1
|
Rousseau DL, Ishigami I, Yeh SR. Structural and functional mechanisms of cytochrome c oxidase. J Inorg Biochem 2025; 262:112730. [PMID: 39276716 PMCID: PMC11896598 DOI: 10.1016/j.jinorgbio.2024.112730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 08/20/2024] [Accepted: 09/06/2024] [Indexed: 09/17/2024]
Abstract
Cytochrome c oxidase (CcO) is the terminal enzyme in the electron transfer chain in mitochondria. It catalyzes the four-electron reduction of O2 to H2O and harnesses the redox energy to drive unidirectional proton translocation against a proton electrochemical gradient. A great deal of research has been conducted to comprehend the molecular properties of CcO. However, the mechanism by which the oxygen reduction reaction is coupled to proton translocation remains poorly understood. Here, we review the chemical properties of a variety of key oxygen intermediates of bovine CcO (bCcO) revealed by time-resolved resonance Raman spectroscopy and the structural features of the enzyme uncovered by serial femtosecond crystallography, an innovative technique that allows structural determination at room temperature without radiation damage. The implications of these data on the proton translocation mechanism are discussed.
Collapse
Affiliation(s)
- Denis L Rousseau
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - Izumi Ishigami
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Syun-Ru Yeh
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
2
|
Buhrke D, Hildebrandt P. Probing Structure and Reaction Dynamics of Proteins Using Time-Resolved Resonance Raman Spectroscopy. Chem Rev 2019; 120:3577-3630. [PMID: 31814387 DOI: 10.1021/acs.chemrev.9b00429] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The mechanistic understanding of protein functions requires insight into the structural and reaction dynamics. To elucidate these processes, a variety of experimental approaches are employed. Among them, time-resolved (TR) resonance Raman (RR) is a particularly versatile tool to probe processes of proteins harboring cofactors with electronic transitions in the visible range, such as retinal or heme proteins. TR RR spectroscopy offers the advantage of simultaneously providing molecular structure and kinetic information. The various TR RR spectroscopic methods can cover a wide dynamic range down to the femtosecond time regime and have been employed in monitoring photoinduced reaction cascades, ligand binding and dissociation, electron transfer, enzymatic reactions, and protein un- and refolding. In this account, we review the achievements of TR RR spectroscopy of nearly 50 years of research in this field, which also illustrates how the role of TR RR spectroscopy in molecular life science has changed from the beginning until now. We outline the various methodological approaches and developments and point out current limitations and potential perspectives.
Collapse
Affiliation(s)
- David Buhrke
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straße des 17, Juni 135, D-10623 Berlin, Germany
| | - Peter Hildebrandt
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straße des 17, Juni 135, D-10623 Berlin, Germany
| |
Collapse
|
3
|
Han Du WG, Götz AW, Noodleman L. DFT Fe a3-O/O-O Vibrational Frequency Calculations over Catalytic Reaction Cycle States in the Dinuclear Center of Cytochrome c Oxidase. Inorg Chem 2019; 58:13933-13944. [PMID: 31566371 PMCID: PMC6839913 DOI: 10.1021/acs.inorgchem.9b01840] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Density functional vibrational frequency calculations have been performed on eight geometry optimized cytochrome c oxidase (CcO) dinuclear center (DNC) reaction cycle intermediates and on the oxymyoglobin (oxyMb) active site. The calculated Fe-O and O-O stretching modes and their frequency shifts along the reaction cycle have been compared with the available resonance Raman (rR) measurements. The calculations support the proposal that in state A[Fea33+-O2-•···CuB+] of CcO, O2 binds with Fea32+ in a similar bent end-on geometry to that in oxyMb. The calculations show that the observed 20 cm-1 shift of the Fea3-O stretching mode from the PR to F state is caused by the protonation of the OH- ligand on CuB2+ (PR[Fea34+═O2-···HO--CuB2+] → F[Fea34+═O2-···H2O-CuB2+]), and that the H2O ligand is still on the CuB2+ site in the rR identified F[Fea34+═O2-···H2O-CuB2+] state. Further, the observed rR band at 356 cm-1 between states PR and F is likely an O-Fea3-porphyrin bending mode. The observed 450 cm-1 low Fea3-O frequency mode for the OH active oxidized state has been reproduced by our calculations on a nearly symmetrically bridged Fea33+-OH-CuB2+ structure with a relatively long Fea3-O distance near 2 Å. Based on Badger's rule, the calculated Fea3-O distances correlate well with the calculated νFe-O-2/3 (νFe-O is the Fea3-O stretching frequency) with correlation coefficient R = 0.973.
Collapse
Affiliation(s)
- Wen-Ge Han Du
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037
| | - Andreas W. Götz
- San Diego Supercomputer Center, University of California San Diego, 9500 Gilman Drive MC0505, La Jolla, CA 92093
| | - Louis Noodleman
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037
| |
Collapse
|
4
|
Geometric and Electronic Structure Contributions to O-O Cleavage and the Resultant Intermediate Generated in Heme-Copper Oxidases. J Am Chem Soc 2019; 141:10068-10081. [PMID: 31146528 DOI: 10.1021/jacs.9b04271] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This study investigates the mechanism of O-O bond cleavage in heme-copper oxidase (HCO) enzymes, combining experimental and computational insights from enzyme intermediates and synthetic models. It is determined that HCOs undergo a proton-initiated O-O cleavage mechanism where a single water molecule in the active site enables proton transfer (PT) from the cross-linked tyrosine to a peroxo ligand bridging the heme FeIII and CuII, and multiple H-bonding interactions lower the tyrosine p Ka. Due to sterics within the active site, the proton must either transfer initially to the O(Fe) (a high-energy intermediate), or from another residue over a ∼10 Å distance to reach the O(Cu) atom directly. While the distance between the H+ donor (Tyr) and acceptor (O(Cu)) results in a barrier to PT, this separation is critical for the low barrier to O-O cleavage as it enhances backbonding from Fe into the O22- σ* orbital. Thus, PT from Tyr precedes O-O elongation and is rate-limiting, consistent with available kinetic data. The electron transfers from tyrosinate after the barrier via a superexchange pathway provided by the cross-link, generating intermediate PM. PM is evaluated using available experimental data. The geometric structure contains an FeIV═O that is H-bonded to the CuII-OH. The electronic structure is a singlet, where the FeIV and CuII are antiferromagnetically coupled through the H-bond between the oxo(Fe) and hydroxo(Cu) ligands, while the CuII and Tyr• are ferromagnetically coupled due their delocalization into orthogonal magnetic orbitals on the cross-linked His residue. These findings provide critical insights into the mechanism of efficient O2 reduction in HCOs, and the nature of the PM intermediate that couples this reaction to proton pumping.
Collapse
|
5
|
Amanullah S, Singha A, Dey A. Tailor made iron porphyrins for investigating axial ligand and distal environment contributions to electronic structure and reactivity. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.01.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
6
|
Adam SM, Wijeratne GB, Rogler PJ, Diaz DE, Quist DA, Liu JJ, Karlin KD. Synthetic Fe/Cu Complexes: Toward Understanding Heme-Copper Oxidase Structure and Function. Chem Rev 2018; 118:10840-11022. [PMID: 30372042 PMCID: PMC6360144 DOI: 10.1021/acs.chemrev.8b00074] [Citation(s) in RCA: 164] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Heme-copper oxidases (HCOs) are terminal enzymes on the mitochondrial or bacterial respiratory electron transport chain, which utilize a unique heterobinuclear active site to catalyze the 4H+/4e- reduction of dioxygen to water. This process involves a proton-coupled electron transfer (PCET) from a tyrosine (phenolic) residue and additional redox events coupled to transmembrane proton pumping and ATP synthesis. Given that HCOs are large, complex, membrane-bound enzymes, bioinspired synthetic model chemistry is a promising approach to better understand heme-Cu-mediated dioxygen reduction, including the details of proton and electron movements. This review encompasses important aspects of heme-O2 and copper-O2 (bio)chemistries as they relate to the design and interpretation of small molecule model systems and provides perspectives from fundamental coordination chemistry, which can be applied to the understanding of HCO activity. We focus on recent advancements from studies of heme-Cu models, evaluating experimental and computational results, which highlight important fundamental structure-function relationships. Finally, we provide an outlook for future potential contributions from synthetic inorganic chemistry and discuss their implications with relevance to biological O2-reduction.
Collapse
Affiliation(s)
- Suzanne M. Adam
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Gayan B. Wijeratne
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Patrick J. Rogler
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Daniel E. Diaz
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - David A. Quist
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Jeffrey J. Liu
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Kenneth D. Karlin
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
7
|
Kitagishi H, Shimoji D, Ohta T, Kamiya R, Kudo Y, Onoda A, Hayashi T, Weiss J, Wytko JA, Kano K. A water-soluble supramolecular complex that mimics the heme/copper hetero-binuclear site of cytochrome c oxidase. Chem Sci 2018; 9:1989-1995. [PMID: 29675246 PMCID: PMC5892347 DOI: 10.1039/c7sc04732k] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 01/12/2018] [Indexed: 01/16/2023] Open
Abstract
The O2 adduct of an aqueous synthetic heme/copper model system built on a porphyrin/cyclodextrin supramolecular complex has been characterized.
In mitochondria, cytochrome c oxidase (CcO) catalyses the reduction of oxygen (O2) to water by using a heme/copper hetero-binuclear active site. Here we report a highly efficient supramolecular approach for the construction of a water-soluble biomimetic model for the active site of CcO. A tridentate copper(ii) complex was fixed onto 5,10,15,20-tetrakis(4-sulfonatophenyl)porphinatoiron(iii) (FeIIITPPS) through supramolecular complexation between FeIIITPPS and a per-O-methylated β-cyclodextrin dimer linked by a (2,2′:6′,2′′-terpyridyl)copper(ii) complex (CuIITerpyCD2). The reduced FeIITPPS/CuITerpyCD2 complex reacted with O2 in an aqueous solution at pH 7 and 25 °C to form a superoxo-type FeIII–O2–/CuI complex in a manner similar to CcO. The pH-dependent autoxidation of the O2 complex suggests that water molecules gathered at the distal Cu site are possibly involved in the FeIII–O2–/CuI superoxo complex in an aqueous solution. Electrochemical analysis using a rotating disk electrode demonstrated the role of the FeTPPS/CuTerpyCD2 hetero-binuclear structure in the catalytic O2 reduction reaction.
Collapse
Affiliation(s)
- Hiroaki Kitagishi
- Department of Molecular Chemistry and Biochemistry , Faculty of Science and Engineering , Doshisha University , Kyotanabe , Kyoto 610-0321 , Japan .
| | - Daiki Shimoji
- Department of Molecular Chemistry and Biochemistry , Faculty of Science and Engineering , Doshisha University , Kyotanabe , Kyoto 610-0321 , Japan .
| | - Takehiro Ohta
- Picobiology Institute , Graduate School of Life Science , University of Hyogo , RSC-UH LP Center , Hyogo 679-5148 , Japan
| | - Ryo Kamiya
- Department of Molecular Chemistry and Biochemistry , Faculty of Science and Engineering , Doshisha University , Kyotanabe , Kyoto 610-0321 , Japan .
| | - Yasuhiro Kudo
- Department of Molecular Chemistry and Biochemistry , Faculty of Science and Engineering , Doshisha University , Kyotanabe , Kyoto 610-0321 , Japan .
| | - Akira Onoda
- Department of Applied Chemistry , Graduate School of Engineering , Osaka University , 2-1 Yamadaoka , Suita 565-0871 , Japan
| | - Takashi Hayashi
- Department of Applied Chemistry , Graduate School of Engineering , Osaka University , 2-1 Yamadaoka , Suita 565-0871 , Japan
| | - Jean Weiss
- Institut de Chimie de Strasbourg , UMR 7177 , CNRS , Université de Strasbourg , 4 Rue Blaise Pascal , 67000 Strasbourg , France
| | - Jennifer A Wytko
- Institut de Chimie de Strasbourg , UMR 7177 , CNRS , Université de Strasbourg , 4 Rue Blaise Pascal , 67000 Strasbourg , France
| | - Koji Kano
- Department of Molecular Chemistry and Biochemistry , Faculty of Science and Engineering , Doshisha University , Kyotanabe , Kyoto 610-0321 , Japan .
| |
Collapse
|
8
|
Han Du WG, Götz AW, Noodleman L. A Water Dimer Shift Activates a Proton Pumping Pathway in the P R → F Transition of ba 3 Cytochrome c Oxidase. Inorg Chem 2018; 57:1048-1059. [PMID: 29308889 DOI: 10.1021/acs.inorgchem.7b02461] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Broken-symmetry density functional calculations have been performed on the [Fea34+,CuB2+] state of the dinuclear center (DNC) for the PR → F part of the catalytic cycle of ba3 cytochrome c oxidase (CcO) from Thermus thermophilus (Tt), using the OLYP-D3-BJ functional. The calculations show that the movement of the H2O molecules in the DNC affects the pKa values of the residue side chains of Tyr237 and His376+, which are crucial for proton transfer/pumping in ba3 CcO from Tt. The calculated lowest energy structure of the DNC in the [Fea34+,CuB2+] state (state F) is of the form Fea34+═O2-···CuB2+, in which the H2O ligand that resulted from protonation of the OH- ligand in the PR state is dissociated from the CuB2+ site. The calculated Fea34+═O2- distance in F (1.68 Å) is 0.03 Å longer than that in PR (1.65 Å), which can explain the different Fea34+═O2- stretching modes in P (804 cm-1) and F (785 cm-1) identified by resonance Raman experiments. In this F state, the CuB2+···O2- (ferryl-oxygen) distance is only around 2.4 Å. Hence, the subsequent OH state [Fea33+-OH--CuB2+] with a μ-hydroxo bridge can be easily formed, as shown by our calculations.
Collapse
Affiliation(s)
- Wen-Ge Han Du
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute , 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Andreas W Götz
- San Diego Supercomputer Center, University of California San Diego , 9500 Gilman Drive MC0505, La Jolla, California 92093, United States
| | - Louis Noodleman
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute , 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
9
|
Schaefer AW, Kieber-Emmons MT, Adam SM, Karlin KD, Solomon EI. Phenol-Induced O-O Bond Cleavage in a Low-Spin Heme-Peroxo-Copper Complex: Implications for O 2 Reduction in Heme-Copper Oxidases. J Am Chem Soc 2017; 139:7958-7973. [PMID: 28521498 PMCID: PMC5605297 DOI: 10.1021/jacs.7b03292] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
This study evaluates the reaction of a biomimetic heme-peroxo-copper complex, {[(DCHIm)(F8)FeIII]-(O22-)-[CuII(AN)]}+ (1), with a phenolic substrate, involving a net H-atom abstraction to cleave the bridging peroxo O-O bond that produces FeIV═O, CuII-OH, and phenoxyl radical moieties, analogous to the chemistry carried out in heme-copper oxidases (HCOs). A 3D potential energy surface generated for this reaction reveals two possible reaction pathways: one involves nearly complete proton transfer (PT) from the phenol to the peroxo ligand before the barrier; the other involves O-O homolysis, where the phenol remains H-bonding to the peroxo OCu in the transition state (TS) and transfers the H+ after the barrier. In both mechanisms, electron transfer (ET) from phenol occurs after the PT (and after the barrier); therefore, only the interaction with the H+ is involved in lowering the O-O cleavage barrier. The relative barriers depend on covalency (which governs ET from Fe), and therefore vary with DFT functional. However, as these mechanisms differ by the amount of PT at the TS, kinetic isotope experiments were conducted to determine which mechanism is active. It is found that the phenolic proton exhibits a secondary kinetic isotope effect, consistent with the calculations for the H-bonded O-O homolysis mechanism. The consequences of these findings are discussed in relation to O-O cleavage in HCOs, supporting a model in which a peroxo intermediate serves as the active H+ acceptor, and both the H+ and e- required for O-O cleavage derive from the cross-linked Tyr residue present at the active site.
Collapse
Affiliation(s)
- Andrew W Schaefer
- Department of Chemistry, Stanford University , Stanford, California 94305, United States
| | - Matthew T Kieber-Emmons
- Department of Chemistry, Stanford University , Stanford, California 94305, United States
- Department of Chemistry, The University of Utah , Salt Lake City, Utah 84112, United States
| | - Suzanne M Adam
- Department of Chemistry, The Johns Hopkins University , Baltimore, Maryland 21218, United States
| | - Kenneth D Karlin
- Department of Chemistry, The Johns Hopkins University , Baltimore, Maryland 21218, United States
| | - Edward I Solomon
- Department of Chemistry, Stanford University , Stanford, California 94305, United States
| |
Collapse
|
10
|
Han Du WG, Götz AW, Yang L, Walker RC, Noodleman L. A broken-symmetry density functional study of structures, energies, and protonation states along the catalytic O-O bond cleavage pathway in ba3 cytochrome c oxidase from Thermus thermophilus. Phys Chem Chem Phys 2016; 18:21162-71. [PMID: 27094074 DOI: 10.1039/c6cp00349d] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Broken-symmetry density functional calculations have been performed on the [Fea3, CuB] dinuclear center (DNC) of ba3 cytochrome c oxidase from Thermus thermophilus in the states of [Fea3(3+)-(HO2)(-)-CuB(2+), Tyr237(-)] and [Fea3(4+)[double bond, length as m-dash]O(2-), OH(-)-CuB(2+), Tyr237˙], using both PW91-D3 and OLYP-D3 functionals. Tyr237 is a special tyrosine cross-linked to His233, a ligand of CuB. The calculations have shown that the DNC in these states strongly favors the protonation of His376, which is above propionate-A, but not of the carboxylate group of propionate-A. The energies of the structures obtained by constrained geometry optimizations along the O-O bond cleavage pathway between [Fea3(3+)-(O-OH)(-)-CuB(2+), Tyr237(-)] and [Fea3(4+)[double bond, length as m-dash]O(2-)HO(-)-CuB(2+), Tyr237˙] have also been calculated. The transition of [Fea3(3+)-(O-OH)(-)-CuB(2+), Tyr237(-)] → [Fea3(4+)[double bond, length as m-dash]O(2-)HO(-)-CuB(2+), Tyr237˙] shows a very small barrier, which is less than 3.0/2.0 kcal mol(-1) in PW91-D3/OLYP-D3 calculations. The protonation state of His376 does not affect this O-O cleavage barrier. The rate limiting step of the transition from state A (in which O2 binds to Fea3(2+)) to state PM ([Fea3(4+)[double bond, length as m-dash]O(2-), OH(-)-CuB(2+), Tyr237˙], where the O-O bond is cleaved) in the catalytic cycle is, therefore, the proton transfer originating from Tyr237 to O-O to form the hydroperoxo [Fea3(3+)-(O-OH)(-)-CuB(2+), Tyr237(-)] state. The importance of His376 in proton uptake and the function of propionate-A/neutral-Asp372 as a gate to prevent the proton from back-flowing to the DNC are also shown.
Collapse
Affiliation(s)
- Wen-Ge Han Du
- Department of Integrative Structural and Computational Biology, GAC1118, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | | | | | | | | |
Collapse
|
11
|
Decréau RA, Collman JP. Three toxic gases meet in the mitochondria. Front Physiol 2015; 6:210. [PMID: 26347655 PMCID: PMC4542460 DOI: 10.3389/fphys.2015.00210] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 07/13/2015] [Indexed: 12/14/2022] Open
Abstract
The rationale of the study was two-fold: (i) develop a functional synthetic model of the Cytochrome c oxidase (CcO) active site, (ii) use it as a convenient tool to understand or predict the outcome of the reaction of CcO with ligands (physiologically relevant gases and other ligands). At physiological pH and potential, the model catalyzes the 4-electron reduction of oxygen. This model was immobilized on self-assembled-monolayer (SAM) modified electrode. During catalytic oxygen reduction, electron delivery through SAMs is rate limiting, similar to the situation in CcO. This model contains all three redox-active components in CcO's active site, which are required to minimize the production of partially-reduced-oxygen-species (PROS): Fe-heme (“heme a3”) in a myoglobin-like model fitted with a proximal imidazole ligand, and a distal tris-imidazole Copper (“CuB”) complex, where one imidazole is cross-linked to a phenol (mimicking “Tyr244”). This functional CcO model demonstrates how CcO itself might tolerate the hormone NO (which diffuses through the mitochondria). It is proposed that CuB delivers superoxide to NO bound to Fe-heme forming peroxynitrite, then nitrate that diffuses away. Another toxic gas, H2S, has exceptional biological effects: at ~80 ppm, H2S induces a state similar to hibernation in mice, lowering the animal's temperature and slowing respiration. Using our functional CcO model, we have demonstrated that at the same concentration range H2S can reversibly inhibit catalytic oxygen reduction. Such a reversible catalytic process on the model was also demonstrated with an organic compound, tetrazole (TZ). Following studies showed that TZ reversibly inhibits respiration in isolated mitochondria, and induces deactivation of platelets, a mitochondria-rich key component of blood coagulation. Hence, this program is a rare example illustrating the use of a functional model to understand and predict physiologically important reactions at the active site of CcO.
Collapse
Affiliation(s)
- Richard A Decréau
- Department of Chemistry (ICMUB Institute), University of Burgundy Franche-Comté Dijon, France ; Department of Chemistry, Stanford University Stanford, CA, USA
| | - James P Collman
- Department of Chemistry, Stanford University Stanford, CA, USA
| |
Collapse
|
12
|
Sezer M, Kielb P, Kuhlmann U, Mohrmann H, Schulz C, Heinrich D, Schlesinger R, Heberle J, Weidinger IM. Surface Enhanced Resonance Raman Spectroscopy Reveals Potential Induced Redox and Conformational Changes of Cytochrome c Oxidase on Electrodes. J Phys Chem B 2015; 119:9586-91. [PMID: 26135359 DOI: 10.1021/acs.jpcb.5b03206] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Immobilization of Cytochrome c oxidase (CcO) on electrodes makes voltage-driven reduction of oxygen to water possible. Efficient catalytic turnover in CcO/electrode systems is, however, often observed at large overpotentials that cannot be rationalized by the redox properties of the enzyme itself. To understand the structural basis for this observation, CcO was electrostatically adsorbed on amino-functionalized Ag electrodes, and the redox transitions of heme a and a3 were monitored via surface enhanced resonance Raman spectroscopy (SERRS) as a function of applied potential. Under completely anaerobic conditions, the reduction of heme a3 could be seen at potentials close to those measured in solution indicating an intact catalytic center. However, in the immobilized state, a new non-native heme species was observed that exhibited a redox potential much more negative than measured for the native hemes. Analysis of the high and low frequency SERR spectra indicated that this new species is formed from heme a upon axial loss of one histidine ligand. It is concluded that the formation of the non-native heme a species alters the potential-dependent electron supply to the catalytic reaction and, thus, can have a impact on the applicability of this enzyme in biofuel cells.
Collapse
Affiliation(s)
- Murat Sezer
- †Institut für Chemie PC 14, Technische Universität Berlin, Strasse des 17. Juni 135, 10623 Berlin, Germany
| | - Patrycja Kielb
- †Institut für Chemie PC 14, Technische Universität Berlin, Strasse des 17. Juni 135, 10623 Berlin, Germany
| | - Uwe Kuhlmann
- †Institut für Chemie PC 14, Technische Universität Berlin, Strasse des 17. Juni 135, 10623 Berlin, Germany
| | - Hendrik Mohrmann
- ‡Institut für Experimentalphysik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Claudia Schulz
- †Institut für Chemie PC 14, Technische Universität Berlin, Strasse des 17. Juni 135, 10623 Berlin, Germany
| | - Dorothea Heinrich
- ‡Institut für Experimentalphysik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Ramona Schlesinger
- ‡Institut für Experimentalphysik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Joachim Heberle
- ‡Institut für Experimentalphysik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Inez M Weidinger
- †Institut für Chemie PC 14, Technische Universität Berlin, Strasse des 17. Juni 135, 10623 Berlin, Germany
| |
Collapse
|
13
|
Ishigami I, Hikita M, Egawa T, Yeh SR, Rousseau DL. Proton translocation in cytochrome c oxidase: insights from proton exchange kinetics and vibrational spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1847:98-108. [PMID: 25268561 DOI: 10.1016/j.bbabio.2014.09.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 09/11/2014] [Accepted: 09/20/2014] [Indexed: 11/19/2022]
Abstract
Cytochrome c oxidase is the terminal enzyme in the electron transfer chain. It reduces oxygen to water and harnesses the released energy to translocate protons across the inner mitochondrial membrane. The mechanism by which the oxygen chemistry is coupled to proton translocation is not yet resolved owing to the difficulty of monitoring dynamic proton transfer events. Here we summarize several postulated mechanisms for proton translocation, which have been supported by a variety of vibrational spectroscopic studies. We recently proposed a proton translocation model involving proton accessibility to the regions near the propionate groups of the heme a and heme a3 redox centers of the enzyme based by hydrogen/deuterium (H/D) exchange Raman scattering studies (Egawa et al., PLoS ONE 2013). To advance our understanding of this model and to refine the proton accessibility to the hemes, the H/D exchange dependence of the heme propionate group vibrational modes on temperature and pH was measured. The H/D exchange detected at the propionate groups of heme a3 takes place within a few seconds under all conditions. In contrast, that detected at the heme a propionates occurs in the oxidized but not the reduced enzyme and the H/D exchange is pH-dependent with a pKa of ~8.0 (faster at high pH). Analysis of the thermodynamic parameters revealed that, as the pH is varied, entropy/enthalpy compensation held the free energy of activation in a narrow range. The redox dependence of the possible proton pathways to the heme groups is discussed. This article is part of a Special Issue entitled: Vibrational spectroscopies and bioenergetic systems.
Collapse
Affiliation(s)
- Izumi Ishigami
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Masahide Hikita
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Tsuyoshi Egawa
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Syun-Ru Yeh
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Denis L Rousseau
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
14
|
Solomon EI, Heppner DE, Johnston EM, Ginsbach JW, Cirera J, Qayyum M, Kieber-Emmons MT, Kjaergaard CH, Hadt RG, Tian L. Copper active sites in biology. Chem Rev 2014; 114:3659-853. [PMID: 24588098 PMCID: PMC4040215 DOI: 10.1021/cr400327t] [Citation(s) in RCA: 1219] [Impact Index Per Article: 110.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
| | - David E. Heppner
- Department of Chemistry, Stanford University, Stanford, CA, 94305
| | | | - Jake W. Ginsbach
- Department of Chemistry, Stanford University, Stanford, CA, 94305
| | - Jordi Cirera
- Department of Chemistry, Stanford University, Stanford, CA, 94305
| | - Munzarin Qayyum
- Department of Chemistry, Stanford University, Stanford, CA, 94305
| | | | | | - Ryan G. Hadt
- Department of Chemistry, Stanford University, Stanford, CA, 94305
| | - Li Tian
- Department of Chemistry, Stanford University, Stanford, CA, 94305
| |
Collapse
|
15
|
Pinakoulaki E, Daskalakis V, Ohta T, Richter OMH, Budiman K, Kitagawa T, Ludwig B, Varotsis C. The protein effect in the structure of two ferryl-oxo intermediates at the same oxidation level in the heme copper binuclear center of cytochrome c oxidase. J Biol Chem 2013; 288:20261-6. [PMID: 23723073 DOI: 10.1074/jbc.m113.468488] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Identification of the intermediates and determination of their structures in the reduction of dioxygen to water by cytochrome c oxidase (CcO) are particularly important to understanding both O2 activation and proton pumping by the enzyme. In this work, we report the products of the rapid reaction of O2 with the mixed valence form (CuA(2+), heme a(3+), heme a3(2+)-CuB(1+)) of the enzyme. The resonance Raman results show the formation of two ferryl-oxo species with characteristic Fe(IV)=O stretching modes at 790 and 804 cm(-1) at the peroxy oxidation level (PM). Density functional theory calculations show that the protein environment of the proximal H-bonded His-411 determines the strength of the distal Fe(IV)=O bond. In contrast to previous proposals, the PM intermediate is also formed in the reaction of Y167F with O2. These results suggest that in the fully reduced enzyme, the proton pumping ν(Fe(IV)=O) = 804 cm(-1) to ν(Fe(IV)=O) = 790 cm(-1) transition (P→F, where P is peroxy and F is ferryl) is triggered not only by electron transfer from heme a to heme a3 but also by the formation of the H-bonded form of the His-411-Fe(IV)=O conformer in the proximal site of heme a3. The implications of these results with respect to the role of an O=Fe(IV)-His-411-H-bonded form to the ring A propionate of heme a3-Asp-399-H2O site and, thus, to the exit/output proton channel (H2O) pool during the proton pumping P→F transition are discussed. We propose that the environment proximal to the heme a3 controls the spectroscopic properties of the ferryl intermediates in cytochrome oxidases.
Collapse
Affiliation(s)
- Eftychia Pinakoulaki
- Department of Chemistry, University of Cyprus, P. O. Box 20537, 1678 Nicosia, Cyprus
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Schwalbe M, Metzinger R, Teets TS, Nocera DG. Terpyridine-Porphyrin Hetero-Pacman Compounds. Chemistry 2012; 18:15449-58. [DOI: 10.1002/chem.201201728] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 08/20/2012] [Indexed: 12/31/2022]
|
17
|
The origin of the FeIV=O intermediates in cytochrome aa3 oxidase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1817:552-7. [DOI: 10.1016/j.bbabio.2011.07.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Revised: 07/18/2011] [Accepted: 07/19/2011] [Indexed: 11/17/2022]
|
18
|
Kieber-Emmons MT, Li Y, Halime Z, Karlin KD, Solomon EI. Electronic structure of a low-spin heme/Cu peroxide complex: spin-state and spin-topology contributions to reactivity. Inorg Chem 2011; 50:11777-86. [PMID: 22007669 PMCID: PMC3226806 DOI: 10.1021/ic2018727] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This study details the electronic structure of the heme–peroxo–copper adduct {[(F8)Fe(DCHIm)]-O2-[Cu(AN)]}+ (LS(AN)) in which O2(2–) bridges the metals in a μ-1,2 or “end-on” configuration. LS(AN) is generated by addition of coordinating base to the parent complex {[(F8)Fe]-O2-[Cu(AN)]}+ (HS(AN)) in which the O2(2–) bridges the metals in an μ-η2:η2 or “side-on” mode. In addition to the structural change of the O2(2–) bridging geometry, coordination of the base changes the spin state of the heme fragment (from S = 5/2 in HS(AN) to S = 1/2 in LS(AN)) that results in an antiferromagnetically coupled diamagnetic ground state in LS(AN). The strong ligand field of the porphyrin modulates the high-spin to low-spin effect on Fe–peroxo bonding relative to nonheme complexes, which is important in the O–O bond cleavage process. On the basis of DFT calculations, the ground state of LS(AN) is dependent on the Fe–O–O–Cu dihedral angle, wherein acute angles (<~150°) yield an antiferromagnetically coupled electronic structure while more obtuse angles yield a ferromagnetic ground state. LS(AN) is diamagnetic and thus has an antiferromagnetically coupled ground state with a calculated Fe–O–O–Cu dihedral angle of 137°. The nature of the bonding in LS(AN) and the frontier molecular orbitals which lead to this magneto-structural correlation provide insight into possible spin topology contributions to O–O bond cleavage by cytochrome c oxidase.
Collapse
Affiliation(s)
| | - Yuqi Li
- Department of Chemistry, The Johns Hopkins University, Baltimore, MD 21218
| | - Zakaria Halime
- Department of Chemistry, The Johns Hopkins University, Baltimore, MD 21218
| | - Kenneth D. Karlin
- Department of Chemistry, The Johns Hopkins University, Baltimore, MD 21218
| | | |
Collapse
|
19
|
Kieber-Emmons MT, Qayyum MF, Li Y, Halime Z, Hodgson KO, Hedman B, Karlin KD, Solomon EI. Spectroscopic elucidation of a new heme/copper dioxygen structure type: implications for O···O bond rupture in cytochrome c oxidase. Angew Chem Int Ed Engl 2011; 51:168-72. [PMID: 22095556 DOI: 10.1002/anie.201104080] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Revised: 08/24/2011] [Indexed: 11/11/2022]
|
20
|
Kieber-Emmons MT, Qayyum MF, Li Y, Halime Z, Hodgson KO, Hedman B, Karlin KD, Solomon EI. Spectroscopic Elucidation of a New Heme/Copper Dioxygen Structure Type: Implications for O⋅⋅⋅O Bond Rupture in Cytochrome c Oxidase. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201104080] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
21
|
Koutsoupakis C, Kolaj-Robin O, Soulimane T, Varotsis C. Probing protonation/deprotonation of tyrosine residues in cytochrome ba3 oxidase from Thermus thermophilus by time-resolved step-scan Fourier transform infrared spectroscopy. J Biol Chem 2011; 286:30600-30605. [PMID: 21757723 DOI: 10.1074/jbc.m111.252213] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Elucidating the properties of the heme Fe-Cu(B) binuclear center and the dynamics of the protein response in cytochrome c oxidase is crucial to understanding not only the dioxygen activation and bond cleavage by the enzyme but also the events related to the release of the produced water molecules. The time-resolved step-scan FTIR difference spectra show the ν(7a)(CO) of the protonated form of Tyr residues at 1247 cm(-1) and that of the deprotonated form at 1301 cm(-1). By monitoring the intensity changes of the 1247 and 1301 cm(-1) modes as a function of pH, we measured a pK(a) of 7.8 for the observed tyrosine. The FTIR spectral changes associated with the tyrosine do not belong to Tyr-237 but are attributed to the highly conserved in heme-copper oxidases Tyr-136 and/or Tyr-133 residue (Koutsoupakis, K., Stavrakis, S., Pinakoulaki, E., Soulimane, T., and Varotsis, C. (2002) J. Biol. Chem. 277, 32860-32866). The oxygenation of CO by the mixed-valence form of the enzyme revealed the formation of the ∼607 nm P (Fe(IV)=O) species in the pH 6-9 range and the return to the oxidized form without the formation of the 580 nm F form. The data indicate that Tyr-237 is not involved in the proton transfer pathway in the oxygenation of CO by the mixed-valence form of the enzyme. The implication of these results with respect to the role of Tyr-136 and Tyr-133 in proton transfer/gating along with heme a(3) ring D propionate-H(2)O-ring A propionate-Asp-372 site to the exit/output proton channel (H(2)O pool) is discussed.
Collapse
Affiliation(s)
- Constantinos Koutsoupakis
- Department of Environmental Science and Technology, Cyprus University of Technology, 3603 Lemesos, Cyprus
| | - Olga Kolaj-Robin
- Chemical and Environmental Science Department and Materials & Surface Science Institute, University of Limerick, Limerick, Ireland
| | - Tewfik Soulimane
- Chemical and Environmental Science Department and Materials & Surface Science Institute, University of Limerick, Limerick, Ireland
| | - Constantinos Varotsis
- Department of Environmental Science and Technology, Cyprus University of Technology, 3603 Lemesos, Cyprus.
| |
Collapse
|
22
|
Collman JP, Decréau RA, Dey A, Yang Y. Water may inhibit oxygen binding in hemoprotein models. Proc Natl Acad Sci U S A 2009; 106:4101-5. [PMID: 19246375 PMCID: PMC2657390 DOI: 10.1073/pnas.0900893106] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2009] [Indexed: 11/18/2022] Open
Abstract
Three distal imidazole pickets in a cytochrome c oxidase (CcO) model form a pocket hosting a cluster of water molecules. The cluster makes the ferrous heme low spin, and consequently the O(2) binding slow. The nature of the rigid proximal imidazole tail favors a high spin/low spin cross-over. The O(2) binding rate is enhanced either by removing the water, increasing the hydrophobicity of the gas binding pocket, or inserting a metal ion that coordinates to the 3 distal imidazole pickets.
Collapse
Affiliation(s)
- James P Collman
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA.
| | | | | | | |
Collapse
|
23
|
Collman JP, Decréau RA. Functional biomimetic models for the active site in the respiratory enzyme cytochrome c oxidase. Chem Commun (Camb) 2008:5065-76. [PMID: 18956030 DOI: 10.1039/b808070b] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A functional analog of the active site in the respiratory enzyme, cytochrome c oxidase (CcO) reproduces every feature in CcO's active site: a myoglobin-like heme (heme a3), a distal tridentate imidazole copper complex (Cu(B)), a phenol (Tyr244), and a proximal imidazole. When covalently attached to a liquid-crystalline SAM film on an Au electrode, this functional model continuously catalyzes the selective four-electron reduction of dioxygen at physiological potential and pH, under rate-limiting electron flux (as occurs in CcO).
Collapse
Affiliation(s)
- James P Collman
- Stanford University, Chemistry Department, Stanford, CA-94305-5080, USA.
| | | |
Collapse
|
24
|
Liu JG, Naruta Y, Tani F. Synthetic Models of the Active Site of Cytochromec Oxidase: Influence of Tridentate or Tetradentate Copper Chelates Bearing a HisTyr Linkage Mimic on Dioxygen Adduct Formation by Heme/Cu Complexes. Chemistry 2007; 13:6365-78. [PMID: 17503416 DOI: 10.1002/chem.200601884] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Two synthetic models of the active site of cytochrome c oxidase--[(LN4-OH)CuI-FeII(TMP)]+ (1 a) and [(LN3-OH)CuI-FeII(TMP)]+ (2 a)-have been designed and synthesized. These models each contain a heme and a covalently attached copper moiety supported either by a tetradentate N4-copper chelate or by a tridentate N3-copper chelate including a moiety that acts as a mimic of the crosslinked His-Tyr component of cytochrome c oxidase. Low-temperature oxygenation reactions of these models have been investigated by spectroscopic methods including UV/Vis, resonance Raman, ESI-MS, and EPR spectroscopy. Oxygenation of the tetradentate model 1 a in MeCN and in other solvents produces a low-temperature-stable dioxygen-bridged peroxide [(LN4-OH)CuII-O2-FeIII(TMP)]+ {nuO--O=799 (16O2)/752 cm(-1) (18O2)}, while a heme superoxide species [(TMP)FeIII(O2-)CuIILN3-OH] {nuFe--O2: 576 (16O2)/551 cm(-1) (18O2)} is generated when the tridentate model 2 a is oxygenated in EtCN solution under similar experimental conditions. The coexistence of a heme superoxide species [(TMP)FeIII(O2-)CuIILN3-OH] and a bridged peroxide [(LN3-OH)CuII-O2-FeIII(TMP)]+ species in equal amounts is observed when the oxygenation reaction of 2 a is performed in CH2Cl(2)/7 % EtCN, while the percentage of the peroxide (approximately 70 %) in relation to superoxide (approximately 30 %) increases further when the crosslinked phenol moiety in 2 a is deprotonated to produce the bridged peroxide [(LN3-OH)CuII-O2-FeIII(TMP)]+ {nuO--O: 812 (16O2)/765 cm(-1) (18O2)} as the main dioxygen intermediate. The weak reducibility and decreased O2 reactivity of the tricoordinated CuI site in 2 a are responsible for the solvent-dependent formation of dioxygen adducts. The initial binding of dioxygen to the copper site en route to the formation of a bridged heme-O2-Cu intermediate by model 2 a is suggested and the deprotonated crosslinked His-Tyr moiety might contribute to enhancement of the O2 affinity of the CuI site at an early stage of the dioxygen-binding process.
Collapse
Affiliation(s)
- Jin-Gang Liu
- Institute for Materials Chemistry and Engineering, Kyushu University, Higashi-ku, Fukuoka, 812-8581, Japan
| | | | | |
Collapse
|
25
|
Collman JP, Decréau RA, Yan Y, Yoon J, Solomon EI. Intramolecular single-turnover reaction in a cytochrome C oxidase model bearing a Tyr244 mimic. J Am Chem Soc 2007; 129:5794-5. [PMID: 17429972 PMCID: PMC2512969 DOI: 10.1021/ja0690969] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- James P Collman
- Department of Chemistry, Stanford University, Stanford, California 94305-5080, USA.
| | | | | | | | | |
Collapse
|
26
|
Oxygen Activation Mechanism at the Binuclear Site of Heme-Copper Oxidase Superfamily as Revealed by Time-Resolved Resonance Raman Spectroscopy. ACTA ACUST UNITED AC 2007. [DOI: 10.1002/9780470166468.ch6] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
27
|
Musser SM, Stowell MH, Chan SI. Cytochrome c oxidase: chemistry of a molecular machine. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 2006; 71:79-208. [PMID: 8644492 DOI: 10.1002/9780470123171.ch3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The plethora of proposed chemical models attempting to explain the proton pumping reactions catalyzed by the CcO complex, especially the number of recent models, makes it clear that the problem is far from solved. Although we have not discussed all of the models proposed to date, we have described some of the more detailed models in order to illustrate the theoretical concepts introduced at the beginning of this section on proton pumping as well as to illustrate the rich possibilities available for effecting proton pumping. It is clear that proton pumping is effected by conformational changes induced by oxidation/reduction of the various redox centers in the CcO complex. It is for this reason that the CcO complex is called a redox-linked proton pump. The conformational changes of the proton pump cycle are usually envisioned to be some sort of ligand-exchange reaction arising from unstable geometries upon oxidation/reduction of the various redox centers. However, simple geometrical rearrangements, as in the Babcock and Mitchell models are also possible. In any model, however, hydrogen bonds must be broken and reformed due to conformational changes that result from oxidation/reduction of the linkage site during enzyme turnover. Perhaps the most important point emphasized in this discussion, however, is the fact that proton pumping is a directed process and it is electron and proton gating mechanisms that drive the proton pump cycle in the forward direction. Since many of the models discussed above lack effective electron and/or proton gating, it is clear that the major difficulty in developing a viable chemical model is not formulating a cyclic set of protein conformational changes effecting proton pumping (redox linkage) but rather constructing the model with a set of physical constraints so that the proposed cycle proceeds efficiently as postulated. In our discussion of these models, we have not been too concerned about which electron of the catalytic cycle was entering the site of linkage, but merely whether an ET to the binuclear center played a role. However, redox linkage only occurs if ET to the activated binuclear center is coupled to the proton pump. Since all of the models of proton pumping presented here, with the exception of the Rousseau expanded model and the Wikström model, have a maximum stoichiometry of 1 H+/e-, they inadequately explain the 2 H+/e- ratio for the third and fourth electrons of the dioxygen reduction cycle (see Section V.B). One way of interpreting this shortfall of protons is that the remaining protons are pumped by an as yet undefined indirectly coupled mechanism. In this scenario, the site of linkage could be coupled to the pumping of one proton in a direct fashion and one proton in an indirect fashion for a given electron. For a long time, it was assumed that at least some elements of such an indirect mechanism reside in subunit III. While recent evidence argues against the involvement of subunit III in the proton pump, subunit III may still participate in a regulatory and/or structural capacity (Section II.E). Attention has now focused on subunits I and II in the search for residues intimately involved in the proton pump mechanism and/or as part of a proton channel. In particular, the role of some of the highly conserved residues of helix VIII of subunit I are currently being studied by site directed mutagenesis. In our opinion, any model that invokes heme alpha 3 or CuB as the site of linkage must propose a very effective means by which the presumedly fast uncoupling ET to the dioxygen intermediates is prevented. It is difficult to imagine that ET over the short distance from heme alpha 3 or CuB to the dioxygen intermediate requires more than 1 ns. In addition, we expect the conformational changes of the proton pump to require much more than 1 ns (see Section V.B).
Collapse
Affiliation(s)
- S M Musser
- Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena 91125, USA
| | | | | |
Collapse
|
28
|
Liu JG, Naruta Y, Tani F. A functional model of the cytochrome c oxidase active site: unique conversion of a heme-mu-peroxo-Cu(II) intermediate into heme- superoxo/Cu(I). Angew Chem Int Ed Engl 2006; 44:1836-40. [PMID: 15723432 DOI: 10.1002/anie.200462582] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jin-Gang Liu
- Institute for Materials Chemistry and Engineering, Kyushu University, Higashi-ku, Fukuoka, 812-8581, Japan
| | | | | |
Collapse
|
29
|
Liu JG, Naruta Y, Tani F. A Functional Model of the Cytochromec Oxidase Active Site: Unique Conversion of a Heme-?-peroxo-CuII Intermediate into Heme- superoxo/CuI. Angew Chem Int Ed Engl 2005. [DOI: 10.1002/ange.200462582] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
30
|
Szundi I, Cappuccio J, Einarsdóttir O. Amplitude Analysis of Single-Wavelength Time-Dependent Absorption Data Does Not Support the Conventional Sequential Mechanism for the Reduction of Dioxygen to Water Catalyzed by Bovine Heart Cytochrome c Oxidase. Biochemistry 2004; 43:15746-58. [PMID: 15595830 DOI: 10.1021/bi049408p] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The reactions of fully reduced and mixed-valence bovine heart cytochrome c oxidase with dioxygen have been reinvestigated in the absence and presence of metal ions (Zn(2+), Ni(2+), and Cd(2+)) by time-resolved optical absorption spectroscopy using the CO flow-flash technique. The time-resolved data were recorded on a microsecond to millisecond time scale at 442, 610, and 820 nm and subjected to quantitative amplitude analysis based on a conventional unidirectional sequential mechanism. The amplitudes of the sequential intermediates are derived from the absorbance changes associated with the different exponentials and from the kinetic equations of the sequential scheme. The general relationship between the pre-exponential factors and the absorbance of the successive intermediates in the sequential scheme is presented. A comparison of the experimental amplitudes of the individual intermediates with the model amplitudes at the three wavelengths indicates that the low spin heme a is incompletely oxidized during the formation of the sequential P(R) intermediate (P(R,s)). The conversion of the sequential F intermediate to the oxidized enzyme occurs on two millisecond time scales. The amplitude analysis of the single-wavelength data does not support the conventional sequential mechanism for the reduction of dioxygen to water catalyzed by cytochrome c oxidase.
Collapse
Affiliation(s)
- Istvan Szundi
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064, USA
| | | | | |
Collapse
|
31
|
Einarsdóttir O, Szundi I. Time-resolved optical absorption studies of cytochrome oxidase dynamics. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2004; 1655:263-73. [PMID: 15100041 DOI: 10.1016/j.bbabio.2003.07.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2003] [Accepted: 07/31/2003] [Indexed: 10/26/2022]
Abstract
Time-resolved spectroscopic studies in our laboratory of bovine heart cytochrome c oxidase dynamics are summarized. Intramolecular electron transfer was investigated upon photolysis of CO from the mixed-valence enzyme, by pulse radiolysis, and upon light-induced electron injection into the cytochrome c/cytochrome oxidase complex from a novel photoactivatable dye. The reduction of dioxygen to water was monitored by a gated multichannel analyzer using the CO flow-flash method or a synthetic caged dioxygen carrier. The pH dependence of the intermediate spectra suggests a mechanism of dioxygen reduction more complex than the conventional unidirectional sequential scheme. A branched model is proposed, in which one branch produces the P form and the other branch the F form. The rate of exchange between the two branches is pH-dependent. A cross-linked histidine-phenol was synthesized and characterized to explore the role of the cross-linked His-Tyr cofactor in the function of the enzyme. Time-resolved optical absorption spectra, EPR and FTIR spectra of the compound generated after UV photolysis indicated the presence of a radical residing primarily on the phenoxyl ring. The relevance of these results to cytochrome oxidase function is discussed.
Collapse
Affiliation(s)
- Olöf Einarsdóttir
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA.
| | | |
Collapse
|
32
|
Palmer G. The contributions of G.T. (Jerry) Babcock to our understanding of cytochrome oxidase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2004; 1655:235-40. [PMID: 15100037 DOI: 10.1016/j.bbabio.2003.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2003] [Accepted: 05/06/2003] [Indexed: 11/30/2022]
Affiliation(s)
- Graham Palmer
- Department of Biochemistry and Cell Biology, Rice University, MS 140, 6100 Main, Houston, TX 77251-1892, USA.
| |
Collapse
|
33
|
Koutsoupakis C, Pinakoulaki E, Stavrakis S, Daskalakis V, Varotsis C. Time-resolved step-scan Fourier transform infrared investigation of heme-copper oxidases: implications for O2 input and H2O/H+ output channels. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2004; 1655:347-52. [PMID: 15100050 DOI: 10.1016/j.bbabio.2003.06.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2003] [Revised: 05/21/2003] [Accepted: 06/25/2003] [Indexed: 10/26/2022]
Abstract
We have applied FTIR and time-resolved step-scan Fourier transform infrared (TRS(2)-FTIR) spectroscopy to investigate the dynamics of the heme-Cu(B) binuclear center and the protein dynamics of mammalian aa(3), Pseudomonas stutzeri cbb(3), and caa(3) and ba(3) from Thermus thermophilus cytochrome oxidases. The implications of these results with respect to (1) the molecular motions that are general to the photodynamics of the binuclear center in heme-copper oxidases, and (2) the proton pathways located in the ring A propionate of heme a(3)-Asp372-H(2)O site that is conserved among all structurally known oxidases are discussed.
Collapse
|
34
|
Collman JP, Sunderland CJ, Berg KE, Vance MA, Solomon EI. Spectroscopic evidence for a heme-superoxide/Cu(I) intermediate in a functional model of cytochrome c oxidase. J Am Chem Soc 2003; 125:6648-9. [PMID: 12769571 DOI: 10.1021/ja034382v] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A superstructured tetraphenylporphyrin with a covalently attached proximal imidazole axial base and three distal imidazole pickets has been developed as a model for the active site of terminal oxidases such as cytochrome c oxidase. The oxygen adduct of the Fe-only heme (at low temperature) has a diamagnetic NMR and is EPR silent, which taken together with a resonance Raman oxygen isotope sensitive band (nuFe-O) at 575/554 cm-1 (16O2/18O2) indicates formation of a six-coordinate heme-superoxide complex. Unexpectedly, the Fe/Cu complex, where the copper is in a trisimidazole environment approximately 5 A above the heme plane, displays similar characteristics: a diamagnetic NMR, EPR silence, and nuFe-O at 570/544 cm-1. This indicates the dioxygen adduct of this Fe/Cu system is also a superoxide. This contrasts with previously characterized partially reduced dioxygen intermediates of binuclear heme/copper complexes that form Fe/Cu mu-peroxo complexes.
Collapse
Affiliation(s)
- James P Collman
- Department of Chemistry, Stanford University, Stanford, CA 94305-5080, USA.
| | | | | | | | | |
Collapse
|
35
|
Pinakoulaki E, Pfitzner U, Ludwig B, Varotsis C. Direct detection of Fe(IV)[double bond]O intermediates in the cytochrome aa3 oxidase from Paracoccus denitrificans/H2O2 reaction. J Biol Chem 2003; 278:18761-6. [PMID: 12637529 DOI: 10.1074/jbc.m211925200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We report the first evidence for the formation of the "607- and 580-nm forms" in the cytochrome oxidase aa3/H2O2 reaction without the involvement of tyrosine 280. The pKa of the 607-580-nm transition is 7.5. The 607-nm form is also formed in the mixed valence cytochrome oxidase/O2 reaction in the absence of tyrosine 280. Steady-state resonance Raman characterization of the reaction products of both the wild-type and Y280H cytochrome aa3 from Paracoccus denitrificans indicate the formation of six-coordinate low spin species, and do not support, in contrast to previous reports, the formation of a porphyrin pi-cation radical. We observe three oxygen isotope-sensitive Raman bands in the oxidized wild-type aa3/H2O2 reaction at 804, 790, and 358 cm-1. The former two are assigned to the Fe(IV)[double bond]O stretching mode of the 607- and 580-nm forms, respectively. The 14 cm-1 frequency difference between the oxoferryl species is attributed to variations in the basicity of the proximal to heme a3 His-411, induced by the oxoferryl conformations of the heme a3-CuB pocket during the 607-580-nm transition. We suggest that the 804-790 cm-1 oxoferryl transition triggers distal conformational changes that are subsequently communicated to the proximal His-411 heme a3 site. The 358 cm-1 mode has been found for the first time to accumulate with the 804 cm-1 mode in the peroxide reaction. These results indicate that the mechanism of oxygen reduction must be reexamined.
Collapse
|
36
|
Rousseau DL, Han S. Time-resolved resonance Raman spectroscopy of intermediates in cytochrome oxidase. Methods Enzymol 2003; 354:351-68. [PMID: 12418239 DOI: 10.1016/s0076-6879(02)54028-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
Affiliation(s)
- Denis L Rousseau
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | |
Collapse
|
37
|
Schultz BE, Chan SI. Structures and proton-pumping strategies of mitochondrial respiratory enzymes. ANNUAL REVIEW OF BIOPHYSICS AND BIOMOLECULAR STRUCTURE 2001; 30:23-65. [PMID: 11340051 DOI: 10.1146/annurev.biophys.30.1.23] [Citation(s) in RCA: 191] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Enzymes of the mitochondrial respiratory chain serve as proton pumps, using the energy made available from electron transfer reactions to transport protons across the inner mitochondrial membrane and create an electrochemical gradient used for the production of ATP. The ATP synthase enzyme is reversible and can also serve as a proton pump by coupling ATP hydrolysis to proton translocation. Each of the respiratory enzymes uses a different strategy for performing proton pumping. In this work, the strategies are described and the structural bases for the action of these proteins are discussed in light of recent crystal structures of several respiratory enzymes. The mechanisms and efficiency of proton translocation are also analyzed in terms of the thermodynamics of the substrate transformations catalyzed by these enzymes.
Collapse
Affiliation(s)
- B E Schultz
- Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, CA 91125, USA
| | | |
Collapse
|
38
|
Szundi I, Liao GL, Einarsdóttir O. Near-infrared time-resolved optical absorption studies of the reaction of fully reduced cytochrome c oxidase with dioxygen. Biochemistry 2001; 40:2332-9. [PMID: 11327853 DOI: 10.1021/bi002220v] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Electron transfer during the reaction of fully reduced bovine heart cytochrome oxidase with dioxygen has been studied at 24 degrees C in the near-infrared region following photolysis of the fully reduced CO-bound complex. The transient spectral changes and kinetics were followed on microsecond to millisecond time scales at nine different wavelengths between 597 and 935 nm and were analyzed using singular value decomposition and global exponential fitting. Four apparent lifetimes, 14 micros, 40 micros, 86 micros, and 1.1 ms, were resolved. The near-infrared spectra of the intermediates are extracted on the basis of a previously proposed mechanism [Sucheta et al. (1998) Biochemistry 37, 17905-17914] and compared to model spectra of the postulated intermediates. The data provide a comprehensive picture of the spectral contributions of the different redox centers in their respective oxidation or ligation states in the near-infrared region and strongly support that Cu(A) is partially (2/3), but not fully, oxidized in the 3-electron-reduced ferryl intermediate.
Collapse
Affiliation(s)
- I Szundi
- Department of Chemistry and Biochemistry, University of California at Santa Cruz, Santa Cruz, California 95060
| | | | | |
Collapse
|
39
|
Kim Y, Shinzawa-Itoh K, Yoshikawa S, Kitagawa T. Presence of the heme-oxo intermediate in oxygenation of carbon monoxide by cytochrome c oxidase revealed by resonance Raman spectroscopy. J Am Chem Soc 2001; 123:757-8. [PMID: 11456599 DOI: 10.1021/ja0027867] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Y Kim
- Center for Integrative Bioscience, Okazaki National Research Institutes, Myodaiji, Okazaki 444-8585, Japan
| | | | | | | |
Collapse
|
40
|
Das TK, Couture M, Ouellet Y, Guertin M, Rousseau DL. Simultaneous observation of the O---O and Fe---O2 stretching modes in oxyhemoglobins. Proc Natl Acad Sci U S A 2001; 98:479-84. [PMID: 11209051 PMCID: PMC14612 DOI: 10.1073/pnas.98.2.479] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Understanding of the chemical nature of the dioxygen moiety of oxyhemoglobin is crucial for elucidation of its physiological function. In the present work, direct Raman spectroscopic observation of both the FeO(2) and OO stretching modes unambiguously establishes the vibrational characteristics of the oxygen-bound heme moiety in the hemoglobins of Chlamydomonas eugametos and Synechocystis PCC6803. In addition to providing the resonance Raman assignment of the OO stretching mode (1136 cm(-1) for Chlamydomonas, 1133 cm(-1) for Synechocystis) in an oxyhemoglobin with an iron-porphyrin, this study also reports unusually low frequencies for the FeO(2) stretching modes (554 cm(-1)). The effect of strong hydrogen bonding to the bound oxygen is confirmed by changes in the frequency of the FeO(2) stretching mode on mutation of distal residues. These findings suggest an enzymatic function rather than an oxygen transport role for these hemoglobins.
Collapse
Affiliation(s)
- T K Das
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | | | | | | | | |
Collapse
|
41
|
Kitagawa T. Structures of reaction intermediates of bovine cytochrome c oxidase probed by time-resolved vibrational spectroscopy. J Inorg Biochem 2000; 82:9-18. [PMID: 11132644 DOI: 10.1016/s0162-0134(00)00155-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Structures of reaction intermediates of bovine cytochrome c oxidase (CcO) in the reactions of its fully reduced form with O2 and fully oxidized form with H2O2 were investigated with time-resolved resonance Raman (RR) and infrared spectroscopy. Six oxygen-associated RR bands were observed for the reaction of CcO with O2. The isotope shifts for an asymmetrically labeled dioxygen, (16)O(18)O, has established that the primary intermediate of cytochrome a3 is an end-on type dioxygen adduct and the subsequent intermediate (P) is an oxoiron species with Fe=O stretch (nu(Fe=O)) at 804/764 cm(-1) for (16)O2/(18)O2 derivatives, although it had been long postulated to be a peroxy species. The P intermediate is converted to the F intermediate with nu(Fe=O) at 785/751 cm(-1) and then to a ferric hydroxy species with nu(Fe-OH) at 450/425 cm(-1) (443/417 cm(-1) in D2O). The rate of reaction from P to F intermediates is significantly slower in D2O than in H2O. The reaction of oxidized CcO with H2O2 yields the same oxygen isotope-sensitive bands as those of P and F, indicating the identity of intermediates. Time-resolved infrared spectroscopy revealed that deprotonation of carboxylic acid side chain takes place upon deligation of a ligand from heme a3. UV RR spectrum gave a prominent band due to cis C=C stretch of phospholipids tightly bound to purified CcO.
Collapse
Affiliation(s)
- T Kitagawa
- Center for Integrative Bioscience, Okazaki National Research Institutes, Myodaiji, Japan.
| |
Collapse
|
42
|
Aki M, Ogura T, Shinzawa-Itoh K, Yoshikawa S, Kitagawa T. A New Measurement System for UV Resonance Raman Spectra of Large Proteins and Its Application to Cytochrome c Oxidase. J Phys Chem B 2000. [DOI: 10.1021/jp000357p] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- M. Aki
- School of Mathematical and Physical Science, Graduate University for Advanced Studies, Myodaiji, Okazaki 444-8585, Japan, Graduate School of Arts and Sciences, The University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902, Japan, CREST, Japan Science and Technology, and Department of Life Science Himeji Institute of Technology, Koto, Kamigoricho, Akogun, Hyogo 678-1297, Japan, and Institute for Molecular Science, Okazaki National Research Institutes, Myodaiji, Okazaki 444-8585, Japan
| | - T. Ogura
- School of Mathematical and Physical Science, Graduate University for Advanced Studies, Myodaiji, Okazaki 444-8585, Japan, Graduate School of Arts and Sciences, The University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902, Japan, CREST, Japan Science and Technology, and Department of Life Science Himeji Institute of Technology, Koto, Kamigoricho, Akogun, Hyogo 678-1297, Japan, and Institute for Molecular Science, Okazaki National Research Institutes, Myodaiji, Okazaki 444-8585, Japan
| | - K. Shinzawa-Itoh
- School of Mathematical and Physical Science, Graduate University for Advanced Studies, Myodaiji, Okazaki 444-8585, Japan, Graduate School of Arts and Sciences, The University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902, Japan, CREST, Japan Science and Technology, and Department of Life Science Himeji Institute of Technology, Koto, Kamigoricho, Akogun, Hyogo 678-1297, Japan, and Institute for Molecular Science, Okazaki National Research Institutes, Myodaiji, Okazaki 444-8585, Japan
| | - S. Yoshikawa
- School of Mathematical and Physical Science, Graduate University for Advanced Studies, Myodaiji, Okazaki 444-8585, Japan, Graduate School of Arts and Sciences, The University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902, Japan, CREST, Japan Science and Technology, and Department of Life Science Himeji Institute of Technology, Koto, Kamigoricho, Akogun, Hyogo 678-1297, Japan, and Institute for Molecular Science, Okazaki National Research Institutes, Myodaiji, Okazaki 444-8585, Japan
| | - T. Kitagawa
- School of Mathematical and Physical Science, Graduate University for Advanced Studies, Myodaiji, Okazaki 444-8585, Japan, Graduate School of Arts and Sciences, The University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902, Japan, CREST, Japan Science and Technology, and Department of Life Science Himeji Institute of Technology, Koto, Kamigoricho, Akogun, Hyogo 678-1297, Japan, and Institute for Molecular Science, Okazaki National Research Institutes, Myodaiji, Okazaki 444-8585, Japan
| |
Collapse
|
43
|
Han S, Takahashi S, Rousseau DL. Time dependence of the catalytic intermediates in cytochrome c oxidase. J Biol Chem 2000; 275:1910-9. [PMID: 10636892 DOI: 10.1074/jbc.275.3.1910] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cytochrome c oxidase, the terminal enzyme in the electron transfer chain, catalyzes the reduction of oxygen to water in a multiple step process by utilizing four electrons from cytochrome c. To study the reaction mechanism, the resonance Raman spectra of the intermediate states were measured during single turnover of the enzyme after catalytic initiation by photolysis of CO from the fully reduced CO-bound enzyme. By measuring the change in intensity of lines associated with heme a, the electron transfer steps were determined and found to be biphasic with apparent rate constants of approximately 40 x 10(3) s(-1) and approximately 1 x 10(3) s(-1). The time dependence for the oxidation of heme a and for the measured formation and decay of the oxy, the ferryl ("F"), and the hydroxy intermediates could be simulated by a simple reaction scheme. In this scheme, the presence of the "peroxy" ("P") intermediate does not build up a sufficient population to be detected because its decay rate is too fast in buffered H(2)O at neutral pH. A comparison of the change in the spin equilibrium with the formation of the hydroxy intermediate demonstrates that this intermediate is high spin. We also confirm the presence of an oxygen isotope-sensitive line at 355 cm(-1), detectable in the spectrum from 130 to 980 micros, coincident with the presence of the F intermediate.
Collapse
Affiliation(s)
- S Han
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | |
Collapse
|
44
|
Yoshioka Y, Kubo S, Yamaguchi K, Saito I. An ab initio molecular orbital study of a binuclear dioxygen complex as a model of the binuclear active site in cytochrome c oxidase. Chem Phys Lett 1998. [DOI: 10.1016/s0009-2614(98)00924-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
45
|
Proshlyakov DA, Pressler MA, Babcock GT. Dioxygen activation and bond cleavage by mixed-valence cytochrome c oxidase. Proc Natl Acad Sci U S A 1998; 95:8020-5. [PMID: 9653133 PMCID: PMC20922 DOI: 10.1073/pnas.95.14.8020] [Citation(s) in RCA: 249] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Elucidating the structures of intermediates in the reduction of O2 to water by cytochrome c oxidase is crucial to understanding both oxygen activation and proton pumping by the enzyme. In the work here, the reaction of O2 with the mixed-valence enzyme, in which only heme a3 and CuB in the binuclear center are reduced, has been followed by time-resolved resonance Raman spectroscopy. The results show that O==O bond cleavage occurs within the first 200 micros after reaction initiation; the presence of a uniquely stable Fe---O---O(H) peroxy species is not detected. The product of this rapid reaction is a heme a3 oxoferryl (FeIV==O) species, which requires that an electron donor in addition to heme a3 and CuB must be involved. The available evidence suggests that the additional donor is an amino acid side chain. Recent crystallographic data [Yoshikawa, S., Shinzawa-Itoh, K., Nakashima, R., Yaono, R., Yamashita, E., Inoue, N., Yao, M., Fei, M. J., Libeu, C. P., Mizushima, T., et al. Science, in press; Ostermeier, C., Harrenga, A. , Ermler, U. & Michel, H. (1997) Proc. Natl. Acad. Sci. USA 94, 10547-10553] show that one of the CuB ligands, His240, is cross-linked to Tyr244 and that this cross-linked tyrosyl is ideally positioned to participate in dioxygen activation. We propose a mechanism for O---O bond cleavage that proceeds by concerted hydrogen atom transfer from the cross-linked His---Tyr species to produce the product oxoferryl species, CuB2+---OH-, and the tyrosyl radical. This mechanism provides molecular structures for two key intermediates that drive the proton pump in oxidase; moreover, it has clear analogies to the proposed O---O bond forming chemistry that occurs during O2 evolution in photosynthesis.
Collapse
Affiliation(s)
- D A Proshlyakov
- Chemistry Department and Laser Laboratory, Michigan State University, East Lansing, Michigan 48824-1322, USA
| | | | | |
Collapse
|
46
|
|
47
|
Babcock GT, Floris R, Nilsson T, Pressler M, Varotsis C, Vollenbroek E. Dioxygen activation in enzymatic systems and in inorganic models. Inorganica Chim Acta 1996. [DOI: 10.1016/0020-1693(96)04925-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
48
|
Proshlyakov DA, Ogura T, Shinzawa-Itoh K, Yoshikawa S, Kitagawa T. Microcirculating system for simultaneous determination of Raman and absorption spectra of enzymatic reaction intermediates and its application to the reaction of cytochrome c oxidase with hydrogen peroxide. Biochemistry 1996; 35:76-82. [PMID: 8555201 DOI: 10.1021/bi9511705] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A new high-performance device for Raman/absorption simultaneous determination was developed. This was combined with a newly designed microcirculating system and was successfully applied to study intermediates in the reaction of bovine oxidized cytochrome c oxidase (CcO) with hydrogen peroxide under steady state conditions at ambient temperatures. Measurements with this device made it possible to correlate directly the species defined in terms of the visible absorption characteristics with specific Raman bands. The "607 nm" form of the enzyme obtained with H2(16)O2 gave an oxygen isotope sensitive band at 804 cm-1 (769 cm-1 with H2(18)O2) in the Soret excited resonance Raman (RR) spectrum. Its frequency and isotope frequency shifts are exactly the same as those observed previously with 607 nm excitation in nonsimultaneous measurements for the 607 nm form, for which the presence of an oxoiron heme was demonstrated. The so-called " 580 nm" form of the enzyme obtained with H2(16)O2 gave the main oxygen isotope sensitive band at 785 cm-1 (750 cm-1 with H2(18)O2) but appeared to consist of multiple species. This band was assigned to the FeIV = O stretching mode of ferryloxo heme on the basis of its isotopic frequency shift. Another oxygen isotope sensitive band was found at 355 cm-1 (340 cm-1 for H2(18)O2), similar to the case of dioxygen reaction. Temporal behavior of this band did not agree with either that of the 804 cm-1 band or that of the 785 cm-1 band but seemed to grow between the two species. The RR spectra in the higher frequency region of the 607 nm and 580 nm forms excited at 427 nm were quite alike and did not support the formation of a porphyrin pi-cation radical.
Collapse
Affiliation(s)
- D A Proshlyakov
- Graduate University for Advanced Studies, Okazaki National Research Institutes, Japan
| | | | | | | | | |
Collapse
|
49
|
Varotsis C, Babcock GT, Lauraeus M, Wikström M. Raman detection of a peroxy intermediate in the hydroquinone-oxidizing cytochrome aa3 of Bacillus subtilis. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1231:111-6. [PMID: 7640289 DOI: 10.1016/0005-2728(95)00076-u] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
When the mixed valence, carbon monoxide-bound form of the hydroquinone-oxidizing cytochrome aa3-600 of Bacillus subtilis is illuminated in the presence of O2, it forms a species that corresponds to 'Compound C', first described for the mitochondrial cytochrome c oxidase by Chance, Saronio and Leigh (J. Biol. Chem. 250 (1975) 9226-9237). Resonance Raman spectra of the this species show a mode at 366 cm-1 that shifts to 342 cm-1 when the experiment is repeated with 18O2. The appearance of this mode is insensitive to deuteration exchange within the limits of resolution. High- (1200-1700 cm-1) and low-frequency (200-500 cm-1) data, allow us to assign the 366 cm-1 mode to the Fe(3+)-O stretching vibration of a peroxide adduct where the iron is either low or intermediate spin. This is to our knowledge the first time an 18O2-sensitive iron-oxygen stretching mode has been reported for 'Compound C', providing strong support for the notion that this species is a peroxide adduct. The observed 366 cm-1 v(Fe(3+)-O(-)-O-) frequency is 8 cm-1 higher than that previously found for a transient peroxy intermediate in the reaction between the fully reduced mitochondrial enzyme and O2. Our observation indicates that, while similar, the metastable peroxyheme a3 species reported here differs in the fine details of geometry, protonation state, and/or hydrogen bond status.
Collapse
Affiliation(s)
- C Varotsis
- Department of Chemistry, University of Crete, Iraklion, Greece
| | | | | | | |
Collapse
|
50
|
Takahashi S, Ching YC, Wang J, Rousseau DL. Microsecond generation of oxygen-bound cytochrome c oxidase by rapid solution mixing. J Biol Chem 1995; 270:8405-7. [PMID: 7721733 DOI: 10.1074/jbc.270.15.8405] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Current understanding of the oxygen reduction and proton translocation processes in cytochrome c oxidase is largely derived from the data obtained by a nonphysiological method for initiating the catalytic reaction: photolyzing carbon monoxide (CO) from the CO-inhibited enzyme in the presence of oxygen (O2). However, considerable evidence suggests that the use of CO introduces artifacts into the reaction mechanism. We have therefore developed a rapid solution mixer with a mixing time of 20 microseconds to study the catalytic reaction by directly mixing the enzyme with O2 without using CO. Unexpectedly, the resonance Raman scattering detected for the first 120 microseconds after the mixing show that the CO influences neither the structure of the primary oxy-intermediate, its rate of decay, nor the rate of oxidation of cytochrome a. This implies that CO has an effect on the later stages of the catalytic process, which may involve the proton translocation steps, and calls for the re-examination of the catalytic process by using the direct mixing method. In addition, these results demonstrate the feasibility of using the rapid mixing device for the study of biological reactions in the microsecond time domain.
Collapse
Affiliation(s)
- S Takahashi
- AT&T Bell Laboratories, Murray Hill, New Jersey 07974, USA
| | | | | | | |
Collapse
|