1
|
Musa-Aziz R, Geyer RR, Moss FJ, Boron WF. Mechanism of CO 2 and NH 3 Transport through Human Aquaporin 1: Evidence for Parallel CO 2 Pathways. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.28.640247. [PMID: 40093180 PMCID: PMC11908171 DOI: 10.1101/2025.02.28.640247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
The traditional view had been that dissolved gases cross membranes simply by dissolving in and diffusing through membrane lipid. However, some membranes are impermeable to CO 2 and NH 3 , whereas some aquaporin (AQP) water channels-tetramers with hydrophobic central pores-are permeable to CO 2 , NH 3 , or both. Nevertheless, we understand neither the routes that CO 2 and NH 3 take through AQP tetramers, nor the basis of CO 2 /NH 3 selectivity. Here, we show- for human AQP1-that all NH 3 and about half the CO 2 pass through the hydrophilic, monomeric pores. Surprisingly, the remaining half of CO 2 takes another pathway. We expressed AQP1 in Xenopus oocytes and used microelectrodes to monitor surface-pH transients caused by CO 2 or NH 3 influxes. We found that p-chloromercuribenzene sulfonate (pCMBS)-which reacts with C189 in the monomeric pore-eliminates the entire NH 3 signal but only half of the CO 2 signal and osmotic water permeability of AQP1. 4,4'-diisothiocyanatostilbene-2,2'-disulfonate (DIDS), eliminates the remaining CO 2 signal but has no effect on NH 3 or osmotic water permeability. Together, the two drugs completely eliminate the CO 2 permeability of AQP1. When we express AQP1 in Pichia pastoris , treat spheroplasts with DIDS, and examine AQP1 by SDS-PAGE, reactivity with an anti-DIDS antibody shows that DIDS crosslinks AQP1 monomers. Our results provide the first evidence that a molecule can move through an AQP via a route other than the monomeric pore, and raise the possibility that selectivity depends on the extent to which CO 2 /NH 3 move through monomeric pores vs. an alternate pathway (e.g., the central pore). Key Points Some membranes have little or no CO 2 permeability, absent protein channels like aquaporin-1 (AQP1). We confirm that, during CO 2 influx, AQP1 expression in Xenopus oocytes increases the magnitude of the resulting transient surface-pH increase by an amount (ΔpH S *) CO2 , measured with microelectrodes. During NH 3 influx, AQP1 expression increases the magnitude of the transient pH S decrease by an amount (ΔpH S *) NH3 . p-chloromercuribenzene sulfonate (pCMBS), which reacts with C189 in the monomeric pore, reduces (ΔpH S *) CO2 by half; (ΔpH S *) NH3 , to zero; and AQP1-dependent osmotic water permeability ( P f *), by half. 4,4'-diisothiocyanatostilbene-2,2'-disulfonate (DIDS) reduces (ΔpH S *) CO2 by half, but has no effect on (ΔpH S *) NH3 or P f *. DIDS crosslinks AQP1 monomers expressed in Pichia pastoris . Together, pCMBS+DIDS reduces (ΔpH S *) CO2 to zero. The C189S mutation of AQP1 eliminates the effects of pCMBS, but not DIDS. Our results thus show that CO 2 traverses AQP1 via the monomeric pore plus a novel, DIDS-sensitive route that may be the central pore.
Collapse
|
2
|
Zhao Y, Cui Y, Ni W, Yu S, Pan D, Liu S, Jia Z, Gao Y, Zhao D, Liu M, Wang S. Ginseng total saponin improves red blood cell oxidative stress injury by regulating tyrosine phosphorylation and glycolysis in red blood cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155785. [PMID: 38823342 DOI: 10.1016/j.phymed.2024.155785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/17/2024] [Accepted: 05/27/2024] [Indexed: 06/03/2024]
Abstract
BACKGROUND Oxidative stress is the main cause of many diseases, but because of its complex pathogenic factors, there is no clear method for treating it. Ginseng total saponin (GTS) an important active ingredients in Panax ginseng C.A. Mey (PG) and has potential therapeutic ability for oxidative stress due to various causes. However, the molecular mechanism of GTS in the treating oxidative stress damage in red blood cells (RBCs) is still unclear. PURPOSE This study aimed to examine the protective effect of GTS on RBCs under oxidative stress damage and to determine its potential mechanism. METHODS The oxidative stress models of rat RBCs induced by hydrogen peroxide (H2O2) and exhaustive swimming in vivo and in vitro was used. We determined the cell morphology, oxygen carrying capacity, apoptosis, antioxidant capacity, and energy metabolism of RBCs. The effect of tyrosine phosphorylation (pTyr) of Band 3 protein on RBCs glycolysis was also examined. RESULTS GTS reduced the hemolysis of RBCs induced by H2O2 at the lowest concentration. Moreover, GTS effectively improved the morphology, enhanced the oxygen carrying capacity, and increased antioxidant enzyme activity, adenosine triphosphate (ATP) levels, and adenosine triphosphatase (ATPase) activity in RBCs. GTS also promoted the expression of membrane proteins in RBCs, inhibited pTyr of Band 3 protein, and further improved glycolysis, restoring the morphological structure and physiological function of RBCs. CONCLUSIONS This study shows, that GTS can protect RBCs from oxidative stress damage by improving RBCs morphology and physiological function. Changes in pTyr expression and its related pTyr regulatory enzymes before and after GTS treatment suggest that Band 3 protein is the main target of GTS in the treating endogenous and exogenous oxidative stress. Moreover, GTS can enhance the glycolytic ability of RBCs by inhibiting pTyr of Band 3 protein, thereby restoring the function of RBCs.
Collapse
Affiliation(s)
- Yuchu Zhao
- Northeast Asian Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, 1035 Boshuo Road, Changchun, Jilin, 130117, China
| | - Yuan Cui
- Northeast Asian Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, 1035 Boshuo Road, Changchun, Jilin, 130117, China
| | - Weifeng Ni
- Northeast Asian Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, 1035 Boshuo Road, Changchun, Jilin, 130117, China
| | - Shiting Yu
- Northeast Asian Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, 1035 Boshuo Road, Changchun, Jilin, 130117, China
| | - Daian Pan
- Northeast Asian Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, 1035 Boshuo Road, Changchun, Jilin, 130117, China
| | - Shichao Liu
- Academic Affairs Office, Changchun University of Chinese Medicine, 1035 Boshuo Road, Changchun, Jilin, 130117, China
| | - Ziyi Jia
- School of Pharmacy, Changchun University of Chinese Medicine, 1035 Boshuo Road, Changchun, Jilin, 130117, China
| | - Yanan Gao
- School of Pharmacy, Changchun University of Chinese Medicine, 1035 Boshuo Road, Changchun, Jilin, 130117, China
| | - Daqing Zhao
- Northeast Asian Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, 1035 Boshuo Road, Changchun, Jilin, 130117, China
| | - Meichen Liu
- Northeast Asian Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, 1035 Boshuo Road, Changchun, Jilin, 130117, China.
| | - Siming Wang
- Northeast Asian Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, 1035 Boshuo Road, Changchun, Jilin, 130117, China.
| |
Collapse
|
3
|
Jennings ML. Cell Physiology and Molecular Mechanism of Anion Transport by Erythrocyte Band 3/AE1. Am J Physiol Cell Physiol 2021; 321:C1028-C1059. [PMID: 34669510 PMCID: PMC8714990 DOI: 10.1152/ajpcell.00275.2021] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The major transmembrane protein of the red blood cell, known as band 3, AE1, and SLC4A1, has two main functions: 1) catalysis of Cl-/HCO3- exchange, one of the steps in CO2 excretion; 2) anchoring the membrane skeleton. This review summarizes the 150 year history of research on red cell anion transport and band 3 as an experimental system for studying membrane protein structure and ion transport mechanisms. Important early findings were that red cell Cl- transport is a tightly coupled 1:1 exchange and band 3 is labeled by stilbenesulfonate derivatives that inhibit anion transport. Biochemical studies showed that the protein is dimeric or tetrameric (paired dimers) and that there is one stilbenedisulfonate binding site per subunit of the dimer. Transport kinetics and inhibitor characteristics supported the idea that the transporter acts by an alternating access mechanism with intrinsic asymmetry. The sequence of band 3 cDNA provided a framework for detailed study of protein topology and amino acid residues important for transport. The identification of genetic variants produced insights into the roles of band 3 in red cell abnormalities and distal renal tubular acidosis. The publication of the membrane domain crystal structure made it possible to propose concrete molecular models of transport. Future research directions include improving our understanding of the transport mechanism at the molecular level and of the integrative relationships among band 3, hemoglobin, carbonic anhydrase, and gradients (both transmembrane and subcellular) of HCO3-, Cl-, O2, CO2, pH, and NO metabolites during pulmonary and systemic capillary gas exchange.
Collapse
Affiliation(s)
- Michael L Jennings
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States
| |
Collapse
|
4
|
Fairweather SJ, Shah N, Brӧer S. Heteromeric Solute Carriers: Function, Structure, Pathology and Pharmacology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 21:13-127. [PMID: 33052588 DOI: 10.1007/5584_2020_584] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Solute carriers form one of three major superfamilies of membrane transporters in humans, and include uniporters, exchangers and symporters. Following several decades of molecular characterisation, multiple solute carriers that form obligatory heteromers with unrelated subunits are emerging as a distinctive principle of membrane transporter assembly. Here we comprehensively review experimentally established heteromeric solute carriers: SLC3-SLC7 amino acid exchangers, SLC16 monocarboxylate/H+ symporters and basigin/embigin, SLC4A1 (AE1) and glycophorin A exchanger, SLC51 heteromer Ost α-Ost β uniporter, and SLC6 heteromeric symporters. The review covers the history of the heteromer discovery, transporter physiology, structure, disease associations and pharmacology - all with a focus on the heteromeric assembly. The cellular locations, requirements for complex formation, and the functional role of dimerization are extensively detailed, including analysis of the first complete heteromer structures, the SLC7-SLC3 family transporters LAT1-4F2hc, b0,+AT-rBAT and the SLC6 family heteromer B0AT1-ACE2. We present a systematic analysis of the structural and functional aspects of heteromeric solute carriers and conclude with common principles of their functional roles and structural architecture.
Collapse
Affiliation(s)
- Stephen J Fairweather
- Research School of Biology, Australian National University, Canberra, ACT, Australia. .,Resarch School of Chemistry, Australian National University, Canberra, ACT, Australia.
| | - Nishank Shah
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Stefan Brӧer
- Research School of Biology, Australian National University, Canberra, ACT, Australia.
| |
Collapse
|
5
|
Jaunet-Lahary T, Goupille A, Jacquemin D, Fleury F, Graton J, Laurent AD. A Joint Theoretical and Experimental Study of the Behavior of the DIDS Inhibitor and its Derivatives. Chemphyschem 2016; 17:2434-45. [DOI: 10.1002/cphc.201600107] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Titouan Jaunet-Lahary
- Laboratoire CEISAM-UMR CNR 6230; Université de Nantes; 2 Rue de la Houssinière, BP 92208 44322 Nantes Cedex 3 France
| | - Anaïs Goupille
- Laboratoire CEISAM-UMR CNR 6230; Université de Nantes; 2 Rue de la Houssinière, BP 92208 44322 Nantes Cedex 3 France
| | - Denis Jacquemin
- Laboratoire CEISAM-UMR CNR 6230; Université de Nantes; 2 Rue de la Houssinière, BP 92208 44322 Nantes Cedex 3 France
- Institut Universitaire de France; 1, rue Descartes 75005 Paris Cedex 05 France
| | - Fabrice Fleury
- Laboratoire UFIP-UMR CNR 6286; Université de Nantes; 2 Rue de la Houssinière, BP 92208 44322 Nantes Cedex 3 France
| | - Jérôme Graton
- Laboratoire CEISAM-UMR CNR 6230; Université de Nantes; 2 Rue de la Houssinière, BP 92208 44322 Nantes Cedex 3 France
| | - Adèle D. Laurent
- Laboratoire CEISAM-UMR CNR 6230; Université de Nantes; 2 Rue de la Houssinière, BP 92208 44322 Nantes Cedex 3 France
| |
Collapse
|
6
|
Reithmeier RAF, Casey JR, Kalli AC, Sansom MSP, Alguel Y, Iwata S. Band 3, the human red cell chloride/bicarbonate anion exchanger (AE1, SLC4A1), in a structural context. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:1507-32. [PMID: 27058983 DOI: 10.1016/j.bbamem.2016.03.030] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 03/21/2016] [Accepted: 03/29/2016] [Indexed: 02/03/2023]
Abstract
The crystal structure of the dimeric membrane domain of human Band 3(1), the red cell chloride/bicarbonate anion exchanger 1 (AE1, SLC4A1), provides a structural context for over four decades of studies into this historic and important membrane glycoprotein. In this review, we highlight the key structural features responsible for anion binding and translocation and have integrated the following topological markers within the Band 3 structure: blood group antigens, N-glycosylation site, protease cleavage sites, inhibitor and chemical labeling sites, and the results of scanning cysteine and N-glycosylation mutagenesis. Locations of mutations linked to human disease, including those responsible for Southeast Asian ovalocytosis, hereditary stomatocytosis, hereditary spherocytosis, and distal renal tubular acidosis, provide molecular insights into their effect on Band 3 folding. Finally, molecular dynamics simulations of phosphatidylcholine self-assembled around Band 3 provide a view of this membrane protein within a lipid bilayer.
Collapse
Affiliation(s)
- Reinhart A F Reithmeier
- Department of Biochemistry, 1 King's College Circle, University of Toronto, Toronto M5S 1A8, Canada.
| | - Joseph R Casey
- Department of Biochemistry, Membrane Protein Disease Research Group, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Antreas C Kalli
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Mark S P Sansom
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Yilmaz Alguel
- Division of Molecular Biosciences, Imperial College London, London, SW7 2AZ, UK
| | - So Iwata
- Division of Molecular Biosciences, Imperial College London, London, SW7 2AZ, UK
| |
Collapse
|
7
|
Cordat E, Reithmeier RA. Structure, Function, and Trafficking of SLC4 and SLC26 Anion Transporters. CURRENT TOPICS IN MEMBRANES 2014; 73:1-67. [DOI: 10.1016/b978-0-12-800223-0.00001-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
8
|
Fry AC, Su Y, Yiu V, Cuthbert AW, Trachtman H, Karet Frankl FE. Mutation conferring apical-targeting motif on AE1 exchanger causes autosomal dominant distal RTA. J Am Soc Nephrol 2012; 23:1238-49. [PMID: 22518001 DOI: 10.1681/asn.2012020112] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Mutations in SLC4A1 that mislocalize its product, the chloride/bicarbonate exchanger AE1, away from its normal position on the basolateral membrane of the α-intercalated cell cause autosomal dominant distal renal tubular acidosis (dRTA). We studied a family exhibiting dominant inheritance and defined a mutation (AE1-M909T) that affects the C terminus of AE1, a region rich in potential targeting motifs that are incompletely characterized. Expression of AE1-M909T in Xenopus oocytes confirmed preservation of its anion exchange function. Wild-type GFP-tagged AE1 localized to the basolateral membrane of polarized MDCK cells, but AE1-M909T localized to both the apical and basolateral membranes. Wild-type AE1 trafficked directly to the basolateral membrane without apical passage, whereas AE1-M909T trafficked to both cell surfaces, implying the gain of an apical-targeting signal. We found that AE1-M909T acquired class 1 PDZ ligand activity that the wild type did not possess. In summary, the AE1-M909T mutation illustrates the role of abnormal targeting in dRTA and provides insight into C-terminal motifs that govern normal trafficking of AE1.
Collapse
Affiliation(s)
- Andrew C Fry
- Department of Medical Genetics, University of Cambridge, United Kingdom
| | | | | | | | | | | |
Collapse
|
9
|
Parker MD, Young MT, Daly CM, Meech RW, Boron WF, Tanner MJA. A conductive pathway generated from fragments of the human red cell anion exchanger AE1. J Physiol 2007; 581:33-50. [PMID: 17317744 PMCID: PMC2075216 DOI: 10.1113/jphysiol.2007.128389] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2007] [Accepted: 02/20/2007] [Indexed: 11/08/2022] Open
Abstract
Human red cell anion exchanger AE1 (band 3) is an electroneutral Cl-HCO3- exchanger with 12-14 transmembrane spans (TMs). Previous work using Xenopus oocytes has shown that two co-expressed fragments of AE1 lacking TMs 6 and 7 are capable of forming a stilbene disulphonate-sensitive (36)Cl-influx pathway, reminiscent of intact AE1. In the present study, we create a single construct, AE1Delta(6: 7), representing the intact protein lacking TMs 6 and 7. We expressed this construct in Xenopus oocytes and evaluated it employing a combination of two-electrode voltage clamp and pH-sensitive microelectrodes. We found that, whereas AE1Delta(6: 7) has some electroneutral Cl-base exchange activity, the protein also forms a novel anion-conductive pathway that is blocked by DIDS. The mutation Lys(539)Ala at the covalent DIDS-reaction site of AE1 reduced the DIDS sensitivity, demonstrating that (1) the conductive pathway is intrinsic to AE1Delta(6: 7) and (2) the conductive pathway has some commonality with the electroneutral anion-exchange pathway. The conductance has an anion-permeability sequence: NO3- approximately I- > NO2- > Br- > Cl- > SO4(2-) approximately HCO3- approximately gluconate- approximately aspartate- approximately cyclamate-. It may also have a limited permeability to Na+ and the zwitterion taurine. Although this conductive pathway is not a usual feature of intact mammalian AE1, it shares many properties with the anion-conductive pathways intrinsic to two other Cl-HCO3- exchangers, trout AE1 and mammalian SLC26A7.
Collapse
Affiliation(s)
- Mark D Parker
- Department of Biochemistry, University of Bristol, University Walk, Bristol, BS8 1TD, UK.
| | | | | | | | | | | |
Collapse
|
10
|
Yuasa K, Mi-Ichi F, Kobayashi T, Yamanouchi M, Kotera J, Kita K, Omori K. PfPDE1, a novel cGMP-specific phosphodiesterase from the human malaria parasite Plasmodium falciparum. Biochem J 2006; 392:221-9. [PMID: 16038615 PMCID: PMC1317681 DOI: 10.1042/bj20050425] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This is the first report of molecular characterization of a novel cyclic nucleotide PDE (phosphodiesterase), isolated from the human malaria parasite Plasmodium falciparum and designated PfPDE1. PfPDE1 cDNA encodes an 884-amino-acid protein, including six putative transmembrane domains in the N-terminus followed by a catalytic domain. The PfPDE1 gene is a single-copy gene consisting of two exons and a 170 bp intron. PfPDE1 transcripts were abundant in the ring form of the asexual blood stages of the parasite. The C-terminal catalytic domain of PfPDE1, produced in Escherichia coli, specifically hydrolysed cGMP with a K(m) value of 0.65 microM. Among the PDE inhibitors tested, a PDE5 inhibitor, zaprinast, was the most effective, having an IC50 value of 3.8 microM. The non-specific PDE inhibitors IBMX (3-isobutyl-1-methylxanthine), theophylline and the antimalarial chloroquine had IC50 values of over 100 microM. Membrane fractions prepared from P. falciparum at mixed asexual blood stages showed potent cGMP hydrolytic activity compared with cytosolic fractions. This hydrolytic activity was sensitive to zaprinast with an IC50 value of 4.1 microM, but insensitive to IBMX and theophylline. Furthermore, an in vitro antimalarial activity assay demonstrated that zaprinast inhibited the growth of the asexual blood parasites, with an ED50 value of 35 microM. The impact of cyclic nucleotide signalling on the cellular development of this parasite has previously been discussed. Thus this enzyme is suggested to be a novel potential target for the treatment of the disease malaria.
Collapse
Affiliation(s)
- Keizo Yuasa
- *Discovery Research Laboratories, Tanabe Seiyaku Co. Ltd., 2–50, Kawagishi 2-chome, Toda, Saitama 335-8505, Japan
| | - Fumika Mi-Ichi
- †Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, 3–1 Hongo-7-chome, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Tamaki Kobayashi
- †Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, 3–1 Hongo-7-chome, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masaya Yamanouchi
- ‡Medicinal Chemistry Research Laboratories, Tanabe Seiyaku Co. Ltd., 16–89, Kashima 3-chome, Yodogawa-ku, Osaka 532-8505, Japan
| | - Jun Kotera
- *Discovery Research Laboratories, Tanabe Seiyaku Co. Ltd., 2–50, Kawagishi 2-chome, Toda, Saitama 335-8505, Japan
| | - Kiyoshi Kita
- †Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, 3–1 Hongo-7-chome, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kenji Omori
- *Discovery Research Laboratories, Tanabe Seiyaku Co. Ltd., 2–50, Kawagishi 2-chome, Toda, Saitama 335-8505, Japan
- To whom correspondence should be addressed (email )
| |
Collapse
|
11
|
Rungroj N, Devonald MAJ, Cuthbert AW, Reimann F, Akkarapatumwong V, Yenchitsomanus PT, Bennett WM, Karet FE. A Novel Missense Mutation in AE1 Causing Autosomal Dominant Distal Renal Tubular Acidosis Retains Normal Transport Function but Is Mistargeted in Polarized Epithelial Cells. J Biol Chem 2004; 279:13833-8. [PMID: 14734552 DOI: 10.1074/jbc.m400188200] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mutations in SLC4A1, encoding the chloride-bicarbonate exchanger AE1, cause distal renal tubular acidosis (dRTA), a disease of defective urinary acidification by the distal nephron. In this study we report a novel missense mutation, G609R, causing dominant dRTA in affected members of a large Caucasian pedigree who all exhibited metabolic acidosis with alkaline urine, prominent nephrocalcinosis, and progressive renal impairment. To investigate the potential disease mechanism, the consequent effects of this mutation were determined. We first assessed anion transport function of G609R by expression in Xenopus oocytes. Western blotting and immunofluorescence demonstrated that the mutant protein was expressed at the oocyte cell surface. Measuring chloride and bicarbonate fluxes revealed normal 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid-inhibitable anion exchange, suggesting that loss-of-function of kAE1 cannot explain the severe disease phenotype in this kindred. We next expressed epitope-tagged wild-type or mutant kAE1 in Madin-Darby canine kidney cells. In monolayers grown to polarity, mutant kAE1 was detected subapically and at the apical membrane, as well as at the basolateral membrane, in contrast to the normal basolateral appearance of wild-type kAE1. These findings suggest that the seventh transmembrane domain that contains Gly-609 plays an important role in targeting kAE1 to the correct cell surface compartment. They confirm that dominant dRTA is associated with non-polarized trafficking of the protein, with no significant effect on anion transport function in vitro, which remains an unusual mechanism of human disease.
Collapse
Affiliation(s)
- Nanyawan Rungroj
- Departments of Medical Genetics,University of Cambridge, Cambridge CB2 2XY, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Virkki LV, Choi I, Davis BA, Boron WF. Cloning of a Na+-driven Cl/HCO3 exchanger from squid giant fiber lobe. Am J Physiol Cell Physiol 2003; 285:C771-80. [PMID: 12748067 DOI: 10.1152/ajpcell.00439.2002] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We extracted RNA from the giant fiber lobe (GFL) of the squid Loligo pealei and performed PCR with degenerate primers that were based on highly conserved regions of Na+-coupled HCO3- transporters. This approach yielded a novel, 290-bp sequence related to the bicarbonate transporter superfamily. Using an L. opalescens library, we extended the initial fragment in the 3' and 5' directions by a combination of library screening and PCR and obtained the full-length clone (1,198 amino acids) by PCR from L. pealei GFL. The amino acid sequence is 46% identical to mammalian electrogenic and electroneutral Na-HCO3 cotransporters and 33% identical to the anion exchanger AE1. Northern blot analysis showed strong signals in L. pealei GFL, optic lobe, and heart and weaker signals in gill and stellate ganglion. To assess function, we injected in vitro-transcribed cRNA into Xenopus oocytes and subsequently used microelectrodes to monitor intracellular pH (pHi) and membrane voltage (Vm). Superfusing these oocytes with 5% CO2-33 mM HCO3- caused a CO2-induced fall in pHi, followed by a slow recovery. The absence of a rapid HCO3- -induced hyperpolarization indicates that the pHi recovery mechanism is electroneutral. Ion substitutions showed that Na+ and Cl- are required on opposite sides of the membrane. Transport was blocked by 50 microM 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS). The characteristics of our novel clone fit those of a Na+-driven Cl/HCO3 exchanger (NDCBE).
Collapse
Affiliation(s)
- Leila V Virkki
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | | | | | |
Collapse
|
13
|
Zhu Q, Lee DWK, Casey JR. Novel topology in C-terminal region of the human plasma membrane anion exchanger, AE1. J Biol Chem 2003; 278:3112-20. [PMID: 12446737 DOI: 10.1074/jbc.m207797200] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human AE1 performs electroneutral exchange of Cl(-) for HCO(3)(-) across the erythrocyte membrane. We examined the topology of the AE1 C-terminal region using cysteine-scanning mutagenesis and sulfhydryl-specific chemistry. Eighty individual cysteine residues, introduced into an otherwise cysteine-less mutant between Phe(806) and Cys(885), were expressed by transient transfection of HEK293 cells. Topology of the region was determined by comparing cysteine labeling with the membrane-permeant cysteine-directed reagent biotin maleimide, with or without prior labeling with the membrane-impermeant reagents, bromotrimethylammoniumbimane bromide (qBBr) and lucifer yellow iodoacetamide (LYIA). Phe(806)-Leu(835), Ser(852)-Ala(855), and Ile(872)-Cys(885) were labeled by biotin maleimide, suggesting their location in an aqueous environment. In contrast, Phe(836)-Lys(851) and Ser(856)-Arg(871) were not labeled by biotin maleimide and therefore localize to the plane of the bilayer, as transmembrane segments (TM). Labeling by qBBr revealed that Pro(815)-Lys(829) and Ser(852)-Ala(855) are accessible to the extracellular medium. Pro(815)-Lys(829) mutants were also labeled with LYIA. Mutants Ile(872)-Cys(885) were inaccessible to the extracellular medium and thus localized to the intracellular surface of AE1. Functional assays revealed that one face of each of two AE1 TMs was sensitive to mutation. Based on these results, we propose a topology model for the C-terminal region of the membrane domain of human AE1.
Collapse
Affiliation(s)
- Quansheng Zhu
- Canadian Institutes of Health Research Membrane Protein Research Group, Department of Physiology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | | | | |
Collapse
|
14
|
Salhany JM. Mechanistic basis for site-site interactions in inhibitor and substrate binding to band 3 (AE1): evidence distinguishing allosteric from electrostatic effects. Blood Cells Mol Dis 2001; 27:901-12. [PMID: 11783954 DOI: 10.1006/bcmd.2001.0464] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Kinetic studies suggest that stilbenedisulfonates inhibit erythrocyte anion exchange by competing with substrate anions for binding to band 3 (AE1). Such competition seems to involve site-site interactions between distinct inhibitor and substrate binding sites. The molecular basis for site-site interactions could be allosteric or electrostatic. In this paper, inhibitor binding kinetic studies are reviewed, and 35Cl(-) NMR line-broadening experiments are presented, both of which seem to rule out an electrostatic hypothesis. The results are consistent with an allosteric site-site interaction mechanism in the binding of stilbenedisulfonate and substrate anions to band 3.
Collapse
Affiliation(s)
- J M Salhany
- Veterans Administration Medical Center, University of Nebraska Medical Center, Omaha, Nebraska 68198-5290, USA.
| |
Collapse
|
15
|
Zhao R, Reithmeier RA. Expression and characterization of the anion transporter homologue YNL275w in Saccharomyces cerevisiae. Am J Physiol Cell Physiol 2001; 281:C33-45. [PMID: 11401825 DOI: 10.1152/ajpcell.2001.281.1.c33] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A search of the yeast Saccharomyces cerevisiae genome has revealed an open reading frame, YNL275w, which encodes a 576-amino acid protein that shows sequence similarity to the family of mammalian Cl-/HCO3- anion exchangers and Na+/HCO3- cotransporters. This yeast protein also has a very similar hydropathy profile to the mammalian HCO3- transporters, indicating a similar membrane topology and structure. A V5 epitope and His6-tagged version of Ynl275wp was expressed in yeast and was localized to the plasma membrane by subcellular fractionation and immunofluorescence labeling. The protein was purified by nickel affinity chromatography and was found not to be N-glycosylated. The protein's mobility on SDS-PAGE gels was not altered by treatment with N-glycanase F, alpha-mannosidase, or by mutation of each of the five consensus N-glycosylation sites. The protein did not bind to concanavalin A by lectin blotting or lectin affinity chromatography. The expressed protein bound specifically to a stilbene disulfonate inhibitor resin (SITS-Affi-Gel), and this binding could be competed by certain anions (HCO3-, Cl-, NO3-, and I-) but not by others (SO4(2-) and PO4(3-)). These results suggest that the yeast gene YNL275w encodes a nonglycosylated anion transport protein, localized to the plasma membrane.
Collapse
Affiliation(s)
- R Zhao
- Canadian Institutes of Health Research Group in Membrane Biology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | | |
Collapse
|
16
|
Rajendran VM, Black J, Ardito TA, Sangan P, Alper SL, Schweinfest C, Kashgarian M, Binder HJ. Regulation of DRA and AE1 in rat colon by dietary Na depletion. Am J Physiol Gastrointest Liver Physiol 2000; 279:G931-42. [PMID: 11052990 DOI: 10.1152/ajpgi.2000.279.5.g931] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Two distinct Cl/anion exchange activities (Cl/HCO(3) and Cl/OH) identified in apical membranes of rat distal colon are distributed in cell type-specific patterns. Cl/HCO(3) exchange is expressed only in surface cells, whereas Cl/OH exchange is localized in surface and crypt cells. Dietary Na depletion substantially inhibits Cl/HCO(3) but not Cl/OH exchange. We determined whether anion exchange isoforms (AE) and/or downregulated in adenoma (DRA) are expressed in and related to apical membrane anion exchanges by examining localization of AE isoform-specific and DRA mRNA expression in normal and Na-depleted rats. Amplification of AE cDNA fragments by RT-PCR with colonic mRNA as template indicates that AE1 and AE2 but not AE3 mRNAs are expressed. In situ hybridization study revealed that AE1 mRNA is expressed predominantly in surface but not crypt cells. In contrast, AE2 polypeptide is expressed in basolateral membranes and DRA protein is expressed in apical membranes of both surface and crypt cells. AE1 mRNA is only minimally present in proximal colon, and DRA mRNA abundance is similar in distal and proximal colon. Dietary Na depletion reduces AE1 mRNA abundance but did not alter DRA mRNA abundance. This indicates that AE1 encodes surface cell-specific aldosterone-regulated Cl/HCO(3) exchange, whereas DRA encodes aldosterone-insensitive Cl/OH exchange.
Collapse
Affiliation(s)
- V M Rajendran
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06520, USA.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Tosco M, Orsenigo MN, Gastaldi G, Faelli A. An endogenous monocarboxylate transport in Xenopus laevis oocytes. Am J Physiol Regul Integr Comp Physiol 2000; 278:R1190-5. [PMID: 10801286 DOI: 10.1152/ajpregu.2000.278.5.r1190] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We investigated the existence of an endogenous system for lactate transport in Xenopus laevis oocytes. (36)Cl-uptake studies excluded the involvement of a DIDS-sensitive anion antiporter as a possible pathway for lactate movement. L-[(14)C]lactate uptake was unaffected by superimposed pH gradients, stimulated by the presence of Na(+) in the incubating solution, and severely reduced by the monocarboxylate transporter inhibitor p-chloromercuribenzenesulphonate (pCMBS). Transport exhibited a broad cation specificity and was cis inhibited by other monocarboxylates, mostly by pyruvate. These results suggest that lactate uptake is mediated mainly by a transporter and that the preferred anion is pyruvate. [(14)C]pyruvate uptake exhibited the same pattern of functional properties evidenced for L-lactate. Kinetic parameters were calculated for both monocarboxylates, and a higher affinity for pyruvate was revealed. Various inhibitors of monocarboxylate transporters reduced significantly pyruvate uptake. These studies demonstrate that Xenopus laevis oocytes possess a monocarboxylate transport system that shares some functional features with the members of the mammalian monocarboxylate cotransporters family, but, in the meanwhile, exhibits some particular properties, mainly concerning cation specificity.
Collapse
Affiliation(s)
- M Tosco
- Dipartimento di Fisiologia e Biochimica Generali, Università di Milano, via Celoria 26, I-20133 Milano, Italy.
| | | | | | | |
Collapse
|
18
|
Functional Cell Surface Expression of Band 3, the Human Red Blood Cell Anion Exchange Protein (AE1), in K562 Erythroleukemia Cells: Band 3 Enhances the Cell Surface Reactivity of Rh Antigens. Blood 1998. [DOI: 10.1182/blood.v92.11.4428] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractHuman K562 erythroleukemia cells were transfected with human band 3 (anion exchanger 1 [AE1]) cDNA, using the pBabe retroviral vector. Stable K562 clones expressing band 3 were isolated by flow cytometry, and surface expression was quantified by immunoblotting. The function of band 3 expressed at the cell surface was demonstrated in chloride transport assays. K562 cells expressing band 3 also displayed high levels of the Wrb blood group antigen, confirming the role of band 3 in Wrb expression, and an increase in the low levels of endogenous Rh antigen activity. We also performed coexpression experiments with K562 clones that had previously been transduced with cDNAs encoding RhD or RhcE polypeptides. The transfection and expression of band 3 in these clones substantially increased the levels of RhD and cE antigen activity expressed on the cells and also increased the reactivity of the cells with antibody to the endogenous Rh glycoprotein (RhGP, Rh50). The increased reactivity of Rh antigens may result from cell surface or intracellular interactions of band 3 with the protein complex which contains the Rh polypeptides and RhGP, or from indirect effects of band 3 on the membrane environment. This work establishes a system for cell surface expression of band 3 in a mammalian cell line, which will enable further studies of the protein and its interactions with other membrane components.
Collapse
|
19
|
Functional Cell Surface Expression of Band 3, the Human Red Blood Cell Anion Exchange Protein (AE1), in K562 Erythroleukemia Cells: Band 3 Enhances the Cell Surface Reactivity of Rh Antigens. Blood 1998. [DOI: 10.1182/blood.v92.11.4428.423k15_4428_4438] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human K562 erythroleukemia cells were transfected with human band 3 (anion exchanger 1 [AE1]) cDNA, using the pBabe retroviral vector. Stable K562 clones expressing band 3 were isolated by flow cytometry, and surface expression was quantified by immunoblotting. The function of band 3 expressed at the cell surface was demonstrated in chloride transport assays. K562 cells expressing band 3 also displayed high levels of the Wrb blood group antigen, confirming the role of band 3 in Wrb expression, and an increase in the low levels of endogenous Rh antigen activity. We also performed coexpression experiments with K562 clones that had previously been transduced with cDNAs encoding RhD or RhcE polypeptides. The transfection and expression of band 3 in these clones substantially increased the levels of RhD and cE antigen activity expressed on the cells and also increased the reactivity of the cells with antibody to the endogenous Rh glycoprotein (RhGP, Rh50). The increased reactivity of Rh antigens may result from cell surface or intracellular interactions of band 3 with the protein complex which contains the Rh polypeptides and RhGP, or from indirect effects of band 3 on the membrane environment. This work establishes a system for cell surface expression of band 3 in a mammalian cell line, which will enable further studies of the protein and its interactions with other membrane components.
Collapse
|
20
|
Tosco M, Orsenigo MN, Gastaldi G, Faelli A. Functional expression of basolateral Cl-/HCO3- exchange from rat jejunum in Xenopus laevis oocytes. Cell Biochem Funct 1998; 16:35-42. [PMID: 9519458 DOI: 10.1002/(sici)1099-0844(199803)16:1<35::aid-cbf759>3.0.co;2-e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Poly(A)+ RNA isolated from rat jejunum was injected into Xenopus laevis oocytes and expression of Cl-/HCO3- antiport was investigated by means of 36Cl- uptake. Two days after injection of 50 ng of poly(A)+ RNA, Cl- uptake was significantly increased with respect to water-injected oocytes. The expressed transport was inhibited by 0.2 mM DIDS, whereas endogenous Cl- uptake was unaffected by this disulphonic stilbene. After sucrose density gradient fractionation, the highest expression of DIDS-sensitive Cl- uptake was detected with mRNA size fraction of about 2-4 kb in length. The expressed Cl- uptake can occur against a Cl- concentration gradient and is unaffected by the known Cl- channel blocker anthracene-9-carboxylic acid. Cl- transport mechanism has properties similar to jejunal basolateral. Cl-/HCO3- exchange with regard to Na+ dependence.
Collapse
Affiliation(s)
- M Tosco
- Dipartimento di Fisiologia e Biochimica Generali, Università di Milano, Italy
| | | | | | | |
Collapse
|
21
|
Romero MF, Fong P, Berger UV, Hediger MA, Boron WF. Cloning and functional expression of rNBC, an electrogenic Na(+)-HCO3- cotransporter from rat kidney. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 274:F425-32. [PMID: 9486238 DOI: 10.1152/ajprenal.1998.274.2.f425] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We have recently cloned the renal electrogenic Na(+)-bicarbonate contransporter of the salamander Ambystoma tigrinum (aNBC) (M. F. Romero, M. A. Hediger, E. L. Boulpaep, and W. F. Boron. FASEB J. 10: 89, 1996; and Nature 387: 409-413, 1997). Here we report the cloning of a mammalian homolog of aNBC, named rNBC for rat Na(+)-bicarbonate cotransporter. NBC constitutes the major route for HCO3- reabsorption and assists in Na+ reabsorption across the basolateral membrane of the renal proximal tubule (PT). We used aNBC as a probe to screen a rat kidney cortex cDNA library in lambda gt10 and identified several clones. Each has an initiator Met and a large open-reading frame followed by a 3'-untranslated region of approximately 500 bp. The 7.5-kb mRNA for rNBC is present in kidney, liver, lung, brain, and heart. In situ hybridization with the rNBC probe in the rat kidney revealed staining in the S2 segment of PT. rNBC encodes a protein of 1,035 amino acids, with a predicted molecular mass of 116 kDa. Its deduced amino acid sequence is 86% identical to that of aNBC. Comparison of both the aNBC and rNBC sequences to the GenBank database reveals a low level of amino acid identity (approximately 30%) to the AE family of Cl-/HCO3- exchangers. Injection of rNBC cRNA into Xenopus oocytes leads to expression of an electrogenic Na(+)-HCO3- contransporter that is qualitatively similar to that of aNBC but at a much lower level. Placement of the rNBC cDNA into the context of a Xenopus expression vector produces a substantial increase in rNBC expression. Addition of 1.5% CO2/10 mM HCO3- elicits a hyperpolarization of > 50 mV and a rapid decrease of intracellular pH (pHi), followed by an increase in pHi. Subsequent removal of Na+ in the presence of CO2/HCO3- causes a depolarization of > 50 mV and a concomitant decrease of pHi. Thus rNBC is in the same newly identified family of Na(+)-linked HCO3- transporters as is aNBC.
Collapse
Affiliation(s)
- M F Romero
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | | | | | | | |
Collapse
|
22
|
Chernova MN, Humphreys BD, Robinson DH, Stuart-Tilley AK, Garcia AM, Brosius FC, Alper SL. Functional consequences of mutations in the transmembrane domain and the carboxy-terminus of the murine AE1 anion exchanger. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1329:111-23. [PMID: 9370249 DOI: 10.1016/s0005-2736(97)00090-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We have characterized mouse AE1-mediated 36Cl- influx and surface AE1 polypeptide expression in Xenopus oocytes injected with cRNA encoding two classes of loss-of-function mutants. The first arose spontaneously. Chimeric mutants constructed with a functional AE1 cDNA localized the site of spontaneous mutation to the transmembrane domain, and DNA sequencing revealed two missense mutations encoding the double-mutant polypeptide V728F/M7301. Each mutation individually produced only partial loss of AE1 transport activity, and coexpression of the individual mutants did not restore full activity. The functional changes produced by the mutations correlated with reduced fractional accumulation of polypeptides at the oocyte surface. The V728F/M7301 polypeptide expressed in mammalian cells displayed complete endoH resistance and rapid degradation. We also examined the effect on AE1 function of engineered removal of its hydrophilic carboxy-terminus. Both delta(c)890 and the internal deletion delta(c)890-917 were functionally inactive in Xenopus oocytes. Lack of transport activity correlated with lack of detectable polypeptide accumulation at the oocyte surface. Coexpression with wt AE1 of some, but not all, of these AE1 mutants partially suppressed wt AE1-mediated 36Cl- uptake. In contrast, coexpression with wt AE1 of soluble N-terminal AE1 fragments was not inhibitory.
Collapse
Affiliation(s)
- M N Chernova
- Beth Israel Hospital, Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
This review discusses recent advances in our understanding of the structure, function and molecular genetics of the membrane domain of red cell anion exchanger, band 3 (AE1), and its role in red cell and kidney disease. A new model for the topology of band 3 has been proposed, which suggests the membrane domain has 12 membrane spans, rather than the 14 membrane spans of earlier models. The major difference between the models is in the topology of the region on the C-terminal side of membrane spans 1-7. Two dimensional crystals of the deglycosylated membrane domain of band 3 have yielded two and three dimensional projection maps of the membrane domain dimer at low resolution. The human band 3 gene has been completely sequenced and this has facilitated the study of natural band 3 mutations and their involvement in disease. About 20% of hereditary spherocytosis cases arise from heterozygosity for band 3 mutations, and result in the absence or decrease of the mutant protein in the red cell membrane. Several other natural band 3 mutations are known that appear to be clinically benign, but alter red cell phenotype or are associated with altered red cell blood group antigens. These include the mutant band 3 present in Southeast Asian ovalocytosis, a condition which provides protection against cerebral malaria in children. Familial distal renal tubular acidosis, a condition associated with kidney stones, has been shown to result from a novel group of band 3 mutations. The total absence of band 3 has been described in animals-occurring naturally in cattle and after targeted disruption in mice. Some of these severely anaemic animals survive, so band 3 is not strictly essential for life. Although the band 3-negative red cells were very unstable, they contained a normally-assembled red cell skeleton, suggesting that the bilayer of the normal red cell membrane is stabilized by band 3 interactions with membrane lipids, rather than by interactions with the spectrin skeleton.
Collapse
Affiliation(s)
- M J Tanner
- Department of Biochemistry, School of Medical Sciences, University of Bristol, UK
| |
Collapse
|
24
|
Chernova MN, Jiang L, Crest M, Hand M, Vandorpe DH, Strange K, Alper SL. Electrogenic sulfate/chloride exchange in Xenopus oocytes mediated by murine AE1 E699Q. J Gen Physiol 1997; 109:345-60. [PMID: 9089441 PMCID: PMC2217076 DOI: 10.1085/jgp.109.3.345] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/1996] [Accepted: 12/16/1996] [Indexed: 02/04/2023] Open
Abstract
Functional evaluation of chemically modified human erythrocytes has led to the proposal that amino acid residue E681 of the band 3 anion exchanger AE1 lies on the anion translocation pathway and is a proton carrier required for H+/SO4(2-) cotransport. We have tested in Xenopus oocytes the functional consequences of mutations in the corresponding residue E699 of mouse AE1. Most mutations tested abolished AE1-mediated Cl- influx and efflux. Only the E699Q mutation increased stilbene disulfonate-sensitive efflux and influx of SO4(2-). E699Q-mediated Cl- influx was activated by elevation of intracellular SO4(2-), but E699Q-mediated Cl- efflux was undetectable. The DNDS (4,4'-dinitrostilbene-2,2'-disulfonic acid) sensitivity of E699Q-mediated SO4(2-) efflux was indistinguishable from that of wt AE1-mediated Cl- efflux. The extracellular anion selectivity of E699Q-mediated SO4(2-) efflux was similar to that of wt AE1-mediated Cl- efflux. The stoichiometry of E699Q-mediated exchange of extracellular Cl- with intracellular SO4(2-) was 1:1. Whereas SO4(2-) injection into oocytes expressing wt AE1 produced little change in membrane potential or resistance, injection of SO4(2-), but not of Cl- or gluconate, into oocytes expression E699Q depolarized the membrane by 17 mV and decreased membrane resistance by 66%. Replacement of bath Cl- with isethionate caused a 28-mV hyperpolarization in SO4(2-)-loaded oocytes expressing E699Q, but had no effect on oocytes expressing wt AE1. Extracellular Cl(-)-dependent depolarization of SO4(2-)-preloaded oocytes was blocked by DNDS. AE1 E699Q-mediated inward current measured in the presence of extracellular Cl- was of magnitude sufficient to account for measured 35SO4(2-) efflux. Thus, AE1 E699Q-mediated SO4(2-)/Cl- exchange operated largely, if not exclusively, as an electrogenic, asymmetric, 1:1 anion exchange. The data confirm the proposal that E699 resides on or contributes to the integrity of the anion translocation pathway of AE1. A single amino acid change in the sequence of AE1 converted electroneutral to electrogenic anion exchange without alteration of SO4(2-)/Cl- exchange stoichiometry.
Collapse
Affiliation(s)
- M N Chernova
- Molecular Medicine Unit, Beth Israel Hospital, Boston, Massachusetts 02215, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Freedman JC, Novak TS. Electrodiffusion, barrier, and gating analysis of DIDS-insensitive chloride conductance in human red blood cells treated with valinomycin or gramicidin. J Gen Physiol 1997; 109:201-16. [PMID: 9041449 PMCID: PMC2220065 DOI: 10.1085/jgp.109.2.201] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Current-voltage curves for DIDS-insensitive Cl- conductance have been determined in human red blood cells from five donors. Currents were estimated from the rate of cell shrinkage using flow cytometry and differential laser light scattering. Membrane potentials were estimated from the extracellular pH of unbuffered suspensions using the proton ionophore FCCP. The width of the Gaussian distribution of cell volumes remained invariant during cell shrinkage, indicating a homogeneous C1- conductance among the cells. After pretreatment for 30 min with DIDS, net effluxes of K+ and Cl- were induced by valinomycin and were measured in the continued presence of DIDS; inhibition was maximal at approximately 65% above 1 microM DIDS at both 25 degrees C and 37 degrees C. The nonlinear current-voltage curves for DIDS-insensitive net Cl- effluxes, induced by valinomycin or gramicidin at varied [K+] o, were compared with predictions based on (1) the theory of electrodiffusion, (2) a single barrier model, (3) single occupancy, multiple barrier models, and (4) a voltage-gated mechanism. Electrodiffusion precisely describes the relationship between the measured transmembrane voltage and [K+]o. Under our experimental conditions (pH 7.5, 23 degrees C, 1-3 microM valinomycin or 60 ng/ml gramicidin, 1.2% hematocrit), the constant field permeability ratio PK/PCl is 74 +/- 9 with 10 microM DIDS, corresponding to 73% inhibition of PCl. Fitting the constant field current-voltage equation to the measured Cl- currents yields PCl = 0.13 h-1 with DIDS, compared to 0.49 h-1 without DIDS, in good agreement with most previous studies. The inward rectifying DIDS-insensitive Cl- current, however, is inconsistent with electrodiffusion and with certain single-occupancy multiple barrier models. The data are well described either by a single barrier located near the center of the transmembrane electric field, or, alternatively, by a voltage-gated channel mechanism according to which the maximal conductance is 0.055 +/- 0.005 S/g Hb, half the channels are open at -27 +/- 2 mV, and the equivalent gating charge is -1.2 +/- 0.3.
Collapse
Affiliation(s)
- J C Freedman
- Department of Physiology, State University of New York Health Science Center, Syracuse 13210, USA.
| | | |
Collapse
|
26
|
Chapter 13 Structure of the erythrocyte band 3 anion exchanger. ACTA ACUST UNITED AC 1996. [DOI: 10.1016/s1383-8121(96)80054-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
27
|
Sekler I, Lo RS, Kopito RR. A conserved glutamate is responsible for ion selectivity and pH dependence of the mammalian anion exchangers AE1 and AE2. J Biol Chem 1995; 270:28751-8. [PMID: 7499397 DOI: 10.1074/jbc.270.48.28751] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The erythrocyte anion exchanger AE1 (band 3) serves as an important model for the study of the mechanism of ion transport. Chemical modification of human erythrocyte AE1 has previously suggested that glutamic acid residue 681 lies within the transport pathway and can cross the permeability barrier. This glutamate is conserved in all anion exchangers sequenced to date. We examined the effect on divalent (sulfate) and monovalent (chloride and bicarbonate) anion transport of mutating the corresponding glutamates in mouse AE1 and the closely related anion exchanger, AE2. Substitution of this conserved glutamate with uncharged or basic amino acids had a negligible effect on the maximal rate of sulfate-sulfate exchange in AE-reconstituted proteoliposomes, but largely abolished the steep pH dependence of sulfate transport observed in wild-type AE1 and AE2. In contrast, exchange of monovalent anions was undetectable in cells expressing these mutants. Replacement of the conserved glutamate with aspartate abolished both monovalent and divalent anion transport. These data suggest that the conserved glutamate residue plays a dual role in determining anion selectivity and in proton coupling to sulfate transport. A model explaining the role of the conserved glutamate in promoting ion selectivity and pH regulation is discussed.
Collapse
Affiliation(s)
- I Sekler
- Department of Biological Sciences, Stanford University, California 94305-5020, USA
| | | | | |
Collapse
|
28
|
Müller-Berger S, Karbach D, König J, Lepke S, Wood PG, Appelhans H, Passow H. Inhibition of mouse erythroid band 3-mediated chloride transport by site-directed mutagenesis of histidine residues and its reversal by second site mutation of Lys 558, the locus of covalent H2DIDS binding. Biochemistry 1995; 34:9315-24. [PMID: 7626600 DOI: 10.1021/bi00029a006] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Substitution by site-directed mutagenesis of any one of the histidine residues H721, H837, and H852 by glutamine, or of H752 by serine, inhibits Cl- flux mediated by band 3 expressed in Xenopus oocytes. Mutation of Lys 558 (K558N), the site of covalent binding of H2DIDS (4,4'-diisothiocyanostilbene-2,2'-disulfonate) in the outer membrane surface, in combination with any one of the His/Gln mutations leads to partial (H721Q; H837Q) or complete (H852Q) restoration of Cl- flux. In contrast, inhibition of Cl- flux by mutation of proline or lysine residues in the vicinity of His 837 at the inner membrane surface cannot be reversed by the second-site mutation K558N, indicating specificity of interaction between Lys 558 and His 837. The histidine-specific reagent diethyl pyrocarbonate (DEPC) is known to inhibit band 3-mediated anion exchange in red blood cells [Izuhara, K., Okubo, K., & Hamasaki, N. (1989) Biochemistry 28, 4725-4728]. It was also found to inhibit transport after expression in the oocyte of wild-type band 3, of the double mutants of the histidines listed above, and of the single mutant H752S. The effects on the wild type and the double mutants were indistinguishable, while the mutant H752S exhibited a considerably reduced sensitivity to inhibition, suggesting that His 752 is the most prominent site of action of DEPC. According to a hydrophobicity plot of band 3 and further independent evidence, Lys 558, the mutated histidines, and Glu 699, the mutation of which was also found to inhibit Cl- flux [Müller-Berger, S., Karbach, D., Kang, D., Aranibar, N., Wood, P. G., Rüterjans, H., & Passow, H. (1995) Biochemistry 34, 9325-9332], are most likely located in five different transmembrane helices. The interactions between Lys 558 and the various histidines suggest that these helices reside in close proximity. Together with the helix carrying Glu 699, they could form an access channel lined with an array of alternating histidine and glutamate residues. Together with a chloride ion bridging the gap between His 852 and His 837, they could have the potential to form, at low pH, a transmembrane chain of hydrogen bonds. The possible functional significance of such channel is discussed.
Collapse
MESH Headings
- 4,4'-Diisothiocyanostilbene-2,2'-Disulfonic Acid/analogs & derivatives
- 4,4'-Diisothiocyanostilbene-2,2'-Disulfonic Acid/metabolism
- Amino Acid Sequence
- Animals
- Anion Exchange Protein 1, Erythrocyte/chemistry
- Anion Exchange Protein 1, Erythrocyte/isolation & purification
- Anion Exchange Protein 1, Erythrocyte/metabolism
- Biological Transport
- Cell Membrane/metabolism
- Chlorides/metabolism
- Cross-Linking Reagents
- Electrophoresis, Polyacrylamide Gel
- Erythrocytes/metabolism
- Female
- Histidine
- Lysine
- Mice
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Oocytes/metabolism
- Point Mutation
- Protein Biosynthesis
- Protein Folding
- Protein Structure, Secondary
- Recombinant Proteins/chemistry
- Recombinant Proteins/isolation & purification
- Recombinant Proteins/metabolism
- Reticulocytes/metabolism
- Xenopus laevis
Collapse
Affiliation(s)
- S Müller-Berger
- Max Planck Institut für Biophysik, Frankfurt am Main, Germany
| | | | | | | | | | | | | |
Collapse
|
29
|
Schopfer LM, Salhany JM. Characterization of the stilbenedisulfonate binding site on band 3. Biochemistry 1995; 34:8320-9. [PMID: 7599124 DOI: 10.1021/bi00026a013] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Stilbenedisulfonates are potent inhibitors of Band 3 mediated anion exchange. They bind tightly to the protein and form a 1-to-1 reversible complex. Those stilbenedisulfonates which contain isothocyanato groups such as DIDS (4,4'-diisothiocyanato-2,2'-stilbenedisulfonate) and H2DIDS (4,4'-diisothiocyanatodihydrostilbene-2,2'-disulfonate) can also react rapidly with lysine residues within the binding pocket to yield an irreversible covalent adduct. The reactive lysine residue is known as lysine-A, and is thought to have an unusually low pKa. In this report, we characterize the kinetics of DIDS adduct formation with respect to the effect of substrate anions, competitive inhibitory anions, and pH on the rate of covalent adduct formation. We investigate the following: (a) whether stilbenedisulfonates bind to or block access of substrate anions to the transport site; (b) whether the rapidity of the covalent reaction of DIDS at neutral pH is due to a low pKa for lysine-A within the binding pocket; and (c) whether once bound, DIDS and H2DIDS isothiocyanato groups are accessible to reagents. For this latter experiment, we have utilized a newly discovered reaction of the DIDS isothiocyanato groups with azide to test for accessibility. Our results show that substrate anions, DIDS, and Band 3 form a ternary complex. Significantly, the binding of large substrate anions, such as iodide, is not weakened by DIDS to any greater extent than is the binding of smaller substrates such as chloride or fluoride. These results are not consistent with a "partial blockade" hypothesis for the relationship between the stilbenedisulfonate and transport sites. Rather, they support an allosteric site-site interaction hypothesis. Our pH dependence results show that the apparent pKa for the DIDS/lysine-A reaction is greater than 9.26. This is consistent with typical lysine pKa values, and indicates that lysine-A does not have an unusually low pKa. Finally, we show that azide can react with the isothiocyanato groups of DIDS and H2DIDS within their Band 3 complexes, indicating that the stilbenedisulfonate binding site is accessible to solute. These results support a view which suggests that the stilbenedisulfonate site is a superficial inhibitory site on Band 3 which inhibits transport by allosteric interactions within the protein, rather than by either direct or partial blockade of the transport site.
Collapse
Affiliation(s)
- L M Schopfer
- Veterans Administration Medical Center, Omaha, Nebraska, USA
| | | |
Collapse
|
30
|
Koetters PJ, Chou HF, Jonas AJ. Lysosomal sulfate transport: inhibitor studies. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1235:79-84. [PMID: 7718610 DOI: 10.1016/0005-2736(94)00301-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Sulfate derived from the degradation of macromolecules is released from lysosomes via a carrier mediated process. In order to further characterize this process, recognized inhibitors of the erythrocyte band 3 anion transporter were examined for their effects on the lysosomal system. Studies with band 3 transport site inhibitors such as DIDS, SITS and phenylglyoxal indicated that, similar to the case for the band 3 protein, the lysosomal transporter has critical lysine and arginine residues. Band 3 translocation pathway or channel blocking inhibitors had mixed effects on the lysosomal system. 1,2-Cyclohexanedione, which covalently modifies a band 3 arginine residue distinct from that modified by phenylglyoxal, inhibited lysosomal sulfate transport. In contrast, the potent band 3 inhibitor dipyridamole had no effect on lysosomal sulfate transport indicating that there are some structural differences between the erythrocyte and lysosomal anion transporters. The band 3 translocation inhibitors niflumic acid and dinitrofluorobenzene were both effective inhibitors of the lysosomal system. Cupric ion inhibited sulfate transport while Ca2+, Co2+, Mg2+, Mn2+, and Zn2+ had no inhibitory effects. Exposure of intact lysosomes to trypsin largely ablated transport of sulfate. This information should be useful in efforts to further elucidate the structure and function of the lysosomal sulfate transporter.
Collapse
Affiliation(s)
- P J Koetters
- Department of Pediatrics, Harbor-UCLA Medical Center, Torrance 90502, USA
| | | | | |
Collapse
|
31
|
Landolt-Marticorena C, Casey JR, Reithmeier RA. Transmembrane helix-helix interactions and accessibility of H2DIDS on labelled band 3, the erythrocyte anion exchange protein. Mol Membr Biol 1995; 12:173-82. [PMID: 7795708 DOI: 10.3109/09687689509027505] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
4,4'-Diisothiocyanodihydrostilbene-2,2'-disulphonate (H2DIDS), a bifunctional inhibitor of anion exchange in erythrocytes, reacts with Lys-539 in band 3 at neutral pH and crosslinks to Lys-851 at alkaline pH. The accessibility of H2DIDS-labelled band 3 was determined using an anti-H2DIDS antibody and proteolysis. Competitive enzyme-linked immunosorbent assays (ELISAs) showed that a polyclonal antibody raised against H2DIDS-labelled keyhole limpet hemocyanin bound a variety of stilbene disulphonates in the following order of affinities, H2DIDS having the highest affinity: H2DIDS > 4,4'-diisothiocyanostilbene-2,2'-disulphonate (DIDS) > 4-acetamido-4'-isothiocyanostilbene-2,2'disulphonate (SITS) > 4,4'-dinitrostilbene-2,2'-disulphonate (DNDS) > 4,4'-diaminostilbene-2,2'-disulphonate (DADS). The antibody readily detected mono- or bifunctionally H2DIDS-labelled band 3 and proteolytic fragments on immunoblots. H2DIDS attached to Lys-539 is retained in a 7.5 kDa membrane-associated peptide after papain treatment of ghost membranes while the sequence around Lys-851 is more accessible. The band 3 proteolytic fragments protected by the membrane from proteolysis remained associated as a specific complex with a Stokes radius slightly smaller than the dimeric membrane domain after solubilization in detergent solution and retained 82% of the amino acid content of the membrane domain. Circular dichroism (CD) measurements of this H2DIDS-labelled complex showed that it had a very high helical content (86%). The loops connecting the transmembrane segments in H2DIDS-labelled band 3 are therefore not required to maintain transmembrane helix-helix interactions. Denatured band 3 prelabelled with H2DIDS was more readily immunoprecipitated with the anti-H2DIDS antibody than was native band 3 in detergent solution. Deglycosylation of band 3 or proteolytic cleavage of the extramembranous loops did not enhance immunoprecipitation of H2DIDS-labelled band 3. The stilbene disulphonate inhibitor site is therefore relatively inaccessible and is bound by a bundle of helices in the native band 3 protein.
Collapse
MESH Headings
- 4,4'-Diisothiocyanostilbene-2,2'-Disulfonic Acid/analogs & derivatives
- 4,4'-Diisothiocyanostilbene-2,2'-Disulfonic Acid/chemistry
- 4,4'-Diisothiocyanostilbene-2,2'-Disulfonic Acid/immunology
- 4,4'-Diisothiocyanostilbene-2,2'-Disulfonic Acid/metabolism
- 4-Acetamido-4'-isothiocyanatostilbene-2,2'-disulfonic Acid/analysis
- 4-Acetamido-4'-isothiocyanatostilbene-2,2'-disulfonic Acid/immunology
- Amino Acid Sequence
- Animals
- Anion Exchange Protein 1, Erythrocyte/chemistry
- Anion Exchange Protein 1, Erythrocyte/metabolism
- Anions/metabolism
- Antibodies/chemistry
- Chymotrypsin/metabolism
- Erythrocyte Membrane/chemistry
- Erythrocyte Membrane/metabolism
- Humans
- Ion Exchange
- Membrane Proteins/chemistry
- Molecular Sequence Data
- Peptide Fragments/metabolism
- Precipitin Tests
- Protein Conformation
- Rabbits
Collapse
|
32
|
Kay MM, Lake D, Cover C. Band 3 and its peptides during aging, radiation exposure, and Alzheimer's disease: alterations and self-recognition. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1995; 383:167-93. [PMID: 8644501 DOI: 10.1007/978-1-4615-1891-4_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
An aging antigen, senescent cell antigen, resides on the 911 amino acid membrane protein band 3. It marks cells for removal by initiating specific IgG autoantibody binding. Band 3 is a ubiquitous membrane transport protein found in the plasma membrane of diverse cell types and tissues, and in nuclear, mitochondrial, and golgi membranes. Band 3 in tissues such as brain performs the same functions as it does in red blood cells forming senescent cell antigen. Oxidation is a mechanism for generating senescent cell antigen. The aging antigenic sites reside on human band 3 map residues 538-554, and 812-830. Carbohydrate moieties are not required for the antigenicity or recognition of senescent cell antigen. Anion transport site were mapped to residues 588-594, 822-839, and 869-883. The aging vulnerable site which triggers the antigenic site and the transport sites of band 3 were mapped using overlapping synthetic peptides along the molecule. Naturally occurring autoantibodies to regions of band 3 comprising both senescent cell antigen and B cells producing these antibodies were demonstrated in the sera of normal, healthy individuals. The presence of these antibodies tend to increase with age. Individuals with autoimmune diseases (rheumatoid arthritis and systemic lupus erythematosus) have increased antibodies to senescent cell antigen peptides. Radiation exposure results in an increase in antibodies to peptides 588-602 which lies in a transport region containing the aging vulnerable site. Band 3 ages as cells and tissues age. Our studies, to date, indicate, that the anion transport ability of band 3 decreases in brains and lymphocytes from old mice. This decreased transport ability precedes obvious structural changes such as band 3 degradation and generation of SCA, and is the earliest change thus far detected in band 3 function. Other changes include a decreased efficiency of anion transport (decreased Vmax) in spite of an increase in number of anion binding sites (increased Km), decreased glucose transport, increased phosphorylation, increased degradation to smaller fragments as detected by quantitative binding of antibodies to band 3 breakdown products and residue 812-830, and binding of physiologic IgG autoantibodies in situ. The latter 3 findings indicate that post-translational changes occur. In Alzheimer's Disease (AD), our results indicate that post-translational changes occur in band 3. These include decreased band 3 phosphorylation of a 25-28kD segment, increased degradation of band 3, alterations in band 3 recognized by antibodies, and decreased anion and glucose transport by blood cells. Serum autoantibodies were increased in AD patients compared to controls to band 3 peptide 822-839. This band 3 residue lies in an anion transport/binding region.
Collapse
Affiliation(s)
- M M Kay
- Department of Microbiology, University of Arizona College of Medicine, Tucson 85724, USA
| | | | | |
Collapse
|
33
|
Humphreys BD, Jiang L, Chernova MN, Alper SL. Functional characterization and regulation by pH of murine AE2 anion exchanger expressed in Xenopus oocytes. THE AMERICAN JOURNAL OF PHYSIOLOGY 1994; 267:C1295-307. [PMID: 7977693 DOI: 10.1152/ajpcell.1994.267.5.c1295] [Citation(s) in RCA: 87] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
cRNA encoding the murine band 3-related protein AE2 was expressed in Xenopus oocytes. AE2-mediated transport function and regulation were analyzed by unidirectional 36Cl- influx and efflux studies. AE2 cRNA-injected oocytes took up 36Cl- as much as 40-fold faster than did water-injected oocytes. AE2-mediated 36Cl- uptake increased as a function of increasing uptake time, number of days after cRNA injection, and amount of injected cRNA. Among the functional properties of AE2 evaluated were transport mechanism and substrate specificity, inhibitor pharmacology, and regulation by pH. The apparent Km for external Cl- was 5.6 mM. AE2 was defined as a Cl-/anion exchanger by two criteria: 1) 36Cl- efflux from AE2-expressing oocytes was maximally stimulated by extracellular Cl- or nitrate; AE2-associated 36Cl- efflux was supported by substitution of extracellular Cl- with other anions in the rank order bromide > isethionate > or = gluconate > iodide and 2) prolonged preincubation of AE2 cRNA-injected oocytes in Cl(-)-free media containing isethionate, gluconate, or glutamate decreased subsequent AE2-associated 36Cl- uptake from Cl- media in rough proportion to the degree of intracellular Cl- depletion, whereas preincubation in nitrate medium had no effect. AE2-associated 36Cl- uptake was inhibited by 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid at half-maximally inhibitory concentrations between 0.5 and 19 microM, depending on extracellular Cl- concentration, and progressed to irreversibility at 20 degrees C with a half-time of 20-30 min. Many additional inhibitors showed lower potency for AE2 than previously reported for AE1. Although AE2 expression did not change oocyte resting intracellular pH, AE2-associated 36Cl- influx and efflux were each decreased in acid incubation medium and increased in alkaline medium.
Collapse
Affiliation(s)
- B D Humphreys
- Molecular Medicine Unit, Beth Israel Hospital, Boston, Massachusetts
| | | | | | | |
Collapse
|
34
|
Yannoukakos D, Stuart-Tilley A, Fernandez HA, Fey P, Duyk G, Alper SL. Molecular cloning, expression, and chromosomal localization of two isoforms of the AE3 anion exchanger from human heart. Circ Res 1994; 75:603-14. [PMID: 7923606 DOI: 10.1161/01.res.75.4.603] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cl-/HCO3- exchange contributes to regulation of pHi and [Cl-] in cardiac muscle, with possible effects on excitability and contractility. We have isolated human heart cDNAs, which encode two isoforms of the anion exchanger AE3. These clones share long portions of common sequence but have different 5' ends encoding distinct amino-terminal amino acid sequences. The longer AE3 polypeptide of 1232 amino acids, bAE3, displays nearly 96% amino acid sequence identity to the rat and mouse AE3 "brain isoforms." The shorter cAE3 polypeptide of 1034 amino acids in length corresponds to the rat AE3 "cardiac isoform." The unique N-terminal 73 amino acids of the cAE3 sequence are less well conserved between rat and human. Northern blot analysis with isoform-specific probes revealed the presence of both cAE3 and bAE3 mRNAs in human heart tissue. Both AE3 protein isoforms were overexpressed in Chinese hamster ovary cells and detected by immunoblot with antipeptide antibodies. Immunoblot studies of human cardiac membranes detected only cAE3 polypeptides, which were apparently not susceptible to enzymatic deglycosylation. Injection into Xenopus oocytes of cRNAs encoding either cAE3 or bAE3 produced increased 36Cl- uptake into the oocytes, confirming the ability of both AE3 isoforms to transport Cl-. The human AE3 gene was localized to chromosome 2. AE3 may provide a new pharmacologic target for antiarrhythmic and cardioprotective drugs.
Collapse
Affiliation(s)
- D Yannoukakos
- Molecular Medicine Unit, Beth Israel Hospital, Boston, MA 02215
| | | | | | | | | | | |
Collapse
|
35
|
Abstract
An aging antigen, senescent cell antigen, resides on the 911-amino acid membrane protein band 3. It marks cells for removal by initiating specific IgG autoantibody binding. Band 3 is a ubiquitous membrane transport protein found in the plasma membrane of diverse cell types and tissues, and in nuclear, mitochondrial, and golgi membranes. Band 3 in tissues such as brain performs the same functions as it does in red cells. Senescent cell antigen is generated on brain menbranes. Oxidation is a mechanism for generating senescent cell antigen. Neither cross-linking nor hemoglobin appears to play a role in generating senescent cell antigen. Although storage is the only in vitro model that mimics cellular aging in situ, we have discovered three alterations/mutations of band 3 that permit insight into aging in situ. One mutation with an addition to band 3 has normal or decelerated red cell aging. In contrast, another band 3 alteration with a suspected deletion or substitution that renders band 3 more susceptible to proteolysis, shows accelerated aging. The third alteration, which is also more susceptible to proteolysis, is associated with neurologic defects. Peptide technology was used to map the aging antigenic sites and anion transport sites on band 3 using a competitive inhibition assay and immunoblotting with IgG directed against the aging antigen on old cells. Results indicate that: a) aging antigenic sites reside on human band 3 residues 538-554, and 812-830; b) a putative ankyrin binding region peptide is not involved in senescent cell antigen activity; and (c) carbohydrate moieties are not required for the antigenicity or recognition of senescent cell antigen since synthetic peptides alone abolish binding of senescent cell IgG to erythrocytes. Peptide residues 588-594 (a 7-amino acid peptide), 822-839, and 869-883 were the most active inhibitors of anion transport (p < or = 0.001 compared to control without peptide). Localization of the active antigenic and transport sites on band 3 molecule facilitates definition of the molecular changes occurring during aging that initiate molecular as well as cellular degeneration. The role of senescent cell antigen and band 3 in brain aging and Alzheimer's disease is discussed. Antibodies to one component of synthetic senescent cell antigen distinguish between Alzheimer's and normal tissue.
Collapse
Affiliation(s)
- M M Kay
- Department of Medical Microbiology, University of Arizona College of Medicine, Tucson 85724
| | | | | |
Collapse
|
36
|
Moriyama R, Nagatomi Y, Hoshino F, Makino S. Amino acid sequences around exofacial proteolytic cleavage sites of band 3 from bovine and porcine erythrocytes. THE INTERNATIONAL JOURNAL OF BIOCHEMISTRY 1994; 26:133-7. [PMID: 8138041 DOI: 10.1016/0020-711x(94)90206-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
1. Amino acid sequences of bovine and porcine band 3, an erythrocyte anion transporter, were determined. 2. The sequence of bovine band 3 was positioned to residues 519-599 (the numbering is based on human band 3), in which probably 6 residues were unidentified. 3. Binding site of DIDS (4,4'-diisothiocyanostilbene-2,2'-disulfonate), a potent anion transport inhibitor, was identified as Lys-539 in the bovine case. 4. A loop (residues 551-567), which provides exofacial proteolytic cleavage sites, contains only 53% homology between human and bovine, whereas the residues flanking it on either side are > 84% homologous. 5. Furthermore, the loop of porcine band 3 was indicated to consist of a 6 or 7-residues short peptide as compared with those of other species.
Collapse
Affiliation(s)
- R Moriyama
- Department of Applied Bioscience, Faculty of Agriculture, Nagoya University, Japan
| | | | | | | |
Collapse
|
37
|
Red blood cell band 3. Lysine 539 and lysine 851 react with the same H2DIDS (4,4‘-diisothiocyanodihydrostilbene-2,2‘-disulfonic acid) molecule. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)42114-4] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
38
|
Kay MM. Regulatory autoantibody and cellular aging and removal. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1994; 347:161-92. [PMID: 7976729 DOI: 10.1007/978-1-4615-2427-4_16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- M M Kay
- Department of Microbiology and Immunology, University of Arizona College of Medicine, Tucson 85704
| |
Collapse
|
39
|
Van Winkle LJ. Endogenous amino acid transport systems and expression of mammalian amino acid transport proteins in Xenopus oocytes. BIOCHIMICA ET BIOPHYSICA ACTA 1993; 1154:157-72. [PMID: 8218336 DOI: 10.1016/0304-4157(93)90009-d] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Oocyte amino acid transport has physiological significance to oocytes and practical importance to molecular biologists and transport physiologists. Expression of heterologous mRNA in Xenopus oocytes is currently being used to help clone cDNAs for amino acid transporters and their effectors. A major question to be resolved in many of these studies is whether the injected mRNA codes for a transporter or an activator of an endogenous system. Nevertheless, the cDNAs of several families of amino acid transporters or their activators appear already to have been cloned. One such transporter is the anion exchanger, band 3, which may also transport glycine and taurine under some important physiological conditions such as hypoosmotic stress. Site-directed mutagenesis of band 3 has already shown that an amino acid residue believed to be at or near the active site nevertheless does not appear to influence Cl- transport in Xenopus oocytes expressing the modified band 3 protein. Continuation of such studies along with examination of transport of all possible substrates of band 3 should yield insight into the relationship between the structure and function of this transporter. Each of three other families not only contains amino acid transporters, but also appears to contain members that serve as transporters of neurotransmitters or their metabolites. Because of the distinct structural differences in the preferred substrates of different transporters within some of these families, elucidation of the tertiary and possibly quaternary structural relationships among the members of such families may reveal transport mechanisms. In addition, the grouping of neurotransmitters or their metabolites according to the family to which their transport systems and transporters belong could yield insight into mechanisms of brain development, function and evolution. Another family of transporters for cationic amino acids also serves, at least in one case, as a viral receptor. Hence, these or other transporters also could conceivably function in eggs as receptors for sperm and, more broadly, in cell-cell interactions as well as in amino acid transport. Moreover, a family of apparent amino acid transport activators are homologous to a family of glycosidases, so these activators could also serve to recognize carbohydrate structures on other cells or the extracellular matrix. Some of these activators appear to increase more than one amino acid transport activity in Xenopus oocytes. In other studies, expression of heterologous mRNA in oocytes has led apparently to detection of inhibitors as well as activators of amino acid transport. Some amino acid transport systems also could conceivably contain nucleic acid as well as glycoprotein components.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- L J Van Winkle
- Department of Biochemistry, Midwestern University, Chicago College of Osteopathic Medicine, Downers Grove, IL 60515
| |
Collapse
|
40
|
|
41
|
Salhany JM, Cordes KA, Schopfer LM. Kinetics of conformational changes associated with inhibitor binding to the purified band 3 transporter. Direct observation of allosteric subunit interactions. Biochemistry 1993; 32:7413-20. [PMID: 8338838 DOI: 10.1021/bi00080a011] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Subunit interaction effects were identified for isolated human erythrocyte band 3, the anion exchanger, by observing both static and stopped-flow kinetic protein fluorescence changes associated with inhibitor binding to the intramonomeric stilbenedisulfonate site. We measured the rate of conformational changes associated with reversible binding of H2DIDS (4,4'-diisothiocyanodihydrostilbene-2,2'-disulfonate). The rate of H2DIDS release was also measured. As a test for subunit interactions, we studied the effect of partial labeling of the band 3 monomer population with H2DIDS on the equilibrium and kinetics of H2DIDS reversible binding to the remaining monomers. The results showed biphasic kinetics for control band 3, with a pseudo-first-order ligand dependence for the fast phase followed by a slow ligand-independent relaxation. A second-order "on" rate constant for the fast phase was determined to be (1.2 +/- 0.1) x 10(7) M-1 s-1, while the associated "off" rate constant was found to be 1.1 +/- 0.5 s-1. From these kinetic constants, we calculated a Kd value of 95 +/- 50 nM, which is in excellent agreement with the Kd value determined at thermodynamic equilibrium (110 +/- 9 nM). Covalent labeling of 75% of the band 3 monomer population with H2DIDS changed the kinetics of the fast phase, slowing the apparent rate by changing the order of the reaction from pseudo-first-order to zero-order. Partial labeling did not affect the ligand-independent relaxation. Separate measurements of the H2DIDS "off" rate also showed a biphasic time course, with a 20-fold difference in apparent rate constants.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- J M Salhany
- Veterans Administration Medical Center, Omaha, Nebraska
| | | | | |
Collapse
|
42
|
Batenjany MM, Mizukami H, Salhany JM. Near-UV circular dichroism of band 3. Evidence for intradomain conformational changes and interdomain interactions. Biochemistry 1993; 32:663-8. [PMID: 8422373 DOI: 10.1021/bi00053a035] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Near-UV circular dichroism (CD) was used to identify differences in the tertiary structure of human erythrocyte band 3, the chloride/bicarbonate exchange protein, consequent to covalent binding of anion transport inhibitors to the intramonomeric stilbenedisulfonate (ISD) site. Isolated intact band 3 and its membrane domain (B3MD) were compared. Spectral differences were observed which involved intradomain effects, in that they were seen both with intact band 3 and with B3MD, or interdomain effects, in that they were observed only for B3MD, but were inhibited when the cytoplasmic domain was attached. The intradomain effect involved a significant loss in optical activity in the Phe/Tyr region of the spectrum below 280 nm. It was seen only when the ISD site had stilbenedisulfonates bound covalently at pH 7.4. Raising the pH to 9.6 after adduct formation "normalized" this spectral change irreversibly. The interdomain effect was identified in the Trp spectral region at 292 nm. There was a significant increase in optical activity at 292 nm when bulky covalent ligands such as DIDS (4,4'-diisothiocyanatostilbene-2,2'-disulfonate) were bound to B3MD, but not when the same ligands were bound to intact band 3. These latter results offer evidence that certain aspects of the conformational response of the integral domain are inhibited by the presence of an attached cytoplasmic domain. The potential significance of interdomain interactions to band 3 function is discussed briefly.
Collapse
Affiliation(s)
- M M Batenjany
- Department of Biological Sciences, Wayne State University, Detroit, Michigan 48202
| | | | | |
Collapse
|
43
|
Groves J, Tanner M. Glycophorin A facilitates the expression of human band 3-mediated anion transport in Xenopus oocytes. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)41649-3] [Citation(s) in RCA: 116] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
44
|
Jennings M, Smith J. Anion-proton cotransport through the human red blood cell band 3 protein. Role of glutamate 681. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)49664-6] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
45
|
Deane KH, Mannie MD. An alternative pathway of B cell activation: stilbene disulfonates interact with a Cl- binding motif on AEn-related proteins to stimulate mitogenesis. Eur J Immunol 1992; 22:1165-71. [PMID: 1577060 DOI: 10.1002/eji.1830220509] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Stilbene disulfonates are known to competitively inhibit Cl-/HCO3- flux through Band 3-related anion exchange (AE) proteins. To study the role of AE in lymphocyte activation, stilbene disulfonates were added to cultures of rat splenocytes (SPL). Four different stilbene derivatives were tested and each directly stimulated mitogenic proliferative responses of SPL. The mitogenic activity of these analogs paralleled their known patterns of interaction with Band 3-related AE proteins, as measured by; (a) their effective mitogenic concentrations, (b) their rank order of mitogenic potency [DIDS greater than SITS greater than DNDS congruent to DAzDS], (c) their patterns of nonreversible binding to the mitogenic receptor [DIDS much greater than SITS, DNDS], and (d) the specific, noncompetitive inhibition of their activity by the antagonist niflumic acid. Stilbene disulfonates directly activated purified B cell populations but not isolated T cells and furthermore, acted in synergy with anti-IgM to stimulate proliferation of SPL. These findings show that stilbene disulfonates represent a novel class of mitogens that interact with AEn-related proteins to stimulate an alternative activation pathway in B cells. These studies also indicate that immunomodulating activities of nonsteroidal anti-inflammatory drugs such as niflumic acid may be mediated, in part, by their interactions with AEn-related proteins.
Collapse
Affiliation(s)
- K H Deane
- Department of Microbiology and Immunology, East Carolina University School of Medicine, Greenville, NC 27858-4354
| | | |
Collapse
|
46
|
Lepke S, Becker A, Passow H. Mediation of inorganic anion transport by the hydrophobic domain of mouse erythroid band 3 protein expressed in oocytes of Xenopus laevis. BIOCHIMICA ET BIOPHYSICA ACTA 1992; 1106:13-6. [PMID: 1581325 DOI: 10.1016/0005-2736(92)90215-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A cDNA clone of the mouse erythroid band 3 protein encoding the 556 amino acid residues of the hydrophobic domain from Thr-374 to the C-terminal Val-929 is shown by immunoprecipitation to be expressed in Xenopus oocytes. Measurements of 36Cl- efflux indicate that the translation product mediates Cl- transport, which is inhibitable reversibly by DNDS or H2DIDS, specific inhibitors of band 3-mediated transport. The apparent KI values are 3.6 microM and 0.094 microM, respectively, and hence similar to those found in the wild type band 3-mediated anion transport. The rapid reversible inhibition by H2DIDS slowly changes to irreversible inhibition. The rate of change increases with increasing pH, again similar as to the wild-type band 3. It is concluded that the hydrophobic domain of band 3 is capable of executing anion transport essentially similar to the full-length band 3, although minor differences with respect to transport and inhibition kinetics cannot be ruled out.
Collapse
Affiliation(s)
- S Lepke
- Max-Planck-Institut für Biophysik, Frankfurt/Main, Germany
| | | | | |
Collapse
|
47
|
Yamaguchi T, Kimoto E. Inhibition of phosphate transport across the human erythrocyte membrane by chemical modification of sulfhydryl groups. Biochemistry 1992; 31:1968-73. [PMID: 1536838 DOI: 10.1021/bi00122a010] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Effects of sulfhydryl-reactive reagents on phosphate transport across human erythrocyte membranes were examined using 31P NMR. Phosphate transport was significantly inhibited in erythrocytes treated with sulfhydryl modifiers such as N-ethylmaleimide, diamide, and Cu2+/o-phenanthroline. Quantitation of sulfhydryl groups in band 3 showed that the inhibition is closely associated with the decrease of sulfhydryl groups. Data from erythrocytes treated with diamide or Cu2+/o-phenanthroline demonstrated that intermolecular cross-linking of band 3 by oxidation of a sulfhydryl group, perhaps Cys-201 or Cys-317, decreases the phosphate influx by about 10%. The inhibition was reversed by reduction using dithiothreitol. These results suggest that sulfhydryl groups in the cytoplasmic domain of band 3 may play an important role in the regulation of anion exchange across the membrane.
Collapse
Affiliation(s)
- T Yamaguchi
- Department of Chemistry, Faculty of Science, Fukuoka University, Japan
| | | |
Collapse
|
48
|
Molecular and cell biological aspects of the AE anion exchanger gene family. ACTA ACUST UNITED AC 1992. [DOI: 10.1016/b978-0-444-89547-9.50006-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
49
|
Zero-length crosslinking of band 3 and glycophorin A in intact human erythrocytes. ACTA ACUST UNITED AC 1992. [DOI: 10.1016/b978-0-444-89547-9.50033-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
50
|
Molecular probing of a hydrophilic/hydrophobic interface in the transport domain of the anion exchange protein. ACTA ACUST UNITED AC 1992. [DOI: 10.1016/b978-0-444-89547-9.50011-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|