1
|
Wang Z, Wu C, Aslanian A, Yates JR, Hunter T. Defective RNA polymerase III is negatively regulated by the SUMO-Ubiquitin-Cdc48 pathway. eLife 2018; 7:35447. [PMID: 30192228 PMCID: PMC6128692 DOI: 10.7554/elife.35447] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 08/21/2018] [Indexed: 12/26/2022] Open
Abstract
Transcription by RNA polymerase III (Pol III) is an essential cellular process, and mutations in Pol III can cause neurodegenerative disease in humans. However, in contrast to Pol II transcription, which has been extensively studied, the knowledge of how Pol III is regulated is very limited. We report here that in budding yeast, Saccharomyces cerevisiae, Pol III is negatively regulated by the Small Ubiquitin-like MOdifier (SUMO), an essential post-translational modification pathway. Besides sumoylation, Pol III is also targeted by ubiquitylation and the Cdc48/p97 segregase; these three processes likely act in a sequential manner and eventually lead to proteasomal degradation of Pol III subunits, thereby repressing Pol III transcription. This study not only uncovered a regulatory mechanism for Pol III, but also suggests that the SUMO and ubiquitin modification pathways and the Cdc48/p97 segregase can be potential therapeutic targets for Pol III-related human diseases.
Collapse
Affiliation(s)
- Zheng Wang
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, United States
| | - Catherine Wu
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, United States
| | - Aaron Aslanian
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, United States.,The Scripps Research Institute, La Jolla, United States
| | - John R Yates
- The Scripps Research Institute, La Jolla, United States
| | - Tony Hunter
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, United States
| |
Collapse
|
2
|
Blombach F, Ausiannikava D, Figueiredo A, Soloviev Z, Prentice T, Zhang M, Zhou N, Thalassinos K, Allers T, Werner F. Structural and functional adaptation of Haloferax volcanii TFEα/β. Nucleic Acids Res 2018; 46:2308-2320. [PMID: 29309690 PMCID: PMC5861453 DOI: 10.1093/nar/gkx1302] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 12/08/2017] [Accepted: 12/19/2017] [Indexed: 12/14/2022] Open
Abstract
The basal transcription factor TFE enhances transcription initiation by catalysing DNA strand-separation, a process that varies with temperature and ionic strength. Canonical TFE forms a heterodimeric complex whose integrity and function critically relies on a cubane iron-sulphur cluster residing in the TFEβ subunit. Halophilic archaea such as Haloferax volcanii have highly divergent putative TFEβ homologues with unknown properties. Here, we demonstrate that Haloferax TFEβ lacks the prototypical iron-sulphur cluster yet still forms a stable complex with TFEα. A second metal cluster contained in the zinc ribbon domain in TFEα is highly degenerate but retains low binding affinity for zinc, which contributes to protein folding and stability. The deletion of the tfeB gene in H. volcanii results in the aberrant expression of approximately one third of all genes, consistent with its function as a basal transcription initiation factor. Interestingly, tfeB deletion particularly affects foreign genes including a prophage region. Our results reveal the loss of metal centres in Hvo transcription factors, and confirm the dual function of TFE as basal factor and regulator of transcription.
Collapse
Affiliation(s)
- Fabian Blombach
- Institute for Structural and Molecular Biology, Division of Biosciences, University College London, London, UK
| | - Darya Ausiannikava
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Angelo Miguel Figueiredo
- Institute for Structural and Molecular Biology, Division of Biosciences, University College London, London, UK
| | - Zoja Soloviev
- Institute for Structural and Molecular Biology, Division of Biosciences, University College London, London, UK
| | - Tanya Prentice
- Institute for Structural and Molecular Biology, Division of Biosciences, University College London, London, UK
| | - Mark Zhang
- Institute for Structural and Molecular Biology, Division of Biosciences, University College London, London, UK
| | - Nanruoyi Zhou
- Institute for Structural and Molecular Biology, Division of Biosciences, University College London, London, UK
| | - Konstantinos Thalassinos
- Institute for Structural and Molecular Biology, Division of Biosciences, University College London, London, UK
| | - Thorsten Allers
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Finn Werner
- Institute for Structural and Molecular Biology, Division of Biosciences, University College London, London, UK
| |
Collapse
|
3
|
Kamada Y. Novel tRNA function in amino acid sensing of yeast Tor complex1. Genes Cells 2017; 22:135-147. [DOI: 10.1111/gtc.12462] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 11/24/2016] [Indexed: 12/20/2022]
Affiliation(s)
- Yoshiaki Kamada
- Laboratory of Biological Diversity; National Institute for Basic Biology; Okazaki 444-8585 Japan
- Department of Basic Biology; School of Life Science; The Graduate University for Advanced Studies (SOKENDAI); Okazaki 444-8585 Japan
| |
Collapse
|
4
|
Blombach F, Salvadori E, Fouqueau T, Yan J, Reimann J, Sheppard C, Smollett KL, Albers SV, Kay CWM, Thalassinos K, Werner F. Archaeal TFEα/β is a hybrid of TFIIE and the RNA polymerase III subcomplex hRPC62/39. eLife 2015; 4:e08378. [PMID: 26067235 PMCID: PMC4495717 DOI: 10.7554/elife.08378] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 06/11/2015] [Indexed: 01/01/2023] Open
Abstract
Transcription initiation of archaeal RNA polymerase (RNAP) and eukaryotic RNAPII is assisted by conserved basal transcription factors. The eukaryotic transcription factor TFIIE consists of α and β subunits. Here we have identified and characterised the function of the TFIIEβ homologue in archaea that on the primary sequence level is related to the RNAPIII subunit hRPC39. Both archaeal TFEβ and hRPC39 harbour a cubane 4Fe-4S cluster, which is crucial for heterodimerization of TFEα/β and its engagement with the RNAP clamp. TFEα/β stabilises the preinitiation complex, enhances DNA melting, and stimulates abortive and productive transcription. These activities are strictly dependent on the β subunit and the promoter sequence. Our results suggest that archaeal TFEα/β is likely to represent the evolutionary ancestor of TFIIE-like factors in extant eukaryotes.
Collapse
Affiliation(s)
- Fabian Blombach
- Institute for Structural and Molecular Biology, Division of Biosciences, University College London, London, United Kingdom
| | - Enrico Salvadori
- Institute for Structural and Molecular Biology, Division of Biosciences, University College London, London, United Kingdom
- London Centre for Nanotechnology, University College London, London, United Kingdom
| | - Thomas Fouqueau
- Institute for Structural and Molecular Biology, Division of Biosciences, University College London, London, United Kingdom
| | - Jun Yan
- Institute for Structural and Molecular Biology, Division of Biosciences, University College London, London, United Kingdom
| | - Julia Reimann
- Molecular Biology of Archaea Group, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Carol Sheppard
- Institute for Structural and Molecular Biology, Division of Biosciences, University College London, London, United Kingdom
| | - Katherine L Smollett
- Institute for Structural and Molecular Biology, Division of Biosciences, University College London, London, United Kingdom
| | - Sonja V Albers
- Molecular Biology of Archaea Group, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- Microbiology, University of Freiburg, Freiburg, Germany
| | - Christopher WM Kay
- Institute for Structural and Molecular Biology, Division of Biosciences, University College London, London, United Kingdom
- London Centre for Nanotechnology, University College London, London, United Kingdom
| | - Konstantinos Thalassinos
- Institute for Structural and Molecular Biology, Division of Biosciences, University College London, London, United Kingdom
| | - Finn Werner
- Institute for Structural and Molecular Biology, Division of Biosciences, University College London, London, United Kingdom
| |
Collapse
|
5
|
AcpA, a member of the GPR1/FUN34/YaaH membrane protein family, is essential for acetate permease activity in the hyphal fungus Aspergillus nidulans. Biochem J 2008; 412:485-93. [PMID: 18302536 DOI: 10.1042/bj20080124] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In a previous study, alcS, a gene of the Aspergillus nidulans alc cluster, was shown to encode a protein that belongs to the GPR1/FUN34/YaaH membrane protein family. BLAST screening of the A. nidulans genome data identified additional genes encoding hypothetical proteins that could belong to this family. In this study we report the functional characterization of one of them, AN5226. Its expression is induced by ethanol and ethyl acetate (two inducers of the alc genes) and is mediated by the specific transcriptional activator of genes of the acetate-utilization pathway FacB. Growth of a null mutant (DeltaAN5226) is notably affected when acetate is used as sole carbon source at low concentration and in a high pH medium, i.e. when protonated acetate, the form that can enter the cell by passive diffusion, is present in low amounts. Consistently, expression of AN5226 is also induced by acetate, but only when the latter is present at low concentrations. (14)C-labelled acetate uptake experiments using germinating conidia demonstrate an essential role for AN5226 in mediated acetate transport. To our knowledge this report is the first to provide evidence for the identification of an acetate transporter in filamentous fungi. We have designated AN5226 as acpA (for acetate permease A).
Collapse
|
6
|
Flipphi M, Robellet X, Dequier E, Leschelle X, Felenbok B, Vélot C. Functional analysis of alcS, a gene of the alc cluster in Aspergillus nidulans. Fungal Genet Biol 2006; 43:247-60. [PMID: 16531087 DOI: 10.1016/j.fgb.2005.12.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2005] [Revised: 12/08/2005] [Accepted: 12/19/2005] [Indexed: 11/26/2022]
Abstract
The ethanol utilization pathway (alc system) of Aspergillus nidulans requires two structural genes, alcA and aldA, which encode the two enzymes (alcohol dehydrogenase and aldehyde dehydrogenase, respectively) allowing conversion of ethanol into acetate via acetyldehyde, and a regulatory gene, alcR, encoding the pathway-specific autoregulated transcriptional activator. The alcR and alcA genes are clustered with three other genes that are also positively regulated by alcR, although they are dispensable for growth on ethanol. In this study, we characterized alcS, the most abundantly transcribed of these three genes. alcS is strictly co-regulated with alcA, and encodes a 262-amino acid protein. Sequence comparison with protein databases detected a putative conserved domain that is characteristic of the novel GPR1/FUN34/YaaH membrane protein family. It was shown that the AlcS protein is located in the plasma membrane. Deletion or overexpression of alcS did not result in any obvious phenotype. In particular, AlcS does not appear to be essential for the transport of ethanol, acetaldehyde or acetate. Basic Local Alignment Search Tool analysis against the A. nidulans genome led to the identification of two novel ethanol- and ethylacetate-induced genes encoding other members of the GPR1/FUN34/YaaH family, AN5226 and AN8390.
Collapse
MESH Headings
- Alcohol Dehydrogenase/genetics
- Aldehyde Dehydrogenase/genetics
- Amino Acid Motifs
- Amino Acid Sequence
- Aspergillus nidulans/genetics
- Aspergillus nidulans/metabolism
- Base Sequence
- Blotting, Northern
- Cell Membrane/chemistry
- Conserved Sequence
- DNA, Fungal/chemistry
- DNA, Fungal/genetics
- Fungal Proteins/chemistry
- Fungal Proteins/genetics
- Gene Deletion
- Gene Dosage
- Gene Expression Regulation, Fungal
- Genes, Fungal
- Introns/genetics
- Membrane Proteins/chemistry
- Membrane Proteins/genetics
- Molecular Sequence Data
- Multigene Family
- Mutagenesis, Insertional
- Open Reading Frames
- RNA, Fungal/analysis
- RNA, Messenger/analysis
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Transcription, Genetic
Collapse
Affiliation(s)
- Michel Flipphi
- Institut de Génétique et Microbiologie, CNRS Unité Mixte de Recherche 8621, Université Paris-Sud XI, Centre Scientifique d'Orsay, Bâtiment 360, F-91405 Orsay Cedex, France
| | | | | | | | | | | |
Collapse
|
7
|
Pluta K, Lefebvre O, Martin NC, Smagowicz WJ, Stanford DR, Ellis SR, Hopper AK, Sentenac A, Boguta M. Maf1p, a negative effector of RNA polymerase III in Saccharomyces cerevisiae. Mol Cell Biol 2001; 21:5031-40. [PMID: 11438659 PMCID: PMC87229 DOI: 10.1128/mcb.21.15.5031-5040.2001] [Citation(s) in RCA: 156] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although yeast RNA polymerase III (Pol III) and the auxiliary factors TFIIIC and TFIIIB are well characterized, the mechanisms of class III gene regulation are poorly understood. Previous studies identified MAF1, a gene that affects tRNA suppressor efficiency and interacts genetically with Pol III. We show here that tRNA levels are elevated in maf1 mutant cells. In keeping with the higher levels of tRNA observed in vivo, the in vitro rate of Pol III RNA synthesis is significantly increased in maf1 cell extracts. Mutations in the RPC160 gene encoding the largest subunit of Pol III which reduce tRNA levels were identified as suppressors of the maf1 growth defect. Interestingly, Maf1p is located in the nucleus and coimmunopurifies with epitope-tagged RNA Pol III. These results indicate that Maf1p acts as a negative effector of Pol III synthesis. This potential regulator of Pol III transcription is likely conserved since orthologs of Maf1p are present in other eukaryotes, including humans.
Collapse
Affiliation(s)
- K Pluta
- Department of Genetics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02 106 Warsaw, Poland
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Chong SS, Hu P, Hernandez N. Reconstitution of transcription from the human U6 small nuclear RNA promoter with eight recombinant polypeptides and a partially purified RNA polymerase III complex. J Biol Chem 2001; 276:20727-34. [PMID: 11279001 DOI: 10.1074/jbc.m100088200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The human U6 small nuclear (sn) RNA core promoter consists of a proximal sequence element, which recruits the multisubunit factor SNAP(c), and a TATA box, which recruits the TATA box-binding protein, TBP. In addition to SNAP(c) and TBP, transcription from the human U6 promoter requires two well defined factors. The first is hB", a human homologue of the B" subunit of yeast TFIIIB generally required for transcription of RNA polymerase III genes, and the second is hBRFU, one of two human homologues of the yeast TFIIIB subunit BRF specifically required for transcription of U6-type RNA polymerase III promoters. Here, we have partially purified and characterized a RNA polymerase III complex that can direct transcription from the human U6 promoter when combined with recombinant SNAP(c), recombinant TBP, recombinant hB", and recombinant hBRFU. These results open the way to reconstitution of U6 transcription from entirely defined components.
Collapse
Affiliation(s)
- S S Chong
- Department of Microbiology and Graduate Program of Molecular and Cellular Biology, State University of New York at Stony Brook, Stony Brook, New York 11794, USA
| | | | | |
Collapse
|
9
|
Briand JF, Navarro F, Gadal O, Thuriaux P. Cross talk between tRNA and rRNA synthesis in Saccharomyces cerevisiae. Mol Cell Biol 2001; 21:189-95. [PMID: 11113194 PMCID: PMC88793 DOI: 10.1128/mcb.21.1.189-195.2001] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2000] [Accepted: 10/09/2000] [Indexed: 11/20/2022] Open
Abstract
Temperature-sensitive RNA polymerase III (rpc160-112 and rpc160-270) mutants were analyzed for the synthesis of tRNAs and rRNAs in vivo, using a double-isotopic-labeling technique in which cells are pulse-labeled with [(33)P]orthophosphate and coextracted with [(3)H]uracil-labeled wild-type cells. Individual RNA species were monitored by Northern blot hybridization or amplified by reverse transcription. These mutants impaired the synthesis of RNA polymerase III transcripts with little or no influence on mRNA synthesis but also largely turned off the formation of the 25S, 18S, and 5.8S mature rRNA species derived from the common 35S transcript produced by RNA polymerase I. In the rpc160-270 mutant, this parallel inhibition of tRNA and rRNA synthesis also occurred at the permissive temperature (25 degrees C) and correlated with an accumulation of 20S pre-rRNA. In the rpc160-112 mutant, inhibition of rRNA synthesis and the accumulation of 20S pre-rRNA were found only at 37 degrees C. The steady-state rRNA/tRNA ratio of these mutants reflected their tRNA and rRNA synthesis pattern: the rpc160-112 mutant had the threefold shortage in tRNA expected from its preferential defect in tRNA synthesis at 25 degrees C, whereas rpc160-270 cells completely adjusted their rRNA/tRNA ratio down to a wild-type level, consistent with the tight coupling of tRNA and rRNA synthesis in vivo. Finally, an RNA polymerase I (rpa190-2) mutant grown at the permissive temperature had an enhanced level of pre-tRNA, suggesting the existence of a physiological coupling between rRNA synthesis and pre-tRNA processing.
Collapse
Affiliation(s)
- J F Briand
- Service de Biochimie et Génétique Moléculaire, CEA-Saclay, F-91191 Gif Sur Yvette Cedex, France
| | | | | | | |
Collapse
|
10
|
Ferri ML, Peyroche G, Siaut M, Lefebvre O, Carles C, Conesa C, Sentenac A. A novel subunit of yeast RNA polymerase III interacts with the TFIIB-related domain of TFIIIB70. Mol Cell Biol 2000; 20:488-95. [PMID: 10611227 PMCID: PMC85110 DOI: 10.1128/mcb.20.2.488-495.2000] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
There is limited information on how eukaryotic RNA polymerases (Pol) recognize their cognate preinitiation complex. We have characterized a polypeptide copurifying with yeast Pol III. This protein, C17, was found to be homologous to a mammalian protein described as a hormone receptor. Deletion of the corresponding gene, RPC17, was lethal and its regulated extinction caused a selective defect in transcription of class III genes in vivo. Two-hybrid and coimmunoprecipitation experiments indicated that C17 interacts with two Pol III subunits, one of which, C31, is important for the initiation reaction. C17 also interacted with TFIIIB70, the TFIIB-related component of TFIIIB. The interaction domain was found to be in the N-terminal, TFIIB-like half of TFIIIB70, downstream of the zinc ribbon and first imperfect repeat. Although Pol II similarly interacts with TFIIB, it is notable that C17 has no similarity to any Pol II subunit. The data indicate that C17 is a novel specific subunit of Pol III which participates together with C34 in the recruitment of Pol III by the preinitiation complex.
Collapse
Affiliation(s)
- M L Ferri
- Service de Biochimie et de Génétique Moléculaire, CEA/Saclay, F-91191 Gif-sur-Yvette Cedex, France
| | | | | | | | | | | | | |
Collapse
|
11
|
Andrau JC, Sentenac A, Werner M. Mutagenesis of yeast TFIIIB70 reveals C-terminal residues critical for interaction with TBP and C34. J Mol Biol 1999; 288:511-20. [PMID: 10329159 DOI: 10.1006/jmbi.1999.2724] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The yeast TFIIIB transcription factor is composed of three components, TBP, TFIIIB90 or B", and TFIIIB70 or BRF. TFIIIB70 is a pivotal component since it interacts with TBP, TFIIIC and RNA polymerase III (pol III). In order to better understand the role of TFIIIB70, we mutagenized extensively three evolutionary conserved motifs of its pol III-specific C-terminal extension. Conditional mutations lying in conserved regions II and III were obtained, some of which altered the interaction with the C34 subunit of pol III and were co-lethal with rpc34 mutations. Two conditional mutations in region II impaired the interaction with TBP and were suppressed by its overexpression. The pattern of suppression of the strongest mutation by overexpression of various mutant TBP, suggested a contact between TBP-R220 and TFIIIB70-D464 residues in vivo. As expected, this TFIIIB70 mutation impaired the assembly of TFIIIB. TFIIIC.DNA complexes and affected in vitro transcription of the SUP4 tRNA gene. Our results underscore the important role of region II of TFIIIB70 in pre-initiation as well as transcription complex assembly via C34 and TBP binding.
Collapse
Affiliation(s)
- J C Andrau
- Service de Biochimie et Génétique Moléculaire, Bât. 142, CEA/Saclay, F-91191 Gif-sur-Yvette, CEDEX, France
| | | | | |
Collapse
|
12
|
Wang Z, Roeder RG. Three human RNA polymerase III-specific subunits form a subcomplex with a selective function in specific transcription initiation. Genes Dev 1997; 11:1315-26. [PMID: 9171375 DOI: 10.1101/gad.11.10.1315] [Citation(s) in RCA: 129] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Transcription by RNA polymerase III involves recruitment of the polymerase by template-bound accessory factors, followed by initiation, elongation, and termination steps. An immunopurification approach has been used to demonstrate that human RNA Pol III is composed of 16 subunits, some of which are apparently modified in HeLa cells. Partial denaturing conditions and sucrose gradient sedimentation at high salt result in the dissociation of a subcomplex that includes hRPC32, hRPC39, and hRPC62. Cognate cDNAs were isolated and shown to encode three subunits that are specific to RNA Pol III and homologous to three yeast subunits. The human RNA Pol III core lacking the subcomplex functions in transcription elongation and termination following nonspecific initiation on a tailed template, but fails to show promoter-dependent transcription initiation in conjunction with accessory factors. The capability for specific transcription initiation can be restored either by the natural subcomplex or by a stable subcomplex composed of recombinant hRPC32, hRPC39, and hRPC62 polypeptides. One component (hRPC39) of this subcomplex interacts physically with both hTBP and hTFIIIB90, two subunits of human RNA Pol III transcription initiation factor IIIB. These data strongly suggest that the hRPC32-hRPC39-hRPC62 subcomplex directs RNA Pol III binding to the TFIIIB-DNA complex via the interactions between TFIIIB and hRPC39.
Collapse
Affiliation(s)
- Z Wang
- The Rockefeller University, Laboratory of Biochemistry and Molecular Biology, New York, New York 10021, USA
| | | |
Collapse
|
13
|
Smid A, Riva M, Bouet F, Sentenac A, Carles C. The association of three subunits with yeast RNA polymerase is stabilized by A14. J Biol Chem 1995; 270:13534-40. [PMID: 7768955 DOI: 10.1074/jbc.270.22.13534] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
RNA polymerase I of Saccharomyces cerevisiae is composed of 14 subunits. All of the corresponding genes have been cloned with the exception of the RPA14 gene encoding A14, a specific polypeptide of this enzyme. We report the cloning and the characterization of RPA14. The A14 polypeptide was separated from the other RNA polymerase I subunits by reverse-phase high pressure liquid chromatography and digested with proteinase K. Based on the amino acid sequence of one of the resulting peptides, a degenerate oligonucleotide was synthesized and used to isolate the RPA14 gene from a yeast subgenomic DNA library. RPA14 is a single copy gene that maps to chromosome IV and is flanked by CYP1 and HOM2. Disruption of RPA14 is not lethal, but growth of the rpa14::URA3 mutant strain is impaired at 37 and 38 degrees C. RNA polymerase I was purified from the rpa14::URA3 strain. After two purification steps, the enzyme did not contain the subunits A14, ABC23, and A43. This form of the enzyme was not active in a nonspecific in vitro transcription assay. These results demonstrate that A14 is a genuine subunit of RNA polymerase I and suggest that A14 plays a role in the stability of a subgroup of subunits.
Collapse
Affiliation(s)
- A Smid
- Service de Biochimie et de Génétique Moléculaire, CEA Saclay, Gif-sur-Yvette, France
| | | | | | | | | |
Collapse
|
14
|
Khoo B, Brophy B, Jackson SP. Conserved functional domains of the RNA polymerase III general transcription factor BRF. Genes Dev 1994; 8:2879-90. [PMID: 7995525 DOI: 10.1101/gad.8.23.2879] [Citation(s) in RCA: 115] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In Saccharomyces cerevisiae, two components of the RNA polymerase III (Pol III) general transcription factor TFIIIB are the TATA-binding protein (TBP) and the B-related factor (BRF), so called because its amino-terminal half is homologous to the Pol II transcription factor IIB (TFIIB). We have cloned BRF genes from the yeasts Kluyveromyces lactis and Candida albicans. Despite the large evolutionary distance between these species and S. cerevisiae, the BRF proteins are conserved highly. Although the homology is most pronounced in the amino-terminal half, conserved regions also exist in the carboxy-terminal half that is unique to BRF. By assaying for interactions between BRF and other Pol III transcription factors, we show that it is able to bind to the 135-kD subunit of TFIIIC and also to TBP. Surprisingly, in addition to binding the TFIIB-homologous amino-terminal portion of BRF, TBP also interacts strongly with the carboxy-terminal half. Deleting two conserved regions in the BRF carboxy-terminal region abrogates this interaction. Furthermore, TBP mutations that selectively inhibit Pol III transcription in vivo impair interactions between TBP and the BRF carboxy-terminal domain. Finally, we demonstrate that BRF but not TFIIB binds the Pol III subunit C34 and we define a region of C34 necessary for this interaction. These observations provide insights into the roles performed by BRF in Pol III transcription complex assembly.
Collapse
Affiliation(s)
- B Khoo
- Wellcome/CRC Institute, Cambridge University, UK
| | | | | |
Collapse
|
15
|
Verhasselt P, Aert R, Voet M, Volckaert G. Twelve open reading frames revealed in the 23.6 kb segment flanking the centromere on the Saccharomyces cerevisiae chromosome XIV right arm. Yeast 1994; 10:1355-61. [PMID: 7900425 DOI: 10.1002/yea.320101013] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The nucleotide sequence of 23.6 kb of the right arm of chromosome XIV is described, starting from the centromeric region. Both strands were sequenced with an average redundancy of 4.87 per base pair. The overall G+C content is 38.8% (42.5% for putative coding regions versus 29.4% for non-coding regions). Twelve open reading frames (ORFs) greater than 100 amino acids were detected. Codon frequencies of the twelve ORFs agree with codon usage in Saccharomyces cerevisiae and all show the characteristics of low level expressed genes. Five ORFs (N2019, N2029, N2031, N2048 and N2050) are encoded by previously sequenced genes (the mitochondrial citrate synthase gene, FUN34, RPC34, PRP2 and URK1, respectively). ORF N2052 shows the characteristics of a transmembrane protein. Other elements in this region are a tRNA(Pro) gene, a tRNA(Asn) gene, a tau 34 and a truncated delta 34 element. Nucleotide sequence comparison results in relocation of the SIS1 gene to the left arm of the chromosome as confirmed by colinearity analysis.
Collapse
Affiliation(s)
- P Verhasselt
- University of Leuven, Laboratory of Gene Technology, Belgium
| | | | | | | |
Collapse
|
16
|
Lefebvre O, Rüth J, Sentenac A. A mutation in the largest subunit of yeast TFIIIC affects tRNA and 5 S RNA synthesis. Identification of two classes of suppressors. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)31663-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
17
|
Lalo D, Stettler S, Mariotte S, Gendreau E, Thuriaux P. Organization of the centromeric region of chromosome XIV in Saccharomyces cerevisiae. Yeast 1994; 10:523-33. [PMID: 7941739 DOI: 10.1002/yea.320100412] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
A 15.1 kb fragment of the yeast genome was allocated to the centromeric region of chromosome XIV by genetic mapping. It contained six bona fide genes, RPC34, FUN34, CIT1 (Suissa et al., 1984), RLP7, PET8 and MRP7 (Fearon and Mason, 1988) and two large open reading frames, DOM34 and TOM34. RPC34 and RLP7 define strictly essential functions, whereas CIT1, PET8 and MRP7 encode mitochondrial proteins. The PET8 product belongs to a family of mitochondrial carrier proteins. FUN34 encodes a putative transmembraneous protein that is non-essential as judged from the normal growth of the fun34-::LUK18(URA3) allele even on respirable substrates. TOM34 codes for a putative RNA binding protein, and DOM34 defines a hypothetical polypeptide of 35 kDa, with no significant homology to known proteins. The region under study also contains two divergently transcribed tDNAs, separated only by a chimeric transposable element. This tight tDNA linkage pattern is commonly encountered in yeast, and a general hypothesis is proposed for its emergence on the Saccharomyces cerevisiae genome. RPC34, RLP7, PET8 and MRP7 are unique on the yeast genome, but the remaining genes belong to an extant centromeric duplication between chromosome III and XIV.
Collapse
Affiliation(s)
- D Lalo
- Département der Biologie Cellulaire et Moléculaire, Gif sur Yvette, France
| | | | | | | | | |
Collapse
|
18
|
Lalo D, Mariotte S, Thuriaux P. Two distinct yeast proteins are related to the mammalian ribosomal polypeptide L7. Yeast 1993; 9:1085-91. [PMID: 8256515 DOI: 10.1002/yea.320091007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The RLP7 gene of Saccharomyces cerevisiae was cloned, sequenced and localized to the right arm of chromosome XIV, close to the centromere. It encodes a predicted polypeptide (RLP7p) of 322 amino acids, with a calculated molecular mass of 36 kDa and an isoelectric point of 9.6. Putative open reading frames very similar to RLP7 are present in two other yeasts, Kluyveromyces lactis and Candida utilis. The RLP7p gene product has significant sequence similarity to the S. cerevisiae YL8 polypeptide of the large ribosomal subunit (Mizuta et al., 1992), itself homologous to the L7 subunit of mammalian ribosomes. However, RLP7p and YL8 do not functionally replace each other, since an rlp7-delta::HIS3 strain is completely inviable. Judging from its predicted mass, isoelectric point and amino acid sequence, RLP7p does not correspond to any ribosomal component biochemically identified so far in S. cerevisiae, and also differs from all known ribosomal proteins by the low codon usage bias of its gene.
Collapse
Affiliation(s)
- D Lalo
- Département de Biologie Cellulaire et Moléculaire, Centre d'Etudes de Saclay, Gif sur Yvette, France
| | | | | |
Collapse
|
19
|
Interaction between a complex of RNA polymerase III subunits and the 70-kDa component of transcription factor IIIB. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(19)36839-5] [Citation(s) in RCA: 83] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
20
|
Stettler S, Chiannilkulchai N, Hermann-Le Denmat S, Lalo D, Lacroute F, Sentenac A, Thuriaux P. A general suppressor of RNA polymerase I, II and III mutations in Saccharomyces cerevisiae. MOLECULAR & GENERAL GENETICS : MGG 1993; 239:169-76. [PMID: 8510644 DOI: 10.1007/bf00281615] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A multicopy genomic library of Saccharomyces cerevisiae (strain FL100) was screened for its ability to suppress conditionally defective mutations altering the 31 kDa subunit (rpc31-236) or the 53 kDa subunit (rpc53-254/424) of RNA polymerase III. In addition to allele-specific suppressors, we identified seven suppressor clones that acted on both mutations and also suppressed several other conditional mutations defective in RNA polymerases I or II. All these clones harbored a complete copy of the SSD1 gene. The same pleiotropic suppression pattern was found with the dominant SSD1-v allele present in some laboratory strains of S. cerevisiae. SSD1-v was previously shown to suppress mutations defective in the SIT4 gene product (a predicted protein phosphatase subunit) or in the regulatory subunit of the cyclic AMP-dependent protein kinase. We propose that the SSD1 gene product modulates the activity (or the level) of the three nuclear RNA polymerases, possibly by altering their degree of phosphorylation.
Collapse
Affiliation(s)
- S Stettler
- Département de Biologie Cellulaire et Moléculaire, C.E.A. Centre d'Etudes de Saclay, Gif sur Yvette, France
| | | | | | | | | | | | | |
Collapse
|
21
|
Chiannilkulchai N, Moenne A, Sentenac A, Mann C. Biochemical and genetic dissection of the Saccharomyces cerevisiae RNA polymerase C53 subunit through the analysis of a mitochondrially mis-sorted mutant construct. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)50062-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|