1
|
Polge C, Attaix D, Taillandier D. Role of E2-Ub-conjugating enzymes during skeletal muscle atrophy. Front Physiol 2015; 6:59. [PMID: 25805999 PMCID: PMC4354305 DOI: 10.3389/fphys.2015.00059] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 02/14/2015] [Indexed: 01/05/2023] Open
Abstract
The Ubiquitin Proteasome System (UPS) is a major actor of muscle wasting during various physio-pathological situations. In the past 15 years, increasing amounts of data have depicted a picture, although incomplete, of the mechanisms implicated in myofibrillar protein degradation, from the discovery of muscle-specific E3 ligases to the identification of the signaling pathways involved. The targeting specificity of the UPS relies on the capacity of the system to first recognize and then label the proteins to be degraded with a poly-ubiquitin (Ub) chain. It is fairly assumed that the recognition of the substrate is accomplished by the numerous E3 ligases present in mammalian cells. However, most E3s do not possess any catalytic activity and E2 enzymes may be more than simple Ub-providers for E3s since they are probably important actors in the ubiquitination machinery. Surprisingly, most authors have tried to characterize E3 substrates, but the exact role of E2s in muscle protein degradation is largely unknown. A very limited number of the 35 E2s described in humans have been studied in muscle protein breakdown experiments and the vast majority of studies were only descriptive. We review here the role of E2 enzymes in skeletal muscle and the difficulties linked to their study and provide future directions for the identification of muscle E2s responsible for the ubiquitination of contractile proteins.
Collapse
Affiliation(s)
- Cecile Polge
- UMR 1019 Nutrition Humaine, Institut National de la Recherche Agronomique Saint Genès Champanelle, France
| | - Didier Attaix
- UMR 1019 Nutrition Humaine, Institut National de la Recherche Agronomique Saint Genès Champanelle, France
| | - Daniel Taillandier
- UMR 1019 Nutrition Humaine, Institut National de la Recherche Agronomique Saint Genès Champanelle, France
| |
Collapse
|
2
|
Tomasino A, Klimaschewski L. Tissue distribution of the "N-end rule" ubiquitin-conjugating enzyme, HR6, in the rat. Histochem Cell Biol 2005; 123:483-9. [PMID: 15868180 DOI: 10.1007/s00418-005-0774-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2005] [Indexed: 10/25/2022]
Abstract
The conjugation of multiple ubiquitin molecules is required for recognition and degradation of a protein by the proteasome. The ubiquitination pathway responsible for the bulk of constitutive protein degradation targets proteins carrying basic or large hydrophobic amino acids at the N-terminus. In mammalian cells, this "N-end rule" pathway requires the ubiquitin-conjugating enzyme HR6. Until now, it has not been known which mammalian tissues and cell types predominantly utilize this pathway for degradation. Therefore, the distribution and intracellular localization of HR6 was determined by indirect immunofluorescence techniques and protein blotting of adult rat tissues. Intense immunoreactivity against HR6 was detected in various epithelia, muscle, testis, peripheral neurons, chromaffin cells and macrophages, whereas lower HR6 protein levels were found in the gut or in the kidney. Autonomic and sensory neurons, glandular cells and spermatocytes revealed prominent nuclear HR6 immunoreactivity. Plasma membrane labeling was observed in peripheral neurons, spermatocytes and skeletal muscle cells. Smooth muscle cells, macrophages, endothelial and epithelial cells exhibited primarily cytoplasmic staining. The clear differences in the regional and intracellular distribution of HR6 are suggestive for the involvement of N-end rule protein degradation in various physiological processes dependent on cell type and subcellular structure.
Collapse
Affiliation(s)
- Andre Tomasino
- Department of Anatomy, Histology and Embryology - Division of Neuroanatomy, Innsbruck Medical University, Muellerstrasse 59, Innsbruck, Austria
| | | |
Collapse
|
3
|
Liu Z, Oughtred R, Wing SS. Characterization of E3Histone, a novel testis ubiquitin protein ligase which ubiquitinates histones. Mol Cell Biol 2005; 25:2819-31. [PMID: 15767685 PMCID: PMC1061639 DOI: 10.1128/mcb.25.7.2819-2831.2005] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
During spermatogenesis, a large fraction of cellular proteins is degraded as the spermatids evolve to their elongated mature forms. In particular, histones must be degraded in early elongating spermatids to permit chromatin condensation. Our laboratory previously demonstrated the activation of ubiquitin conjugation during spermatogenesis. This activation is dependent on the ubiquitin-conjugating enzyme (E2) UBC4, and a testis-particular isoform, UBC4-testis, is induced when histones are degraded. Therefore, we tested whether there are UBC4-dependent ubiquitin protein ligases (E3s) that can ubiquitinate histones. Indeed, a novel enzyme, E3Histone, which could conjugate ubiquitin to histones H1, H2A, H2B, H3, and H4 in vitro, was found. Only the UBC4/UBC5 family of E2s supported E3Histone-dependent ubiquitination of histone H2A, and of this family, UBC4-1 and UBC4-testis are the preferred E2s. We purified this ligase activity 3,600-fold to near homogeneity. Mass spectrometry of the final material revealed the presence of a 482-kDa HECT domain-containing protein, which was previously named LASU1. Anti-LASU1 antibodies immunodepleted E3Histone activity. Mass spectrometry and size analysis by gel filtration and glycerol gradient centrifugation suggested that E3Histone is a monomer of LASU1. Our assays also show that this enzyme is the major UBC4-1-dependent histone-ubiquitinating E3. E3Histone is therefore a HECT domain E3 that likely plays an important role in the chromatin condensation that occurs during spermatid maturation.
Collapse
Affiliation(s)
- Zhiqian Liu
- Polypeptide Hormone Laboratory, McGill University, Strathcona Anatomy and Dentistry Building, 3640 University St., Room W315, Montreal, Quebec, Canada, H3A 2B2
| | | | | |
Collapse
|
4
|
Wing SS. Control of ubiquitination in skeletal muscle wasting. Int J Biochem Cell Biol 2004; 37:2075-87. [PMID: 16125111 DOI: 10.1016/j.biocel.2004.11.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2004] [Revised: 11/15/2004] [Accepted: 11/18/2004] [Indexed: 11/23/2022]
Abstract
The ubiquitin proteasome system is now well recognized to play a role in mediating skeletal muscle protein wasting. Ubiquitin exerts its effects by covalent attachment to other proteins. Increased ubiquitination of muscle proteins has been observed in a number of conditions of atrophy suggesting that flux through the pathway may be regulated by controlling availability of ubiquitinated substrates for the proteasome. Therefore the enzymes that control ubiquitination of proteins likely play critical roles in regulating flux through the pathway, are sites of activation by catabolic stimuli and potentially good drug targets in the search for therapies for wasting disorders. In this article, the enzymes that can modulate ubiquitination are briefly reviewed and the current data regarding regulation of these enzymes in skeletal muscle are described. Physiological regulators of muscle size appear to modulate many of these enzymes and several of these regulators appear to do so via signaling pathways that involve Akt or NFkappaB. Further work needs to be done to identify all the enzymes that are involved in controlling ubiquitination in muscle, to characterize their regulation by non-transcriptional mechanisms also, and most importantly to identify their target substrates and to determine how these various pathways of ubiquitination work together to mediate the catabolic stimulus.
Collapse
Affiliation(s)
- Simon S Wing
- Polypeptide Laboratory, Department of Medicine, McGill University, Strathcona Anatomy and Dentistry Bldg, Room W315, 3640 University St., Montreal, Que., Canada H3A 2B2.
| |
Collapse
|
5
|
Song L, Chen S, Yu X, Wu Z, Xu J, Yang G, Zheng N, Hu X, Guo L, Dai J, Xu J, Ji C, Gu S, Ying K. Molecular cloning and characterization of cDNA encoding a ubiquitin-conjugating enzyme from Clonorchis sinensis. Parasitol Res 2004; 94:227-32. [PMID: 15480785 DOI: 10.1007/s00436-004-1206-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2004] [Accepted: 08/03/2004] [Indexed: 10/26/2022]
Abstract
The ubiquitin-proteasome system is an essential mechanism for protein degradation in eukaryotes. Protein ubiquitination is composed of a series of enzymatic reactions. The ubiquitin-conjugating enzyme (E2) is one of the important enzymes involved in the process. A cDNA encoding an E2 enzyme was cloned from a Clonorchis sinensis cDNA library by large-scale sequencing. This new cDNA contains 862 bp with a putative open reading frame of 156 amino acids. The deduced amino acid sequence is 77% identical to the human E2, HHR6A and HHR6B. The coding region of this cDNA was expressed in E. coli as a GST-tagged protein, and was purified to electrophoretic homogeneity. Enzymatic assays showed that this E2 had the capacity to form a thiolester linkage, and could conjugate ubiquitin to histone H2A in an E3-independent manner in vitro, which indicated that the expressed protein was functionally active. The nucleotide sequence reported in this paper has been submitted to the Genbank Database with accession number AY632078.
Collapse
Affiliation(s)
- Linxia Song
- Department of Parasitology, Medical School, Sun Yat-Sen University, 510089, Guangzhou, PR China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Siepmann TJ, Bohnsack RN, Tokgöz Z, Baboshina OV, Haas AL. Protein interactions within the N-end rule ubiquitin ligation pathway. J Biol Chem 2003; 278:9448-57. [PMID: 12524449 DOI: 10.1074/jbc.m211240200] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rate studies have been employed as a reporter function to probe protein-protein interactions within a biochemically defined reconstituted N-end rule ubiquitin ligation pathway. The concentration dependence for E1-catalyzed HsUbc2b/E2(14kb) transthiolation is hyperbolic and yields K(m) values of 102 +/- 13 nm and 123 +/- 19 nm for high affinity binding to rabbit and human E1/Uba1 orthologs. Competitive inhibition by the inactive substrate and product analogs HsUbc2bC88A (K(i) = 104 +/- 15 nm) and HsUbc2bC88S-ubiquitin oxyester (K(i) = 169 +/- 17 nm), respectively, indicates that the ubiquitin moiety contributes little to E1 binding. Under conditions of rate-limiting E3alpha-catalyzed conjugation to human alpha-lactalbumin, HsUbc2b-ubiquitin thiolester exhibits a K(i) of 54 +/- 18 nm and is competitively inhibited by the substrate analog HsUbc2bC88S-ubiquitin oxyester (K(i) = 66 +/- 29 nm). In contrast, the ligase product analog HsUbc2bC88A exhibits a K(i) of 440 +/- 55 nm with respect to the wild type HsUbc2b-ubiquitin thiolester, demonstrating that ubiquitin binding contributes to the ability of E3alpha to discriminate between substrate and product E2. A survey of E1 and E2 isoform distribution in selected cell lines demonstrates that Ubc2 isoforms are the predominant intracellular ubiquitin carrier protein. Intracellular levels of E1 and Ubc2 are micromolar and approximately equal based on in vitro quantitation by stoichiometric (125)I-ubiquitin thiolester formation. Comparison of intracellular E1 and Ubc2 pools with the corresponding ubiquitin pools reveals that most of the free ubiquitin in cells is present as thiolesters to the components of the conjugation pathways. The present data represent the first comprehensive analysis of protein interactions within a ubiquitin ligation pathway.
Collapse
Affiliation(s)
- Thomas J Siepmann
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | | | | | | | |
Collapse
|
7
|
Adegoke OAJ, Bédard N, Roest HP, Wing SS. Ubiquitin-conjugating enzyme E214k/HR6B is dispensable for increased protein catabolism in muscle of fasted mice. Am J Physiol Endocrinol Metab 2002; 283:E482-9. [PMID: 12169441 DOI: 10.1152/ajpendo.00097.2002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Activated skeletal muscle proteolysis in catabolic states has been linked to an upregulation of the ATP-ubiquitin-dependent proteolytic system. Previous studies suggested that the N-end rule pathway is primarily responsible for the bulk of skeletal muscle proteolysis. The activity of this pathway is dependent on the 14-kDa ubiquitin-conjugating enzyme E2(14k) (HR6B) and the ubiquitin protein ligase Ubr1. To address the requirement of E2(14k) in muscle proteolysis, we examined muscle protein metabolism in wild-type (WT) mice and mice lacking the E2(14k) gene (KO) in fed and fasted (48 h) states. Baseline body weight, muscle mass, and protein content were similar, and these parameters decreased similarly upon fasting in the two genotypes. There were also no effects of genotype on the rate of proteolysis in soleus muscle. The fasting-induced increase in the amount of ubiquitinated proteins was the same in WT and KO mice. The absence of any significant effect of loss of E2(14k) function was not due to a compensatory induction of the closely related isoform HR6A. Total intracellular concentration of E2(14k) and HR6A in the WT mice was 290 +/- 40 nM, but the level in the KO mice (reflecting the level of HR6A) was 110 +/- 9 nM. This value is about threefold the apparent Michaelis-Menten constant (K(m)) of E2(14k) (approximately 40 nM) for stimulating conjugation in muscle extracts. Because the HR6A isoform has a K(m) of 16 nM for stimulating conjugation, the HR6A levels in the muscles of KO mice appear sufficient for supporting conjugation mediated by this pathway during fasting.
Collapse
Affiliation(s)
- Olasunkanmi A J Adegoke
- Polypeptide Laboratory, Department of Medicine, McGill University, Montreal, Quebec H3A 2B2, Canada
| | | | | | | |
Collapse
|
8
|
Rajapurohitam V, Bedard N, Wing SS. Control of ubiquitination of proteins in rat tissues by ubiquitin conjugating enzymes and isopeptidases. Am J Physiol Endocrinol Metab 2002; 282:E739-45. [PMID: 11882492 DOI: 10.1152/ajpendo.00511.2001] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The activity of the ubiquitin-dependent proteolytic system in differentiated tissues under basal conditions remains poorly explored. We measured rates of ubiquitination in rat tissue extracts. Accumulation of ubiquitinated proteins increased in the presence of ubiquitin aldehyde, indicating that deubiquitinating enzymes can regulate ubiquitination. Rates of ubiquitination varied fourfold, with the highest rate in the testis. We tested whether ubiquitin-activating enzyme (E1) or ubiquitin-conjugating enzymes (E2s) could be limiting for conjugation. Immunodepletion of the E2s UBC2 or UBC4 lowered rates of conjugation similarly. Supplementation of extracts with excess UBC2 or UBC4, but not E1, stimulated conjugation. However, UBC2-stimulated rates of ubiquitination still differed among tissues, indicating that tissue differences in E3s or substrate availability may also be rate controlling. UBC2 and UBC4 stimulated conjugation half-maximally at concentrations of 10-50 and 28-44 nM, respectively. Endogenous tissue levels of UBC2, but not UBC4, appeared saturating for conjugation, suggesting that in vivo modulation of UBC4 levels can likely control ubiquitin conjugation. Thus the pool of ubiquitin conjugates and therefore the rate of degradation of proteins by this system may be controlled by E2s, E3s, and isopeptidases. The regulation of the ubiquitin pathway appears complex, but precise.
Collapse
|
9
|
Lawson TG, Sweep ME, Schlax PE, Bohnsack RN, Haas AL. Kinetic analysis of the conjugation of ubiquitin to picornavirus 3C proteases catalyzed by the mammalian ubiquitin-protein ligase E3alpha. J Biol Chem 2001; 276:39629-37. [PMID: 11526102 DOI: 10.1074/jbc.m102659200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The 3C proteases of the encephalomyocarditis virus and the hepatitis A virus are both type III substrates for the mammalian ubiquitin-protein ligase E3alpha. The conjugation of ubiquitin to these proteins requires internal ten-amino acid-long protein destruction signal sequences. To evaluate how these destruction signals modulate interactions that must occur between E3alpha and the 3C proteases, we have kinetically analyzed the formation of ubiquitin-3C protease conjugates in a reconstituted system of purified E1, HsUbc2b/E2(14Kb), and human E3alpha. Our measurements show that the encephalomyocarditis virus 3C protease is ubiquitinated in this system with K(m) = 42 +/- 11 microm and V(max) = 0.051 +/- 0.01 pmol/min whereas the parameters for the ubiquitination of the hepatitis A virus 3C protease are K(m) = 20 +/- 5 microm and V(max) = 0.018 +/- 0.003 pmol/min. Mutations in the destruction signal sequences resulted in changes in the rate at which E3alpha conjugates ubiquitin to the altered 3C protease proteins. The K(m) and V(max) values for these reactions change proportionally in the same direction. These results suggest differences in rates of conjugation of ubiquitin to 3C proteases are primarily a k(cat) effect. Replacing specific encephalomyocarditis virus 3C protease lysine residues with arginine residues was found to increase, rather than decrease, the rate of ubiquitin conjugation, and the K(m) and V(max) values for these reactions are both higher than for the wild type protein. The ability of E3alpha to catalyze the conjugation of ubiquitin to both 3C proteases was found to be inhibited by lysylalanine and phenylalanylalanine, demonstrating that the same sites on E3alpha that bind destabilizing N-terminal amino acids in type I and II substrates also interact with the 3C proteases.
Collapse
Affiliation(s)
- T G Lawson
- Department of Chemistry, Bates College, Lewiston, Maine 04240, USA.
| | | | | | | | | |
Collapse
|
10
|
Baboshina OV, Crinelli R, Siepmann TJ, Haas AL. N-end rule specificity within the ubiquitin/proteasome pathway is not an affinity effect. J Biol Chem 2001; 276:39428-37. [PMID: 11493606 DOI: 10.1074/jbc.m106967200] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The N-end rule relates the amino terminus to the rate of degradation through the ubiquitin/26 S proteasome pathway. Proteins bearing basic (type 1) or large hydrophobic (type 2) amino termini are assumed to be targeted through this pathway by their higher affinity for binding to the responsible E3 ligase compared with proteins bearing other residues (type 3). Paradoxically, a significant fraction of eukaryotic protein degradation occurs through the N-end rule pathway, although the majority of cellular proteins are type 3 substrates. We have exploited specific interactions between ubiquitin carrier proteins (E2/Ubc) and their cognate E3 ligases to purify for the first time the mammalian N-end rule ligase E3alpha/Ubr1 to near homogeneity. In vitro studies show that E3alpha forms lysine 48-linked polyubiquitin degradation signals on type 1-3 substrates and is absolutely dependent on Ubc2/Rad6 orthologs. Biochemically defined kinetic studies show that the basis of N-end rule specificity is a k(cat) rather than the K(m) effect originally proposed, since all three substrate classes show similar binding affinities (K(m) approximately 5 microm) but V(max) values that are 100- and 50-fold greater for type 1 and 2 versus type 3 model substrates, respectively. In addition, the N-end rule dipeptides lysylalanine and phenylalanylalanine are general noncompetitive inhibitors for E3alpha-catalyzed ubiquitination of type 1-3 substrates rather than type-specific competitive inhibitors as predicted. These observations are consistent with a model in which the N-end rule effect reflects substrate binding-induced transitions in E3alpha to a catalytically competent conformer, the equilibrium for which depends on the identity of the amino terminus or the presence of basic or hydrophobic surface features. The model reconciles conflicts between specific predictions and empirical observations relating N-end rule targeting in addition to explicating the efficacy of selected dipeptides as potent in vivo inhibitors of this pathway.
Collapse
Affiliation(s)
- O V Baboshina
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | | | | | |
Collapse
|
11
|
Lecker SH, Solomon V, Price SR, Kwon YT, Mitch WE, Goldberg AL. Ubiquitin conjugation by the N-end rule pathway and mRNAs for its components increase in muscles of diabetic rats. J Clin Invest 1999; 104:1411-20. [PMID: 10562303 PMCID: PMC409840 DOI: 10.1172/jci7300] [Citation(s) in RCA: 142] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/1999] [Accepted: 10/06/1999] [Indexed: 01/20/2023] Open
Abstract
Insulin deficiency (e.g., in acute diabetes or fasting) is associated with enhanced protein breakdown in skeletal muscle leading to muscle wasting. Because recent studies have suggested that this increased proteolysis is due to activation of the ubiquitin-proteasome (Ub-proteasome) pathway, we investigated whether diabetes is associated with an increased rate of Ub conjugation to muscle protein. Muscle extracts from streptozotocin-induced insulin-deficient rats contained greater amounts of Ub-conjugated proteins than extracts from control animals and also 40-50% greater rates of conjugation of (125)I-Ub to endogenous muscle proteins. This enhanced Ub-conjugation occurred mainly through the N-end rule pathway that involves E2(14k) and E3alpha. A specific substrate of this pathway, alpha-lactalbumin, was ubiquitinated faster in the diabetic extracts, and a dominant negative form of E2(14k) inhibited this increase in ubiquitination rates. Both E2(14k) and E3alpha were shown to be rate-limiting for Ub conjugation because adding small amounts of either to extracts stimulated Ub conjugation. Furthermore, mRNA for E2(14k) and E3alpha (but not E1) were elevated 2-fold in muscles from diabetic rats, although no significant increase in E2(14k) and E3alpha content could be detected by immunoblot or activity assays. The simplest interpretation of these results is that small increases in both E2(14k) and E3alpha in muscles of insulin-deficient animals together accelerate Ub conjugation and protein degradation by the N-end rule pathway, the same pathway activated in cancer cachexia, sepsis, and hyperthyroidism.
Collapse
Affiliation(s)
- S H Lecker
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
12
|
Lazarus DD, Destree AT, Mazzola LM, McCormack TA, Dick LR, Xu B, Huang JQ, Pierce JW, Read MA, Coggins MB, Solomon V, Goldberg AL, Brand SJ, Elliott PJ. A new model of cancer cachexia: contribution of the ubiquitin-proteasome pathway. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 277:E332-41. [PMID: 10444430 DOI: 10.1152/ajpendo.1999.277.2.e332] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A new model of cachexia is described in which muscle protein metabolism related to the ubiquitin-proteasome pathway was investigated. Cloning of the colon-26 tumor produced a cell line, termed R-1, which induced cytokine (noninterleukin-1beta, interleukin-6 and tumor necrosis factor-alpha)-independent cachexia. Implantation of R-1 cells in mice elicited significant (20-30%) weight loss and decreased blood glucose by 70%, and adipose tissue levels declined by 95% and muscle weights decreased by 20-25%. Food intake was unaffected. The decrease in muscle weight reflected a decline in insoluble, but not soluble, muscle protein that was associated with a significant increase in net protein degradation. The rate of ubiquitin conjugation of proteins was significantly elevated in muscles of cachectic mice. Furthermore, the proteasome inhibitor lactacystin blocked the increase in protein breakdown but had no significant effect on proteolysis. Several markers of the ubiquitin-proteasome pathway, E2(14k) mRNA and E2(14k) protein and ubiquitin-protein conjugates, were not elevated. Future investigations with this new model should gain further insights into the mechanisms of cachexia and provide a background to evaluate novel and more efficacious therapies.
Collapse
Affiliation(s)
- D D Lazarus
- ProScript, Cambridge 02139, Massachusetts, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Lin H, Wing SS. Identification of rabbit reticulocyte E217K as a UBC7 homologue and functional characterization of its core domain loop. J Biol Chem 1999; 274:14685-91. [PMID: 10329663 DOI: 10.1074/jbc.274.21.14685] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The structural basis by which ubiquitin (Ub)-conjugating enzymes (E2s) determine substrate specificity remains unclear. We cloned rabbit reticulocyte E217K because unlike the similarly sized class I E2s, E214K and UBC4, it is unable to support ubiquitin-protein ligase (E3)-dependent conjugation to endogenous proteins. RNA analysis revealed that this E2 was expressed in all tissues tested, with higher levels in the testis. Analysis of testis RNA from rats of different ages showed that E217K mRNA was induced from days 15 to 30. The predicted amino acid sequence indicates that E217K is a 19. 5-kDa class I E2 but differs from other class I enzymes in possessing an insertion of 13 amino acids distal to the active site cysteine. E217K shows 74% amino acid identity with Saccharomyces cerevisiae UBC7, and therefore, we rename it mammalian UBC7. Yeast UBC7 crystal structure indicates that this insertion forms a loop out of the otherwise conserved folding structure. Sequence analysis of E2s had previously suggested that this loop is a hypervariable region and may play a role in substrate specificity. We created mutant UBC7 lacking the loop (ubc7Deltaloop) and a mutant E214k with an inserted loop (E214k+loop) and characterized their biochemical functions. Ubc7Deltaloop had higher affinity for the E1-Ub thiol ester than native UBC7 and permitted conjugation of Ub to selected proteins in the testis but did not permit the broad spectrum E3-dependent conjugation to endogenous reticulocyte proteins. Surprisingly, E214k+loop was unable to accept Ub from ubiquitin-activating enzyme (E1) but was able to accept NEDD8 from E1. E214k+loop was able to support conjugation of NEDD8 to endogenous reticulocyte proteins but with much lower efficiency than E214k. Thus, the loop can influence interactions of the E2 with charged E1 as well as with E3s or substrates, but the exact nature of these interactions depends on divergent sequences in the remaining conserved core domain.
Collapse
Affiliation(s)
- H Lin
- Department of Medicine, McGill University, Montreal, Quebec H3A 2B2, Canada
| | | |
Collapse
|
14
|
Obin M, Mesco E, Gong X, Haas AL, Joseph J, Taylor A. Neurite outgrowth in PC12 cells. Distinguishing the roles of ubiquitylation and ubiquitin-dependent proteolysis. J Biol Chem 1999; 274:11789-95. [PMID: 10206996 DOI: 10.1074/jbc.274.17.11789] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nerve growth factor (NGF)-induced neurite outgrowth from rat PC12 cells was coincident with elevated (>/=2-fold) levels of endogenous ubiquitin (Ub) protein conjugates, elevated rates of formation of 125I-labeled Ub approximately E1 (Ub-activating enzyme) thiol esters and 125I-labeled Ub approximately E2 (Ub carrier protein) thiol esters in vitro, and enhanced capacity to synthesize 125I-labeled Ub-protein conjugates de novo. Activities of at least four E2s were increased in NGF-treated cells, including E2(14K), a component of the N-end rule pathway. Ubiquitylation of 125 I-labeled beta-lactoglobulin was up to 4-fold greater in supernatants from NGF-treated cells versus untreated cells and was selectively inhibited by the dipeptide Leu-Ala, an inhibitor of Ub isopeptide ligase (E3). However, Ub-dependent proteolysis of 125I-labeled beta-lactoglobulin was not increased in supernatants from NGF-treated cells, suggesting that neurite outgrowth is promoted by enhanced rates of synthesis (rather than degradation) of Ub-protein conjugates. Consistent with this observation, neurite outgrowth was induced by proteasome inhibitors (lactacystin and clasto-lactacystin beta-lactone) and was associated with elevated levels of ubiquitylated protein and stabilization of the Ub-dependent substrate, p53. Lactacystin-induced neurite outgrowth was blocked by the dipeptide Leu-Ala (2 mM) but not by His-Ala. These data 1) demonstrate that the enhanced pool of ubiquitylated protein observed during neuritogenesis in PC12 cells reflects coordinated up-regulation of Ub-conjugating activity, 2) suggest that Ub-dependent proteolysis is a negative regulator of neurite outgrowth in vitro, and 3) support a role for E2(14K)/E3-mediated protein ubiquitylation in PC12 cell neurite outgrowth.
Collapse
Affiliation(s)
- M Obin
- Laboratory for Nutrition and Vision Research, Jean Mayer United States Department of Agriculture-Human Nutrition Research Center on Aging at Tufts University, Boston, Massachusetts 02111, USA.
| | | | | | | | | | | |
Collapse
|
15
|
Abu Hatoum O, Gross-Mesilaty S, Breitschopf K, Hoffman A, Gonen H, Ciechanover A, Bengal E. Degradation of myogenic transcription factor MyoD by the ubiquitin pathway in vivo and in vitro: regulation by specific DNA binding. Mol Cell Biol 1998; 18:5670-7. [PMID: 9742084 PMCID: PMC109153 DOI: 10.1128/mcb.18.10.5670] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
MyoD is a tissue-specific transcriptional activator that acts as a master switch for skeletal muscle differentiation. Its activity is induced during the transition from proliferating, nondifferentiated myoblasts to resting, well-differentiated myotubes. Like many other transcriptional regulators, it is a short-lived protein; however, the targeting proteolytic pathway and the underlying regulatory mechanisms involved in the process have remained obscure. It has recently been shown that many short-lived regulatory proteins are degraded by the ubiquitin system. Degradation of a protein by the ubiquitin system proceeds via two distinct and successive steps, conjugation of multiple molecules of ubiquitin to the target protein and degradation of the tagged substrate by the 26S proteasome. Here we show that MyoD is degraded by the ubiquitin system both in vivo and in vitro. In intact cells, the degradation is inhibited by lactacystin, a specific inhibitor of the 26S proteasome. Inhibition is accompanied by accumulation of high-molecular-mass MyoD-ubiquitin conjugates. In a cell-free system, the proteolytic process requires both ATP and ubiquitin and, like the in vivo process, is preceded by formation of ubiquitin conjugates of the transcription factor. Interestingly, the process is inhibited by the specific DNA sequence to which MyoD binds: conjugation and degradation of a MyoD mutant protein which lacks the DNA-binding domain are not inhibited. The inhibitory effect of the DNA requires the formation of a complex between the DNA and the MyoD protein. Id1, which inhibits the binding of MyoD complexes to DNA, abrogates the effect of DNA on stabilization of the protein.
Collapse
Affiliation(s)
- O Abu Hatoum
- Department of Biochemistry, Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | | | | | | | | | | | | |
Collapse
|
16
|
Solomon V, Lecker SH, Goldberg AL. The N-end rule pathway catalyzes a major fraction of the protein degradation in skeletal muscle. J Biol Chem 1998; 273:25216-22. [PMID: 9737984 DOI: 10.1074/jbc.273.39.25216] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In skeletal muscle, overall protein degradation involves the ubiquitin-proteasome system. One property of a protein that leads to rapid ubiquitin-dependent degradation is the presence of a basic, acidic, or bulky hydrophobic residue at its N terminus. However, in normal cells, substrates for this N-end rule pathway, which involves ubiquitin carrier protein (E2) E214k and ubiquitin-protein ligase (E3) E3alpha, have remained unclear. Surprisingly, in soluble extracts of rabbit muscle, we found that competitive inhibitors of E3alpha markedly inhibited the 125I-ubiquitin conjugation and ATP-dependent degradation of endogenous proteins. These inhibitors appear to selectively inhibit E3alpha, since they blocked degradation of 125I-lysozyme, a model N-end rule substrate, but did not affect the degradation of proteins whose ubiquitination involved other E3s. The addition of several E2s or E3alpha to the muscle extracts stimulated overall proteolysis and ubiquitination, but only the stimulation by E3alpha or E214k was sensitive to these inhibitors. A similar general inhibition of ubiquitin conjugation to endogenous proteins was observed with a dominant negative inhibitor of E214k. Certain substrates of the N-end rule pathway are degraded after their tRNA-dependent arginylation. We found that adding RNase A to muscle extracts reduced the ATP-dependent proteolysis of endogenous proteins, and supplying tRNA partially restored this process. Finally, although in muscle extracts the N-end rule pathway catalyzes most ubiquitin conjugation, it makes only a minor contribution to overall protein ubiquitination in HeLa cell extracts.
Collapse
Affiliation(s)
- V Solomon
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
17
|
Mykles DL. Intracellular proteinases of invertebrates: calcium-dependent and proteasome/ubiquitin-dependent systems. INTERNATIONAL REVIEW OF CYTOLOGY 1998; 184:157-289. [PMID: 9697313 DOI: 10.1016/s0074-7696(08)62181-6] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cytosolic proteinases carry out a variety of regulatory functions by controlling protein levels and/or activities within cells. Calcium-dependent and ubiquitin/proteasome-dependent pathways are common to all eukaryotes. The former pathway consists of a diverse group of Ca(2+)-dependent cysteine proteinases (CDPs; calpains in vertebrate tissues). The latter pathway is highly conserved and consists of ubiquitin, ubiquitin-conjugating enzymes, deubiquitinases, and the proteasome. This review summarizes the biochemical properties and genetics of invertebrate CDPs and proteasomes and their roles in programmed cell death, stress responses (heat shock and anoxia), skeletal muscle atrophy, gametogenesis and fertilization, development and pattern formation, cell-cell recognition, signal transduction and learning, and photoreceptor light adaptation. These pathways carry out bulk protein degradation in the programmed death of the intersegmental and flight muscles of insects and of individuals in a colonial ascidian; molt-induced atrophy of crustacean claw muscle; and responses of brine shrimp, mussels, and insects to environmental stress. Selective proteolysis occurs in response to specific signals, such as in modulating protein kinase A activity in sea hare and fruit fly associated with learning; gametogenesis, differentiation, and development in sponge, echinoderms, nematode, ascidian, and insects; and in light adaptation of photoreceptors in the eyes of squid, insects, and crustaceans. Proteolytic activities and specificities are regulated through proteinase gene expression (CDP isozymes and proteasomal subunits), allosteric regulators, and posttranslational modifications, as well as through specific targeting of protein substrates by a diverse assemblage of ubiquitin-conjugases and deubiquitinases. Thus, the regulation of intracellular proteolysis approaches the complexity and versatility of transcriptional and translational mechanisms.
Collapse
Affiliation(s)
- D L Mykles
- Department of Biology, Colorado State University, Fort Collins 80523, USA
| |
Collapse
|
18
|
Grigoryev S, Stewart AE, Kwon YT, Arfin SM, Bradshaw RA, Jenkins NA, Copeland NG, Varshavsky A. A mouse amidase specific for N-terminal asparagine. The gene, the enzyme, and their function in the N-end rule pathway. J Biol Chem 1996; 271:28521-32. [PMID: 8910481 DOI: 10.1074/jbc.271.45.28521] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The N-end rule relates the in vivo half-life of a protein to the identity of its N-terminal residue. In both fungi and mammals, the tertiary destabilizing N-terminal residues asparagine and glutamine function through their conversion, by enzymatic deamidation, into the secondary destabilizing residues aspartate and glutamate, whose destabilizing activity requires their enzymatic conjugation to arginine, one of the primary destabilizing residues. We report the isolation and analysis of a mouse cDNA and the corresponding gene (termed Ntan1) that encode a 310-residue amidohydrolase (termed NtN-amidase) specific for N-terminal asparagine. The approximately 17-kilobase pair Ntan1 gene is located in the proximal region of mouse chromosome 16 and contains 10 exons ranging from 54 to 177 base pairs in length. The approximately 1.4-kilobase pair Ntan1 mRNA is expressed in all of the tested mouse tissues and cell lines and is down-regulated upon the conversion of myoblasts into myotubes. The Ntan1 promoter is located approximately 500 base pairs upstream of the Ntan1 start codon. The deduced amino acid sequence of mouse NtN-amidase is 88% identical to the sequence of its porcine counterpart, but bears no significant similarity to the sequence of the NTA1-encoded N-terminal amidohydrolase of the yeast Saccharomyces cerevisiae, which can deamidate either N-terminal asparagine or glutamine. The expression of mouse NtN-amidase in S. cerevisiae nta1Delta was used to verify that NtN-amidase retains its asparagine selectivity in vivo and can implement the asparagine-specific subset of the N-end rule. Further dissection of mouse Ntan1, including its null phenotype analysis, should illuminate the functions of the N-end rule, most of which are still unknown.
Collapse
Affiliation(s)
- S Grigoryev
- Division of Biology, California Institute of Technology, Pasadena, California 91125, USA.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Thoma S, Sullivan ML, Vierstra RD. Members of two gene families encoding ubiquitin-conjugating enzymes, AtUBC1-3 and AtUBC4-6, from Arabidopsis thaliana are differentially expressed. PLANT MOLECULAR BIOLOGY 1996; 31:493-505. [PMID: 8790283 DOI: 10.1007/bf00042223] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Covalent attachment of ubiquitin to other intracellular proteins is essential for many physiological processes in eukaryotes, including selective protein degradation. Selection of proteins for ubiquitin conjugation is accomplished, in part, by a group of enzymes designated E2s or ubiquitin-conjugating enzymes (UBCs). At least six types of E2s have been identified in the plant Arabidopsis thaliana; each type is encoded by a small gene family. Previously, we described the isolation and characterization of two three-member gene families, designated AtUBC1-3 and AtUBC4-6, encoding two of these E2 types. Here, we investigated the expression patterns, of the AtUBC1-3 and AtUBC4-6 genes by the histochemical analysis of transgenic Arabidopsis containing the corresponding promoters fused to the beta-glucuronidase-coding region. Staining patterns showed that these genes are active in many stages of development and some aspects of cell death, but are not induced by heat stress. Within the two gene families, individual members exhibited both overlapping and complementary expression patterns, indicating that at least one member of each gene family is expressed in most cell types and at most developmental stages. Different composite patterns of expression were observed between the AtUBC1-3 and AtUBC4-6 families, suggesting distinct biochemical and/or physiological functions for the encoded E2s in Arabidopsis.
Collapse
Affiliation(s)
- S Thoma
- Department of Horticulture, University of Wisconsin-Madison 53706, USA
| | | | | |
Collapse
|
20
|
Baboshina OV, Haas AL. Novel multiubiquitin chain linkages catalyzed by the conjugating enzymes E2EPF and RAD6 are recognized by 26 S proteasome subunit 5. J Biol Chem 1996; 271:2823-31. [PMID: 8576261 DOI: 10.1074/jbc.271.5.2823] [Citation(s) in RCA: 170] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Targeting of substrates for degradation by the ATP, ubiquitin-dependent pathway requires formation of multiubiquitin chains in which the 8.6-kDa polypeptide is linked by isopeptide bonds between carboxyl termini and Lys-48 residues of successive monomers. Binding of Lys-48-linked chains by subunit 5 of the 26 S proteasome regulatory complex commits the attached target protein to degradation with concomitant release of free ubiquitin monomers following disassembly of the chains. Point mutants of ubiquitin (Lys-->Arg) were used to map the linkage specificity for ubiquitin-conjugating enzymes previously demonstrated to form novel multiubiquitin chains not attached through Lys-48. Recombinant human E2EPF catalyzed multiubiquitin chain formation exclusively through Lys-11 of ubiquitin while recombinant yeast RAD6 formed chains linked only through Lys-6. Multiubiquitin chains linked through Lys-6, Lys-11, or Lys-48 each bound to subunit 5 of partially purified human 26 S proteasome with comparable affinities. Since chains bearing different linkages are expected to pack into distinct structures, competition between Lys-11 and Lys-48 chains for binding to subunit 5 demonstrates that the latter possesses determinants for recognizing alternatively linked chains and precludes the existence of subunit 5 isoforms recognizing distinct structures. In addition, competition studies provided an estimate of Kd < or = 18 nM for the intrinsic binding of Lys-48-linked chains of linkage number n > 4. This result suggests that the principal mechanistic advantage of multiubiquitin chain formation is to enhance the affinity of the associated substrate for the 26 S complex relative to that of unconjugated target protein. Complementation studies with E1/E2-depleted rabbit reticulocyte extract demonstrated RAD6 supported isopeptide ligase-dependent degradation only through Lys-48-linked chains, while E2EPF retained the ability to target a model radiolabeled substrate through Lys-11-linked chains. Therefore, the linkage specificity exhibited by these E2 isozymes depends on their catalytic context with respect to isopeptide ligase.
Collapse
Affiliation(s)
- O V Baboshina
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee 53226, USA
| | | |
Collapse
|
21
|
Haldeman MT, Finley D, Pickart CM. Dynamics of ubiquitin conjugation during erythroid differentiation in vitro. J Biol Chem 1995; 270:9507-16. [PMID: 7721879 DOI: 10.1074/jbc.270.16.9507] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
To gain insight into the role of ubiquitin-mediated proteolysis in erythroid differentiation, levels of ubiquitin conjugating enzymes (E2s) and ubiquitin conjugates were analyzed during in vitro differentiation of murine erythroleukemic (MEL) cells. After 4 days of culture in the presence of the inducer dimethyl sulfoxide, MEL cells expressed high levels of the erythroid-specific proteins, globin, and band 3. During the same interval, cellular contents (mol/cell) of E2-14K, E2-25K, and E2-35K decreased up to approximately 5-fold; as suggested by results obtained with E2-25K, this reflected a lower level of mRNA in differentiating cells. Concentrations of these E2s changed more modestly during in vitro differentiation, since cellular volume also decreased. Comparison of levels of the three E2s in undifferentiated MEL cells and reticulocytes suggests that their concentrations remain fairly constant during in vivo differentiation of proerythroblasts into reticulocytes. Thus, these components of the ubiquitin-mediated proteolytic pathway are likely to function constitutively during this interval. Two-dimensional Western blots showed a broad spectrum of ubiquitin conjugates, including free multiubiquitin chains, in undifferentiated MEL cells. As seen for several E2s, the concentration of ubiquitin conjugates (including free chains) decreased modestly during in vitro differentiation. E2-20K and E2-230K, which are abundant in reticulocytes, were low or absent in undifferentiated and differentiated MEL cells. In erythroid cells these two E2s are reticulocyte-specific; apparently MEL cells do not differentiate far enough to allow induction of their expression.
Collapse
Affiliation(s)
- M T Haldeman
- Department of Biochemistry, School of Medicine and Biomedical Sciences, State University of New York, Buffalo 14214, USA
| | | | | |
Collapse
|
22
|
Kaiser P, Mansour HA, Greeten T, Auer B, Schweiger M, Schneider R. The human ubiquitin-conjugating enzyme UbcH1 is involved in the repair of UV-damaged, alkylated and cross-linked DNA. FEBS Lett 1994; 350:1-4. [PMID: 8062904 DOI: 10.1016/0014-5793(94)00656-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The human ubiquitin-conjugating enzyme UbcH1 shows 69% identity to the Saccharomyces cerevisiae RAD6/UBC2 which plays a key role in DNA repair. To examine the function of UbcH1 (formerly named E2, M(r) 17,000), [(1990) EMBO J. 9, 1431-1435]) we tested its ability to functionally substitute for yeast RAD6/UBC2 in the recovery of cells from various DNA damage. Complementation by expression of the human UbcH1 cDNA revealed that the UbcH1 carries out the function of S. cerevisiae RAD6/UBC2 in the repair of UV-damaged, alkylated and cross-linked DNA.
Collapse
Affiliation(s)
- P Kaiser
- Institute of Biochemistry, University of Innsbruck, Austria
| | | | | | | | | | | |
Collapse
|
23
|
Wing SS, Banville D. 14-kDa ubiquitin-conjugating enzyme: structure of the rat gene and regulation upon fasting and by insulin. THE AMERICAN JOURNAL OF PHYSIOLOGY 1994; 267:E39-48. [PMID: 8048511 DOI: 10.1152/ajpendo.1994.267.1.e39] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Upon fasting, an increase in proteolysis occurs in rat skeletal muscle and is associated with increased levels of ubiquitin-protein conjugates. As this suggests that formation of conjugates may be activated upon fasting, we studied the expression of the gene encoding the 14-kDa ubiquitin-conjugating enzyme (E2(14k)). A cDNA encoding rat E2(14k) was isolated and used to probe Northern blots of RNA from extensor digitorum longus muscles of fed, fasted, and refed rats. Two mRNA transcripts of 1.2 and 1.8 kb were observed. Isolation and sequencing of a genomic clone determined that these transcripts arise from differential sites of polyadenylation. The 1.2-kb transcript increased threefold upon fasting at 2 days and returned to normal with refeeding. Northern analysis of RNA from various tissues of fed and fasted rats showed that E2(14k) mRNA was expressed at high levels in testes, moderate levels in muscle, heart, and brain, but low levels in liver and kidney. Upon fasting, increases in mRNA levels were seen in muscle, heart, liver, and kidney. In vitro, in rat L6 myotubes, insulin lowered levels of E2(14k) mRNA. Because E2s catalyze the first irreversible reaction in the pathway and E2(14k) gene expression appears to change in parallel with the changes in levels of ubiquitinated proteins and rates of proteolysis, conjugation mediated by this E2 may be a rate-limiting step in the pathway. This is the first demonstration of direct hormonal regulation of a gene in the ubiquitin system and argues strongly for a role of the ubiquitin system in the metabolic response to fasting in skeletal muscle.
Collapse
Affiliation(s)
- S S Wing
- National Research Council of Canada, Biotechnology Research Institute, Montreal, Quebec
| | | |
Collapse
|
24
|
Purification and characterization of a novel species of ubiquitin-carrier protein, E2, that is involved in degradation of non-“N-end rule” protein substrates. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)36920-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
25
|
Cook WJ, Jeffrey LC, Xu Y, Chau V. Tertiary structures of class I ubiquitin-conjugating enzymes are highly conserved: crystal structure of yeast Ubc4. Biochemistry 1993; 32:13809-17. [PMID: 8268156 DOI: 10.1021/bi00213a009] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The three-dimensional structure of a yeast ubiquitin-conjugating enzyme, encoded by the Saccharomyces cerevisiae UBC4 gene, has been determined at 2.7 A. The structure was solved using molecular replacement techniques and refined by simulated annealing to an R-factor of 0.198. Bond lengths and angles in the molecule have root mean square deviations from ideal values of 0.018 A and 4.0 degrees, respectively. Ubc4 is an alpha/beta protein with four alpha-helices and a four-stranded antiparallel beta-sheet. The ubiquitin-accepting cysteine is located in a cleft between two loops. Comparison with the recently determined structure of a different plant enzyme suggests that class I ubiquitin-conjugating enzymes are highly conserved in their three-dimensional folding. Except for two extra residues at the N- and the C-terminus of the plant enzyme, the C alpha atoms of the two enzymes can be superimposed with a root mean square deviation of only 1.52 A. Greater variations are found between the surfaces of the two molecules, as most of the identical residues between the two enzymes are either buried or clustered on the surface that lies adjacent to the ubiquitin-accepting cysteine. We suggest that this conserved surface functions in protein-protein binding during ubiquitin thiol ester formation.
Collapse
Affiliation(s)
- W J Cook
- Department of Pathology, University of Alabama at Birmingham 35294
| | | | | | | |
Collapse
|
26
|
Scheffner M, Huibregtse JM, Vierstra RD, Howley PM. The HPV-16 E6 and E6-AP complex functions as a ubiquitin-protein ligase in the ubiquitination of p53. Cell 1993; 75:495-505. [PMID: 8221889 DOI: 10.1016/0092-8674(93)90384-3] [Citation(s) in RCA: 1790] [Impact Index Per Article: 55.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The ubiquitin-dependent proteolytic pathway plays a major role in selective protein degradation. Ubiquitination of proteins requires the sequential action of the ubiquitin-activating enzyme (E1), ubiquitin-conjugating enzymes (E2), and in some cases ubiquitin-protein ligases (E3s). The oncogenic human papillomavirus (HPV) types 16 and 18 utilize this cellular proteolytic system to target the tumor suppressor protein p53. The HPV E6 oncoprotein binds to a cellular protein of 100 kd, termed E6-associated protein (E6-AP). The E6-E6-AP complex specifically interacts with p53, resulting in the rapid ubiquitin-dependent degradation of p53. Here we report the purification and identification of the factors necessary for the E6-E6-AP-mediated ubiquitination of p53. The ubiquitination of p53 requires the E1 enzyme and a novel E2 in mammalian cells, while E3 activity is conferred by the E6-E6-AP complex. Furthermore, E6-AP appears to have ubiquitin-protein ligase activity in the absence of E6.
Collapse
Affiliation(s)
- M Scheffner
- Laboratory of Tumor Virus Biology, National Cancer Institute, Bethesda, Maryland 20892
| | | | | | | |
Collapse
|
27
|
The bacterially expressed yeast CDC34 gene product can undergo autoubiquitination to form a multiubiquitin chain-linked protein. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)53371-8] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
28
|
Watkins JF, Sung P, Prakash S, Prakash L. The extremely conserved amino terminus of RAD6 ubiquitin-conjugating enzyme is essential for amino-end rule-dependent protein degradation. Genes Dev 1993; 7:250-61. [PMID: 8436296 DOI: 10.1101/gad.7.2.250] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The RAD6 gene of Saccharomyces cerevisiae encodes a ubiquitin-conjugating enzyme that is required for DNA repair, damage-induced mutagenesis, and sporulation. In addition, RAD6 mediates the multiubiquitination and degradation of amino-end rule protein substrates. The structure and function of RAD6 have been remarkably conserved during eukaryotic evolution. Here, we examine the role of the extremely conserved amino terminus, which has remained almost invariant among RAD6 homologs from yeast to human. We show that RAD6 is concentrated in the nucleus and that the amino-terminal deletion mutation, rad6 delta 1-9, does not alter the location of the protein. The amino-terminal domain, however, is essential for the multiubiquitination and degradation of amino-end rule substrates. In the rad6 delta 1-9 mutant, beta-galactosidase proteins bearing destabilizing amino-terminal residues become long lived, and purified rad6 delta 1-9 protein is ineffective in ubiquitin-protein ligase (E3)-dependent protein degradation in the proteolytic system derived from rabbit reticulocytes. The amino terminus is required for physical interaction of RAD6 with the yeast UBR1-encoded E3 enzyme, as the rad6 delta 1-9 protein is defective in this respect. The rad6 delta 1-9 mutant is defective in sporulation, shows reduced efficiency of DNA repair, but is proficient in UV mutagenesis. E3-dependent protein degradation by RAD6 could be essential for sporulation and could affect the efficiency of DNA repair.
Collapse
Affiliation(s)
- J F Watkins
- Department of Biophysics, University of Rochester School of Medicine, New York 14642
| | | | | | | |
Collapse
|
29
|
A major ubiquitin conjugation system in wheat germ extracts involves a 15-kDa ubiquitin-conjugating enzyme (E2) homologous to the yeast UBC4/UBC5 gene products. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)54026-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
30
|
Alvarez J, Montero M, Garcia-Sancho J. High affinity inhibition of Ca(2+)-dependent K+ channels by cytochrome P-450 inhibitors. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)49767-6] [Citation(s) in RCA: 207] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|