1
|
Hou Y, Kumar P, Aggarwal M, Sarkari F, Wolcott KM, Chattoraj DK, Crooke E, Saxena R. The linker domain of the initiator DnaA contributes to its ATP binding and membrane association in E. coli chromosomal replication. SCIENCE ADVANCES 2022; 8:eabq6657. [PMID: 36197974 PMCID: PMC9534497 DOI: 10.1126/sciadv.abq6657] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 08/18/2022] [Indexed: 06/16/2023]
Abstract
DnaA, the initiator of Escherichia coli chromosomal replication, has in its adenosine triphosphatase (ATPase) domain residues required for adenosine 5'-triphosphate (ATP) binding and membrane attachment. Here, we show that D118Q substitution in the DnaA linker domain, a domain known to be without major regulatory functions, influences ATP binding of DnaA and replication initiation in vivo. Although initiation defective by itself, overexpression of DnaA(D118Q) caused overinitiation of replication in dnaA46ts cells and prevented cell growth. The growth defect was rescued by overexpressing the initiation inhibitor, SeqA, indicating that the growth inhibition resulted from overinitiation. Small deletions within the linker showed another unexpected phenotype: cellular growth without requiring normal levels of anionic membrane lipids, a property found in DnaA mutated in its ATPase domain. The deleted proteins were defective in association with anionic membrane vesicles. These results show that changes in the linker domain can alter DnaA functions similarly to the previously shown changes in the ATPase domain.
Collapse
Affiliation(s)
- Yanqi Hou
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University Medical Center, Washington, DC 20007, USA
| | - Pankaj Kumar
- Center for Tuberculosis Research, Department of Medicine, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Monika Aggarwal
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20007, USA
| | - Farzad Sarkari
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University Medical Center, Washington, DC 20007, USA
| | - Karen M. Wolcott
- Laboratory of Genome Integrity, Flow Cytometry Core Facility, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Dhruba K. Chattoraj
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Elliott Crooke
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University Medical Center, Washington, DC 20007, USA
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20007, USA
| | - Rahul Saxena
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University Medical Center, Washington, DC 20007, USA
| |
Collapse
|
2
|
Jun S, Si F, Pugatch R, Scott M. Fundamental principles in bacterial physiology-history, recent progress, and the future with focus on cell size control: a review. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2018; 81:056601. [PMID: 29313526 PMCID: PMC5897229 DOI: 10.1088/1361-6633/aaa628] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Bacterial physiology is a branch of biology that aims to understand overarching principles of cellular reproduction. Many important issues in bacterial physiology are inherently quantitative, and major contributors to the field have often brought together tools and ways of thinking from multiple disciplines. This article presents a comprehensive overview of major ideas and approaches developed since the early 20th century for anyone who is interested in the fundamental problems in bacterial physiology. This article is divided into two parts. In the first part (sections 1-3), we review the first 'golden era' of bacterial physiology from the 1940s to early 1970s and provide a complete list of major references from that period. In the second part (sections 4-7), we explain how the pioneering work from the first golden era has influenced various rediscoveries of general quantitative principles and significant further development in modern bacterial physiology. Specifically, section 4 presents the history and current progress of the 'adder' principle of cell size homeostasis. Section 5 discusses the implications of coarse-graining the cellular protein composition, and how the coarse-grained proteome 'sectors' re-balance under different growth conditions. Section 6 focuses on physiological invariants, and explains how they are the key to understanding the coordination between growth and the cell cycle underlying cell size control in steady-state growth. Section 7 overviews how the temporal organization of all the internal processes enables balanced growth. In the final section 8, we conclude by discussing the remaining challenges for the future in the field.
Collapse
Affiliation(s)
- Suckjoon Jun
- Department of Physics, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, United States of America. Section of Molecular Biology, Division of Biology, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, United States of America
| | | | | | | |
Collapse
|
3
|
Susin MF, Baldini RL, Gueiros-Filho F, Gomes SL. GroES/GroEL and DnaK/DnaJ have distinct roles in stress responses and during cell cycle progression in Caulobacter crescentus. J Bacteriol 2006; 188:8044-53. [PMID: 16980445 PMCID: PMC1698207 DOI: 10.1128/jb.00824-06] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Misfolding and aggregation of protein molecules are major threats to all living organisms. Therefore, cells have evolved quality control systems for proteins consisting of molecular chaperones and proteases, which prevent protein aggregation by either refolding or degrading misfolded proteins. DnaK/DnaJ and GroES/GroEL are the best-characterized molecular chaperone systems in bacteria. In Caulobacter crescentus these chaperone machines are the products of essential genes, which are both induced by heat shock and cell cycle regulated. In this work, we characterized the viabilities of conditional dnaKJ and groESL mutants under different types of environmental stress, as well as under normal physiological conditions. We observed that C. crescentus cells with GroES/EL depleted are quite resistant to heat shock, ethanol, and freezing but are sensitive to oxidative, saline, and osmotic stresses. In contrast, cells with DnaK/J depleted are not affected by the presence of high concentrations of hydrogen peroxide, NaCl, and sucrose but have a lower survival rate after heat shock, exposure to ethanol, and freezing and are unable to acquire thermotolerance. Cells lacking these chaperones also have morphological defects under normal growth conditions. The absence of GroE proteins results in long, pinched filamentous cells with several Z-rings, whereas cells lacking DnaK/J are only somewhat more elongated than normal predivisional cells, and most of them do not have Z-rings. These findings indicate that there is cell division arrest, which occurs at different stages depending on the chaperone machine affected. Thus, the two chaperone systems have distinct roles in stress responses and during cell cycle progression in C. crescentus.
Collapse
Affiliation(s)
- Michelle F Susin
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, 05508-000, São Paulo, SP, Brasil
| | | | | | | |
Collapse
|
4
|
Ryan VT, Grimwade JE, Nievera CJ, Leonard AC. IHF and HU stimulate assembly of pre-replication complexes at Escherichia coli oriC by two different mechanisms. Mol Microbiol 2002; 46:113-24. [PMID: 12366835 DOI: 10.1046/j.1365-2958.2002.03129.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Pre-replication complexes (pre-RC) assemble on replication origins and unwind DNA in the presence of chromatin proteins. As components of Escherichia coli pre-RC, two histone-like proteins HU and IHF (integration host factor), stimulate initiator DnaA-catalysed unwinding of the chromosomal replication origin, oriC. Using in vivo footprint analysis just before DNA synthesis initiates, we detect IHF binding coincident with a shift of DnaA to weaker central oriC sites. Integration host factor redistributed pre-bound DnaA to identical sites in vitro. HU did not redistribute DnaA, but suppressed binding specifically at I3. These results suggest that different pathways mediated by bacterial chromatin proteins exist to regulate pre-RC assembly and unwind oriC.
Collapse
Affiliation(s)
- Valorie T Ryan
- Department of Biological Services, Florida Institute of Technology, 150 W. University Blvd, Melbourne, Florida 32901, USA
| | | | | | | |
Collapse
|
5
|
Abstract
In Escherichia coli, initiation of chromosomal replication is activated by a nucleoprotein complex formed primarily between the DnaA protein and oriC (replication origin) DNA. After replicational initiation, this complex has to be inactivated in order to repress the appearance of initiation events until the next scheduled round of initiation. Studies of the mechanisms responsible for this repression have recently revealed direct coupling between these mechanisms and key elements of the replication process, suggesting that feedback-type regulatory loops exist between the factors implicated in initiation and the elements yielded by the replication process. The loading of the ring-shaped beta-subunit of DNA polymerase III onto DNA plays a key role in the inactivation of the DnaA protein. Duplication of oriC DNA results in hemimethylated DNA, which is inert for reinitiation. Titration of large amounts of DnaA protein to a non-oriC locus can repress untimely initiations, and timely duplication of this locus is required for this repression in rapidly growing cells. All these systems functionally complement one another to ensure the maintenance of the interinitiation interval between two normal DNA replication cycles. The mechanisms that link the replication cycle to the progression of the cell cycle are also discussed.
Collapse
Affiliation(s)
- T Katayama
- Department of Molecular Microbiology, Kyushu University Graduate School of Pharmaceutical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| |
Collapse
|
6
|
Banecki B, Wawrzynow A, Puzewicz J, Georgopoulos C, Zylicz M. Structure-function analysis of the zinc-binding region of the Clpx molecular chaperone. J Biol Chem 2001; 276:18843-8. [PMID: 11278349 DOI: 10.1074/jbc.m007507200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ClpX heat shock protein of Escherichia coli is a member of the universally conserved Hsp100 family of proteins, and possesses a putative zinc finger motif of the C(4) type. The ClpX is an ATPase which functions both as a substrate specificity component of the ClpXP protease and as a molecular chaperone. Using an improved purification procedure we show that the ClpX protein is a metalloprotein complexed with Zn(II) cations. Contrary to other Hsp100 family members, ClpXZn(II) exists in an oligomeric form even in the absence of ATP. We show that the single ATP-binding site of ClpX is required for a variety of tasks, namely, the stabilization of the ClpXZn(II) oligomeric structure, binding to ClpP, and the ClpXP-dependent proteolysis of the lambdaO replication protein. Release of Zn(II) from ClpX protein affects the ability of ClpX to bind ATP. ClpX, free of Zn(II), cannot oligomerize, bind to ClpP, or participate in ClpXP-dependent proteolysis. We also show that ClpXDeltaCys, a mutant protein whose four cysteine residues at the putative zinc finger motif have been replaced by serine, behaves in similar fashion as wild type ClpX protein whose Zn(II) has been released either by denaturation and renaturation, or chemically by p-hydroxymercuriphenylsulfonic acid.
Collapse
Affiliation(s)
- B Banecki
- Department of Molecular and Cellular Biology, Faculty of Biotechnology, University of Gdansk, 80-822 Gdansk, Kladki 24, Poland
| | | | | | | | | |
Collapse
|
7
|
Torheim NK, Boye E, Løbner-Olesen A, Stokke T, Skarstad K. The Escherichia coli SeqA protein destabilizes mutant DnaA204 protein. Mol Microbiol 2000; 37:629-38. [PMID: 10931356 DOI: 10.1046/j.1365-2958.2000.02031.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In wild-type Escherichia coli cells, initiation of DNA replication is tightly coupled to cell growth. In slowly growing dnaA204 (Ts) mutant cells, the cell mass at initiation and its variability is increased two- to threefold relative to wild type. Here, we show that the DnaA protein concentration was two- to threefold lower in the dnaA204 mutant compared with the wild-type strain. The reason for the DnaA protein deficiency was found to be a rapid degradation of the mutant protein. Absence of SeqA protein stabilized the DnaA204 protein, increased the DnaA protein concentration and normalized the initiation mass in the dnaA204 mutant cells. During rapid growth, the dnaA204 mutant displayed cell cycle parameters similar to wild-type cells as well as a normal DnaA protein concentration, even though the DnaA204 protein was highly unstable. Apparently, the increased DnaA protein synthesis compensated for the protein degradation under these growth conditions, in which the doubling time was of the same order of magnitude as the half-life of the protein. Our results suggest that the DnaA204 protein has essentially wild-type activity at permissive temperature but, as a result of instability, the protein is present at lower concentration under certain growth conditions. The basis for the stabilization in the absence of SeqA is not known. We suggest that the formation of stable DnaA-DNA complexes is enhanced in the absence of SeqA, thereby protecting the DnaA protein from degradation.
Collapse
Affiliation(s)
- N K Torheim
- Departments of Cell Biology, Institute for Cancer Research, Montebello, 0310 Oslo, Norway
| | | | | | | | | |
Collapse
|
8
|
Nyborg M, Atlung T, Skovgaard O, Hansen FG. Two types of cold sensitivity associated with the A184-->V change in the DnaA protein. Mol Microbiol 2000; 35:1202-10. [PMID: 10712700 DOI: 10.1046/j.1365-2958.2000.01790.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Multicopy dnaA(Ts) strains carrying the dnaA5 or dnaA46 allele are high-temperature resistant but are cold sensitive for colony formation. The DnaA5 and DnaA46 proteins both have an A184-->V change in the ATP binding motif of the protein, but they also have one additional mutation. The mutations were separated, and it was found that a plasmid carrying exclusively the A184-->V mutation conferred a phenotype virtually identical to that of the dnaA5 plasmid. Strains carrying plasmids with either of the additional mutations behaved like a strain carrying the dnaA+ plasmid. In temperature downshifts from 42 degrees C to 30 degrees C, chromosome replication was stimulated in the multicopy dnaA46 strain. The DNA per mass ratio increased threefold, and exponential growth was maintained for more than four mass doublings. Strains carrying plasmids with the dnaA(A184-->V) or the dnaA5 gene behaved differently. The temperature downshift resulted in run out of DNA synthesis and the strains eventually ceased growth. The arrest of DNA synthesis was not due to the inability to initiate chromosome replication because marker frequency analysis showed high initiation activity after temperature downshift. However, the marker frequencies indicated that most, if not all, of the newly initiated replication forks were stalled soon after the onset of chromosome replication. Thus, it appears that the multicopy dnaA(A184-->V) strains are cold sensitive because of an inability to elongate replication at low temperature. The multicopy dnaA46 strains, on the contrary, exhibit productive initiation and normal fork movement. In this case, the cold-sensitive phenotype may be due to DNA overproduction.
Collapse
Affiliation(s)
- M Nyborg
- Department of Life Sciences and Chemistry (17.2), Roskilde University, PO Box 260, DK-4000 Roskilde, Denmark
| | | | | | | |
Collapse
|
9
|
Abstract
DnaA protein initiates DNA replication at the Escherichia coli chromosomal origin. We describe a system for efficient production and purification of replicatively active DnaA protein. The dnaA gene was cloned in-frame with a sequence encoding a polyhistidine tag and expressed from a T7 promoter regulated by the lac operator. DnaA with the amino terminal polyhistidine tag was isolated using immobilized metal-ion affinity chromatography. Immunoblot analysis indicated that the tagged protein was intact and migrated with the expected molecular weight. The yield of purified protein was greater than 10 mg per liter of cell culture. The polyhistidine-tagged DnaA protein was comparable to nontagged DnaA protein for initiating in vitro DNA replication, binding to oriC DNA, binding of allosteric effector adenine nucleotides, and interaction with membrane acidic phospholipids. This system for rapid and high-yield generation of replication-active DnaA protein should facilitate structure-function studies and mutagenic analyses of this initiator protein.
Collapse
Affiliation(s)
- Z Li
- Department of Biochemistry and Molecular Biology, Georgetown University Medical Center, 3900 Reservoir Road Northwest, Washington, DC 20007, USA
| | | |
Collapse
|
10
|
Masuda Y, Bennett RA, Demple B. Dynamics of the interaction of human apurinic endonuclease (Ape1) with its substrate and product. J Biol Chem 1998; 273:30352-9. [PMID: 9804798 DOI: 10.1074/jbc.273.46.30352] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We investigated the interaction dynamics of human abasic endonuclease, the Ape1 protein (also called Ref1, Hap1, or Apex), with its DNA substrate and incised product using electrophoretic assays and site-specific amino acid substitutions. Changing aspartate 283 to alanine (D283A) left 10% residual activity, contrary to a previous report, but complementation of repair-deficient bacteria by the D283A Ape1 protein was consistent with its activity in vitro. The D308A, D283/D308A double mutant, and histidine 309 to asparagine proteins had 22, 1, and approximately 0. 02% of wild-type Ape1 activity, respectively. Despite this range of enzymatic activities, all the mutant proteins had near-wild-type binding affinity specific for DNA containing a synthetic abasic site. Thus, substrate recognition and cleavage are genetically separable steps. Both the wild-type and mutant Ape1 proteins bound strongly to the enzyme incision product, an incised abasic site, which suggested that Ape1 might exhibit product inhibition. The use of human DNA polymerase beta to increase Ape1 activity by eliminating the incision product supports this conclusion. Notably, the complexes of the D283A, D308A, and D283A/D308A double mutant proteins with both intact and incised abasic DNA were significantly more stable than complexes containing wild-type Ape1, which may contribute to the lower turnover numbers of the mutant enzymes. Wild-type Ape1 protein bound tightly to DNA containing a one-nucleotide gap but not to DNA with a nick, consistent with the proposal that substrate recognition by Ape1 involves a space bracketed by duplex DNA, rather than mere flexibility of the DNA.
Collapse
Affiliation(s)
- Y Masuda
- Department of Cancer Cell Biology, Harvard School of Public Health, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
11
|
Hase M, Yoshimi T, Ishikawa Y, Ohba A, Guo L, Mima S, Makise M, Yamaguchi Y, Tsuchiya T, Mizushima T. Site-directed mutational analysis for the membrane binding of DnaA protein. Identification of amino acids involved in the functional interaction between DnaA protein and acidic phospholipids. J Biol Chem 1998; 273:28651-6. [PMID: 9786858 DOI: 10.1074/jbc.273.44.28651] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DnaA protein, the initiator of chromosomal DNA replication in Escherichia coli, interacts with acidic phospholipids, such as cardiolipin, and its activity seems to be regulated by membrane binding in cells. In this study we introduced site-directed mutations at the positions of hydrophobic or basic amino acids which are conserved among various bacteria species and which are located in the putative membrane-binding region of DnaA protein (from Asp357 to Val374). All mutant DnaA proteins showed much the same ATP and ADP binding activity as that of the wild-type protein. The release of ATP bound to the mutant DnaA protein, in which three hydrophobic amino acids were mutated to hydrophilic ones, was stimulated by cardiolipin, as in the case of the wild-type protein. On the other hand, the release of ATP bound to another mutant DnaA protein, in which three basic amino acids were mutated to acidic ones, was not stimulated by cardiolipin. These results suggest not only that the region is a membrane-binding domain of DnaA protein but also that these basic amino acids are important for the binding and the ionic interaction between the basic amino acids and acidic residues of cardiolipin and is involved in the interaction between DnaA protein and cardiolipin.
Collapse
Affiliation(s)
- M Hase
- Faculty of Engineering, Oita University, Oita 870-1192, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Mizushima T, Takaki T, Kubota T, Tsuchiya T, Miki T, Katayama T, Sekimizu K. Site-directed mutational analysis for the ATP binding of DnaA protein. Functions of two conserved amino acids (Lys-178 and Asp-235) located in the ATP-binding domain of DnaA protein in vitro and in vivo. J Biol Chem 1998; 273:20847-51. [PMID: 9694830 DOI: 10.1074/jbc.273.33.20847] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DnaA protein, the initiator of chromosomal DNA replication in Escherichia coli, is activated by binding to ATP in vitro. We introduced site-directed mutations into two amino acids of the protein conserved among various ATP-binding proteins and examined functions of the mutated DnaA proteins, in vitro and in vivo. Both mutated DnaA proteins (Lys-178 --> Ile or Asp-235 --> Asn) lost the affinity for both ATP and ADP but did maintain binding activity for oriC. Specific activities in an oriC DNA replication system in vitro were less than one-tenth those of the wild-type protein. Assay of the generation of oriC sites sensitive to P1 nuclease, using the mutated DnaA proteins, revealed a defect in induction of the duplex opening at oriC. On the other hand, expression of each mutated DnaA protein in the temperature-sensitive dnaA46 mutant did not complement the temperature sensitivity. We suggest that Lys-178 and Asp-235 of DnaA protein are essential for the activity needed to initiate oriC DNA replication in vitro and in vivo and that ATP binding to DnaA protein is required for DNA replication-related functions.
Collapse
Affiliation(s)
- T Mizushima
- Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
The Escherichia coli DnaA protein is a sequence-specific DNA binding protein that promotes the initiation of replication of the bacterial chromosome, and of several plasmids including pSC101. Twenty-eight novel missense mutations of the E. coli dnaA gene were isolated by selecting for their inability to replicate a derivative of pSC101 when contained in a lambda vector. Characterization of these as well as seven novel nonsense mutations and one in-frame deletion mutation are described here. Results suggest that E. coli DnaA protein contains four functional domains. Mutations that affect residues in the P-loop or Walker A motif thought to be involved in ATP binding identify one domain. The second domain maps to a region near the C terminus and is involved in DNA binding. The function of the third domain that maps near the N terminus is unknown but may be involved in the ability of DnaA protein to oligomerize. Two alleles encoding different truncated gene products retained the ability to promote replication from the pSC101 origin but not oriC, identifying a fourth domain dispensable for replication of pSC101 but essential for replication from the bacterial chromosomal origin, oriC.
Collapse
Affiliation(s)
- M D Sutton
- Department of Biochemistry, Michigan State University, East Lansing 48824-1319, USA
| | | |
Collapse
|
14
|
Marszalek J, Zhang W, Hupp TR, Margulies C, Carr KM, Cherry S, Kaguni JM. Domains of DnaA protein involved in interaction with DnaB protein, and in unwinding the Escherichia coli chromosomal origin. J Biol Chem 1996; 271:18535-42. [PMID: 8702501 DOI: 10.1074/jbc.271.31.18535] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
DnaA protein of Escherichia coli is a sequence-specific DNA-binding protein required for the initiation of DNA replication from the chromosomal origin, oriC. It is also required for replication of several plasmids including pSC101, F, P-1, and R6K. A collection of monoclonal antibodies to DnaA protein has been produced and the primary epitopes recognized by them have been determined. These antibodies have also been examined for the ability to inhibit activities of DNA binding, ATP binding, unwinding of oriC, and replication of both an oriC plasmid, and an M13 single-stranded DNA with a proposed hairpin structure containing a DnaA protein-binding site. Replication of the latter DNA is dependent on DnaA protein by a mechanism termed ABC priming. These studies suggest regions of DnaA protein involved in interaction with DnaB protein, and in unwinding of oriC, or low-affinity binding of ATP.
Collapse
Affiliation(s)
- J Marszalek
- Department of Biochemistry, Michigan State University, East Lansing, Michigan 48824-1319, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Carr KM, Kaguni JM. The A184V missense mutation of the dnaA5 and dnaA46 alleles confers a defect in ATP binding and thermolability in initiation of Escherichia coli DNA replication. Mol Microbiol 1996; 20:1307-18. [PMID: 8809781 DOI: 10.1111/j.1365-2958.1996.tb02649.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The temperature-sensitive dnaA5 and dnaA46 alleles each contain two missense mutations. These mutations have been separated and the resulting mutant proteins studied with regard to their role in initiation of DNA replication in vitro. Whereas the His-252 to tyrosine substitution (H252Y) unique to the dnaA46 allele did not affect the activities of DnaA protein, the unique substitution of the dnaA5 allele, Gly-426 to serine (G426S), was reduced in its DNA-binding affinity for oriC, the chromosomal origin. This suggests that the C-terminal region of the DnaA protein is involved in DNA binding. The alanine-to-valine substitution at amino acid 184 (A184V) that is common to both of the alleles is responsible for the thermolabile defect and lag in DNA synthesis of these mutants. Mutant proteins bearing the common substitution were defective in ATP binding and were inactive in a replication system reconstituted with purified proteins. DnaK and GrpE protein activated these mutant proteins for replication and ATP binding; the latter was measured indirectly by the ATP-dependent formation of a trypsin-resistant peptide. However, with this assay, the ATP-binding affinity appeared to be reduced relative to wild-type DnaA protein. Activation was by conversion of a self-aggregate to the monomer, and also by a conformational alteration that correlated with ATP binding.
Collapse
Affiliation(s)
- K M Carr
- Department of Biochemistry, Michigan State University, East Lansing 48824-1319, USA
| | | |
Collapse
|
16
|
Abstract
Using hemimethylated, fully methylated, and unmethylated oligonucleotide probes corresponding to part of the origin of Escherichia coli DNA replication, oriC (+81-136), we have characterized a novel hemimethylated DNA-specific protein binding activity. This activity appears to be located in the cytoplasm rather than in membrane fractions. It has been partially purified and, in DNase footprinting analysis, found to preferentially protect only a subset of the hemimethylated GATC sites present in the minimal oriC. These sites are found adjacent to the DnaA binding box, R1, and overlap the integration host factor binding site. The activity does not correspond to known hemimethylated binding proteins, although in the seqA deletion mutant, there is a 3-fold reduction of the activity. The stage of the cell cycle in synchronized PC2 cultures does not seem to significantly affect thte relative levels of this binding activity. A possible role in sequestration of the newly replicated hemimethylated origin is discussed.
Collapse
Affiliation(s)
- J Garwood
- Biochemical Genetics Group, Institut Jacques Monod, Université Paris, France
| | | |
Collapse
|
17
|
Skarstad K, Boye E. The initiator protein DnaA: evolution, properties and function. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1217:111-30. [PMID: 8110826 DOI: 10.1016/0167-4781(94)90025-6] [Citation(s) in RCA: 141] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- K Skarstad
- Department of Biophysics, Institute for Cancer Research, Montebello, Oslo, Norway
| | | |
Collapse
|
18
|
Hupp T, Kaguni J. Activation of DnaA5 protein by GrpE and DnaK heat shock proteins in initiation of DNA replication in Escherichia coli. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(19)38629-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
19
|
Hupp T, Kaguni J. Activation of mutant forms of DnaA protein of Escherichia coli by DnaK and GrpE proteins occurs prior to DNA replication. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(19)38630-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|