medical Research Council National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, United Kingdom
| | - Malcolm Irving
- *Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, United Kingdom; and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
5
|
Braga CACA, Pinto JR, Valente AP, Silva JL, Sorenson MM, Foguel D, Suarez MC. Ca(2+) and Mg(2+) binding to weak sites of TnC C-domain induces exposure of a large hydrophobic surface that leads to loss of TnC from the thin filament. Int J Biochem Cell Biol 2005; 38:110-22. [PMID: 16183325 DOI: 10.1016/j.biocel.2005.08.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2005] [Revised: 07/29/2005] [Accepted: 08/18/2005] [Indexed: 10/25/2022]
Abstract
The C-domain of troponin C, the Ca(2+)-binding subunit of the troponin complex, has two high-affinity sites for Ca(2+) that also bind Mg(2+) (Ca(2+)/Mg(2+) sites), whereas the N-domain has two low-affinity sites for Ca(2+). Two more sites that bind Mg(2+) with very low affinity (K(a)<10(3)M(-1)) have been detected by several laboratories but have not been localized or studied in any detail. Here we investigated the effects of Ca(2+) and Mg(2+) binding to isolated C-domain, focusing primarily on low-affinity sites. Since TnC has no Trp residues, we utilized a mutant with Phe 154 replaced by Trp (F154W/C-domain). As expected from previous reports, the changes in Trp fluorescence revealed different conformations induced by the addition of Ca(2+) or Mg(2+) (Ca(2+)/Mg(2+) sites). Exposure of hydrophobic surfaces of F154W/C-domain was monitored using the fluorescence intensity of bis-anilino naphthalene sulfonic acid. Unlike the changes reported by Trp, the increments in bis-ANS fluorescence were much greater (4.2-fold) when Ca(2+)+Mg(2+) were both present or when Ca(2+) was present at high concentration. Bis-ANS fluorescence increased as a function of [Ca(2+)] in two well-defined steps: one at low [Ca(2+)], consistent with the Ca(2+)/Mg(2+) sites (K(a) approximately 1.5 x 10(6)M(-1)), and one of much lower affinity (K(a) approximately 52.3M(-1)). Controls were performed to rule out artifacts due to aggregation, high ionic strength and formation of the bis-ANS-TnC complex itself. With a low concentration of Ca(2+) (0.6mM) to occupy the Ca(2+)/Mg(2+) sites, a large increase in bis-ANS binding also occurred as Mg(2+) occupied a class of low-affinity sites (K(a) approximately 59 M(-1)). In skinned fibers, a high concentration of Mg(2+) (10-44 mM) caused TnC to dissociate from the thin filament. These data provide new evidence for a class of weak binding sites for divalent cations. They are located in the C-domain, lead to exposure of a large hydrophobic surface, and destabilize the binding of TnC to the regulatory complex even when sites III and IV are occupied.
Collapse
Affiliation(s)
- Carolina A C A Braga
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Av Bauhinia 400 CCS bloco E sala 42, 21941-590 Rio de Janeiro, RJ, Brazil
| | | | | | | | | | | | | |
Collapse
|
6
|
Kobayashi T, Dong WJ, Burkart EM, Cheung HC, Solaro RJ. Effects of Protein Kinase C Dependent Phosphorylation and a Familial Hypertrophic Cardiomyopathy-Related Mutation of Cardiac Troponin I on Structural Transition of Troponin C and Myofilament Activation. Biochemistry 2004; 43:5996-6004. [PMID: 15147183 DOI: 10.1021/bi036073n] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In experiments reported here, we compared tension and thin filament Ca(2+) signaling in preparations containing either wild-type cardiac troponin I (cTnI) or a mutant cTnI with an R146G mutation [cTnI(146G)] linked to familial hypertrophic cardiomyopathy. Myofilament function is altered in association with cTnI phosphorylation by protein kinase C (PKC), which is activated in hypertrophy. Whether there are differential effects of PKC phosphorylation on cTnI compared to cTnI(146G) remains unknown. We therefore also studied cTnI and cTnI(146G) with PKC sites mutated to Glu, which mimics phosphorylation. Compared to cTnI controls, binary complexes with either cTnI(146G) or cTnI(43E/45E/144E) had a small effect on Ca(2+)-dependent structural opening of the N-terminal regulatory domain of cTnC as measured using Förster resonance energy transfer. However, this structural change was significantly reduced in the cTnC-cTnI(43E/45E/144E/146G) complex. Exchange of cTnI in skinned fiber bundles with cTnI(146G) induced enhanced Ca(2+) sensitivity and an elevated resting tension. Exchange of cTnI with cTnI(43E/45E/144E) induced a depression in Ca(2+) sensitivity and maximum tension. However, compared to cTnI(146G), cTnI(43E/45E/144E/146G) had little additional effects on myofilament response to Ca(2+). By comparing activation of tension to the open state of the N-domain of cTnC with variations in the state of cTnI, we were able to provide data supporting the hypothesis that activation of cardiac myofilaments is tightly coupled to the open state of the N-domain of cTnC. Our data also support the hypothesis that pathological effects of phosphorylation are influenced by mutations in cTnI.
Collapse
Affiliation(s)
- Tomoyoshi Kobayashi
- Department of Physiology and Biophysics, Center for Cardiovascular Research, College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612-7342, USA.
| | | | | | | | | |
Collapse
|
7
|
Suarez MC, Machado CJV, Lima LMTR, Smillie LB, Pearlstone JR, Silva JL, Sorenson MM, Foguel D. Role of hydration in the closed-to-open transition involved in Ca2+ binding by troponin C. Biochemistry 2003; 42:5522-30. [PMID: 12731895 DOI: 10.1021/bi027102h] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Troponin C (TnC) is the Ca(2+)-binding subunit of the troponin complex of vertebrate skeletal muscle. It consists of two structurally homologous domains, N and C, connected by an exposed alpha-helix. The C-domain has two high-affinity sites for Ca(2+) that also bind Mg(2+), whereas the N-domain has two low-affinity sites for Ca(2+). Previous studies using isolated N- and C-domains showed that the C-domain apo form was less stable than the N-domain. Here we analyzed the stability of isolated N-domain (F29W/N-domain) against urea and pressure denaturation in the absence and in the presence of glycerol using fluorescence spectroscopy. Increasing the glycerol concentration promoted an increase in the stability of the protein to urea (0-8 M) in the absence of Ca(2+). Furthermore, the ability to expose hydrophobic surfaces normally promoted by Ca(2+) binding or low temperature under pressure was partially lost in the presence of 20% (v/v) glycerol. Glycerol also led to a decrease in the Ca(2+) affinity of the N-domain in solution. From the ln K(obs) versus ln a(H)2(O), we obtained the number of water molecules (63.5 +/- 8.7) involved in the transition N <=>N:Ca(2) that corresponds to an increase in the exposed surface area of 571.5 +/- 78.3 A(2). In skinned fibers, the affinity for Ca(2+) was also reduced by glycerol, although the effect was much less pronounced than in solution. Our results demonstrate quantitatively that the stability of this protein and its affinity for Ca(2+) are critically dependent on protein hydration.
Collapse
Affiliation(s)
- Marisa C Suarez
- Departamento de Bioquímica Médica, Instituto de Ciências Biomédicas, Rio de Janeiro, RJ, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Ferguson RE, Sun YB, Mercier P, Brack AS, Sykes BD, Corrie JET, Trentham DR, Irving M. In Situ Orientations of Protein Domains. Mol Cell 2003; 11:865-74. [PMID: 12718873 DOI: 10.1016/s1097-2765(03)00096-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
A recently developed approach for mapping protein-domain orientations in the cellular environment was used to investigate the Ca(2+)-dependent structural changes in the tropomyosin/troponin complex on the actin filament that regulate muscle contraction. Polarized fluorescence from bifunctional rhodamine probes attached along four alpha helices of troponin C (TnC) was measured in permeabilized skeletal muscle fibers. In relaxed muscle, the N-terminal lobe of TnC is less closed than in crystal structures of the Ca(2+)-free domain, and its D helix is approximately perpendicular to the actin filament. In contrast to crystal structures of isolated TnC, the D and E helices are not collinear. On muscle activation, the N lobe orientation becomes more disordered and the average angle between the C helix and the filament changes by 32 degrees +/- 5 degrees. These results illustrate the potential of in situ measurements of helix and domain orientations for elucidating structure-function relations in native macromolecular complexes.
Collapse
Affiliation(s)
- Roisean E Ferguson
- National Institute for Medical Research, Mill Hill, London, NW7 1AA, USA
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Valencia FF, Paulucci AA, Quaggio RB, Da Silva ACR, Farah CS, Reinach FC. Parallel measurement of Ca2+ binding and fluorescence emission upon Ca2+ titration of recombinant skeletal muscle troponin C. Measurement of sequential calcium binding to the regulatory sites. J Biol Chem 2003; 278:11007-14. [PMID: 12531902 DOI: 10.1074/jbc.m209943200] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Calcium binding to chicken recombinant skeletal muscle TnC (TnC) and its mutants containing tryptophan (F29W), 5-hydroxytryptophan (F29HW), or 7-azatryptophan (F29ZW) at position 29 was measured by flow dialysis and by fluorescence. Comparative analysis of the results allowed us to determine the influence of each amino acid on the calcium binding properties of the N-terminal regulatory domain of the protein. Compared with TnC, the Ca(2+) affinity of N-terminal sites was: 1) increased 6-fold in F29W, 2) increased 3-fold in F29ZW, and 3) decreased slightly in F29HW. The Ca(2+) titration of F29ZW monitored by fluorescence displayed a bimodal curve related to sequential Ca(2+) binding to the two N-terminal Ca(2+) binding sites. Single and double mutants of TnC, F29W, F29HW, and F29ZW were constructed by replacing aspartate by alanine at position 30 (site I) or 66 (site II) or both. Ca(2+) binding data showed that the Asp --> Ala mutation at position 30 impairs calcium binding to site I only, whereas the Asp --> Ala mutation at position 66 impairs calcium binding to both sites I and II. Furthermore, the Asp --> Ala mutation at position 30 eliminates the differences in Ca(2+) affinity observed for replacement of Phe at position 29 by Trp, 5-hydroxytryptophan, or 7-azatryptophan. We conclude that position 29 influences the affinity of site I and that Ca(2+) binding to site I is dependent on the previous binding of metal to site II.
Collapse
Affiliation(s)
- Fernando Fortes Valencia
- Departamento de Bioquimica, Instituto de Quimica, Universidade de São Paulo, CP 26 077, São Paulo SP CEP 05599-970, Brazil.
| | | | | | | | | | | |
Collapse
|
10
|
Davis JP, Rall JA, Reiser PJ, Smillie LB, Tikunova SB. Engineering competitive magnesium binding into the first EF-hand of skeletal troponin C. J Biol Chem 2002; 277:49716-26. [PMID: 12397067 DOI: 10.1074/jbc.m208488200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The goal of this study was to examine the mechanism of magnesium binding to the regulatory domain of skeletal troponin C (TnC). The fluorescence of Trp(29), immediately preceding the first calcium-binding loop in TnC(F29W), was unchanged by addition of magnesium, but increased upon calcium binding with an affinity of 3.3 microm. However, the calcium-dependent increase in TnC(F29W) fluorescence could be reversed by addition of magnesium, with a calculated competitive magnesium affinity of 2.2 mm. When a Z acid pair was introduced into the first EF-hand of TnC(F29W), the fluorescence of G34DTnC(F29W) increased upon addition of magnesium or calcium with affinities of 295 and 1.9 microm, respectively. Addition of 3 mm magnesium decreased the calcium sensitivity of TnC(F29W) and G34DTnC(F29W) approximately 2- and 6-fold, respectively. Exchange of G34DTnC(F29W) into skinned psoas muscle fibers decreased fiber calcium sensitivity approximately 1.7-fold compared with TnC(F29W) at 1 mm [magnesium](free) and approximately 3.2-fold at 3 mm [magnesium](free). Thus, incorporation of a Z acid pair into the first EF-hand allows it to bind magnesium with high affinity. Furthermore, the data suggests that the second EF-hand, but not the first, of TnC is responsible for the competitive magnesium binding to the regulatory domain.
Collapse
Affiliation(s)
- Jonathan P Davis
- Departments of Physiology and Cell Biology, The Ohio State University, 304 Hamilton Hall, 1645 Neil Avenue, Columbus, OH 43210, USA.
| | | | | | | | | |
Collapse
|
11
|
da Silva EF, Oliveira VH, Sorenson MM, Barrabin H, Scofano HM. Converting troponin C into calmodulin: effects of mutations in the central helix and of changes in temperature. Int J Biochem Cell Biol 2002; 34:657-67. [PMID: 11943596 DOI: 10.1016/s1357-2725(01)00170-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Calmodulin (CaM) and troponin C (TnC) are the most similar members of EF-hand family and show few differences in the primary structure. Here, we use mutants of troponin that mimic calmodulin and changes in temperature to investigate the factors that determine their specificity as regulatory proteins. Using a double mutant of troponin that resembles calmodulin in lacking both the N-terminal helix and KGK(91-93) we observe a small difference from troponin in binding to the erythrocyte Ca(2+)-ATPase, and an improvement in enzyme activation. A triple mutant, where in addition, the residues 88-90 are replaced with the corresponding sequence from calmodulin is equivalent to calmodulin in maximal activation, and it restores protein ability to increase Ca(2+) affinity for the enzyme. However, this mutant also binds less tightly (1/100) than calmodulin. Remarkably, a decrease in temperature has a more marked effect in protein binding than either mutation, reducing the difference in affinities to 18-fold, but without any improvement in their ability to increase Ca(2+) affinity for the enzyme. Spectroscopic analysis of hydrophobic domain exposure in EF-hand proteins was carried out using 8-anilino-1-naphthalenesulfonic acid (ANS). The probe shows a much higher fluorescence when bound to the complex Ca(4)-calmodulin than to Ca(4)-troponin. Decreasing the temperature exposes additional hydrophobic regions of troponin. Changing the Mg(2+) concentration does not affect their bindings to the enzyme. It is suggested that the requirements for troponin to mimic calmodulin in binding to the target enzyme, and those for activating it, are met by different regions of the protein.
Collapse
Affiliation(s)
- Elizabeth F da Silva
- Departamento de Bioquímica Médica, Instituto de Ciências Biomédicas, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Cidade Universitária, 21941-590, RJ, Rio de Janeiro, Brazil
| | | | | | | | | |
Collapse
|
12
|
Tikunova SB, Rall JA, Davis JP. Effect of hydrophobic residue substitutions with glutamine on Ca(2+) binding and exchange with the N-domain of troponin C. Biochemistry 2002; 41:6697-705. [PMID: 12022873 DOI: 10.1021/bi011763h] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Troponin C (TnC) is an EF-hand Ca(2+) binding protein that regulates skeletal muscle contraction. The mechanisms that control the Ca(2+) binding properties of TnC and other EF-hand proteins are not completely understood. We individually substituted 27 Phe, Ile, Leu, Val, and Met residues with polar Gln to examine the role of hydrophobic residues in Ca(2+) binding and exchange with the N-domain of a fluorescent TnC(F29W). The global N-terminal Ca(2+) affinities of the TnC(F29W) mutants varied approximately 2340-fold, while Ca(2+) association and dissociation rates varied less than 70-fold and more than 45-fold, respectively. Greater than 2-fold increases in Ca(2+) affinities were obtained primarily by slowing of Ca(2+) dissociation rates, while greater than 2-fold decreases in Ca(2+) affinities were obtained by slowing of Ca(2+) association rates and speeding of Ca(2+) dissociation rates. No correlation was found between the Ca(2+) binding properties of the TnC(F29W) mutants and the solvent accessibility of the hydrophobic amino acids in the apo state, Ca(2+) bound state, or the difference between the two states. However, the effects of these hydrophobic mutations on Ca(2+) binding were contextual possibly because of side chain interactions within the apo and Ca(2+) bound states of the N-domain. These results demonstrate that a single hydrophobic residue, which does not directly ligate Ca(2+), can play a crucial role in controlling Ca(2+) binding and exchange within a coupled and functional EF-hand system.
Collapse
Affiliation(s)
- Svetlana B Tikunova
- Department of Molecular and Cellular Biochemistry and Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH 43210, USA
| | | | | |
Collapse
|
13
|
Spyracopoulos L, Lavigne P, Crump MP, Gagné SM, Kay CM, Sykes BD. Temperature dependence of dynamics and thermodynamics of the regulatory domain of human cardiac troponin C. Biochemistry 2001; 40:12541-51. [PMID: 11601978 DOI: 10.1021/bi010903k] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Binding of Ca(2+) to the regulatory domain of troponin C (TnC) in cardiac muscle initiates a series of protein conformational changes and modified protein-protein interactions that initiate contraction. Cardiac TnC contains two Ca(2+) binding sites, with one site being naturally defunct. Previously, binding of Ca(2+) to the functional site in the regulatory domain of TnC was shown to lead to a decrease in conformational entropy (TDeltaS) of 2 and 0.5 kcal mol(-1) for the functional and nonfunctional sites, respectively, using (15)N nuclear magnetic resonance (NMR) relaxation studies [Spyracopoulos, L., et al. (1998) Biochemistry 37, 18032-18044]. In this study, backbone dynamics of the Ca(2+)-free regulatory domain are investigated by backbone amide (15)N relaxation measurements at eight temperatures from 5 to 45 degrees C. Analysis of the relaxation measurements yields an order parameter (S(2)) indicating the degree of spatial restriction for a backbone amide H-N vector. The temperature dependence of S(2) allows estimation of the contribution to protein heat capacity from pico- to nanosecond time scale conformational fluctuations on a per residue basis. The average heat capacity contribution (C(p,j)) from backbone conformational fluctuations for regions of secondary structure for the regulatory domain of cardiac apo-TnC is 6 cal mol(-1) K(-1). The average heat capacity for Ca(2+) binding site 1 is larger than that for site 2 by 1.3 +/- 0.8 cal mol(-1) K(-1), and likely represents a mechanism where differences in affinity between Ca(2+) binding sites for EF hand proteins can be modulated.
Collapse
Affiliation(s)
- L Spyracopoulos
- Department of Biochemistry, The Protein Engineering Network of Centers of Excellence, University of Alberta, Edmonton, Alberta, T6G 2H7 Canada.
| | | | | | | | | | | |
Collapse
|
14
|
Ngai SM, Pearlstone JR, Farah CS, Reinach FC, Smillie LB, Hodges RS. Structural and functional studies on Troponin I and Troponin C interactions. J Cell Biochem 2001; 83:33-46. [PMID: 11500952 DOI: 10.1002/jcb.1204] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Troponin I (TnI) peptides (TnI inhibitory peptide residues 104-115, Ip; TnI regulatory peptide resides 1-30, TnI1-30), recombinant Troponin C (TnC) and Troponin I mutants were used to study the structural and functional relationship between TnI and TnC. Our results reveal that an intact central D/E helix in TnC is required to maintain the ability of TnC to release the TnI inhibition of the acto-S1-TM ATPase activity. Ca(2+)-titration of the TnC-TnI1-30 complex was monitored by circular dichroism. The results show that binding of TnI1-30 to TnC caused a three-folded increase in Ca(2+) affinity in the high affinity sites (III and IV) of TnC. Gel electrophoresis and high performance liquid chromatography (HPLC) studies demonstrate that the sequences of the N- and C-terminal regions of TnI interact in an anti-parallel fashion with the corresponding N- and C-domain of TnC. Our results also indicate that the N- and C-terminal domains of TnI which flank the TnI inhibitory region (residues 104 to 115) play a vital role in modulating the Ca(2+)- sensitive release of the TnI inhibitory region by TnC within the muscle filament. A modified schematic diagram of the TnC/TnI interaction is proposed.
Collapse
Affiliation(s)
- S M Ngai
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada.
| | | | | | | | | | | |
Collapse
|
15
|
Pearlstone JR, Chandra M, Sorenson MM, Smillie LB. Biological function and site II Ca2+-induced opening of the regulatory domain of skeletal troponin C are impaired by invariant site I or II Glu mutations. J Biol Chem 2000; 275:35106-15. [PMID: 10952969 DOI: 10.1074/jbc.m001000200] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To investigate the roles of site I and II invariant Glu residues 41 and 77 in the functional properties and calcium-induced structural opening of skeletal muscle troponin C (TnC) regulatory domain, we have replaced them by Ala in intact F29W TnC and in wild-type and F29W N domains (TnC residues 1-90). Reconstitution of intact E41A/F29W and E77A/F29W mutants into TnC-depleted muscle skinned fibers showed that Ca(2+)-induced tension is greatly reduced compared with the F29W control. Circular dichroism measurements of wild-type N domain as a function of pCa (= -log[Ca(2+)]) demonstrated that approximately 90% of the total change in molar ellipticity at 222 nm ([theta](222 nm)) could be assigned to site II Ca(2+) binding. With E41A, E77A, and cardiac TnC N domains this [theta](222 nm) change attributable to site II was reduced to < or =40% of that seen with wild type, consistent with their structures remaining closed in +Ca(2+). Furthermore, the Ca(2+)-induced changes in fluorescence, near UV CD, and UV difference spectra observed with intact F29W are largely abolished with E41A/F29W and E77A/F29W TnCs. Taken together, the data indicate that the major structural change in N domain, including the closed to open transition, is triggered by site II Ca(2+) binding, an interpretation relevant to the energetics of the skeletal muscle TnC and cardiac TnC systems.
Collapse
Affiliation(s)
- J R Pearlstone
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | |
Collapse
|
16
|
Moncrieffe MC, Venyaminov SY, Miller TE, Guzman G, Potter JD, Prendergast FG. Optical spectroscopic characterization of single tryptophan mutants of chicken skeletal troponin C: evidence for interdomain interaction. Biochemistry 1999; 38:11973-83. [PMID: 10508400 DOI: 10.1021/bi982048j] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The effects of metal ion binding on the optical spectroscopic properties and temperature stability of two single tryptophan mutants of chicken skeletal TnC, F78W and F154W, have been examined. The absence of tyrosine and other tryptophan residues allowed the unambiguous assignment of the spectral signal from the introduced Trp residue. Changes in the molar ellipticity values in the far-UV CD spectra of the mutant proteins on metal ion binding were similar to those of wild-type TnC suggesting that the introduction of the Trp residue had no effect on the total secondary structure content. The fluorescence and near-UV absorbance data reveal that, in the apo state, Trp-78 is buried while Trp-154 is exposed to solvent. Additionally, the highly resolved (1)L(b) band of Trp-78 seen in the near-UV absorbance and CD spectra of the apo state of F78W suggest that this residue is likely in a rigid molecular environment. In the calcium-saturated state, Trp-154 becomes buried while the solvent accessibility of Trp-78 increases. The fluorescence emission and near-UV CD of Trp-78 in the N-terminal domain were sensitive to calcium binding at the C-terminal domain sites. Measurements of the temperature stability reveal that events occurring in the N-terminal domain affect the stability of the C-terminal domain and vice versa. This, coupled with the titration data, strongly suggests that there are interactions between the N- and C-terminal domains of TnC.
Collapse
Affiliation(s)
- M C Moncrieffe
- Department of Biochemistry and Molecular Biology, Mayo Foundation, Rochester, Minnesota 55905, USA
| | | | | | | | | | | |
Collapse
|
17
|
Li MX, Spyracopoulos L, Sykes BD. Binding of cardiac troponin-I147-163 induces a structural opening in human cardiac troponin-C. Biochemistry 1999; 38:8289-98. [PMID: 10387074 DOI: 10.1021/bi9901679] [Citation(s) in RCA: 220] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The interaction of troponin-C (TnC) with troponin-I (TnI) plays a central role in skeletal and cardiac muscle contraction. We have recently shown that the binding of Ca2+ to cardiac TnC (cTnC) does not induce an "opening" of the regulatory domain in order to interact with cTnI [Sia, S. K., et al. (1997) J. Biol. Chem. 272, 18216-18221; Spyracopoulos et al. (1997) Biochemistry 36, 12138-12146], which is in contrast to the regulatory N-domain of skeletal TnC (sTnC). This implies that the mode of interaction between cTnC and cTnI may be different than that between sTnC and sTnI. In sTnI, a region downstream from the inhibitory region (residues 115-131) has been shown to bind the exposed hydrophobic pocket of Ca2+-saturated sNTnC [McKay, R. T., et al. (1997) J. Biol. Chem. 272, 28494-28500]. The present study demonstrates that the corresponding region in cTnI (residues 147-163) binds to the regulatory domain of cTnC only in the Ca2+-saturated state to form a 1:1 complex, with an affinity approximately six times weaker than that between the skeletal counterparts. Thus, while Ca2+ does not cause opening, it is required for muscle regulation. The solution structure of the cNTnC.Ca2+.cTnI147-163 complex has been determined by multinuclear multidimensional NMR spectroscopy. The structure reveals an open conformation for cNTnC, similar to that of Ca2+-saturated sNTnC. The bound peptide adopts a alpha-helical conformation spanning residues 150-157. The C-terminus of the peptide is unstructured. The open conformation for Ca2+-saturated cNTnC in the presence of cTnI (residues 147-163) accommodates hydrophobic interactions between side chains of the peptide and side chains at the interface of A and B helices of cNTnC. Thus the mechanistic differences between the regulation of cardiac and skeletal muscle contraction can be understood in terms of different thermodynamics and kinetics equilibria between essentially the same structure states.
Collapse
Affiliation(s)
- M X Li
- MRC Group in Protein Structure and Function, Department of Biochemistry, University of Alberta, Edmonton, Canada
| | | | | |
Collapse
|
18
|
Regnier M, Rivera AJ, Chase PB, Smillie LB, Sorenson MM. Regulation of skeletal muscle tension redevelopment by troponin C constructs with different Ca2+ affinities. Biophys J 1999; 76:2664-72. [PMID: 10233080 PMCID: PMC1300235 DOI: 10.1016/s0006-3495(99)77418-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In maximally activated skinned fibers, the rate of tension redevelopment (ktr) following a rapid release and restretch is determined by the maximal rate of cross-bridge cycling. During submaximal Ca2+ activations, however, ktr regulation varies with thin filament dynamics. Thus, decreasing the rate of Ca2+ dissociation from TnC produces a higher ktr value at a given tension level (P), especially in the [Ca2+] range that yields less than 50% of maximal tension (Po). In this study, native rabbit TnC was replaced with chicken recombinant TnC, either wild-type (rTnC) or mutant (NHdel), with decreased Ca2+ affinity and an increased Ca2+ dissociation rate (koff). Despite marked differences in Ca2+ sensitivity (>0.5 DeltapCa50), fibers reconstituted with either of the recombinant proteins exhibited similar ktr versus tension profiles, with ktr low (1-2 s-1) and constant up to approximately 50% Po, then rising sharply to a maximum (16 +/- 0.8 s-1) in fully activated fibers. This behavior is predicted by a four-state model based on coupling between cross-bridge cycling and thin filament regulation, where Ca2+ directly affects only individual thin filament regulatory units. These data and model simulations confirm that the range of ktr values obtained with varying Ca2+ can be regulated by a rate-limiting thin filament process.
Collapse
Affiliation(s)
- M Regnier
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA.
| | | | | | | | | |
Collapse
|
19
|
Smith L, Greenfield NJ, Hitchcock-DeGregori SE. Mutations in the N- and D-helices of the N-domain of troponin C affect the C-domain and regulatory function. Biophys J 1999; 76:400-8. [PMID: 9876151 PMCID: PMC1302528 DOI: 10.1016/s0006-3495(99)77206-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Troponin C contains a 14-residue alpha-helix at the amino terminus, the N-helix, that calmodulin lacks. Deletion of the first 11-14 residues of troponin C alters function. In the present investigation a mutant lacking residues 1-7 of the N-helix has normal conformation, Ca2+ binding, and regulatory function. Thus, residues 8-14 of the N-helix are generally sufficient for troponin C function. In the x-ray structures of troponin C there is a salt bridge between Arg 11 in the N-helix and Glu 76 in the D-helix. Destroying the salt bridge by individually mutating the residues to Cys has no effect on function. However, mutation of both residues to Cys reduces troponin C's affinity for the troponin complex on the thin filament, reduces the stability of the N-domain in the absence of divalent cations, increases the Ca2+ affinity and reduces the cooperativity of the Ca2+Mg2+ sites in the C-domain, and alters the conformational change that takes place upon Ca2+ binding (but not Mg2+ binding) to the C-domain. Cross-linking with bis-(maleimidomethylether) partially restores function. The Ca2+-specific sites in the N-domain, those closest to the sites of the mutations, are unaffected in the assays employed. These results show that the N-helix is a critical structural element for interaction with and activation of the thin filament. Moreover, mutations in the N-helix affect the C-terminal domain, consistent with recent structural studies showing that the N-helix and C-terminal domain are physically close.
Collapse
Affiliation(s)
- L Smith
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854 USA
| | | | | |
Collapse
|
20
|
Spyracopoulos L, Gagné SM, Li MX, Sykes BD. Dynamics and thermodynamics of the regulatory domain of human cardiac troponin C in the apo- and calcium-saturated states. Biochemistry 1998; 37:18032-44. [PMID: 9922172 DOI: 10.1021/bi9816960] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The contraction of cardiac and skeletal muscles is triggered by the binding of Ca2+ to their respective troponin C (TnC) proteins. Recent structural data of both cardiac and skeletal TnC in both the apo and Ca2+ states have revealed that the response to Ca2+ is fundamentally different for these two proteins. For skeletal TnC, binding of two Ca2+ to sites 1 and 2 leads to large changes in the structure, resulting in the exposure of a hydrophobic surface. For cardiac TnC, Ca2+ binds site 2 only, as site 1 is inactive, and the structures show that the Ca2+-induced changes are much smaller and do not result in the exposure of a large hydrophobic surface. To understand the differences between regulation of skeletal and cardiac muscle, we have investigated the effect of Ca2+ binding on the dynamics and thermodynamics of the regulatory N-domain of cardiac TnC (cNTnC) using backbone 15N nuclear magnetic resonance relaxation measurements for comparison to the skeletal system. Analysis of the relaxation data allows for the estimation of the contribution of changes in picosecond to nanosecond time scale motions to the conformational entropy of the Ca2+-binding sites on a per residue basis, which can be related to the structural features of the sites. The results indicate that binding of Ca2+ to the functional site in cNTnC makes the site more rigid with respect to high-frequency motions; this corresponds to a decrease in the conformational entropy (TdeltaS) of the site by 2.2 kcal mol(-1). Although site 1 is defunct, binding to site 2 also decreases the conformational entropy in the nonfunctional site by 0.5 kcal mol(-1). The results indicate that the Ca2+-binding sites in the regulatory domain are structurally and energetically coupled despite the inability of site 1 to bind Ca2+. Comparison between the cardiac and skeletal isoforms in the apo state shows that there is a decrease in conformational entropy of 0.9 kcal mol(-1) for site 1 of cNTnC and little difference for site 2.
Collapse
Affiliation(s)
- L Spyracopoulos
- Department of Biochemistry, University of Alberta, Edmonton, Canada
| | | | | | | |
Collapse
|
21
|
Li MX, Gagné SM, Spyracopoulos L, Kloks CP, Audette G, Chandra M, Solaro RJ, Smillie LB, Sykes BD. NMR studies of Ca2+ binding to the regulatory domains of cardiac and E41A skeletal muscle troponin C reveal the importance of site I to energetics of the induced structural changes. Biochemistry 1997; 36:12519-25. [PMID: 9376356 DOI: 10.1021/bi971222l] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Ca2+ binding to the N-domain of skeletal muscle troponin C (sNTnC) induces an "opening" of the structure [Gagné, S. M., et al. (1995) Nat. Struct. Biol. 2, 784-789], which is typical of Ca2+-regulatory proteins. However, the recent structures of the E41A mutant of skeletal troponin C (E41A sNTnC) [Gagné, S. M., et al. (1997) Biochemistry 36, 4386-4392] and of cardiac muscle troponin C (cNTnC) [Sia, S. K., et al. (1997) J. Biol. Chem. 272, 18216-18221] reveal that both of these proteins remain essentially in the "closed" conformation in their Ca2+-saturated states. Both of these proteins are modified in Ca2+-binding site I, albeit differently, suggesting a critical role for this region in the coupling of Ca2+ binding to the induced structural change. To understand the mechanism and the energetics involved in the Ca2+-induced structural transition, Ca2+ binding to E41A sNTnC and to cNTnC have been investigated by using one-dimensional 1H and two-dimensional {1H,15N}-HSQC NMR spectroscopy. Monitoring the chemical shift changes during Ca2+ titration of E41A sNTnC permits us to assign the order of stepwise binding as site II followed by site I and reveals that the mutation reduced the Ca2+ binding affinity of the site I by approximately 100-fold [from KD2 = 16 microM [sNTnC; Li, M. X., et al. (1995) Biochemistry 34, 8330-8340] to 1.3 mM (E41A sNTnC)] and of the site II by approximately 10-fold [from KD1 = 1.7 microM (sNTnC) to 15 microM (E41A sNTnC)]. Ca2+ titration of cNTnC confirms that cNTnC binds only one Ca2+ with a determined dissociation constant KD of 2.6 microM. The Ca2+-induced chemical shift changes occur over the entire sequence in cNTnC, suggesting that the defunct site I is perturbed when site II binds Ca2+. These measurements allow us to dissect the mechanism and energetics of the Ca2+-induced structural changes.
Collapse
Affiliation(s)
- M X Li
- MRC Group in Protein Structure and Function, Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Spyracopoulos L, Li MX, Sia SK, Gagné SM, Chandra M, Solaro RJ, Sykes BD. Calcium-induced structural transition in the regulatory domain of human cardiac troponin C. Biochemistry 1997; 36:12138-46. [PMID: 9315850 DOI: 10.1021/bi971223d] [Citation(s) in RCA: 141] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
While calcium binding to troponin C (TnC) triggers the contraction of both skeletal and cardiac muscle, there is clear evidence that different mechanisms may be involved. For example, activation of heart myofilaments occurs with binding to a single regulatory site on TnC, whereas activation of fast skeletal myofilaments occurs with binding to two regulatory sites. The physiological difference between activation of cardiac and skeletal myofilaments is not understood at the molecular level due to a lack of structural details for the response of cardiac TnC to calcium. We determined the solution structures of the apo and calcium-saturated regulatory domain of human cardiac TnC by using multinuclear, multidimensional nuclear magnetic resonance spectroscopy. The structure of apo human cardiac TnC is very similar to that of apo turkey skeletal TnC even though there are critical amino acid substitutions in site I. In contrast to the case with the skeletal protein, the calcium-induced conformational transition in the cardiac regulatory domain does not involve an "opening" of the regulatory domain, and the concomitant exposure of a substantial hydrophobic surface area. This result has important implications with regard to potential unique aspects of the interaction of cardiac TnC with cardiac troponin I and of modification of cardiac myofilament regulation by calcium-sensitizer drugs.
Collapse
Affiliation(s)
- L Spyracopoulos
- MRC Group in Protein Structure and Function, Department of Biochemistry, University of Alberta, Edmonton, Canada
| | | | | | | | | | | | | |
Collapse
|
23
|
Pearlstone JR, Sykes BD, Smillie LB. Interactions of structural C and regulatory N domains of troponin C with repeated sequence motifs in troponin I. Biochemistry 1997; 36:7601-6. [PMID: 9200712 DOI: 10.1021/bi970200w] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The actomyosin ATPase inhibitory protein troponin I (TnI) plays a central regulatory role in skeletal and cardiac muscle contraction and relaxation through its calcium-dependent interactions with troponin C (TnC) and actin. Previously we have demonstrated the utility of F29W and F105W mutants of TnC for measurement of binding affinities of inhibitory peptide TnI(96-116) to its regulatory N and structural C domains, both in isolation and in the intact TnC molecule [Pearlstone, J. R. & Smillie, L. B. (1995) Biochemistry 34, 6932-6940]. This approach is now extended to fragment TnI(96-148). Curve-fitting analyses of fluorescence changes induced in the intact TnC mutants and the isolated N and C domains by increasing [TnI(96-148)] have permitted the assignments of K(D) values (designated K(D,N) and K(D,C)) to the interaction of TnI(96-148) with the N and C domains, respectively, of intact TnC. Taken together with the previous data for TnI(96-116) binding, it can be concluded that, within TnI(96-148), residues 96-116 are primarily responsible for binding to C domain of intact TnC and residues 117-148 to its N domain. Inspection of the available mammalian and avian skeletal muscle TnI amino acid sequences reveals a previously unrecognized conserved motif repeated 3-fold, once in the inhibitory peptide region (approximately residues 101-114; designated alpha) and twice more in the region of residues approximately 121-132 (beta) and approximately 135-146 (gamma). The number and distribution of these motifs have important structural implications for the TnI x C complex. In the beta motif of cardiac TnI, as compared with skeletal, several changes in charged amino acids are suggested as candidates responsible for the greater sensitivity of cardiac Ca2+-regulated actomyosin to acidic pH as in ischemia.
Collapse
Affiliation(s)
- J R Pearlstone
- Department of Biochemistry, University of Alberta, Edmonton, Canada
| | | | | |
Collapse
|
24
|
Van Eyk JE, Thomas LT, Tripet B, Wiesner RJ, Pearlstone JR, Farah CS, Reinach FC, Hodges RS. Distinct regions of troponin I regulate Ca2+-dependent activation and Ca2+ sensitivity of the acto-S1-TM ATPase activity of the thin filament. J Biol Chem 1997; 272:10529-37. [PMID: 9099697 DOI: 10.1074/jbc.272.16.10529] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The regions of troponin I (TnI) responsible for Ca2+-dependent activation and Ca2+ sensitivity of the actin-myosin subfragment 1-tropomyosin ATPase (acto-S1-TM) activity have been determined. A colorimetric ATPase assay at pH 7.8 has been applied to reconstituted skeletal muscle thin filaments at actin:S1:TM ratios of 6:1:2. Several TnI fragments (TnI-(104-115), TnI-(1-116), and TnI-(96-148)) and TnI mutants with single amino acid substitutions within the inhibitory region (residues 104-115) were assayed to determine their roles on the regulatory function of TnI. TnI-(104-115) is sufficient for achieving maximum inhibition of the acto-S1-TM ATPase activity and its importance was clearly shown by the reduced potency of TnI mutants with single amino acid substitutions within this region. However, the function of the inhibitory region is modulated by other regions of TnI as observed by the poor inhibitory activity of TnI-(1-116) and the increased potency of the inhibitory region by TnI-(96-148). The regulatory complex composed of TnI-(96-148) plus troponin T-troponin C complex (TnT.C) displays the same Ca2+ sensitivity (pCa50) as intact troponin (Tn) or TnI plus TnT.C while those regulatory complexes composed of TnT.C plus either TnI-(104-115) or TnI-(1-116) had an increase in their pCa50 values. This indicates that the Ca2+ sensitivity or responsiveness of the thin filament is controlled by TnI residues 96-148. The ability of Tn to activate the acto-S1-TM ATPase activity in the presence of calcium to the level of the acto-S1 rate was mimicked by the regulatory complex composed of TnI-(1-116) plus TnT.C and was not seen with complexes composed with either TnI-(104-115) or TnI-(96-148). This indicates that the N terminus of TnI in conjunction with TnT controls the degree of activation of the ATPase activity. Although the TnI inhibitory region (104-115) is the Ca2+-sensitive switch which changes binding sites from actin-TM to TnC in the presence of calcium, its function is modulated by both the C-terminal and N-terminal regions of TnI. Thus, distinct regions of TnI control different aspects of Tn's biological function.
Collapse
Affiliation(s)
- J E Van Eyk
- Medical Research Council Group in Protein Structure and Function, Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Wu X, Reid RE. Conservative D133E mutation of calmodulin site IV drastically alters calcium binding and phosphodiesterase regulation. Biochemistry 1997; 36:3608-16. [PMID: 9132012 DOI: 10.1021/bi962149m] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Two calmodulin mutants, F92W and F92W/D133E, were prepared using site-specific cassette-mediated mutagenesis to examine the structure/calcium affinity relationships of cation chelating residues in calcium binding sites III and IV. The mutant, F92W, was prepared to produce a strong fluorescent label to follow the calcium-induced structural changes in the C-terminal domain of the protein. A second mutant, F92W/D133E, was prepared to destroy the calcium binding to site IV and thereby eliminate cooperativity between sites III and IV. The macroscopic calcium dissociation constants of the two sites in the C-terminal domain were derived from the calcium titration data that had been fitted to a two-site Hill equation. The calcium dissociation constants of site III and site IV in the F92W/D133E mutant were 335 microM and 2.76 mM, respectively. These values were significantly greater than the values of 14 and 1 microM for site III and site IV in F92W calmodulin, respectively. These results suggested that a very conservative D133E mutation in the +Z position of the site IV Ca2+-binding loop drastically decreased the calcium binding affinity of the site (2760-fold) and also significantly reduced that of site III in the same domain (24-fold). The D/E calmodulin mutant also had a 3-fold lower phosphodiesterase activation activity with a 25-fold lower affinity for this enzyme than that of F92W calmodulin in the presence of low calcium concentration (50 microM). However, the maximum phosphodiesterase activation activity of the F92W/D133E mutant and the affinity of this mutant for the enzyme were similar to those of F92W calmodulin in the presence of high calcium concentration (15 mM), suggesting that the D133E mutation altered calcium regulation of calmodulin mediated phosphodiesterase activity without affecting calmodulin interaction with the enzyme.
Collapse
Affiliation(s)
- X Wu
- Division of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, Canada
| | | |
Collapse
|
26
|
Ramakrishnan S, Hitchcock-DeGregori SE. Structural and functional significance of aspartic acid 89 of the troponin C central helix in Ca2+ signaling. Biochemistry 1996; 35:15515-21. [PMID: 8952505 DOI: 10.1021/bi961788u] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The central helix of troponin C is highly conserved in length and amino acid sequence. In this region, D89 is conserved and specific to TnC. To investigate its significance, three mutations were made in avian fast troponin C: (1) D89 was replaced with A (D89A); (2) the central helix was replaced with a designed alpha-helix (alpha h89A) consisting of 87AEAALKAAMEA97; and (3) A89 of alpha h89A was replaced with D (alpha h89D). D89A and alpha h89A activated the regulated actomyosin ATPase poorly in the presence of Ca2+ (24 +/- 1.0% and 14 +/- 2.0%, respectively, of the wild type maximal activity) whereas alpha h89D had higher activity (113 +/- 3%). Both alpha h89A and D89A had apparently normal interactions with TnI and TnT whereas alpha h89D formed a complex with TnT even in the absence of Ca2+. The central helix was also replaced with a flexible random coil and rigid polyproline linkers in which D89 was Arg or Pro, respectively. Like alpha h89A and D89A, both mutants were defective in activation of the actomyosin ATPase in the presence of Ca2+. Changes in regulatory function of the mutants did not correlate with altered Ca2+ affinity, altered conformational changes upon binding divalent cations, or Ca(2+)-dependent binding to TnI or TnT. The results suggest that D89 is required for Ca(2+)-dependent signal transduction, an event that can be dissociated from Ca(2+)-dependent binding to TnC targets on the thin filament.
Collapse
Affiliation(s)
- S Ramakrishnan
- Department of Neuroscience and Cell Biology, UMDNJ-Robert Wood Johnson Medical School, Piscataway 08854, USA
| | | |
Collapse
|
27
|
Fredricksen RS, Swenson CA. Relationship between stability and function for isolated domains of troponin C. Biochemistry 1996; 35:14012-26. [PMID: 8909299 DOI: 10.1021/bi961270q] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Results of spectroscopic thermal and chemical denaturation studies and calcium binding studies are presented for a series of five recombinant chicken troponin C fragments. They were designed to assess the effects of domain isolation, N-helix, and D/E linker helix on stability and calcium affinity. Four of the fragments include the N-terminal regulatory domain and one the C-terminal domain. For the regulatory domain, deletion of the N-helix or the D/E linker decreases the stability of the apo form as measured by delta GN-->U,25. Separation of the domains also decreases the stability. Differences in values of delta GN-->U,25 derived from urea and guanidine hydrochloride studies allowed an estimation of the electrostatic component of the free energy of unfolding. Our measurements provide the first quantitative estimate of the stability for the apo-C-domain (delta GN-->U,25 = -1.8 kcal/mol) which was obtained using the interaction free energy formalism of Schellman. There is an inverse correlation between calcium affinity, binding cooperativity, and stability for all of these homologously structured fragments. The calcium affinity and cooperativity are highest for the unstructured C-domain and lowest for the N-domain which has the highest stability. In view of the direct effects on the folding stability of the apo-N-domain, the N-helix and the bilobed domain organization of TnC are necessarily involved in the fine-tuning of the affinity and cooperativity of calcium binding. Though not directly involved in calcium coordination, these structural features are important for signal transmission by troponin C in the troponin complex.
Collapse
Affiliation(s)
- R S Fredricksen
- Department of Biochemistry, University of Iowa, Iowa City 52242, USA
| | | |
Collapse
|
28
|
Szczesna D, Guzman G, Miller T, Zhao J, Farokhi K, Ellemberger H, Potter JD. The role of the four Ca2+ binding sites of troponin C in the regulation of skeletal muscle contraction. J Biol Chem 1996; 271:8381-6. [PMID: 8626536 DOI: 10.1074/jbc.271.14.8381] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
In order to study the role of the Ca2+-specific sites (I and II) and the high affinity Ca2+-Mg2+ sites (III and IV) of TnC in the regulation of muscle contraction, we have constructed four mutants and the wild type (WTnC) of chicken skeletal TnC, with inactivated Ca2+ binding sites I and II (TnC1,2-), site III (TnC3-), site IV (TnC4-), and sites III and IV (TnC3,4C-). All Ca2+ binding site mutations were generated by replacing the Asp at the X-coordinating position of the Ca2+ binding loop with Ala. The binding of these mutated proteins to TnC-depleted skinned skeletal muscle fibers was investigated as well as the rate of their dissociation from these fibers. The proteins were also tested for their ability to restore steady state force to TnC-depleted fibers. We found that although the NH2-terminal mutant of TnC (TnC1,2-) bound to the TnC-depleted fibers (with a lower affinity than wild type TnC (WTnC)), it was unable to reactivate Ca2+-dependent force. This supports earlier findings that the low affinity Ca2+ binding sites (I and II) in TnC are responsible for the Ca2+-dependent activation of skeletal muscle contraction. All three COOH-terminal mutants of TnC bound to the TnC-depleted fibers, had different rates of dissociation, and could restore steady state force to the level of unextracted fibers. Although both high affinity Ca2+ binding sites (III and IV) are important for binding to the fibers, site III appears to be the primary determinant for maintaining the structural stability of TnC in the thin filament. Moreover, our results suggest an interaction between the NH2- and COOH-terminal domains of TnC, since alteration of sites I and II lowers the binding affinity of TnC to the fibers, and mutations in sites III and IV affect the Ca2+ sensitivity of force development.
Collapse
Affiliation(s)
- D Szczesna
- Department of Molecular and Cellular Pharmacology, University of Miami School of Medicine, Miami, Florida 33101, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Sorenson MM, da Silva AC, Gouveia CS, Sousa VP, Oshima W, Ferro JA, Reinach FC. Concerted action of the high affinity calcium binding sites in skeletal muscle troponin C. J Biol Chem 1995; 270:9770-7. [PMID: 7730355 DOI: 10.1074/jbc.270.17.9770] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Mutants of each of the four divalent cation binding sites of chicken skeletal muscle troponin C (TnC) were constructed using site-directed mutagenesis to convert Asp to Ala at the first coordinating position in each site. With a view to evaluating the importance of site-site interactions both within and between the N- and C-terminal domains, in this study the mutants are examined for their ability to associate with other components of the troponin-tropomyosin regulatory complex and to regulate thin filaments. The functional effects of each mutation in reconstitution assays are largely confined to the domain in which it occurs, where the unmutated site is unable to compensate for the defect. Thus the mutants of sites I and II bind to the regulatory complex but are impaired in ability to regulate tension and actomyosin ATPase activity, whereas the mutants of sites III and IV regulate activity but are unable to remain bound to thin filaments unless Ca2+ is present. When all four sites are intact, free Mg2+ causes a 50-60-fold increase in TnC's affinity for the other components of the regulatory complex, allowing it to attach firmly to thin filaments. Calcium can replace Mg2+ at a concentration ratio of 1:5000, and at this ratio the Ca2.TnC complex is more tightly bound to the filaments than the Mg2.TnC form. In the C-terminal mutants, higher concentrations of Ca2+ (above tension threshold) are required to effect this transformation than in the recombinant wild-type protein, suggesting that the mutants reveal an attachment mediated by Ca2+ in the N-domain sites.
Collapse
Affiliation(s)
- M M Sorenson
- Departamento de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Brazil
| | | | | | | | | | | | | |
Collapse
|
30
|
Linse S, Forsén S. Determinants that govern high-affinity calcium binding. ADVANCES IN SECOND MESSENGER AND PHOSPHOPROTEIN RESEARCH 1995; 30:89-151. [PMID: 7695999 DOI: 10.1016/s1040-7952(05)80005-9] [Citation(s) in RCA: 106] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- S Linse
- Lund University, Chemical Centre, Sweden
| | | |
Collapse
|
31
|
Gagné SM, Tsuda S, Li MX, Chandra M, Smillie LB, Sykes BD. Quantification of the calcium-induced secondary structural changes in the regulatory domain of troponin-C. Protein Sci 1994; 3:1961-74. [PMID: 7703843 PMCID: PMC2142632 DOI: 10.1002/pro.5560031108] [Citation(s) in RCA: 122] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The backbone resonance assignments have been completed for the apo (1H and 15N) and calcium-loaded (1H, 15N, and 13C) regulatory N-domain of chicken skeletal troponin-C (1-90), using multidimensional homonuclear and heteronuclear NMR spectroscopy. The chemical-shift information, along with detailed NOE analysis and 3JHNH alpha coupling constants, permitted the determination and quantification of the Ca(2+)-induced secondary structural change in the N-domain of TnC. For both structures, 5 helices and 2 short beta-strands were found, as was observed in the apo N-domain of the crystal structure of whole TnC (Herzberg O, James MNG, 1988, J Mol Biol 203:761-779). The NMR solution structure of the apo form is indistinguishable from the crystal structure, whereas some structural differences are evident when comparing the 2Ca2+ state solution structure with the apo one. The major conformational change observed is the straightening of helix-B upon Ca2+ binding. The possible importance and role of this conformational change is explored. Previous CD studies on the regulatory domain of TnC showed a significant Ca(2+)-induced increase in negative ellipticity, suggesting a significant increase in helical content upon Ca2+ binding. The present study shows that there is virtually no change in alpha-helical content associated with the transition from apo to the 2Ca2+ state of the N-domain of TnC. Therefore, the Ca(2+)-induced increase in ellipticity observed by CD does not relate to a change in helical content, but more likely to changes in spatial orientation of helices.
Collapse
Affiliation(s)
- S M Gagné
- Department of Biochemistry, University of Alberta, Edmonton, Canada
| | | | | | | | | | | |
Collapse
|
32
|
Chandra M, da Silva E, Sorenson M, Ferro J, Pearlstone J, Nash B, Borgford T, Kay C, Smillie L. The effects of N helix deletion and mutant F29W on the Ca2+ binding and functional properties of chicken skeletal muscle troponin. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)36564-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
33
|
Smith L, Greenfield N, Hitchcock-DeGregori S. The effects of deletion of the amino-terminal helix on troponin C function and stability. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)36962-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
34
|
Heeley DH. Investigation of the effects of phosphorylation of rabbit striated muscle alpha alpha-tropomyosin and rabbit skeletal muscle troponin-T. EUROPEAN JOURNAL OF BIOCHEMISTRY 1994; 221:129-37. [PMID: 8168502 DOI: 10.1111/j.1432-1033.1994.tb18721.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
FPLC has been employed to prepare the phosphorylated and unphosphorylated forms of rabbit striated muscle alpha alpha-tropomyosin (TM), and the major isoform of rabbit fast-skeletal-muscle troponin-T (Tn-T2f) and corresponding chymotryptic fragment T1 (residues 1-158), in order to investigate the effects which these in vivo modifications have on thin filament function. In all instances, no significance could be attributed to the presence of a phosphate moiety on acetyl serine 1 of Tn-T (or fragment T1). As expected, fragment T1 increased the relative viscosities of solutions of unphosphorylated alpha alpha-TM, but this induction was noticeably lower for phosphorylated alpha alpha-TM. In affinity chromatography experiments, fragment T1 bound equally well to either form of alpha alpha-TM, but the interaction between fragment T2 (residues 159-259) and phosphorylated alpha alpha-TM was strengthened relative to the control. In the presence of alpha alpha-TM (unphosphorylated), fragment T1 was found to down regulate the actin-activated myosin-S1 MgATPase activity, indicating that this portion of Tn-T possesses modulatory properties. Under the same conditions, less inhibition was observed with phosphorylated alpha alpha-TM. When the two different forms of alpha alpha-TM were reconstituted into a complete regulatory system, the activation of myosin-S1 was double for those thin filaments containing the phosphorylated molecule. Dephosphorylation of the phospho alpha alpha-TM reduced the rates to control values. In ATPase Ca2+ titrations, these systems exhibited no difference in the co-operativity of activation and little or no difference in the pCa2+ 1/2 value. Developmentally linked changes in the steady-state phosphorylation of alpha alpha-TM could be a mechanism to increase the activating propensity of thin filaments, by modifying the functional properties of the T1 section of Tn-T.
Collapse
Affiliation(s)
- D H Heeley
- Department of Biochemistry, Memorial University, St John's, Newfoundland, Canada
| |
Collapse
|
35
|
da Silva EF, Sorenson MM, Smillie LB, Barrabin H, Scofano HM. Comparison of calmodulin and troponin C with and without its amino-terminal helix (residues 1-11) in the activation of erythrocyte Ca(2+)-ATPase. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(19)74303-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
36
|
Trigo-Gonzalez G, Awang G, Racher K, Neden K, Borgford T. Helix variants of troponin C with tailored calcium affinities. Biochemistry 1993; 32:9826-31. [PMID: 8373780 DOI: 10.1021/bi00088a038] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Muscle fiber contraction is regulated through calcium-induced changes in the conformation of troponin C. In this study, we explored the relationship between the stability of a specific helix in the protein and the metal ion affinity of associated binding sites. Serial replacement of the amino acid at position 130 caused the calcium affinity of the paired Ca2+/Mg2+ sites to be attenuated. In the crystal structures of chicken and turkey troponin C, position 130 is the N-cap residue of the G-helix. The ion affinities of variant proteins were shifted in the order Ile < Gly < Asp < Asn < Thr < Ser. Although differing in ion affinities, the variant proteins all exhibited high cooperativity. The results of this study point to a specific relationship between alpha-helix stability and ion affinity in troponin C and suggest that troponin C may be a paradigm for protein folding problems.
Collapse
Affiliation(s)
- G Trigo-Gonzalez
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | | | | | | | | |
Collapse
|
37
|
da Silva AC, de Araujo AH, Herzberg O, Moult J, Sorenson M, Reinach FC. Troponin-C mutants with increased calcium affinity. EUROPEAN JOURNAL OF BIOCHEMISTRY 1993; 213:599-604. [PMID: 8477730 DOI: 10.1111/j.1432-1033.1993.tb17799.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Binding of two Ca2+ to the regulatory sites I and II of troponin C (TnC) induces a conformational transition believed to be responsible for the activation of muscle contraction. Based on the known crystal structure (2Ca2+ state), a model for the transition to the 4Ca2+ state has been proposed [Herzberg, O., Moult, J. & James, M. N. G. (1986) J. Biol. Chem. 261, 2638-2644]. The proposed conformational transition predicts that during Ca2+ binding a number of nonpolar residues become exposed to the solvent, creating a hydrophobic patch. Such a model implies that mutation of the hydrophobic to polar residues should increase the Ca2+ affinity at the regulatory sites and reduce the Ca2+ concentration necessary for muscle activation. To test this prediction, we have constructed and functionally characterized two troponin-C mutants (V45T and M48A mutations). Direct calcium-binding measurements in the mutants demonstrate an increase in the Ca2+ affinity for two low-affinity sites. Replacement of endogenous troponin C in skinned muscle fibers by TnC with mutations V45T or M48A increased the Ca2+ sensitivity of their tension development. These results show that the model can be used to construct mutants that regulate muscle contraction at lower Ca2+ concentrations. They provide further experimental support for the proposed calcium-induced conformational change of troponin C and suggest that the predicted transition plays a central role in the activation of the thin filament.
Collapse
Affiliation(s)
- A C da Silva
- Departamento de Bioquímica, Universidade de Sao Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
38
|
Wills FL, McCubbin WD, Kay CM. Characterization of the smooth muscle calponin and calmodulin complex. Biochemistry 1993; 32:2321-8. [PMID: 8443173 DOI: 10.1021/bi00060a025] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Calponin interacts with several Ca2+ binding proteins in a Ca(2+)-dependent manner. In order to determine the possible biological relevance of these interactions in smooth muscle function, it is necessary to characterize the strength and stoichiometry of the complexes formed. The interaction between calponin and calmodulin can be monitored through an acrylodan label on a cysteine of calponin. The fluorescently labeled calponin possesses the same biological function and physical behavior in binding to calmodulin as the native calponin. This probe is very environment-sensitive and responds to the calponin-calmodulin interaction by the emission peak blue-shifting 20 nm and by the fluorescent quantum yield increasing 3.5 times at 460 nm. The stoichiometric nature of this complex has been determined using analytical ultracentrifugation and is two calmodulins to one calponin, and the interaction is Ca(2+)-sensitive with a Kd1 of < or = 0.22 microM and a Kd2 of 2.5-3.4 microM. Calmodulin is not the only protein which interacts with calponin in this manner, but rather this interaction seems to be a general feature attributable to all hydrophobic patch exposing proteins, suggesting that it may be nonspecific, occurring because of a generalized mode of interaction. Two other proteins, S-100b from bovine brain and SMCaBP-11 from smooth muscle, had stronger affinities for calponin, and in particular interaction of SMCaBP-11 with calponin may be biologically relevant. In determining the nature of calponin's interaction with these Ca2+ binding proteins, it was apparent there was no effect of Ca2+ upon calponin itself and physical studies could find no evidence that calponin interacts with calcium.
Collapse
Affiliation(s)
- F L Wills
- Department of Biochemistry, University of Alberta, Edmonton, Canada
| | | | | |
Collapse
|
39
|
Slupsky CM, Shaw GS, Campbell AP, Sykes BD. A 1H NMR study of a ternary peptide complex that mimics the interaction between troponin C and troponin I. Protein Sci 1992; 1:1595-603. [PMID: 1304891 PMCID: PMC2142143 DOI: 10.1002/pro.5560011207] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The troponin I peptide N alpha-acetyl TnI (104-115) amide (TnIp) represents the minimum sequence necessary for inhibition of actomyosin ATPase activity of skeletal muscle (Talbot, J.A. & Hodges, R.S. 1981, J. Biol. Chem. 256, 2798-3802; Van Eyk, J.E. & Hodges, R.S., 1988, J. Biol. Chem. 263, 1726-1732; Van Eyk, J.E., Kay, C.M., & Hodges, R.S., 1991, Biochemistry 30, 9974-9981). In this study, we have used 1H NMR spectroscopy to compare the binding of this inhibitory TnI peptide to a synthetic peptide heterodimer representing site III and site IV of the C-terminal domain of troponin C (TnC) and to calcium-saturated skeletal TnC. The residues whose 1H NMR chemical shifts are perturbed upon TnIp binding are the same in both the site III/site IV heterodimer and TnC. These residues include F102, I104, F112, I113, I121, I149, D150, F151, and F154, which are all found in the C-terminal domain hydrophobic pocket and antiparallel beta-sheet region of the synthetic site III/site IV heterodimer and of TnC. Further, the affinity of TnIp binding to the heterodimer (Kd = 192 +/- 37 microM) was found to be similar to TnIp binding to TnC (48 +/- 18 microM [Campbell, A.P., Cachia, P.J., & Sykes, B.D., 1991, Biochem. Cell Biol. 69, 674-681]). The results indicate that binding of the inhibitory region of TnI is primarily to the C-terminal domain of TnC. The results also indicate how well the synthetic peptide heterodimer mimics the C-terminal domain of TnC in structure and functional interactions.
Collapse
Affiliation(s)
- C M Slupsky
- Department of Biochemistry, University of Alberta, Edmonton, Canada
| | | | | | | |
Collapse
|
40
|
Ojima T, Nishita K. Akazara scallop troponin C: Ca(2+)-induced conformational change and interaction with rabbit troponin subunits. Arch Biochem Biophys 1992; 299:344-9. [PMID: 1444475 DOI: 10.1016/0003-9861(92)90285-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The number of specific Ca2+ bound to Akazara scallop troponin C was estimated to be 0.7 with an apparent binding constant of 5 x 10(5) M-1 (T. Ojima and K. Nishita, 1986, J. Biol. Chem. 261, 16749-16754). In the present paper, we report on the Ca(2+)-induced conformational changes in the troponin C and the interaction of the troponin C with rabbit troponin subunits. The Ca2+ binding to the troponin C caused a marked change in difference uv absorption spectra and a retardation of elution on Sephacryl S-200 gel filtration. However, its circular dichroism spectrum was hardly changed by the Ca2+ binding. These results suggest that the Ca2+ binding to the troponin C induced changes predominantly in tertiary structure rather than in secondary structure. Akazara scallop troponin C was shown to be able to bind to rabbit troponin I-Cellulofine affinity column, but the affinity was not greatly increased by Ca2+ unlike the case of rabbit troponin C. On hybridizing with rabbit troponin T and I, Akazara scallop troponin C was shown to be incapable of substituting rabbit troponin C; i.e., the hybrid troponin strongly inhibited the Mg-ATPase activity of rabbit actomyosin-tropomyosin irrespective of the presence or absence of Ca2+, thus recovering no Ca2+ sensitivity.
Collapse
Affiliation(s)
- T Ojima
- Department of Chemistry, Faculty of Fisheries, Hokkaido University, Japan
| | | |
Collapse
|
41
|
|