1
|
Arrieta-Ortiz ML, Pan M, Kaur A, Pepper-Tunick E, Srinivas V, Dash A, Immanuel SRC, Brooks AN, Shepherd TR, Baliga NS. Disrupting the ArcA Regulatory Network Amplifies the Fitness Cost of Tetracycline Resistance in Escherichia coli. mSystems 2023; 8:e0090422. [PMID: 36537814 PMCID: PMC9948699 DOI: 10.1128/msystems.00904-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/09/2022] [Indexed: 02/24/2023] Open
Abstract
There is an urgent need for strategies to discover secondary drugs to prevent or disrupt antimicrobial resistance (AMR), which is causing >700,000 deaths annually. Here, we demonstrate that tetracycline-resistant (TetR) Escherichia coli undergoes global transcriptional and metabolic remodeling, including downregulation of tricarboxylic acid cycle and disruption of redox homeostasis, to support consumption of the proton motive force for tetracycline efflux. Using a pooled genome-wide library of single-gene deletion strains, at least 308 genes, including four transcriptional regulators identified by our network analysis, were confirmed as essential for restoring the fitness of TetR E. coli during treatment with tetracycline. Targeted knockout of ArcA, identified by network analysis as a master regulator of this new compensatory physiological state, significantly compromised fitness of TetR E. coli during tetracycline treatment. A drug, sertraline, which generated a similar metabolome profile as the arcA knockout strain, also resensitized TetR E. coli to tetracycline. We discovered that the potentiating effect of sertraline was eliminated upon knocking out arcA, demonstrating that the mechanism of potential synergy was through action of sertraline on the tetracycline-induced ArcA network in the TetR strain. Our findings demonstrate that therapies that target mechanistic drivers of compensatory physiological states could resensitize AMR pathogens to lost antibiotics. IMPORTANCE Antimicrobial resistance (AMR) is projected to be the cause of >10 million deaths annually by 2050. While efforts to find new potent antibiotics are effective, they are expensive and outpaced by the rate at which new resistant strains emerge. There is desperate need for a rational approach to accelerate the discovery of drugs and drug combinations that effectively clear AMR pathogens and even prevent the emergence of new resistant strains. Using tetracycline-resistant (TetR) Escherichia coli, we demonstrate that gaining resistance is accompanied by loss of fitness, which is restored by compensatory physiological changes. We demonstrate that transcriptional regulators of the compensatory physiologic state are promising drug targets because their disruption increases the susceptibility of TetR E. coli to tetracycline. Thus, we describe a generalizable systems biology approach to identify new vulnerabilities within AMR strains to rationally accelerate the discovery of therapeutics that extend the life span of existing antibiotics.
Collapse
Affiliation(s)
| | - Min Pan
- Institute for Systems Biology, Seattle, Washington, USA
| | - Amardeep Kaur
- Institute for Systems Biology, Seattle, Washington, USA
| | - Evan Pepper-Tunick
- Institute for Systems Biology, Seattle, Washington, USA
- Molecular Engineering Sciences Institute, University of Washington, Seattle, Washington, USA
| | | | - Ananya Dash
- Institute for Systems Biology, Seattle, Washington, USA
| | | | | | | | - Nitin S. Baliga
- Institute for Systems Biology, Seattle, Washington, USA
- Molecular Engineering Sciences Institute, University of Washington, Seattle, Washington, USA
- Department of Biology, University of Washington, Seattle, Washington, USA
- Molecular and Cellular Biology Program, University of Washington, Seattle, Washington, USA
- Lawrence Berkeley National Lab, Berkeley, California, USA
- Department of Microbiology, University of Washington, Seattle Washington, USA
| |
Collapse
|
2
|
Erlandson A, Gade P, Menikpurage IP, Kim CY, Mera PE. The UvrA-like protein Ecm16 requires ATPase activity to render resistance against echinomycin. Mol Microbiol 2022; 117:1434-1446. [PMID: 35534931 PMCID: PMC9328131 DOI: 10.1111/mmi.14918] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 05/05/2022] [Accepted: 05/07/2022] [Indexed: 12/02/2022]
Abstract
Bacteria use various strategies to become antibiotic resistant. The molecular details of these strategies are not fully understood. We can increase our understanding by investigating the same strategies found in antibiotic‐producing bacteria. In this work, we characterize the self‐resistance protein Ecm16 encoded by echinomycin‐producing bacteria. Ecm16 is a structural homolog of the nucleotide excision repair protein UvrA. Expression of ecm16 in the heterologous system Escherichia coli was sufficient to render resistance against echinomycin. Ecm16 binds DNA (double‐stranded and single‐stranded) using a nucleotide‐independent binding mode. Ecm16’s binding affinity for DNA increased by 1.7‐fold when the DNA is intercalated with echinomycin. Ecm16 can render resistance against echinomycin toxicity independently of the nucleotide excision repair system. Similar to UvrA, Ecm16 has ATPase activity, and this activity is essential for Ecm16’s ability to render echinomycin resistance. Notably, UvrA and Ecm16 were unable to complement each other's function. Together, our findings identify new mechanistic details of how a refurbished DNA repair protein Ecm16 can specifically render resistance to the DNA intercalator echinomycin.
Collapse
Affiliation(s)
- Amanda Erlandson
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Molecular Biology Program, New Mexico State University, Las Cruces, NM, USA
| | - Priyanka Gade
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, El Paso, TX, USA
| | - Inoka P Menikpurage
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Chu-Young Kim
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, El Paso, TX, USA.,Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX, USA
| | - Paola E Mera
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
3
|
In vitro reconstitution of an efficient nucleotide excision repair system using mesophilic enzymes from Deinococcus radiodurans. Commun Biol 2022; 5:127. [PMID: 35149830 PMCID: PMC8837605 DOI: 10.1038/s42003-022-03064-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 01/18/2022] [Indexed: 11/08/2022] Open
Abstract
Nucleotide excision repair (NER) is a universal and versatile DNA repair pathway, capable of removing a very wide range of lesions, including UV-induced pyrimidine dimers and bulky adducts. In bacteria, NER involves the sequential action of the UvrA, UvrB and UvrC proteins to release a short 12- or 13-nucleotide DNA fragment containing the damaged site. Although bacterial NER has been the focus of numerous studies over the past 40 years, a number of key questions remain unanswered regarding the mechanisms underlying DNA damage recognition by UvrA, the handoff to UvrB and the site-specific incision by UvrC. In the present study, we have successfully reconstituted in vitro a robust NER system using the UvrABC proteins from the radiation resistant bacterium, Deinococcus radiodurans. We have investigated the influence of various parameters, including temperature, salt, protein and ATP concentrations, protein purity and metal cations, on the dual incision by UvrABC, so as to find the optimal conditions for the efficient release of the short lesion-containing oligonucleotide. This newly developed assay relying on the use of an original, doubly-labelled DNA substrate has allowed us to probe the kinetics of repair on different DNA substrates and to determine the order and precise sites of incisions on the 5′ and 3′ sides of the lesion. This new assay thus constitutes a valuable tool to further decipher the NER pathway in bacteria. Reconstitution of D radiodurans nucleotide excision repair provides insights into the kinetics of repair on different DNA substrates and determines the order and precise sites of incisions on the 5’ and 3’ sides of the lesion.
Collapse
|
4
|
Kraithong T, Hartley S, Jeruzalmi D, Pakotiprapha D. A Peek Inside the Machines of Bacterial Nucleotide Excision Repair. Int J Mol Sci 2021; 22:ijms22020952. [PMID: 33477956 PMCID: PMC7835731 DOI: 10.3390/ijms22020952] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 12/13/2022] Open
Abstract
Double stranded DNA (dsDNA), the repository of genetic information in bacteria, archaea and eukaryotes, exhibits a surprising instability in the intracellular environment; this fragility is exacerbated by exogenous agents, such as ultraviolet radiation. To protect themselves against the severe consequences of DNA damage, cells have evolved at least six distinct DNA repair pathways. Here, we review recent key findings of studies aimed at understanding one of these pathways: bacterial nucleotide excision repair (NER). This pathway operates in two modes: a global genome repair (GGR) pathway and a pathway that closely interfaces with transcription by RNA polymerase called transcription-coupled repair (TCR). Below, we discuss the architecture of key proteins in bacterial NER and recent biochemical, structural and single-molecule studies that shed light on the lesion recognition steps of both the GGR and the TCR sub-pathways. Although a great deal has been learned about both of these sub-pathways, several important questions, including damage discrimination, roles of ATP and the orchestration of protein binding and conformation switching, remain to be addressed.
Collapse
Affiliation(s)
- Thanyalak Kraithong
- Doctor of Philosophy Program in Biochemistry (International Program), Faculty of Science, Mahidol University, Bangkok 10400, Thailand;
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
- Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Silas Hartley
- Department of Chemistry and Biochemistry, City College of New York, New York, NY 10031, USA;
- Doctor of Philosophy Programs in Biochemistry, Biology and Chemistry, The Graduate Center of the City University of New York, New York, NY 10016, USA
| | - David Jeruzalmi
- Department of Chemistry and Biochemistry, City College of New York, New York, NY 10031, USA;
- Doctor of Philosophy Programs in Biochemistry, Biology and Chemistry, The Graduate Center of the City University of New York, New York, NY 10016, USA
- Correspondence: (D.J.); (D.P.)
| | - Danaya Pakotiprapha
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
- Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
- Correspondence: (D.J.); (D.P.)
| |
Collapse
|
5
|
Kraithong T, Sucharitakul J, Buranachai C, Jeruzalmi D, Chaiyen P, Pakotiprapha D. Real-time investigation of the roles of ATP hydrolysis by UvrA and UvrB during DNA damage recognition in nucleotide excision repair. DNA Repair (Amst) 2020; 97:103024. [PMID: 33302090 DOI: 10.1016/j.dnarep.2020.103024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 08/25/2020] [Accepted: 11/09/2020] [Indexed: 10/22/2022]
Abstract
Nucleotide excision repair (NER) stands out among other DNA repair systems for its ability to process a diverse set of unrelated DNA lesions. In bacteria, NER damage detection is orchestrated by the UvrA and UvrB proteins, which form the UvrA2-UvrB2 (UvrAB) damage sensing complex. The highly versatile damage recognition is accomplished in two ATP-dependent steps. In the first step, the UvrAB complex samples the DNA in search of lesion. Subsequently, the presence of DNA damage is verified within the UvrB-DNA complex after UvrA has dissociated. Although the mechanism of bacterial NER damage detection has been extensively investigated, the role of ATP binding and hydrolysis by UvrA and UvrB during this process remains incompletely understood. Here, we report a pre-steady state kinetics Förster resonance energy transfer (FRET) study of the real-time interaction between UvrA, UvrB, and damaged DNA during lesion detection. By using UvrA and UvrB mutants harboring site-specific mutations in the ATP binding sites, we show for the first time that the dissociation of UvrA from the UvrAB-DNA complex does not require ATP hydrolysis by UvrB. We find that ATP hydrolysis by UvrA is not essential, but somehow facilitates the formation of UvrB-DNA complex, with ATP hydrolysis at the proximal site of UvrA playing a more critical role. Consistent with previous reports, our results indicated that the ATPase activity of UvrB is essential for the formation of UvrB-DNA complex but is not required for the binding of the UvrAB complex to DNA.
Collapse
Affiliation(s)
- Thanyalak Kraithong
- Doctor of Philosophy Program in Biochemistry (International Program), Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Jeerus Sucharitakul
- Research Unit in Integrative Immuno-Microbial Biochemistry and Bioresponsive Nanomaterials, Thailand; Department of Biochemistry, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chittanon Buranachai
- Department of Physics, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90110, Thailand; Center of Excellence for Trace Analysis and Biosensor, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90110, Thailand
| | - David Jeruzalmi
- Department of Chemistry and Biochemistry, City College of New York, New York, NY 10031, USA; Doctor of Philosophy Programs in Biochemistry, Biology, and Chemistry, The Graduate Center of the City University of New York, New York, NY 10016, USA
| | - Pimchai Chaiyen
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand
| | - Danaya Pakotiprapha
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand.
| |
Collapse
|
6
|
Thakur M, Agarwal A, Muniyappa K. The intrinsic ATPase activity of Mycobacterium tuberculosis UvrC is crucial for its damage-specific DNA incision function. FEBS J 2020; 288:1179-1200. [PMID: 32602194 DOI: 10.1111/febs.15465] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 05/04/2020] [Accepted: 06/24/2020] [Indexed: 11/28/2022]
Abstract
To ensure genome stability, bacteria have evolved a network of DNA repair mechanisms; among them, the UvrABC-dependent nucleotide excision repair (NER) pathway is essential for the incision of a variety of bulky adducts generated by exogenous chemicals, UV radiation and by-products of cellular metabolism. However, very little is known about the enzymatic properties of Mycobacterium tuberculosis UvrABC excinuclease complex. Furthermore, the biochemical properties of Escherichia coli UvrC (EcUvrC) are not well understood (compared to UvrA and UvrB), perhaps due to its limited availability and/or activity instability in vitro. In addition, homology modelling of M. tuberculosis UvrC (MtUvrC) revealed the presence of a putative ATP-binding pocket, although its function remains unknown. To elucidate the biochemical properties of UvrC, we constructed and purified wild-type MtUvrC and its eight variants harbouring mutations within the ATP-binding pocket. The data from DNA-binding studies suggest that MtUvrC exhibits high-affinity for duplex DNA containing a bubble or fluorescein-dT moiety, over fluorescein-adducted single-stranded DNA. Most notably, MtUvrC has an intrinsic UvrB-independent ATPase activity, which drives dual incision of the damaged DNA strand. In contrast, EcUvrC is devoid of ATPase activity; however, it retains the ability to bind ATP at levels comparable to that of MtUvrC. The ATPase-deficient variants map to residues lining the MtUvrC ATP-binding pocket. Further analysis of these variants revealed separation of function between ATPase and DNA-binding activities in MtUvrC. Altogether, these findings reveal functional diversity of the bacterial NER machinery and a paradigm for the evolution of a catalytic scaffold in UvrC.
Collapse
Affiliation(s)
- Manoj Thakur
- Department of Biochemistry, Indian Institute of Science, Bengaluru, India
| | - Ankit Agarwal
- Department of Biochemistry, Indian Institute of Science, Bengaluru, India
| | - Kalappa Muniyappa
- Department of Biochemistry, Indian Institute of Science, Bengaluru, India
| |
Collapse
|
7
|
Ho HN, van Oijen AM, Ghodke H. Single-molecule imaging reveals molecular coupling between transcription and DNA repair machinery in live cells. Nat Commun 2020; 11:1478. [PMID: 32198374 PMCID: PMC7083905 DOI: 10.1038/s41467-020-15182-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 02/23/2020] [Indexed: 01/20/2023] Open
Abstract
The Escherichia coli transcription-repair coupling factor Mfd displaces stalled RNA polymerase and delivers the stall site to the nucleotide excision repair factors UvrAB for damage detection. Whether this handoff from RNA polymerase to UvrA occurs via the Mfd-UvrA2-UvrB complex or alternate reaction intermediates in cells remains unclear. Here, we visualise Mfd in actively growing cells and determine the catalytic requirements for faithful recruitment of nucleotide excision repair proteins. We find that ATP hydrolysis by UvrA governs formation and disassembly of the Mfd-UvrA2 complex. Further, Mfd-UvrA2-UvrB complexes formed by UvrB mutants deficient in DNA loading and damage recognition are impaired in successful handoff. Our single-molecule dissection of interactions of Mfd with its partner proteins inside live cells shows that the dissociation of Mfd is tightly coupled to successful loading of UvrB, providing a mechanism via which loading of UvrB occurs in a strand-specific manner.
Collapse
Affiliation(s)
- Han Ngoc Ho
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, 2522, Australia
- Illawarra Health and Medical Research Institute, Wollongong, NSW, 2522, Australia
| | - Antoine M van Oijen
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, 2522, Australia
- Illawarra Health and Medical Research Institute, Wollongong, NSW, 2522, Australia
| | - Harshad Ghodke
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, 2522, Australia.
- Illawarra Health and Medical Research Institute, Wollongong, NSW, 2522, Australia.
| |
Collapse
|
8
|
Case BC, Hartley S, Osuga M, Jeruzalmi D, Hingorani MM. The ATPase mechanism of UvrA2 reveals the distinct roles of proximal and distal ATPase sites in nucleotide excision repair. Nucleic Acids Res 2019; 47:4136-4152. [PMID: 30892613 PMCID: PMC6486640 DOI: 10.1093/nar/gkz180] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 03/02/2019] [Accepted: 03/18/2019] [Indexed: 01/20/2023] Open
Abstract
The UvrA2 dimer finds lesions in DNA and initiates nucleotide excision repair. Each UvrA monomer contains two essential ATPase sites: proximal (P) and distal (D). The manner whereby their activities enable UvrA2 damage sensing and response remains to be clarified. We report three key findings from the first pre-steady state kinetic analysis of each site. Absent DNA, a P2ATP-D2ADP species accumulates when the low-affinity proximal sites bind ATP and enable rapid ATP hydrolysis and phosphate release by the high-affinity distal sites, and ADP release limits catalytic turnover. Native DNA stimulates ATP hydrolysis by all four sites, causing UvrA2 to transition through a different species, P2ADP-D2ADP. Lesion-containing DNA changes the mechanism again, suppressing ATP hydrolysis by the proximal sites while distal sites cycle through hydrolysis and ADP release, to populate proximal ATP-bound species, P2ATP-Dempty and P2ATP-D2ATP. Thus, damaged and native DNA trigger distinct ATPase site activities, which could explain why UvrA2 forms stable complexes with UvrB on damaged DNA compared with weaker, more dynamic complexes on native DNA. Such specific coupling between the DNA substrate and the ATPase mechanism of each site provides new insights into how UvrA2 utilizes ATP for lesion search, recognition and repair.
Collapse
Affiliation(s)
- Brandon C Case
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, CT 06459, USA
| | - Silas Hartley
- Department of Chemistry and Biochemistry, City College of New York of the City University of New York, New York, NY 10031, USA.,Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, NY 10016, USA
| | - Memie Osuga
- Department of Chemistry and Biochemistry, City College of New York of the City University of New York, New York, NY 10031, USA.,Hunter College High School, New York, NY 10128, USA
| | - David Jeruzalmi
- Department of Chemistry and Biochemistry, City College of New York of the City University of New York, New York, NY 10031, USA.,Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, NY 10016, USA.,Ph.D. Programs in Chemistry and Biology, The Graduate Center of the City University of New York, New York, NY 10016, USA
| | - Manju M Hingorani
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, CT 06459, USA
| |
Collapse
|
9
|
Barnett JT, Kad NM. Understanding the coupling between DNA damage detection and UvrA's ATPase using bulk and single molecule kinetics. FASEB J 2018; 33:763-769. [PMID: 30020831 PMCID: PMC6355085 DOI: 10.1096/fj.201800899r] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Nucleotide excision repair (NER) protects cells against diverse types of DNA damage, principally UV irradiation. In Escherichia coli, damage is recognized by 2 key enzymes: UvrA and UvrB. Despite extensive investigation, the role of UvrA’s 2 ATPase domains in NER remains elusive. Combining single-molecule fluorescence microscopy and classic biochemical methods, we have investigated the role of nucleotide binding in UvrA’s kinetic cycle. Measurement of UvrA’s steady-state ATPase activity shows it is stimulated upon binding DNA (kcat 0.71–1.07/s). Despite UvrA’s ability to discriminate damage, we find UV-damaged DNA does not alter the steady-state ATPase. To understand how damage affects UvrA, we studied its binding to DNA under various nucleotide conditions at the single molecule level. We have found that both UV damage and nucleotide cofactors affect the attached lifetime of UvrA. In the presence of ATP and UV damage, the lifetime is significantly greater compared with undamaged DNA. To reconcile these observations, we suggest that UvrA uses negative cooperativity between its ATPase sites that is gated by damage recognition. Only in the presence of damage is the second site activated, most likely in a sequential manner.—Barnett, J. T., Kad, N. M. Understanding the coupling between DNA damage detection and UvrA’s ATPase using bulk and single molecule kinetics.
Collapse
Affiliation(s)
- Jamie T Barnett
- School of Biological Sciences, University of Kent, Canterbury, United Kingdom
| | - Neil M Kad
- School of Biological Sciences, University of Kent, Canterbury, United Kingdom
| |
Collapse
|
10
|
Shimamura S, Kaneko T, Ozawa G, Matsumoto MN, Koshiishi T, Takaki Y, Kato C, Takai K, Yoshida T, Fujikura K, Barry JP, Maruyama T. Loss of genes related to Nucleotide Excision Repair (NER) and implications for reductive genome evolution in symbionts of deep-sea vesicomyid clams. PLoS One 2017; 12:e0171274. [PMID: 28199404 PMCID: PMC5310779 DOI: 10.1371/journal.pone.0171274] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 01/17/2017] [Indexed: 01/08/2023] Open
Abstract
Intracellular thioautotrophic symbionts of deep-sea vesicomyid clams lack some DNA repair genes and are thought to be undergoing reductive genome evolution (RGE). In this study, we addressed two questions, 1) how these symbionts lost their DNA repair genes and 2) how such losses affect RGE. For the first question, we examined genes associated with nucleotide excision repair (NER; uvrA, uvrB, uvrC, uvrD, uvrD paralog [uvrDp] and mfd) in 12 symbionts of vesicomyid clams belonging to two clades (5 clade I and 7 clade II symbionts). While uvrA, uvrDp and mfd were conserved in all symbionts, uvrB and uvrC were degraded in all clade I symbionts but were apparently intact in clade II symbionts. UvrD was disrupted in two clade II symbionts. Among the intact genes in Ca. Vesicomyosocius okutanii (clade I), expressions of uvrD and mfd were detected by reverse transcription-polymerase chain reaction (RT-PCR), but those of uvrA and uvrDp were not. In contrast, all intact genes were expressed in the symbiont of Calyptogena pacifica (clade II). To assess how gene losses affect RGE (question 2), genetic distances of the examined genes in symbionts from Bathymodiolus septemdierum were shown to be larger in clade I than clade II symbionts. In addition, these genes had lower guanine+cytosine (GC) content and higher repeat sequence densities in clade I than measured in clade II. Our results suggest that NER genes are currently being lost from the extant lineages of vesicomyid clam symbionts. The loss of NER genes and mutY in these symbionts is likely to promote increases in genetic distance and repeat sequence density as well as reduced GC content in genomic genes, and may have facilitated reductive evolution of the genome.
Collapse
Affiliation(s)
- Shigeru Shimamura
- Department of Marine Biodiversity Research, Japan Agency for Marine-Earth Science and Technology, 2–15, Natsushima-cho, Yokosuka-shi, Kanagawa, Japan
- Department of Subsurface Geobiological Analysis and Research, Japan Agency for Marine-Earth Science and Technology, Natsushima-cho, Yokosuka-shi, Kanagawa, Japan
| | - Takashi Kaneko
- Department of Marine Biodiversity Research, Japan Agency for Marine-Earth Science and Technology, 2–15, Natsushima-cho, Yokosuka-shi, Kanagawa, Japan
- Tokyo College of Biotechnology, Kitakoujiya, Ota-ku,Tokyo, Japan
| | - Genki Ozawa
- Department of Marine Biodiversity Research, Japan Agency for Marine-Earth Science and Technology, 2–15, Natsushima-cho, Yokosuka-shi, Kanagawa, Japan
- Kitasato University, School of Marine Biosciences, Kitasato Minami-ku Sagamihara-shi Kanagawa, Japan
| | - Mamiko Nishino Matsumoto
- Department of Marine Biodiversity Research, Japan Agency for Marine-Earth Science and Technology, 2–15, Natsushima-cho, Yokosuka-shi, Kanagawa, Japan
| | - Takeru Koshiishi
- Department of Marine Biodiversity Research, Japan Agency for Marine-Earth Science and Technology, 2–15, Natsushima-cho, Yokosuka-shi, Kanagawa, Japan
| | - Yoshihiro Takaki
- Department of Subsurface Geobiological Analysis and Research, Japan Agency for Marine-Earth Science and Technology, Natsushima-cho, Yokosuka-shi, Kanagawa, Japan
| | - Chiaki Kato
- Department of Marine Biodiversity Research, Japan Agency for Marine-Earth Science and Technology, 2–15, Natsushima-cho, Yokosuka-shi, Kanagawa, Japan
| | - Ken Takai
- Department of Subsurface Geobiological Analysis and Research, Japan Agency for Marine-Earth Science and Technology, Natsushima-cho, Yokosuka-shi, Kanagawa, Japan
| | - Takao Yoshida
- Department of Marine Biodiversity Research, Japan Agency for Marine-Earth Science and Technology, 2–15, Natsushima-cho, Yokosuka-shi, Kanagawa, Japan
- Kitasato University, School of Marine Biosciences, Kitasato Minami-ku Sagamihara-shi Kanagawa, Japan
| | - Katsunori Fujikura
- Department of Marine Biodiversity Research, Japan Agency for Marine-Earth Science and Technology, 2–15, Natsushima-cho, Yokosuka-shi, Kanagawa, Japan
| | - James P. Barry
- Monterey Bay Aquarium Research Institute, Moss Landing, California, United States of America
| | - Tadashi Maruyama
- Kitasato University, School of Marine Biosciences, Kitasato Minami-ku Sagamihara-shi Kanagawa, Japan
- Research and Development Center for Submarine Resources, Japan Agency for Marine-Earth Science and Technology, Natsushima-cho, Yokosuka-shi, Kanagawa, Japan
- * E-mail:
| |
Collapse
|
11
|
Kraithong T, Channgam K, Itsathitphaisarn O, Tiensuwan M, Jeruzalmi D, Pakotiprapha D. Movement of the β-hairpin in the third zinc-binding module of UvrA is required for DNA damage recognition. DNA Repair (Amst) 2017; 51:60-69. [PMID: 28209516 DOI: 10.1016/j.dnarep.2017.02.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 12/23/2016] [Accepted: 02/06/2017] [Indexed: 12/18/2022]
Abstract
Nucleotide excision repair (NER) is distinguished from other DNA repair pathways by its ability to process various DNA lesions. In bacterial NER, UvrA is the key protein that detects damage and initiates the downstream NER cascade. Although it is known that UvrA preferentially binds to damaged DNA, the mechanism for damage recognition is unclear. A β-hairpin in the third Zn-binding module (Zn3hp) of UvrA has been suggested to undergo a conformational change upon DNA binding, and proposed to be important for damage sensing. Here, we investigate the contribution of the dynamics in the Zn3hp structural element to various activities of UvrA during the early steps of NER. By restricting the movement of the Zn3hp using disulfide crosslinking, we showed that the movement of the Zn3hp is required for damage-specific binding, UvrB loading and ATPase activities of UvrA. We individually inactivated each of the nucleotide binding sites in UvrA to investigate its role in the movement of the Zn3hp. Our results suggest that the conformational change of the Zn3hp is controlled by ATP hydrolysis at the distal nucleotide binding site. We propose a bi-phasic damage inspection model of UvrA in which movement of the Zn3hp plays a key role in damage recognition.
Collapse
Affiliation(s)
- Thanyalak Kraithong
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Ketsaraphorn Channgam
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Ornchuma Itsathitphaisarn
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Center for Excellence for Shrimp Molecular Biology and Biotechnology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Montip Tiensuwan
- Department of Mathematics, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - David Jeruzalmi
- Department of Chemistry and Biochemistry, City College of New York, New York, NY 10031, USA; Ph.D. Programs in Biochemistry, Biology, and Chemistry, The Graduate Center of the City University of New York, New York, NY 10016, USA
| | - Danaya Pakotiprapha
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand.
| |
Collapse
|
12
|
Deaconescu AM, Suhanovsky MM. From Mfd to TRCF and Back Again-A Perspective on Bacterial Transcription-coupled Nucleotide Excision Repair. Photochem Photobiol 2017; 93:268-279. [PMID: 27859304 PMCID: PMC5672955 DOI: 10.1111/php.12661] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 10/08/2016] [Indexed: 12/17/2022]
Abstract
Photochemical and other reactions on DNA cause damage and corrupt genetic information. To counteract this damage, organisms have evolved intricate repair mechanisms that often crosstalk with other DNA-based processes such as transcription. Intriguing observations in the late 1980s and early 1990s led to the discovery of transcription-coupled repair (TCR), a subpathway of nucleotide excision repair. TCR, found in all domains of life, prioritizes for repair lesions located in the transcribed DNA strand, directly read by RNA polymerase. Here, we give a historical overview of developments in the field of bacterial TCR, starting from the pioneering work of Evelyn Witkin and Aziz Sancar, which led to the identification of the first transcription-repair coupling factor (the Mfd protein), to recent studies that have uncovered alternative TCR pathways and regulators.
Collapse
Affiliation(s)
- Alexandra M. Deaconescu
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02903, USA
| | - Margaret M. Suhanovsky
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02903, USA
| |
Collapse
|
13
|
Stracy M, Jaciuk M, Uphoff S, Kapanidis AN, Nowotny M, Sherratt DJ, Zawadzki P. Single-molecule imaging of UvrA and UvrB recruitment to DNA lesions in living Escherichia coli. Nat Commun 2016; 7:12568. [PMID: 27562541 PMCID: PMC5007444 DOI: 10.1038/ncomms12568] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 07/14/2016] [Indexed: 11/19/2022] Open
Abstract
Nucleotide excision repair (NER) removes chemically diverse DNA lesions in all domains of life. In Escherichia coli, UvrA and UvrB initiate NER, although the mechanistic details of how this occurs in vivo remain to be established. Here, we use single-molecule fluorescence imaging to provide a comprehensive characterization of the lesion search, recognition and verification process in living cells. We show that NER initiation involves a two-step mechanism in which UvrA scans the genome and locates DNA damage independently of UvrB. Then UvrA recruits UvrB from solution to the lesion. These steps are coordinated by ATP binding and hydrolysis in the ‘proximal' and ‘distal' UvrA ATP-binding sites. We show that initial UvrB-independent damage recognition by UvrA requires ATPase activity in the distal site only. Subsequent UvrB recruitment requires ATP hydrolysis in the proximal site. Finally, UvrA dissociates from the lesion complex, allowing UvrB to orchestrate the downstream NER reactions. Nucleotide excision repair is able to identify and remove a wide range of DNA helix distorting lesions from the genome. Here the authors use single molecule imaging of UvrA and UvrB molecules and suggest a two-step ‘scan and recruit' model for UvrA function.
Collapse
Affiliation(s)
- Mathew Stracy
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.,Biological Physics Research Group, Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, UK
| | - Marcin Jaciuk
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, 4 Ksiecia Trojdena Street, 02-109 Warsaw, Poland
| | - Stephan Uphoff
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Achillefs N Kapanidis
- Biological Physics Research Group, Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, UK
| | - Marcin Nowotny
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, 4 Ksiecia Trojdena Street, 02-109 Warsaw, Poland
| | - David J Sherratt
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Pawel Zawadzki
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| |
Collapse
|
14
|
Timmins J, Moe E. A Decade of Biochemical and Structural Studies of the DNA Repair Machinery of Deinococcus radiodurans: Major Findings, Functional and Mechanistic Insight and Challenges. Comput Struct Biotechnol J 2016; 14:168-176. [PMID: 27924191 PMCID: PMC5128194 DOI: 10.1016/j.csbj.2016.04.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 04/02/2016] [Accepted: 04/07/2016] [Indexed: 10/27/2022] Open
Affiliation(s)
- Joanna Timmins
- Université Grenoble Alpes, Institut de Biologie Structurale, F-38044 Grenoble, France
- CNRS, IBS, F-38044 Grenoble, France
- CEA, IBS, F-38044 Grenoble, France
| | - Elin Moe
- The Norwegian Structural Biology Centre (NorStruct), Department of Chemistry, UiT the Arctic University of Norway, N-9037 Tromsø, Norway
- Instituto de Tecnologia Quimica e Biologica (ITQB), Universidade Nova de Lisboa, Av da Republica (EAN), 2780-157 Oeiras, Portugal
| |
Collapse
|
15
|
Van Houten B. A tale of two cities: A tribute to Aziz Sancar's Nobel Prize in Chemistry for his molecular characterization of NER. DNA Repair (Amst) 2016; 37:A3-A13. [PMID: 26861185 PMCID: PMC5068483 DOI: 10.1016/j.dnarep.2015.12.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Bennett Van Houten
- Department of Pharmacology and Chemical Biology, University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, United States.
| |
Collapse
|
16
|
Pakotiprapha D, Jeruzalmi D. Small-angle X-ray scattering reveals architecture and A2
B2
stoichiometry of the UvrA-UvrB DNA damage sensor. Proteins 2012; 81:132-9. [DOI: 10.1002/prot.24170] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2012] [Revised: 08/10/2012] [Accepted: 08/15/2012] [Indexed: 11/09/2022]
|
17
|
Payne A, Schmidt TB, Nanduri B, Pendarvis K, Pittman JR, Thornton JA, Grissett J, Donaldson JR. Proteomic analysis of the response of Listeria monocytogenes to bile salts under anaerobic conditions. J Med Microbiol 2012; 62:25-35. [PMID: 22977076 DOI: 10.1099/jmm.0.049742-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Listeria monocytogenes is a food-borne pathogen responsible for the disease listeriosis. The infectious process depends on survival in the high bile-salt conditions encountered throughout the gastrointestinal tract, including the gallbladder. However, it is not clear how bile-salt resistance mechanisms are induced, especially under physiologically relevant conditions. This study sought to determine how the L. monocytogenes strains EGDe (serovar 1/2a), F2365 (serovar 4a) and HCC23 (serovar 4b) respond to bile salts under anaerobic conditions. Changes in the expressed proteome were analysed using multidimensional protein identification technology coupled with electrospray ionization tandem mass spectrometry. In general, the response to bile salts among the strains tested involved significant alterations in the presence of cell-wall-associated proteins, DNA repair proteins, protein folding chaperones and oxidative stress-response proteins. Strain viability correlated with an initial osmotic stress response, yet continued survival for EGDe and F2365 involved different mechanisms. Specifically, proteins associated with biofilm formation in EGDe and transmembrane efflux pumps in F2365 were expressed, suggesting that variations exist in how virulent strains respond and adapt to high bile-salt environments. These results indicate that the bile-salt response varies among these serovars and that further research is needed to elucidate how the response to bile salts correlates with colonization potential in vivo.
Collapse
Affiliation(s)
- Angela Payne
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, USA
| | - Ty B Schmidt
- Animal Sciences Department, University of Nebraska, Lincoln, NE 68588, USA
| | - Bindu Nanduri
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762, USA
| | - Ken Pendarvis
- Life Sciences and Biotechnology Institute, Mississippi State University, Mississippi State, MS 39762, USA
| | - Joseph R Pittman
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, USA
| | - Justin A Thornton
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, USA
| | - Jessica Grissett
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, USA
| | - Janet R Donaldson
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, USA
| |
Collapse
|
18
|
Abstract
Structural studies of UV-induced lesions and their complexes with repair proteins reveal an intrinsic flexibility of DNA at lesion sites. Reduced DNA rigidity stems primarily from the loss of base stacking, which may manifest as bending, unwinding, base unstacking, or flipping out. The intrinsic flexibility at UV lesions allows efficient initial lesion recognition within a pool of millions to billions of normal DNA base pairs. To bypass the damaged site by translesion synthesis, the specialized DNA polymerase η acts like a molecular "splint" and reinforces B-form DNA by numerous protein-phosphate interactions. Photolyases and glycosylases that specifically repair UV lesions interact directly with UV lesions in bent DNA via surface complementation. UvrA and UvrB, which recognize a variety of lesions in the bacterial nucleotide excision repair pathway, appear to exploit hysteresis exhibited by DNA lesions and conduct an ATP-dependent stress test to distort and separate DNA strands. Similar stress tests are likely conducted in eukaryotic nucleotide excision repair.
Collapse
Affiliation(s)
- Wei Yang
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Rm. B1-03, Bethesda, Maryland 20892, USA.
| |
Collapse
|
19
|
Wagner K, Moolenaar GF, Goosen N. Role of the insertion domain and the zinc-finger motif of Escherichia coli UvrA in damage recognition and ATP hydrolysis. DNA Repair (Amst) 2011; 10:483-96. [PMID: 21393072 DOI: 10.1016/j.dnarep.2011.02.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Revised: 02/14/2011] [Accepted: 02/16/2011] [Indexed: 11/25/2022]
Abstract
UvrA is the initial DNA damage-sensing protein in bacterial nucleotide excision repair. Each protomer of the UvrA dimer contains two ATPase domains, that belong to the family of ATP-binding cassette domains. Three structural domains are inserted in these ATPase domains: the insertion domain (ID) and UvrB binding domain (in ATP domain I) and the zinc-finger motif (in ATP domain II). In this paper we analyze the function of the ID and the zinc finger motif in damage specific binding of Escherichia coli UvrA. We show that the ID is not essential for damage discrimination, but it does stabilize UvrA on the DNA, most likely by forming a clamp around the DNA helix. We present evidence that two conserved arginine residues in the ID contact the phosphate backbone of the DNA, leading to strand separation after the ATPase-driven movement of the ID's. Remarkably, deletion of the ID generated a phenotype in which UV-survival strongly depends on the presence of photolyase, indicating that UvrA and photolyase form a ternary complex on a CPD-lesion. The zinc-finger motif is shown to be important for the transfer of the damage recognition signal to the ATPase of UvrA. In the absence of this domain the coupling between DNA binding and ATP hydrolysis is completely lost. Mutation of the phenylalanine residue in the tip of the zinc-finger domain resulted in a protein in which the ATPase was already triggered when binding to an undamaged site. As the zinc-finger motif is connected to the DNA binding regions on the surface of UvrA, this strongly suggests that damage-specific binding to these regions results in a rearrangement of the zinc-finger motif, which in its turn activates the ATPase. We present a model how damage recognition is transmitted to activate ATP hydrolysis in ATP binding domain I of the protein.
Collapse
Affiliation(s)
- Koen Wagner
- Laboratory of Molecular Genetics, Leiden Institute of Chemistry, Leiden University, The Netherlands
| | | | | |
Collapse
|
20
|
Manelyte L, Kim YIT, Smith AJ, Smith RM, Savery NJ. Regulation and rate enhancement during transcription-coupled DNA repair. Mol Cell 2011; 40:714-24. [PMID: 21145481 PMCID: PMC3025350 DOI: 10.1016/j.molcel.2010.11.012] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Revised: 08/03/2010] [Accepted: 09/14/2010] [Indexed: 11/22/2022]
Abstract
Transcription-coupled DNA repair (TCR) is a subpathway of nucleotide excision repair (NER) that is triggered when RNA polymerase is stalled by DNA damage. Lesions targeted by TCR are repaired more quickly than lesions repaired by the transcription-independent “global” NER pathway, but the mechanism underlying this rate enhancement is not understood. Damage recognition during bacterial NER depends upon UvrA, which binds to the damage and loads UvrB onto the DNA. Bacterial TCR additionally requires the Mfd protein, a DNA translocase that removes the stalled transcription complexes. We have determined the properties of Mfd, UvrA, and UvrB that are required for the elevated rate of repair observed during TCR. We show that TCR and global NER differ in their requirements for damage recognition by UvrA, indicating that Mfd acts at the very earliest stage of the repair process and extending the functional similarities between TCR in bacteria and eukaryotes.
Collapse
Affiliation(s)
- Laura Manelyte
- DNA-Protein Interactions Unit, School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | | | | | | | | |
Collapse
|
21
|
Wagner K, Moolenaar GF, Goosen N. Role of the two ATPase domains of Escherichia coli UvrA in binding non-bulky DNA lesions and interaction with UvrB. DNA Repair (Amst) 2010; 9:1176-86. [PMID: 20864419 DOI: 10.1016/j.dnarep.2010.08.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Revised: 08/24/2010] [Accepted: 08/27/2010] [Indexed: 01/20/2023]
Abstract
The UvrA protein is the initial DNA damage-sensing protein in bacterial nucleotide excision repair and detects a wide variety of structurally unrelated lesions. After initial recognition of DNA damage, UvrA loads the UvrB protein onto the DNA. This protein then verifies the presence of a lesion, after which UvrA is released from the DNA. UvrA contains two ATPase domains, both belonging to the ABC ATPase superfamily. We have determined the activities of two mutants, in which a single domain was deactivated. Inactivation of either one ATPase domain in Escherichia coli UvrA results in a complete loss of ATPase activity, indicating that both domains function in a cooperative way. We could show that this ATPase activity is not required for the recognition of bulky lesions by UvrA, but it does promote the specific binding to the less distorting cyclobutane-pyrimidine dimer (CPD). The two ATPase mutants also show a difference in UvrB-loading, depending on the length of the DNA substrate. The ATPase domain I mutant was capable of loading UvrB on a lesion in a 50 bp fragment, but this loading was reduced on a longer substrate. For the ATPase domain II mutant the opposite was found: UvrB could not be loaded on a 50 bp substrate, but this loading was rescued when the length of the fragment was increased. This differential loading of UvrB by the two ATPase mutants could be related to different interactions between the UvrA and UvrB subunits.
Collapse
Affiliation(s)
- Koen Wagner
- Leiden Institute of Chemistry, Leiden University, The Netherlands
| | | | | |
Collapse
|
22
|
Timmins J, Gordon E, Caria S, Leonard G, Acajjaoui S, Kuo MS, Monchois V, McSweeney S. Structural and mutational analyses of Deinococcus radiodurans UvrA2 provide insight into DNA binding and damage recognition by UvrAs. Structure 2009; 17:547-58. [PMID: 19368888 DOI: 10.1016/j.str.2009.02.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2008] [Revised: 02/03/2009] [Accepted: 02/04/2009] [Indexed: 10/20/2022]
Abstract
UvrA proteins are key actors in DNA damage repair and play an essential role in prokaryotic nucleotide excision repair (NER), a pathway that is unique in its ability to remove a broad spectrum of DNA lesions. Understanding the DNA binding and damage recognition activities of the UvrA family is a critical component for establishing the molecular basis of this process. Here we report the structure of the class II UvrA2 from Deinococcus radiodurans in two crystal forms. These structures, coupled with mutational analyses and comparison with the crystal structure of class I UvrA from Bacillus stearothermophilus, suggest a previously unsuspected role for the identified insertion domains of UvrAs in both DNA binding and damage recognition. Taken together, the available information suggests a model for how UvrA interacts with DNA and thus sheds new light on the molecular mechanisms underlying the role of UvrA in the early steps of NER.
Collapse
Affiliation(s)
- Joanna Timmins
- European Synchrotron Radiation Facility, 38043 Grenoble, France
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Croteau DL, DellaVecchia MJ, Perera L, Van Houten B. Cooperative damage recognition by UvrA and UvrB: identification of UvrA residues that mediate DNA binding. DNA Repair (Amst) 2008; 7:392-404. [PMID: 18248777 DOI: 10.1016/j.dnarep.2007.11.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2007] [Revised: 11/07/2007] [Accepted: 11/12/2007] [Indexed: 11/24/2022]
Abstract
Nucleotide excision repair (NER) is responsible for the recognition and removal of numerous structurally unrelated DNA lesions. In prokaryotes, the proteins UvrA, UvrB and UvrC orchestrate the recognition and excision of aberrant lesions from DNA. Despite the progress we have made in understanding the NER pathway, it remains unclear how the UvrA dimer interacts with DNA to facilitate DNA damage recognition. The purpose of this study was to define amino acid residues in UvrA that provide binding energy to DNA. Based on conservation among approximately 300 UvrA sequences and 3D-modeling, two positively charged residues, Lys680 and Arg691, were predicted to be important for DNA binding. Mutagenesis and biochemical analysis of Bacillus caldontenax UvrA variant proteins containing site directed mutations at these residues demonstrate that Lys680 and Arg691 make a significant contribution toward the DNA binding affinity of UvrA. Replacing these side chains with alanine or negatively charged residues decreased UvrA binding 3-37-fold. Survival studies indicated that these mutant proteins complemented a WP2 uvrA(-) strain of bacteria 10-100% of WT UvrA levels. Further analysis by DNase I footprinting of the double UvrA mutant revealed that the UvrA DNA binding defects caused a slower rate of transfer of DNA to UvrB. Consequently, the mutants initiated the oligonucleotide incision assay nearly as well as WT UvrA thus explaining the observed mild phenotype in the survival assay. Based on our findings we propose a model of how UvrA binds to DNA.
Collapse
Affiliation(s)
- Deborah L Croteau
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | | | | | | |
Collapse
|
24
|
Croteau DL, DellaVecchia MJ, Wang H, Bienstock RJ, Melton MA, Van Houten B. The C-terminal zinc finger of UvrA does not bind DNA directly but regulates damage-specific DNA binding. J Biol Chem 2006; 281:26370-81. [PMID: 16829526 PMCID: PMC2396232 DOI: 10.1074/jbc.m603093200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In prokaryotic nucleotide excision repair, UvrA recognizes DNA perturbations and recruits UvrB for the recognition and processing steps in the reaction. One of the most remarkable aspects of UvrA is that it can recognize a wide range of DNA lesions that differ in chemistry and structure. However, how UvrA interacts with DNA is unknown. To examine the role that the UvrA C-terminal zinc finger domain plays in DNA binding, an eleven amino acid deletion was constructed (ZnG UvrA). Biochemical characterization of the ZnG UvrA protein was carried out using UvrABC DNA incision, DNA binding and ATPase assays. Although ZnG UvrA was able to bind dsDNA slightly better than wild-type UvrA, the ZnG UvrA mutant only supported 50-75% of wild type incision. Surprisingly, the ZnG UvrA mutant, while retaining its ability to bind dsDNA, did not support damage-specific binding. Furthermore, this mutant protein only provided 10% of wild-type Bca UvrA complementation for UV survival of an uvrA deletion strain. In addition, ZnG UvrA failed to stimulate the UvrB DNA damage-associated ATPase activity. Electrophoretic mobility shift analysis was used to monitor UvrB loading onto damaged DNA with wild-type UvrA or ZnG UvrA. The ZnG UvrA protein showed a 30-60% reduction in UvrB loading as compared with the amount of UvrB loaded by wild-type UvrA. These data demonstrate that the C-terminal zinc finger of UvrA is required for regulation of damage-specific DNA binding.
Collapse
Affiliation(s)
- Deborah L Croteau
- Laboratory of Molecular Genetics, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | | | | | | | | | | |
Collapse
|
25
|
Truglio JJ, Croteau DL, Van Houten B, Kisker C. Prokaryotic nucleotide excision repair: the UvrABC system. Chem Rev 2006; 106:233-52. [PMID: 16464004 DOI: 10.1021/cr040471u] [Citation(s) in RCA: 242] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- James J Truglio
- Department of Pharmacological Sciences, State University of New York at Stony Brook, 11794-5115, USA
| | | | | | | |
Collapse
|
26
|
Abstract
UvrB, the ultimate damage-binding protein in bacterial nucleotide excision repair is capable of binding a vast array of structurally unrelated lesions. A beta-hairpin structure in the protein plays an important role in damage-specific binding. In this paper we have monitored DNA conformational alterations in the UvrB-DNA complex, using the fluorescent adenine analogue 2-aminopurine. We show that binding of UvrB to a DNA fragment with cholesterol damage moves the base adjacent to the lesion at the 3' side into an extrahelical position. This extrahelical base is not accessible for acrylamide quenching, suggesting that it inserts into a pocket of the UvrB protein. Also the base opposite this flipped base is extruded from the DNA helix. The degree of solvent exposure of both residues varies with the type of cofactor (ADP/ATP) bound by UvrB. Fluorescence of the base adjacent to the damage is higher when UvrB is in the ADP-bound configuration, but concomitantly this UvrB-DNA complex is less stable. In the ATP-bound form the UvrB-DNA complex is very stable and in this configuration the base in the non-damaged strand is more exposed. Hairpin residue Tyr-95 is specifically involved in base flipping in the non-damaged strand. We present evidence that this conformational change in the non-damaged strand is important for 3' incision by UvrC.
Collapse
Affiliation(s)
- Erik Malta
- Laboratory of Molecular Genetics, Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, Einsteinweg 55, 2300 RA Leiden, The Netherlands
| | | | | |
Collapse
|
27
|
Van Houten B, Croteau DL, DellaVecchia MJ, Wang H, Kisker C. 'Close-fitting sleeves': DNA damage recognition by the UvrABC nuclease system. Mutat Res 2005; 577:92-117. [PMID: 15927210 DOI: 10.1016/j.mrfmmm.2005.03.013] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2005] [Revised: 03/11/2005] [Accepted: 03/11/2005] [Indexed: 05/02/2023]
Abstract
DNA damage recognition represents a long-standing problem in the field of protein-DNA interactions. This article reviews our current knowledge of how damage recognition is achieved in bacterial nucleotide excision repair through the concerted action of the UvrA, UvrB, and UvrC proteins.
Collapse
Affiliation(s)
- Bennett Van Houten
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, National Institutes of Health, 111 Alexander Drive, MD D3-01, Research Triangle Park, NC 27709, USA
| | | | | | | | | |
Collapse
|
28
|
Kulkarni AS, Khalap N, Joshi VP. Haemophilus influenzae UvrA: overexpression, purification, and in cell complementation. Protein Expr Purif 2004; 37:462-7. [PMID: 15358371 DOI: 10.1016/j.pep.2004.06.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2004] [Revised: 06/22/2004] [Indexed: 11/24/2022]
Abstract
UvrA protein is a major component of ABC endonuclease complex involved in nucleotide excision repair (NER) mechanism. Although NER system is best characterized in Escherichia coli, not much information is available in Haemophilus influenzae. However, based on amino acid homology, uvrA ORF has been identified on H. influenzae genome [gene identification No. HI0249, Science 269 (1995) 496]. H. influenzae Rd uvrA ORF was cloned and overexpressed in E. coli. The expressed UvrA protein was purified using a two-step column chromatography protocol to a single band of expected molecular weight (104 kDa) and characterized for its ATPase and DNA binding activity. In addition, when H. influenzae uvrA was introduced in E. coli uvrA mutant strain AB1886, its UV resistance was restored to near wild type level.
Collapse
Affiliation(s)
- Amit S Kulkarni
- Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | | | | |
Collapse
|
29
|
Hanna MN, Ferguson RJ, Li YH, Cvitkovitch DG. uvrA is an acid-inducible gene involved in the adaptive response to low pH in Streptococcus mutans. J Bacteriol 2001; 183:5964-73. [PMID: 11566996 PMCID: PMC99675 DOI: 10.1128/jb.183.20.5964-5973.2001] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The pH-inducible acid tolerance response (ATR) is believed to play a major role in acid adaptation and virulence of Streptococcus mutans. To study this phenomenon in S. mutans JH1005, differential display PCR was used to identify and clone 13 cDNA products that had increased expression in response to pH 5.0 compared to that of pH 7.5-grown cells. One of these products, confirmed to be pH inducible by RNA dot blot and reverse transcription-PCR analyses, had 67% identity to a uvrA-UV repair excinuclease gene in Bacillus subtilis. Further sequence analysis of the uvrA homologue using the S. mutans genome database revealed that the complete gene was encoded in an open reading frame (ORF) of 2,829 bp (944 amino acids; 104.67 kDa). Immediately 3' of uvrA was an ORF encoding a putative aminopeptidase gene (pepP). uvrA knockouts were constructed in S. mutans strains JH1005, NG8, and UA159 using allelic-exchange mutagenesis, replacing the entire gene with an erythromycin resistance cassette. As with uvrA mutants in other bacteria, the S. mutans uvrA mutants were extremely sensitive to UV irradiation. The uvrA mutant of S. mutans JH1005 was also more sensitive than the wild type to growth at pH 5.0, showing a 15% reduction in growth rate and a 14% reduction in final resting culture density. Acid-adapted S. mutans JH1005 uvrA mutants were shown to be more resistant to UV irradiation than was the parent but were unable to survive exposure to a killing pH of 3.0. Moreover, agarose gel electrophoretic analysis of chromosomal DNA isolated from uvrA-deficient cells exposed to low pH demonstrated more DNA damage than that for the wild-type strain. Here we suggest that uvrA and the nucleotide excision repair pathway are involved in the repair of acid-induced DNA damage and are associated with successful adaptation of S. mutans to low pH.
Collapse
Affiliation(s)
- M N Hanna
- Dental Research Institute, University of Toronto, Toronto, Ontario, Canada M5G 1G6
| | | | | | | |
Collapse
|
30
|
Schmidt SL, Pautz AL, Burgers PM. ATP utilization by yeast replication factor C. IV. RFC ATP-binding mutants show defects in DNA replication, DNA repair, and checkpoint regulation. J Biol Chem 2001; 276:34792-800. [PMID: 11549622 DOI: 10.1074/jbc.m011671200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Replication factor C is required to load proliferating cell nuclear antigen onto primer-template junctions, using the energy of ATP hydrolysis. Four of the five RFC genes have consensus ATP-binding motifs. To determine the relative importance of these sites for proper DNA metabolism in the cell, the conserved lysine in the Walker A motif of RFC1, RFC2, RFC3, or RFC4 was mutated to either arginine or glutamic acid. Arginine mutations in all RFC genes tested permitted cell growth, although poor growth was observed for rfc2-K71R. A glutamic acid substitution resulted in lethality in RFC2 and RFC3 but not in RFC1 or RFC4. Most double mutants combining mutations in two RFC genes were inviable. Except for the rfc1-K359R and rfc4-K55E mutants, which were phenotypically similar to wild type in every assay, the mutants were sensitive to DNA-damaging agents. The rfc2-K71R and rfc4-K55R mutants show checkpoint defects, most likely in the intra-S phase checkpoint. Regulation of the damage-inducible RNR3 promoter was impaired in these mutants, and phosphorylation of Rad53p in response to DNA damage was specifically defective when cells were in S phase. No dramatic defects in telomere length regulation were detected in the mutants. These data demonstrate that the ATP binding function of RFC2 is important for both DNA replication and checkpoint function and, for the first time, that RFC4 also plays a role in checkpoint regulation.
Collapse
Affiliation(s)
- S L Schmidt
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | |
Collapse
|
31
|
Abstract
Nucleotide excision repair in eubacteria is a process that repairs DNA damages by the removal of a 12-13-mer oligonucleotide containing the lesion. Recognition and cleavage of the damaged DNA is a multistep ATP-dependent reaction that requires the UvrA, UvrB and UvrC proteins. Both UvrA and UvrB are ATPases, with UvrA having two ATP binding sites which have the characteristic signature of the family of ABC proteins and UvrB having one ATP binding site that is structurally related to that of helicases.
Collapse
Affiliation(s)
- N Goosen
- Laboratory of Molecular Genetics, Leiden Institute of Chemistry, Leiden University, The Netherlands.
| | | |
Collapse
|
32
|
Grossman L. Nucleotide excision repair: Dick Setlow: how he influenced my scientific life. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2001; 38:144-152. [PMID: 11746748 DOI: 10.1002/em.1065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Affiliation(s)
- L Grossman
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, The Johns Hopkins University, Baltimore, Maryland 21205, USA
| |
Collapse
|
33
|
Abstract
Nucleotide excision repair (NER) is found throughout nature, in eubacteria, eukaryotes and archaea. In human cells it is the main pathway for the removal of damage caused by UV light, but it also acts on a wide variety of other bulky helix-distorting lesions caused by chemical mutagens. An ongoing challenge is to understand how a site of DNA damage is located during NER and distinguished from non-damaged sites. This article reviews information on damage recognition in mammalian cells and the bacterium Escherichia coli. In mammalian cells the XPC-hHR23B, XPA, RPA and TFIIH factors may all have a role in damage recognition. XPC-hHR23B has the strongest affinity for damaged DNA in some assays, as does the similar budding yeast complex Rad4-Rad23. There is current discussion as to whether XPC or XPA acts first in the repair process to recognise damage or distortions. TFIIH may play a role in distinguishing the damaged strand from the non-damaged one, if translocation along a DNA strand by the TFIIH DNA helicases is interrupted by encountering a lesion. The recognition and incision steps of human NER use 15 to 18 polypeptides, whereas E. coli requires only three proteins to obtain a similar result. Despite this, many remarkable similarities in the NER mechanism have emerged between eukaryotes and bacteria. These include use of a distortion-recognition factor, a strand separating helicase to create an open preincision complex, participation of structure-specific endonucleases and the lack of a need for certain factors when a region containing damage is already sufficiently distorted.
Collapse
Affiliation(s)
- D P Batty
- Imperial Cancer Research Fund, Clare Hall Laboratories, South Mimms, Herts, UK
| | | |
Collapse
|
34
|
Webb BL, Cox MM, Inman RB. ATP hydrolysis and DNA binding by the Escherichia coli RecF protein. J Biol Chem 1999; 274:15367-74. [PMID: 10336423 DOI: 10.1074/jbc.274.22.15367] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Escherichia coli RecF protein possesses a weak ATP hydrolytic activity. ATP hydrolysis leads to RecF dissociation from double-stranded (ds)DNA. The RecF protein is subject to precipitation and an accompanying inactivation in vitro when not bound to DNA. A mutant RecF protein that can bind but cannot hydrolyze ATP (RecF K36R) does not readily dissociate from dsDNA in the presence of ATP. This is in contrast to the limited dsDNA binding observed for wild-type RecF protein in the presence of ATP but is similar to dsDNA binding by wild-type RecF binding in the presence of the nonhydrolyzable ATP analog, adenosine 5'-O-(3-thio)triphosphate (ATPgammaS). In addition, wild-type RecF protein binds tightly to dsDNA in the presence of ATP at low pH where its ATPase activity is blocked. A transfer of RecF protein from labeled to unlabeled dsDNA is observed in the presence of ATP but not ATPgammaS. The transfer is slowed considerably when the RecR protein is also present. In competition experiments, RecF protein appears to bind at random locations on dsDNA and exhibits no special affinity for single strand/double strand junctions when bound to gapped DNA. Possible roles for the ATPase activity of RecF in the regulation of recombinational DNA repair are discussed.
Collapse
Affiliation(s)
- B L Webb
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | | | |
Collapse
|
35
|
Podust VN, Tiwari N, Ott R, Fanning E. Functional interactions among the subunits of replication factor C potentiate and modulate its ATPase activity. J Biol Chem 1998; 273:12935-42. [PMID: 9582326 DOI: 10.1074/jbc.273.21.12935] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Replication factor C (RF-C), a complex of five subunits, and several subassemblies of RF-C, representing intermediates along the proposed protein assembly pathway (Podust, V. N., and Fanning, E. (1997) J. Biol. Chem. 272, 6303-6310), were expressed in insect cells using baculoviruses encoding individual subunits (p140, p40, p38, p37, and p36). Purified proteins were analyzed for ATPase activity to assess the role of individual subunits in ATP hydrolysis. His-tagged p40 contained low ATPase activity, but tagged p37 and p36 did not. Complexes of p40.p37.p36 bearing a His tag on any subunit displayed DNA-stimulated ATPase activity, in agreement with a recent report (Cai, J., Gibbs, E., Uhlmann, F., Philips, B., Yao, N., O'Donnell, M. , and Hurwitz, J. (1997) J. Biol. Chem. 272, 18974-18981). In contrast, complex p38.p37.p36-his displayed no ATPase, suggesting that p40 is essential for ATPase activity. Although p38 was not required for ATPase activity, the activity of the p40-his.p38.p37. p36 complex was more salt-resistant than that of the p40-his.p37.p36 complex. The p140 subunit further increased the specific ATPase activity of RF-C complex by enhancing its stimulation by DNA. Taken together, the data indicate that all five RF-C subunits constitute ATPase activity, although the contributions of the individual subunits differ. Predicted ATP-binding domains of all five subunits were mutated to assess the importance of multiple ATP-binding sites of RF-C. In each case, the Lys of the conserved P-loop motif was replaced by Glu. The ATP-binding domain of p38 was found to be dispensable for the activity of the five-subunit RF-C in polymerase delta DNA synthesis. In contrast, mutation of the ATP-binding domains in other RF-C subunits impaired RF-C assembly, function, or both.
Collapse
Affiliation(s)
- V N Podust
- Department of Molecular Biology, Vanderbilt University, Nashville, Tennessee 37235, USA
| | | | | | | |
Collapse
|
36
|
Hildebrand EL, Grossman L. Introduction of a tryptophan reporter group into the ATP binding motif of the Escherichia coli UvrB protein for the study of nucleotide binding and conformational dynamics. J Biol Chem 1998; 273:7818-27. [PMID: 9525874 DOI: 10.1074/jbc.273.14.7818] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The DNA-dependent ATPase activity of UvrB is required to support preincision steps in nucleotide excision repair in Escherichia coli. This activity is, however, cryptic. Elicited in nucleotide excision repair by association with the UvrA protein, it may also be unmasked by a specific proteolysis eliminating the C-terminal domain of UvrB (generating UvrB*). We introduced fluorescent reporter groups (tryptophan replacing Phe47 or Asn51) into the ATP binding motif of UvrB, without significant alteration of behavior, to study both nucleotide binding and those conformational changes expected to be essential to function. The inserted tryptophans occupy moderately hydrophobic, although potentially heterogeneous, environments as evidenced by fluorescence emission and time-resolved decay characteristics, yet are accessible to the diffusible quencher acrylamide. Activation, via specific proteolysis, is accompanied by conformational change at the ATP binding site, with multiple changes in emission spectra and a greater shielding of the tryptophans from diffusible quencher. Titration of tryptophan fluorescence with ATP has revealed that, although catalytically incompetent, UvrB can bind ATP and bind with an affinity equal to that of the active UvrB* form (Kd of approximately 1 mM). The ATP binding site of UvrB is therefore functional and accessible, suggesting that conformational change either brings amino acid residues into proper alignment for catalysis and/or enables response to effector DNA.
Collapse
Affiliation(s)
- E L Hildebrand
- Department of Biochemistry, School of Hygiene and Public Health, The Johns Hopkins University, Baltimore, Maryland 21205, USA
| | | |
Collapse
|
37
|
Agostini HJ, Carroll JD, Minton KW. Identification and characterization of uvrA, a DNA repair gene of Deinococcus radiodurans. J Bacteriol 1996; 178:6759-65. [PMID: 8955293 PMCID: PMC178572 DOI: 10.1128/jb.178.23.6759-6765.1996] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Deinococcus radiodurans is extraordinarily resistant to DNA damage, because of its unusually efficient DNA repair processes. The mtcA+ and mtcB+ genes of D. radiodurans, both implicated in excision repair, have been cloned and sequenced, showing that they are a single gene, highly homologous to the uvrA+ genes of other bacteria. The Escherichia coli uvrA+ gene was expressed in mtcA and mtcB strains, and it produced a high degree of complementation of the repair defect in these strains, suggesting that the UvrA protein of D. radiodurans is necessary but not sufficient to produce extreme DNA damage resistance. Upstream of the uvrA+ gene are two large open reading frames, both of which are directionally divergent from the uvrA+ gene. Evidence is presented that the proximal of these open reading frames may be irrB+.
Collapse
Affiliation(s)
- H J Agostini
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814-4799, USA
| | | | | |
Collapse
|
38
|
Vitale G, Fabre E, Hurt EC. NBP35 encodes an essential and evolutionary conserved protein in Saccharomyces cerevisiae with homology to a superfamily of bacterial ATPases. Gene 1996; 178:97-106. [PMID: 8921898 DOI: 10.1016/0378-1119(96)00341-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We have cloned a novel and essential gene, NBP35, from Saccharomyces cerevisiae that encodes a putative Nucleotide Binding Protein of 35 kDa. Sequence analysis revealed structural homology of Nbp35p with a family of bacterial ATPases involved in cell division processes and chromosome partitioning. A search in databases identified closely related sequences from yeast and higher eukaryotes, suggesting a conserved function for this family of proteins. By indirect immunofluorescence, a tagged version of Nbp35p carrying two immunoglobulin G-binding domains derived from Staphylococcus aureus Protein A was localised to the nucleus. A single amino-acid substitution in the conserved nucleotide-binding motif of Nbp35p renders the protein non-functional. Furthermore, a conserved cluster of four cysteines in the N-terminal end of the protein is also required for an essential role of Nbp35p.
Collapse
Affiliation(s)
- G Vitale
- European Molecular Biology Laboratory, Heidelberg, Germany
| | | | | |
Collapse
|
39
|
de la Morena ML, Hendrixson DR, St Geme JW. Isolation and characterization of the Haemophilus influenzae uvrA gene. Gene X 1996; 177:23-8. [PMID: 8921840 DOI: 10.1016/0378-1119(96)00264-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The uvrA gene Haemophilus influenzae (Hi) was cloned and sequenced. Analysis of the deduced amino acid sequence revealed 81% identity and 90% similarity with the Escherichia coli UvrA protein. Consistent with a role of Hi uvrA in DNA repair, a Hi uvrA mutant exhibited increased sensitivity of UV irradiation. Furthermore, Hi uvrA was able to complement a mutation in the E. coli uvrA locus.
Collapse
Affiliation(s)
- M L de la Morena
- Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | |
Collapse
|
40
|
Graves-Woodward KL, Weller SK. Replacement of gly815 in helicase motif V alters the single-stranded DNA-dependent ATPase activity of the herpes simplex virus type 1 helicase-primase. J Biol Chem 1996; 271:13629-35. [PMID: 8662872 DOI: 10.1074/jbc.271.23.13629] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Herpes simplex virus type 1 encodes a helicase-primase complex composed of the products of the UL5, UL52, and UL8 genes. A subcomplex consisting of the UL5 and UL52 proteins purified from insect cells also displays ATPase, helicase, and primase activities. UL5 contains six motifs conserved in superfamily I of known and/or putative helicase proteins. Consistent with the ability to hydrolyze ATP, motifs I and II resemble a nucleotide binding site. Although the role of the other four motifs is not known, single amino acid substitutions created in conserved residues in all six motifs abolish the ability of UL5 to support viral DNA replication in vivo (Zhu, L., and Weller, S. K. (1992) J. Virol. 66, 469-479). In one such mutation, a highly conserved glycine in motif V (Gly815) is replaced with an alanine. Although the UL5(G815A) protein does not support viral DNA replication in vivo, the purified UL5(G815A).52 subcomplex retains primase and helicase activities and supports strand displacement DNA synthesis on a preformed replication fork in the presence of the other HSV-1 replication proteins. The major difference between the wild-type and variant protein is that the UL5(G815A).52 subcomplex displays an increased Km for single-stranded DNA and decreased Kcat for single-stranded DNA-dependent ATPase activity. Several hypotheses for the role of motif V in the function of the UL5 helicase in HSV-1 DNA replication are considered. This is the first report of a biochemical analysis of a motif V variant in any member of helicase superfamily I.
Collapse
Affiliation(s)
- K L Graves-Woodward
- Department of Microbiology, The University of Connecticut Health Center, Farmington, Connecticut 06030-3205, USA
| | | |
Collapse
|
41
|
Xiao H, Naktinis V, O'Donnell M. Assembly of a chromosomal replication machine: two DNA polymerases, a clamp loader, and sliding clamps in one holoenzyme particle. IV. ATP-binding site mutants identify the clamp loader. J Biol Chem 1995; 270:13378-83. [PMID: 7768939 DOI: 10.1074/jbc.270.22.13378] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The gamma complex (gamma delta delta' chi psi) and tau complex (tau delta delta' chi psi) clamp loaders require ATP hydrolysis to load beta sliding clamps onto DNA. The beta sliding clamp tethers the polymerase (Pol) III* replicase to DNA for processive synthesis. Pol III* contains both gamma and tau, but only one each of the delta, delta', chi, and psi subunits. Hence, there is ambiguity with respect to which clamp loader, the gamma or tau complex, exists in the Pol III* replicase structure. In this study, ATP-binding site mutants of gamma and tau have been prepared, and these mutants, when assembled into either the gamma or tau complex, are inactive in clamp loading. These mutants have been used as a tool to determine the identity of the clamp loader in Pol III*. The nine-subunit Pol III* has been assembled using either mutant gamma or tau in place of wild-type gamma or tau. The results show that mutation of gamma inactivates Pol III* activity, but mutation of tau does not, indicating that the gamma complex (and not the tau complex) is the clamp loader of Pol III*. The tau subunit carries the task of dimerizing the core polymerase, and it is this association of tau with core that appears to direct the single copy subunits away from tau and onto gamma.
Collapse
Affiliation(s)
- H Xiao
- Microbiology Department, Cornell University Medical College, New York, New York 10021, USA
| | | | | |
Collapse
|
42
|
Hamoen LW, Eshuis H, Jongbloed J, Venema G, van Sinderen D. A small gene, designated comS, located within the coding region of the fourth amino acid-activation domain of srfA, is required for competence development in Bacillus subtilis. Mol Microbiol 1995; 15:55-63. [PMID: 7752896 DOI: 10.1111/j.1365-2958.1995.tb02220.x] [Citation(s) in RCA: 126] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The valine-activation domain-encoding portion of the srfA locus (srfA-d4) is not only involved in the non-ribosomal synthesis of surfactin, but is also required for the regulation of competence development. In this study we show that impairment of the adenylation activity of the valine-activating domain did not affect competence development. Deletion analysis and complementation studies delineated the competence-required portion of srfA-d4 to a 168 bp fragment, which contains a small open reading frame (ORF), designated comS, encoding a polypeptide of 46 amino acids, embedded within, but translated in, a frame different from that of srfA-d4. Introduction of an amber mutation in the comS-coding frame prevented competence development, demonstrating the involvement of comS in this prokaryotic specialization process.
Collapse
Affiliation(s)
- L W Hamoen
- Department of Genetics, University of Groningen, Haren, The Netherlands
| | | | | | | | | |
Collapse
|
43
|
Fischer H, Glockshuber R. A point mutation within the ATP-binding site inactivates both catalytic functions of the ATP-dependent protease La (Lon) from Escherichia coli. FEBS Lett 1994; 356:101-3. [PMID: 7988699 DOI: 10.1016/0014-5793(94)01244-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A point mutant in the ATP-binding motif (GPPGVGK362T) of the ATP-dependent protease La from Escherichia coli was investigated in which the lysine at position 362 was replaced by an alanine. The catalytic efficiency of the K362A mutant is at least two orders of magnitude lower than that of wild-type protease La due to a decreased Vmax and an increased KM for ATP. Simultaneously, the peptidase activity of La K362A is almost completely eliminated. Since selective inactivation of the peptidase activity of La does not affect its intrinsic ATPase activity, coupling of proteolysis with ATP hydrolysis is only uni-directional in this energy-dependent protease.
Collapse
Affiliation(s)
- H Fischer
- Institut für Molekularbiologie und Biophysik, Eidgenössische Technische Hochschule Hönggerberg, Zürich, Switzerland
| | | |
Collapse
|
44
|
The use of monoclonal antibodies for studying intermediates in DNA repair by the Escherichia coli Uvr(A)BC endonuclease. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)47002-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
45
|
Singh SK, Maurizi MR. Mutational analysis demonstrates different functional roles for the two ATP-binding sites in ClpAP protease from Escherichia coli. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)43913-0] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
46
|
Affiliation(s)
- B Van Houten
- Department of Pathology, University of Vermont, Burlington 05405
| | | |
Collapse
|
47
|
Affiliation(s)
- L Grossman
- Department of Biochemistry, Johns Hopkins University, School of Hygiene and Public Health, Baltimore, Maryland 21205
| |
Collapse
|
48
|
Wang J, Mueller K, Grossman L. A mutational study of the C-terminal zinc-finger motif of the Escherichia coli UvrA protein. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)34126-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
49
|
The nucleotide binding site of the helicase/primase of bacteriophage T7. Interaction of mutant and wild-type proteins. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(19)74238-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
50
|
Mitchell C, Oliver D. Two distinct ATP-binding domains are needed to promote protein export by Escherichia coli SecA ATPase. Mol Microbiol 1993; 10:483-97. [PMID: 7968527 DOI: 10.1111/j.1365-2958.1993.tb00921.x] [Citation(s) in RCA: 173] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Six putative ATP-binding motifs of SecA protein were altered by oligonucleotide-directed mutagenesis to try to define the ATP-binding regions of this multifunctional protein. The effects of the mutations were analysed by genetic and biochemical assays. The results show that SecA contains two essential ATP-binding domains. One domain is responsible for high-affinity ATP binding and contains motifs A0 and B0, located at amino acid residues 102-109 and 198-210, respectively. A second domain is responsible for low-affinity ATP binding and contains motifs A3 and a predicted B motif located at amino acid residues 503-511 and 631-653, respectively. The ATP-binding properties of both domains were essential for SecA-dependent translocation ATPase and in vitro protein translocation activities. The significance of these findings for the mechanism of SecA-dependent protein translocation is discussed.
Collapse
Affiliation(s)
- C Mitchell
- Department of Microbiology, State University of New York at Stony Brook 11794
| | | |
Collapse
|