1
|
Abstract
Gene regulatory networks are based on simple building blocks such as promoters, transcription factors (TFs) and their binding sites on DNA. But how diverse are the functions that can be obtained by different arrangements of promoters and TF binding sites? In this work we constructed synthetic regulatory regions using promoter elements and binding sites of two noninteracting TFs, each sensing a single environmental input signal. We show that simply by combining these three kinds of elements, we can obtain 11 of the 16 Boolean logic gates that integrate two environmental signals in vivo. Further, we demonstrate how combination of logic gates can result in new logic functions. Our results suggest that simple elements of transcription regulation form a highly flexible toolbox that can generate diverse functions under natural selection.
Collapse
|
2
|
Catabolite repression control of napF (periplasmic nitrate reductase) operon expression in Escherichia coli K-12. J Bacteriol 2008; 191:996-1005. [PMID: 19060147 DOI: 10.1128/jb.00873-08] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Escherichia coli, a facultative aerobe, expresses two distinct respiratory nitrate reductases. The periplasmic NapABC enzyme likely functions during growth in nitrate-limited environments, whereas the membrane-bound NarGHI enzyme functions during growth in nitrate-rich environments. Maximal expression of the napFDAGHBC operon encoding periplasmic nitrate reductase results from synergistic transcription activation by the Fnr and phospho-NarP proteins, acting in response to anaerobiosis and nitrate or nitrite, respectively. Here, we report that, during anaerobic growth with no added nitrate, less-preferred carbon sources stimulated napF operon expression by as much as fourfold relative to glucose. Deletion analysis identified a cyclic AMP receptor protein (Crp) binding site upstream of the NarP and Fnr sites as being required for this stimulation. The napD and nrfA operon control regions from Shewanella spp. also have apparent Crp and Fnr sites, and expression from the Shewanella oneidensis nrfA control region cloned in E. coli was subject to catabolite repression. In contrast, the carbon source had relatively little effect on expression of the narGHJI operon encoding membrane-bound nitrate reductase under any growth condition tested. Carbon source oxidation state had no influence on synthesis of either nitrate reductase. The results suggest that the Fnr and Crp proteins may act synergistically to enhance NapABC synthesis during growth with poor carbon sources to help obtain energy from low levels of nitrate.
Collapse
|
3
|
Zbell AL, Benoit SL, Maier RJ. Differential expression of NiFe uptake-type hydrogenase genes in Salmonella enterica serovar Typhimurium. Microbiology (Reading) 2007; 153:3508-3516. [PMID: 17906148 DOI: 10.1099/mic.0.2007/009027-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Salmonella enterica serovar Typhimurium possesses three similar NiFe hydrogenases important to its virulence. Here we show that the three hydrogenase operons hyb, hya and hyd are expressed under different environmental conditions and are subject to control by different regulatory proteins. Hydrogenase promoter-lacZ fusion plasmids were transferred into the wild-type strain or into arcA, fnr, iscR, narL and narP deletion mutants, or into a fnr/arcA double mutant. The hyb promoter had highest beta-galactosidase activity under growth conditions promoting anaerobic respiration (glycerol plus fumarate) and may be subject to glucose repression, since cells grown with glucose had about half the transcriptional activity of cells grown with mannose. Based on the phenotype of regulatory mutant strains, IscR represses hyb aerobically, and ArcA plays a role in both hyb and hyd regulation. The hyd promoter had about five times more activity in cells grown under aerobic conditions compared to anaerobic levels, and its activity tripled in an arcA mutant grown anaerobically. The hya promoter had the highest activity when cells were grown anaerobically with glucose, and the growth yield of the hya mutant was about 25 % lower than for wild-type cells grown fermentatively, suggesting that Hya may be utilized during fermentation. The hya promoter is repressed by nitrate and this repression was abolished when the NarL-binding site was mutated, or in a narL mutant background. FNR is involved in hyb and hya regulation, since beta-galactosidase activity decreased significantly in a fnr mutant. These findings suggest that the three hydrogenases are used under different conditions, likely enhancing the pathogen's capacity to survive in a variety of environments.
Collapse
Affiliation(s)
- Andrea L Zbell
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA
| | - Stéphane L Benoit
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA
| | - Robert J Maier
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
4
|
Kanack KJ, Runyen-Janecky LJ, Ferrell EP, Suh SJ, West SEH. Characterization of DNA-binding specificity and analysis of binding sites of the Pseudomonas aeruginosa global regulator, Vfr, a homologue of the Escherichia coli cAMP receptor protein. MICROBIOLOGY (READING, ENGLAND) 2006; 152:3485-3496. [PMID: 17159200 DOI: 10.1099/mic.0.29008-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Vfr, a global regulator of Pseudomonas aeruginosa virulence factors, is a homologue of the Escherichia coli cAMP receptor protein, CRP. Vfr is 91% similar to CRP and maintains many residues important for CRP to bind cAMP, bind DNA, and interact with RNA polymerase at target promoters. While vfr can complement an E. coli crp mutant in beta-galactosidase production, tryptophanase production and catabolite repression, crp can only complement a subset of Vfr-dependent phenotypes in P. aeruginosa. Using specific CRP binding site mutations, it is shown that Vfr requires the same nucleotides as CRP for optimal transcriptional activity from the E. coli lac promoter. In contrast, CRP did not bind Vfr target sequences in the promoters of the toxA and regA genes. Footprinting analysis revealed Vfr protected sequences upstream of toxA, regA, and the quorum sensing regulator lasR, that are similar to but significantly divergent from the CRP consensus binding sequence, and Vfr causes similar DNA bending to CRP in bound target sequences. Using a preliminary Vfr consensus binding sequence deduced from the Vfr-protected sites, Vfr target sequences were identified upstream of the virulence-associated genes plcN, plcHR, pbpG, prpL and algD, and in the vfr/orfX, argH/fimS, pilM/ponA intergenic regions. From these sequences the Vfr consensus binding sequence, 5'-ANWWTGNGAWNY : AGWTCACAT-3', was formulated. This study suggests that Vfr shares many of the same functions as CRP, but has specialized functions, at least in terms of DNA target sequence binding, required for regulation of a subset of genes in its regulon.
Collapse
Affiliation(s)
- Kristen J Kanack
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, 2015 Linden Drive, Madison, WI 53706, USA
| | - Laura J Runyen-Janecky
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, 2015 Linden Drive, Madison, WI 53706, USA
| | - Evan P Ferrell
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, 2015 Linden Drive, Madison, WI 53706, USA
| | - Sang-Jin Suh
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, 2015 Linden Drive, Madison, WI 53706, USA
| | - Susan E H West
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, 2015 Linden Drive, Madison, WI 53706, USA
| |
Collapse
|
5
|
Ray WK, Larson TJ. Application of AgaR repressor and dominant repressor variants for verification of a gene cluster involved in N-acetylgalactosamine metabolism in Escherichia coli K-12. Mol Microbiol 2004; 51:813-26. [PMID: 14731281 DOI: 10.1046/j.1365-2958.2003.03868.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The agaZVWEFASYBCDI gene cluster encodes the phosphotransferase systems and enzymes responsible for the uptake and metabolism of N-acetylgalactosamine and galactosamine in Escherichia coli. In some strains of E. coli, particularly the common K-12 strain, a portion of this cluster is missing because of a site-specific recombination event that occurred between sites in agaW and agaA. Strains that have undergone this recombination event have lost the ability to utilize either N-acetylgalactosamine or galactosamine as sole sources of carbon. Divergently transcribed from this gene cluster is the gene agaR encoding a transcriptional repressor belonging to the DeoR/GlpR family of transcriptional regulators. Promoters upstream of agaR, agaZ and agaS were characterized. All three promoters had elevated activity in the presence of N-acetylgalactosamine or galactosamine, were regulated in vivo by AgaR and possessed specific DNA-binding sites for AgaR upstream from the start sites of transcription as determined by DNase I footprinting. In vivo analysis and DNase I footprinting indicated that the promoter specific for agaZ also requires activation by cAMP-CRP. Previous work with GlpR and other members of the DeoR/GlpR family have identified highly conserved amino acid residues that function in DNA-binding or response to inducer. These residues of AgaR were targeted for site-directed mutagenesis and yielded variants of AgaR that were either negatively dominant or non-inducible. The apparent ability to produce negatively dominant and non-inducible variants of proteins of the DeoR/GlpR family of currently unknown function will likely facilitate screening for function.
Collapse
Affiliation(s)
- W Keith Ray
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA
| | | |
Collapse
|
6
|
Bartnikas TB, Wang Y, Bobo T, Veselov A, Scholes CP, Shapleigh JP. Characterization of a member of the NnrR regulon in Rhodobacter sphaeroides 2.4.3 encoding a haem-copper protein. MICROBIOLOGY (READING, ENGLAND) 2002; 148:825-833. [PMID: 11882718 DOI: 10.1099/00221287-148-3-825] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Upstream of the nor and nnrR cluster in Rhodobacter sphaeroides 2.4.3 is a previously uncharacterized gene that has been designated nnrS. nnrS is only expressed when 2.4.3 is grown under denitrifying conditions. Expression of nnrS is dependent on the transcriptional regulator NnrR, which also regulates expression of genes required for the reduction of nitrite to nitrous oxide, including nirK and nor. Deletion analysis indicated the sequence 5'-TTGCG(N4)CACAA-3', which is similar to sequences found in nirK and nor, is required for nnrS expression. Mutation of this sequence to the consensus Fnr-binding sequence by changing two bases in each half site caused nnrS expression to become nitrate independent. Inactivation of nnrS did not affect nitric oxide metabolism, nor did it affect expression of any of the genes involved in nitric oxide metabolism. However, taxis towards nitrate and nitrite was affected by nnrS inactivation. Purification of a histidine-tagged NnrS demonstrated that NnrS is a haem- and copper-containing membrane protein. Genes encoding putative orthologues of NnrS are sometimes but not always found in bacteria encoding nitrite and/or nitric oxide reductase.
Collapse
Affiliation(s)
- Thomas B Bartnikas
- Department of Microbiology, Wing Hall, Cornell University, Ithaca, NY 14853-8101, USA1
| | - Yousheng Wang
- Department of Microbiology, Wing Hall, Cornell University, Ithaca, NY 14853-8101, USA1
| | - Tanya Bobo
- Department of Microbiology, Wing Hall, Cornell University, Ithaca, NY 14853-8101, USA1
| | - Andrei Veselov
- Department of Chemistry, Center of Biophysics and Biochemistry, University at Albany, SUNY, Albany, NY 12222, USA2
| | - Charles P Scholes
- Department of Chemistry, Center of Biophysics and Biochemistry, University at Albany, SUNY, Albany, NY 12222, USA2
| | - James P Shapleigh
- Department of Microbiology, Wing Hall, Cornell University, Ithaca, NY 14853-8101, USA1
| |
Collapse
|
7
|
Green J, Scott C, Guest JR. Functional versatility in the CRP-FNR superfamily of transcription factors: FNR and FLP. Adv Microb Physiol 2001; 44:1-34. [PMID: 11407111 DOI: 10.1016/s0065-2911(01)44010-0] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The cAMP receptor protein (CRP; sometimes known as CAP, the catabolite gene activator protein) and the fumarate and nitrate reduction regulator (FNR) of Escherichia coli are founder members of an expanding superfamily of structurally related transcription factors. The archetypal CRP structural fold provides a very versatile mechanism for transducing environmental and metabolic signals to the transcription machinery. It allows different functional specificities at the sensory, DNA-recognition and RNA-polymerase-interaction levels to be 'mixed and matched' in order to create a diverse range of transcription factors tailored to respond to particular physiological conditions. This versatility is clearly illustrated by comparing the properties of the CRP, FNR and FLP (FNR-like protein) regulators. At the sensory level, the basic structural fold has been adapted in FNR and FLP by the acquisition in the N-terminal region of different combinations of cysteine or other residues; which bestow oxygen/redox sensing mechanisms that are poised according to the oxidative stress thresholds affecting the metabolism of specific bacteria. At the DNA-recognition level, discrimination between distinct but related DNA targets is mediated by amino acid sequence modifications in the conserved core contact between the DNA-recognition helix and target DNA. And, at the level of RNA-polymerase-interaction, different combinations of three discrete regions contacting the polymerase (the activating regions) are used for polymerase recruitment and promoting transcription.
Collapse
Affiliation(s)
- J Green
- Department of Molecular Biology and Biotechnology, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | | | | |
Collapse
|
8
|
Abstract
There was a long-held belief that the gram-positive soil bacterium Bacillus subtilis is a strict aerobe. But recent studies have shown that B. subtilis will grow anaerobically, either by using nitrate or nitrite as a terminal electron acceptor, or by fermentation. How B. subtilis alters its metabolic activity according to the availability of oxygen and alternative electron acceptors is but one focus of study. A two-component signal transduction system composed of a sensor kinase, ResE, and a response regulator, ResD, occupies an early stage in the regulatory pathway governing anaerobic respiration. One of the essential roles of ResD and ResE in anaerobic gene regulation is induction of fnr transcription upon oxygen limitation. FNR is a transcriptional activator for anaerobically induced genes, including those for respiratory nitrate reductase, narGHJI.B. subtilis has two distinct nitrate reductases, one for the assimilation of nitrate nitrogen and the other for nitrate respiration. In contrast, one nitrite reductase functions both in nitrite nitrogen assimilation and nitrite respiration. Unlike many anaerobes, which use pyruvate formate lyase, B. subtilis can carry out fermentation in the absence of external electron acceptors wherein pyruvate dehydrogenase is utilized to metabolize pyruvate.
Collapse
Affiliation(s)
- M M Nakano
- Department of Biochemistry and Molecular Biology, Louisiana State University Medical Center, Shreveport 71130-3932, USA.
| | | |
Collapse
|
9
|
Darwin AJ, Ziegelhoffer EC, Kiley PJ, Stewart V. Fnr, NarP, and NarL regulation of Escherichia coli K-12 napF (periplasmic nitrate reductase) operon transcription in vitro. J Bacteriol 1998; 180:4192-8. [PMID: 9696769 PMCID: PMC107417 DOI: 10.1128/jb.180.16.4192-4198.1998] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The expression of several Escherichia coli operons is activated by the Fnr protein during anaerobic growth and is further controlled in response to nitrate and nitrite by the homologous response regulators, NarL and NarP. Among these operons, the napF operon, encoding a periplasmic nitrate reductase, has unique features with respect to its Fnr-, NarL-, and NarP-dependent regulation. First, the Fnr-binding site is unusually located compared to the control regions of most other Fnr-activated operons, suggesting different Fnr-RNA polymerase contacts during transcriptional activation. Second, nitrate and nitrite activation is solely dependent on NarP but is antagonized by the NarL protein. In this study, we used DNase I footprint analysis to confirm our previous assignment of the unusual location of the Fnr-binding site in the napF control region. In addition, the in vivo effects of Fnr-positive control mutations on napF operon expression indicate that the napF promoter is atypical with respect to Fnr-mediated activation. The transcriptional regulation of napF was successfully reproduced in vitro by using a supercoiled plasmid template and purified Fnr, NarL, and NarP proteins. These in vitro transcription experiments demonstrate that, in the presence of Fnr, the NarP protein causes efficient transcription activation whereas the NarL protein does not. This suggests that Fnr and NarP may act synergistically to activate napF operon expression. As observed in vivo, this activation by Fnr and NarP is antagonized by the addition of NarL in vitro.
Collapse
Affiliation(s)
- A J Darwin
- Section of Microbiology, Cornell University, Ithaca, New York 14853, USA
| | | | | | | |
Collapse
|
10
|
Lombardo MJ, Lee AA, Knox TM, Miller CG. Regulation of the Salmonella typhimurium pepT gene by cyclic AMP receptor protein (CRP) and FNR acting at a hybrid CRP-FNR site. J Bacteriol 1997; 179:1909-17. [PMID: 9068635 PMCID: PMC178913 DOI: 10.1128/jb.179.6.1909-1917.1997] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The Salmonella typhimurium pepT gene is induced nearly 30-fold in response to anaerobiosis. Anaerobic expression is dependent on the transcriptional regulator encoded by fnr (previously oxrA). Primer extension analysis and site-directed mutagenesis experiments show that pepT is transcribed from two sigma 70 promoters. One promoter (P1) is FNR dependent and anaerobically induced, while the other (P2) appears to be constitutive. The potABCD operon is divergently transcribed from a promoter near pepT P2. Sequence analysis of pepT promoter mutations which either elevate anaerobic expression or confer constitutive expression revealed that these mutations affect the -10 region of the P1 or P2 promoter, respectively. The pepT200 mutation, which changes the -10 region of the FNR-dependent P1 promoter to the consensus, has the surprising effect of allowing five- to sevenfold anaerobic induction in the absence of FNR. We have shown that the anaerobic induction of pepT-lacZ in a pepT200 fnr strain is dependent on wild-type alleles of both crp and cya. In a pepT200 pepT-lacZ strain, beta-galactosidase activity was elevated aerobically in the presence of exogenous cyclic AMP (cAMP) and was elevated also in succinate minimal medium relative to its level in glucose minimal medium. Primer extension analysis confirmed that P1 is the cAMP receptor protein (CRP)-dependent promoter. Site-directed mutagenesis experiments indicated that a hybrid CRP-FNR binding site positioned at -41 of the P1 promoter is utilized by both FNR and CRP. CRP-cAMP also appeared to repress FNR-dependent transcription of pepT under anaerobic conditions in both the pepT+ and pepT200 backgrounds. Although both CRP and FNR are capable of binding the hybrid site and activating transcription of pepT, CRP requires the consensus -10 sequence for efficient activation.
Collapse
Affiliation(s)
- M J Lombardo
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana 61801, USA
| | | | | | | |
Collapse
|
11
|
Wing HJ, Williams SM, Busby SJ. Spacing requirements for transcription activation by Escherichia coli FNR protein. J Bacteriol 1995; 177:6704-10. [PMID: 7592457 PMCID: PMC177532 DOI: 10.1128/jb.177.23.6704-6710.1995] [Citation(s) in RCA: 104] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
We cloned a consensus DNA site for the Escherichia coli FNR protein at different locations upstream of the E. coli melR promoter. FNR can activate transcription initiation at the melR promoter when the FNR binding site is centered around 41, 61, 71, 82, and 92 bp upstream from the transcription start. The SF73 positive control amino acid substitution in FNR interfered with transcription activation by FNR in each case. In contrast, the GA85 positive control substitution reduced activation only at the promoter, where the FNR binding site is 41 bp upstream of the transcript start. The SF73 substitution appears to identify an activating region of FNR that is important for transcription activation at promoters that differ in architecture. Experiments with oriented heterodimers showed that this activating region is functional in the upstream subunit of the FNR dimer at the promoter where FNR binds around 41 bp from the transcript start and in the downstream subunit at the promoters where FNR binds farther upstream.
Collapse
Affiliation(s)
- H J Wing
- School of Biochemistry, University of Birmingham, United Kingdom
| | | | | |
Collapse
|
12
|
Loroch AI, Nguyen BG, Ludwig RA. Interactive regulation of Azorhizobium nifA transcription via overlapping promoters. J Bacteriol 1995; 177:7210-21. [PMID: 8522530 PMCID: PMC177602 DOI: 10.1128/jb.177.24.7210-7221.1995] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The Azorhizobium nifA promoter (PnifA) is positively regulated by two physiological signal transduction pathways, NtrBC, which signals anabolic N status, and FixLJK, which signals prevailing O2 status. Yet, PnifA response (gene product per unit time) to these two activating signals together is more than twice that of the summed, individual signals. In the absence of NIFA, a negative PnifA autoregulator, the fully induced PnifA response is more than 10-fold greater than that of summed, individual signals. Given this synergism, these two signal transduction pathways must interactively regulate PnifA activity. PnifA carries three cis-acting elements, an anaerobox, which presumably binds FIXK, a NIFAbox, which presumably binds NIFA itself, and a sigma 54 box, which presumably binds sigma 54 initiator, a subunit of RNA polymerase. For combinatorial analysis, single, double, and triple promoter mutations were constructed in these cis-acting elements, and PnifA activities were measured in six different trans-acting background, i.e., fixK, fixJ, nifA, ntrC, rpoF, and wild type. Under all physiological conditions studied, high-level PnifA activity required both FIXK in trans and the anaerobox element in cis. Surprisingly, because PnifA was hyperactive with a mutated sigma 54box, this cis-acting element mediates both negative and positive control. Because PnifA hyperactivity also required a wild-type upstream NIFAbox element, even in the absence of NIFA, a second upstream nifA transcription start superimposed on the NIFAbox element was hypothesized. When nifA mRNA 5' start points were mapped by primer extension, both a minor upstream transcript(s) starting 45 bp distal to the anaerobox and a major downstream transcript starting 10 bp distal to the sigma 54 box were observed. In Azorhizobium, RNA polymerase sigma 54 initiator subunits are encoded by a multigene family, which includes rpoF and rpoN genes. Because rpoF mutants show an Ntr+ phenotype, whereas rpoN mutants are Ntr-, multiple sigma 54 initiators are functionally distinct. Two independent rpoF mutants both show a tight Nif- phenotype. Moreover, rpoF product sigma 54F is absolutely required for high-level PnifA activity. In summary, the Azorhizobium nifA gene carries overlapping housekeeping-type and sigma 54-type promoters which interactively respond to different signals. Effectively, the upstream, housekeeping-type promoter responds to FIXK and positively regulates the downstream, sigma 54-type promoter. The downstream, sigma 54-type promoter responds to NTRC and negatively regulates the upstream, housekeeping-type promoter. In terms of transcript yield, the upstream, housekeeping-type promoter is therefore weak, and the downstream, sigma 54-type promoter is strong.
Collapse
Affiliation(s)
- A I Loroch
- Department of Biology, Sinsheimer Laboratories, University of California, Santa Cruz 95064, USA
| | | | | |
Collapse
|
13
|
Pomposiello PJ, Bender RA. Activation of the Escherichia coli lacZ promoter by the Klebsiella aerogenes nitrogen assimilation control protein (NAC), a LysR family transcription factor. J Bacteriol 1995; 177:4820-4. [PMID: 7642513 PMCID: PMC177252 DOI: 10.1128/jb.177.16.4820-4824.1995] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
A chimeric promoter with the nitrogen assimilation control protein binding site from hutUp of Klebsiella aerogenes fused to the lacZ core promoter from Escherichia coli was built and cloned in a lacZ reporter plasmid. This construct showed a 14-fold increase of beta-galactosidase activity upon nitrogen limitation. Primer extension experiments showed that the nitrogen assimilation control protein activates lacZp1 in a position-dependent manner.
Collapse
Affiliation(s)
- P J Pomposiello
- Department of Biology, University of Michigan, Ann Arbor 48109-1048, USA
| | | |
Collapse
|
14
|
Bates DM, Lazazzera BA, Kiley PJ. Characterization of FNR* mutant proteins indicates two distinct mechanisms for altering oxygen regulation of the Escherichia coli transcription factor FNR. J Bacteriol 1995; 177:3972-8. [PMID: 7608069 PMCID: PMC177126 DOI: 10.1128/jb.177.14.3972-3978.1995] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
In order to gain insight into the mechanism by which the Escherichia coli transcription factor FNR* is activated in response to anaerobiosis, we have analyzed FNR mutant proteins which, unlike the wild-type protein, stimulate gene expression in the presence of oxygen in vivo. Cell extracts containing seven different FNR* mutant proteins were tested in vitro for the ability to bind to the FNR consensus DNA site in a gel retardation assay under aerobic conditions. At the concentration of protein tested, only extracts which contained FNR* mutant proteins with amino acid substitutions at position 154 showed significant DNA binding. The three position-154 FNR* mutant proteins could be further distinguished from the other mutant proteins by analysis of the in vivo phenotypes of FNR* proteins containing amino acid substitutions at either of two essential cysteine residues. In the presence of oxygen, FNR* mutant proteins with amino acid substitutions at position 154 were the least affected when either Cys-23 or Cys-122 was substituted for Ser. On the basis of these in vivo and in vitro analyses, FNR* mutant proteins appear to segregate into at least two classes. Thus, it appears that each class of FNR* substitutions alters the normal pathway of FNR activation in response to oxygen deprivation by a different mechanism.
Collapse
Affiliation(s)
- D M Bates
- Department of Bacteriology, University of Wisconsin, Madison 53706, USA
| | | | | |
Collapse
|
15
|
Bartlett DH, Welch TJ. ompH gene expression is regulated by multiple environmental cues in addition to high pressure in the deep-sea bacterium Photobacterium species strain SS9. J Bacteriol 1995; 177:1008-16. [PMID: 7860581 PMCID: PMC176696 DOI: 10.1128/jb.177.4.1008-1016.1995] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Photobacterium species strain SS9 is a moderately barophilic (pressure-loving) deep-sea bacterial species which induces the expression of the ompH gene in response to elevated pressure. Here we demonstrate that at 1 atm (1 atm = 1.01325 x 10(5) Pa), ompH expression increases with cell density in 2216 marine medium batch culture and is subject to catabolite repression and the OmpH synthesis is inducible by energy (carbon) starvation. Regulatory mutants which are impaired in ompH gene expression at high pressure are also impaired in cell density regulation of ompH gene expression, indicating that the two inducing conditions overlap in their signal transduction pathways. The same promoter was activated by high cell density at 1 atm of pressure as well as during low-cell-density growth at 272 atm. Catabolite repression of ompH gene expression was induced by a variety of carbon sources, and this repression could be partially reversed in most cases by the addition of cyclic AMP (cAMP). Surprisingly, glucose repression of ompH transcription occurred only at 1 atm, not at 272 atm, despite the fact that catabolite repression was operational in SS9 under both conditions. It is suggested that ompH expression is cAMP and catabolite repressor protein dependent at 1 atm but becomes cAMP and perhaps catabolite repressor protein independent at 272 atm. Possible mechanisms of ompH gene activation are discussed.
Collapse
Affiliation(s)
- D H Bartlett
- Center for Marine Biomedicine and Biotechnology, Scripps Institution of Oceanography, University of California, San Diego, La Jolla 92093-0202
| | | |
Collapse
|
16
|
Compan I, Touati D. Anaerobic activation of arcA transcription in Escherichia coli: roles of Fnr and ArcA. Mol Microbiol 1994; 11:955-64. [PMID: 8022271 DOI: 10.1111/j.1365-2958.1994.tb00374.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The ArcA and Fnr regulators of Escherichia coli, both of which are activated in anaerobic conditions, negatively regulate the sodA gene (coding for manganese superoxide dismutase), but Fnr has no effect on anaerobic sodA expression in a delta arcA delta fnr background (Compan and Touati, 1993). We show here that the sdh gene (coding for succinate dehydrogenase) is also negatively regulated by Fnr, but again Fnr exerts no control in a delta arcA background. One interpretation of these results is that Fnr activates arcA transcription. Using arcA-lac transcriptional and translational fusions, we show that arcA expression increases (about fourfold) in anaerobiosis and that both Fnr and ArcA are required for full expression. In a delta fnr background, there is no autoactivation, suggesting that ArcA enhances activation by Fnr. Transcript and sequence analyses reveal that the arcA upstream regulatory region lies within a 530 bp non-coding DNA fragment, which contains five putative promoter sequences and a putative Fnr-binding site. Identification of the transcription start sites indicates that transcription occurs in aerobiosis from three constitutive upstream promoters (Pe, Pd, Pc). In anaerobiosis an additional completely Fnr-dependent transcript starting at Pa is present; expression from Pa is reduced in the absence of ArcA, and Fnr activation at Pa blocks the weak anaerobic-dependent expression from Pb. Fnr activation of arcA transcription may play an important role in the co-ordination of expression of genes associated with aerobic and anaerobic metabolism during environmental changes.
Collapse
Affiliation(s)
- I Compan
- Institut Jacques Monod, CNRS, Université Paris 7, France
| | | |
Collapse
|
17
|
Bell A, Busby S. Location and orientation of an activating region in the Escherichia coli transcription factor, FNR. Mol Microbiol 1994; 11:383-90. [PMID: 8170400 DOI: 10.1111/j.1365-2958.1994.tb00318.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We have characterized a number of mutations in fnr that interfere with FNR-dependent transcription activation at two promoters where the FNR-binding site is centred around 41 1/2 bp upstream from the transcription start site. The substituted residues in all but one of these FNR mutants are clustered around a presumed surface-exposed beta-turn containing G85 which, we suggest, forms an activating region that contacts RNA polymerase at these promoters. Using the 'oriented heterodimers' method described elsewhere, we show that this activating region on the promoter-proximal subunit of the FNR dimer is sufficient to activate transcription initiation. In contrast, this region is not essential for activation of a third FNR-dependent promoter where the FNR-binding site is centred at 61 1/2 bp upstream from the transcription start site. However, a substitution at S73 interferes with FNR-dependent activation at both this promoter and promoters in which the FNR site is located at 41 1/2 bp from the transcript start, suggesting that FNR may contain a second activating region.
Collapse
Affiliation(s)
- A Bell
- School of Biochemistry, University of Birmingham, UK
| | | |
Collapse
|
18
|
Sawers G. Specific transcriptional requirements for positive regulation of the anaerobically inducible pfl operon by ArcA and FNR. Mol Microbiol 1993; 10:737-47. [PMID: 7934836 DOI: 10.1111/j.1365-2958.1993.tb00944.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Expression of the pfl operon of Escherichia coli is induced 12- to 15-fold by anaerobiosis and transcription is mediated by seven co-ordinately regulated promoters. The 5' non-translated regulatory region of the operon is approximately 450bp in length and contains two of the seven promoters, termed promoter 6 and promoter 7. Site-directed mutagenesis was used to aid the identification of DNA sequences important in directing transcription from the two promoters and to examine the effects such mutations had on the regulation of anaerobic pfl operon expression. Introduction of chromosomal mutations either in the FNR-binding site or -10 region of promoter 6 blocked transcription from this promoter, as determined by primer extension. Similarly, mutation of the -10 region or the putative FNR half-site located at -50 relative to the transcription start site of promoter 7 severely reduced transcription from that promoter. Prevention of transcription from promoter 6 by the -10 box mutation had no influence on promoter 7 transcription. Surprisingly, however, alteration of the FNR-binding site at promoter 6 did reduce transcription from promoter 7. Thus, a cis mutation located 280 bp downstream on the DNA had a profound effect on promoter 7 transcription. This effect would be commensurate with this mutation disrupting an important interaction between proteins bound at promoter 7 with those bound at promoter 6. Primer extension demonstrated that the promoter 7 mutations had no apparent influence on promoter 6 transcription. By using pfl-lacZ gene fusions it could be shown that the FNR-binding site and -10 region mutations at promoter 6 abolished FNR-dependent anaerobic regulation of pfl operon expression. The equivalent mutations at promoter 7 caused a 25% reduction in anaerobic expression. The residual anaerobic expression in such constructs was FNR-, but no longer ArcA-dependent. A construct in which the -10 region of both promoters 6 and 7 was mutated showed no anaerobic induction of pfl operon expression. This indicates that transcription from both promoters is required for maximal anaerobic regulation by ArcA and FNR.
Collapse
Affiliation(s)
- G Sawers
- Lehrstuhl für Mikrobiologie, Universität München, Germany
| |
Collapse
|
19
|
Abstract
The expression of L-asparaginase II (encoded by ansB) in Salmonella enterica was found to be positively regulated by the cAMP receptor protein (CRP) and anaerobiosis. The anaerobic regulation of the S. enterica ansB gene is not mediated by the anaerobic transcriptional activator FNR. This is unlike the situation of the ansB gene of Escherichia coli, which is dependent on both CRP and FNR. To investigate this fundamental difference in the regulation of L-asparaginase II expression in S. enterica, the ansB gene was cloned and the nucleotide sequence of the promoter region determined. Sequence analysis and transcript mapping of the 5' promoter region revealed a single transcriptional start point (tsp) and two regulatory sites with substantial homology with those found in E. coli. One site, centred -90.5 bp from the tsp, is homologous to a hybrid CRP/FNR ('CF') site which is the site of CRP regulation in the E. coli promoter. The other site, centred 40.5 bp upstream of the tsp, is homologous to the FNR binding site of the E. coli promoter. Significantly, however, a single base-pair difference exists in this site, at a position of the related CRP and FNR DNA-binding site consensus sequences known to be involved in CRP versus FNR specificity. Site-directed mutagenesis indicates that this single difference, relative to the homologous E. coli site, results in a CRP binding site and the observed FNR-independent ansB expression in S. enterica.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- M P Jennings
- Division of Science and Technology, Griffith University, Nathan, Queensland, Australia
| | | | | |
Collapse
|
20
|
Abstract
Escherichia coli is adroit in exploiting environmental energy sources to its greatest profit. A key strategy is to channel electron transport from donor to a terminal acceptor(s) so that the voltage drop is maximal. At the level of transcription, the goal is achieved by the interaction of three global regulatory systems, Fnr, NarL/NarX and ArcB/ArcA. In addition, the regulator FhlA is involved in a cascade-controlled pathway for the formate branch of the pyruvate fermentation pathway.
Collapse
Affiliation(s)
- S Iuchi
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115
| | | |
Collapse
|
21
|
Jennings MP, Beacham IR. Co-dependent positive regulation of the ansB promoter of Escherichia coli by CRP and the FNR protein: a molecular analysis. Mol Microbiol 1993; 9:155-64. [PMID: 8412660 DOI: 10.1111/j.1365-2958.1993.tb01677.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Transcription of the ansB gene, encoding L-asparaginase II, is positively regulated by cAMP receptor protein (CRP) and by the product of the fnr gene, the FNR protein. These global regulatory proteins mediate the expression of ansB in Escherichia coli in response to carbon source and to anaerobiosis, respectively, and are required concurrently for optimal ansB expression. The mechanism whereby CRP and FNR interact co-operatively with the ansB promoter to achieve transcription has not previously been established. We have utilized an ansB'-'lacZ fusion, in conjunction with deletion analysis and site-directed mutagenesis, to identify two sites which interact with these regulatory proteins in the ansB promoter. The first is an FNR site, centred 41.5 bp upstream of the major transcriptional start site. The second site, located 28 bp upstream of the FNR site, is the site of CRP regulation. This site is homologous to both the CRP and FNR binding-site consensus sequences and may respond to both CRP and FNR. The concurrent requirement for CRP and FNR for optimal expression of ansB may be explained if, first, essentially no transcription occurs unless the FNR is bound at the downstream site, and, second, the level of transcription when FNR alone is present is enhanced when CRP binds at the upstream site.
Collapse
Affiliation(s)
- M P Jennings
- Division of Science and Technology, Griffith University, Nathan, Queensland, Australia
| | | |
Collapse
|
22
|
Dong Q, Ebright RH. DNA binding specificity and sequence of Xanthomonas campestris catabolite gene activator protein-like protein. J Bacteriol 1992; 174:5457-61. [PMID: 1322886 PMCID: PMC206387 DOI: 10.1128/jb.174.16.5457-5461.1992] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The Xanthomonas campestris catabolite gene activator protein-like protein (CLP) can substitute for the Escherichia coli catabolite gene activator protein (CAP) in transcription activation at the lac promoter (V. de Crecy-Lagard, P. Glaser, P. Lejeune, O. Sismeiro, C. Barber, M. Daniels, and A. Danchin, J. Bacteriol. 172:5877-5883, 1990). We show that CLP has the same DNA binding specificity as CAP at positions 5, 6, and 7 of the DNA half site. In addition, we show that the amino acids at positions 1 and 2 of the recognition helix of CLP are identical to the amino acids at positions 1 and 2 of the recognition helix of CAP:i.e., Arg at position 1 and Glu at position 2.
Collapse
Affiliation(s)
- Q Dong
- Department of Chemistry, Rutgers University, New Brunswick, New Jersey 08855
| | | |
Collapse
|
23
|
Li J, Stewart V. Localization of upstream sequence elements required for nitrate and anaerobic induction of fdn (formate dehydrogenase-N) operon expression in Escherichia coli K-12. J Bacteriol 1992; 174:4935-42. [PMID: 1629153 PMCID: PMC206306 DOI: 10.1128/jb.174.15.4935-4942.1992] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Two transcriptional activators, the FNR and NARL proteins, are required for induction of the fdnGHI operon, encoding Escherichia coli formate dehydrogenase-N. The FNR protein is required for anaerobic expression, while the NARL protein mediates nitrate induction. We used primer extension to locate the transcription initiation site 29 nucleotides upstream of the fdnG translation initiation codon. Expression assays with single-copy phi (fdnG-lacZ) gene fusions containing various deletions in the fdn 5'-regulatory region delimited three distinct cis-acting elements. One site, which is located at approximately -110, was required for nitrate induction. Two other sites share sequence similarity with the FNR protein binding site core consensus. The first site, centered at -42.5, was required for anaerobic induction. We used site-specific mutagenesis to change this putative FNR protein binding site into the CRP protein binding site core consensus. This change caused the fdn operon to be expressed aerobically, subject to CRP protein control. On the other hand, converting this putative FNR protein binding site into the FNR protein binding site core consensus resulted in elevated anaerobic induction of the fdn operon and also caused weak aerobic expression. The other putative FNR protein binding site, centered at -97.5, was not involved in anaerobic induction. It might play a negative role in fdn operon expression during anaerobic growth in the absence of nitrate.
Collapse
Affiliation(s)
- J Li
- Section of Microbiology, Cornell University, Ithaca, New York 14853-8101
| | | |
Collapse
|
24
|
Waelkens F, Foglia A, Morel JB, Fourment J, Batut J, Boistard P. Molecular genetic analysis of the Rhizobium meliloti fixK promoter: identification of sequences involved in positive and negative regulation. Mol Microbiol 1992; 6:1447-56. [PMID: 1625575 DOI: 10.1111/j.1365-2958.1992.tb00865.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Transcription of the Rhizobium meliloti fixK gene is induced in symbiotic and microaerobic growth conditions by the FixL/FixJ modulator/effector pair. Transcription of fixK is also negatively autoregulated. By 5' deletion analysis, the involvement in negative regulation of a DNA region between -514 and -450 with respect to the transcription start was demonstrated. Site-directed mutagenesis allowed us to show that a sequence homologous to the binding site of the Escherichia coli Fnr protein, centred at position -487, participates in this effect. However, deletion or mutagenesis of this Fnr-like sequence does not completely eliminate FixK-dependent repression, which suggests that either an additional DNA region is involved in negative regulation or that it is mediated at the level of fixLJ transcription. Deletion analysis also allowed the definition of a DNA region involved in FixJ-mediated activation of the fixK promoter, between -79 and -42. Different point mutations in the -60, -45 and -35 regions were shown to affect promoter activity. In some cases, the activity of mutant promoters could be partly or fully restored by increasing the expression of the fixLJ regulatory genes, in an E. coli strain harbouring a plasmid with fixLJ under the control of an inducible (p-tac) promoter.
Collapse
Affiliation(s)
- F Waelkens
- Laboratoire de Biologie Moléculaire des Interactions Plantes-Microorganismes, INRA/CNRS, Castanet-Tolosan, France
| | | | | | | | | | | |
Collapse
|
25
|
Lu CD, Houghton JE, Abdelal AT. Characterization of the arginine repressor from Salmonella typhimurium and its interactions with the carAB operator. J Mol Biol 1992; 225:11-24. [PMID: 1583685 DOI: 10.1016/0022-2836(92)91022-h] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Primer extension experiments showed that the argR gene, encoding the arginine repressor in Salmonella typhimurium, is transcribed from a single promoter that is negatively regulated by arginine. A repressor overproducing strain was constructed and the repressor was purified to homogeneity. Gel filtration, sedimentation and cross-linking studies established that the native repressor is a hexamer of identical 17,000 Mr subunits. Gel retardation experiments indicate that the apparent dissociation constant for repressor/carAB operator is 6 x 10(-12) M. These experiments showed that arginine is essential for binding of the repressor to the DNA and that pyrimidine nucleotides have no significant effect on this binding. These results indicate that the effect of pyrimidines on expression of the arginine sensitive "downstream" carAB promoter is not directly mediated by the arginine repressor. These experiments also suggest that a single hexamer binds to the carAB operator, which carries two previously defined "ARG box" sequences that characterize operators for arg genes. Gel retardation experiments with DNA fragments carrying the individual ARG boxes showed that both boxes are required for effective binding of the hexameric repressor to the operator, indicating that the ARG boxes comprise a single binding site for the repressor. Analysis of the potential secondary structure of the arginine repressor does not reveal any of the recognizable structural motifs common to a number of DNA-binding proteins. A combination of DNase I, premethylation interference, depurination and hydroxyl radical footprinting techniques were employed to characterize the interactions of the repressor with the carAB operator, with the results suggesting that the repressor predominantly interacts with A.T residues in this region. Comparative DNA sequence analysis of the known arginine operators of enteric bacteria further indicates that the specificity of interaction may be based more on the precise distance between two defined A.T-rich regions rather than on the specific nucleotide sequence.
Collapse
Affiliation(s)
- C D Lu
- Department of Biology, Georgia State University, Atlanta 30303
| | | | | |
Collapse
|
26
|
Zhang X, Zhou Y, Ebright Y, Ebright R. Catabolite gene activator protein (CAP) is not an “acidic activating region” transcription activator protein. Negatively charged amino acids of CAP that are solvent-accessible in the CAP-DNA complex play no role in transcription activation at the lac promoter. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)42417-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
27
|
Larson T, Cantwell J, van Loo-Bhattacharya A. Interaction at a distance between multiple operators controls the adjacent, divergently transcribed glpTQ-glpACB operons of Escherichia coli K-12. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)42669-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
28
|
Zhang XP, Gunasekera A, Ebright YW, Ebright RH. Derivatives of CAP having no solvent-accessible cysteine residues, or having a unique solvent-accessible cysteine residue at amino acid 2 of the helix-turn-helix motif. J Biomol Struct Dyn 1991; 9:463-73. [PMID: 1667734 DOI: 10.1080/07391102.1991.10507929] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The Escherichia coli catabolite gene activator protein (CAP) is a helix-turn-helix motif sequence-specific DNA binding protein. CAP contains a unique solvent-accessible cysteine residue at amino acid 10 of the helix-turn-helix motif. In published work, we have constructed a prototype semi-synthetic site-specific DNA cleavage agent from CAP by use of cysteine-specific chemical modification to incorporate a nucleolytic chelator-metal complex at amino acid 10 of the helix-turn-helix motif [Ebright, R., Ebright, Y., Pendergrast, P.S. and Gunasekera, A., Proc. Natl. Acad. Sci. USA 87, 2882-2886 (1990)]. Construction of second-generation semi-synthetic site-specific DNA cleavage agents from CAP requires the construction of derivatives of CAP having unique solvent-accessible cysteine residues at sites within CAP other than amino acid 10 of the helix-turn-helix motif. In the present work, we have constructed and characterized two derivatives of CAP having no solvent-accessible cysteine residues: [Ser178]CAP and [Leu178]CAP. In addition, in the present work, we have constructed and characterized one derivative of CAP having a unique solvent-accessible cysteine residue at amino acid 2 of the helix-turn-helix motif: [Cys170;Ser178]CAP.
Collapse
Affiliation(s)
- X P Zhang
- Department of Chemistry and Waksman Institute, Rutgers University, New Brunswick, NJ 08855
| | | | | | | |
Collapse
|
29
|
Abstract
The regulatory protein Fnr is required for anaerobic expression of several anaerobic respiratory enzymes in Escherichia coli. To gain insight into how Fnr activity is regulated by oxygen, we have isolated Fnr mutants that increase expression of the nitrate reductase operon in the presence of oxygen (Fnr* mutants). Seven single-amino-acid substitutions that mapped within two regions of Fnr have been characterized. Two mutants mapped adjacent to two Cys residues in the N-terminal Cys cluster. Five Fnr* substitutions mapped to a region of Fnr that is similar to the cyclic AMP-binding domain of the catabolite activator protein (CAP). Within this group, four mutants were clustered in a region analogous to the CAP C helix, which is important in CAP dimer subunit interactions. Taken together, these data implicate regions in Fnr that may be important either in sensing oxygen deprivation or in the conformational change proposed to be necessary for Fnr activation under anaerobic conditions.
Collapse
Affiliation(s)
- P J Kiley
- Department of Biochemistry, University of Wisconsin, Madison 53706
| | | |
Collapse
|