1
|
Muqaku B, Eisinger M, Meier SM, Tahir A, Pukrop T, Haferkamp S, Slany A, Reichle A, Gerner C. Multi-omics Analysis of Serum Samples Demonstrates Reprogramming of Organ Functions Via Systemic Calcium Mobilization and Platelet Activation in Metastatic Melanoma. Mol Cell Proteomics 2016; 16:86-99. [PMID: 27879288 DOI: 10.1074/mcp.m116.063313] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 11/18/2016] [Indexed: 12/19/2022] Open
Abstract
Pathophysiologies of cancer-associated syndromes such as cachexia are poorly understood and no routine biomarkers have been established, yet. Using shotgun proteomics, known marker molecules including PMEL, CRP, SAA, and CSPG4 were found deregulated in patients with metastatic melanoma. Targeted analysis of 58 selected proteins with multiple reaction monitoring was applied for independent data verification. In three patients, two of which suffered from cachexia, a tissue damage signature was determined, consisting of nine proteins, PLTP, CD14, TIMP1, S10A8, S10A9, GP1BA, PTPRJ, CD44, and C4A, as well as increased levels of glycine and asparagine, and decreased levels of polyunsaturated phosphatidylcholine concentrations, as determined by targeted metabolomics. Remarkably, these molecules are known to be involved in key processes of cancer cachexia. Based on these results, we propose a model how metastatic melanoma may lead to reprogramming of organ functions via formation of platelet activating factors from long-chain polyunsaturated phosphatidylcholines under oxidative conditions and via systemic induction of intracellular calcium mobilization. Calcium mobilization in platelets was demonstrated to alter levels of several of these marker molecules. Additionally, platelets from melanoma patients proved to be in a rather exhausted state, and platelet-derived eicosanoids implicated in tumor growth were found massively increased in blood from three melanoma patients. Platelets were thus identified as important source of serum protein and lipid alterations in late stage melanoma patients. As a result, the proposed model describes the crosstalk between lipolysis of fat tissue and muscle wasting mediated by oxidative stress, resulting in the metabolic deregulations characteristic for cachexia.
Collapse
Affiliation(s)
- Besnik Muqaku
- From the ‡Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Martin Eisinger
- From the ‡Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Samuel M Meier
- From the ‡Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Ammar Tahir
- From the ‡Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Tobias Pukrop
- §Department of Dermatology, University Hospital of Regensburg, Regensburg, Germany
| | - Sebastian Haferkamp
- §Department of Dermatology, University Hospital of Regensburg, Regensburg, Germany
| | - Astrid Slany
- From the ‡Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Albrecht Reichle
- ¶Department of Internal Medicine III, Haematology & Oncology, University Hospital of Regensburg, Regensburg, Germany
| | - Christopher Gerner
- From the ‡Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria;
| |
Collapse
|
2
|
Borthakur A, Bhattacharyya S, Kumar A, Anbazhagan AN, Tobacman JK, Dudeja PK. Lactobacillus acidophilus alleviates platelet-activating factor-induced inflammatory responses in human intestinal epithelial cells. PLoS One 2013; 8:e75664. [PMID: 24130731 PMCID: PMC3794005 DOI: 10.1371/journal.pone.0075664] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 08/16/2013] [Indexed: 02/06/2023] Open
Abstract
Probiotics have been used as alternative prevention and therapy modalities in intestinal inflammatory disorders including inflammatory bowel diseases (IBD) and necrotizing enterocolitis (NEC). Pathophysiology of IBD and NEC includes the production of diverse lipid mediators, including platelet-activating factor (PAF) that mediate inflammatory responses in the disease. PAF is known to activate NF-κB, however, the mechanisms of PAF-induced inflammation are not fully defined. We have recently described a novel PAF-triggered pathway of NF-κB activation and IL-8 production in intestinal epithelial cells (IECs), requiring the pivotal role of the adaptor protein Bcl10 and its interactions with CARMA3 and MALT1. The current studies examined the potential role of the probiotic Lactobacillus acidophilus in reversing the PAF-induced, Bcl10-dependent NF-κB activation and IL-8 production in IECs. PAF treatment (5 µM×24 h) of NCM460 and Caco-2 cells significantly increased nuclear p65 NF-κB levels and IL-8 secretion (2-3-fold, P<0.05), compared to control, which were blocked by pretreatment of the cells for 6 h with L. acidophilus (LA) or its culture supernatant (CS), followed by continued treatments with PAF for 24 h. LA-CS also attenuated PAF-induced increase in Bcl10 mRNA and protein levels and Bcl10 promoter activity. LA-CS did not alter PAF-induced interaction of Bcl10 with CARMA3, but attenuated Bcl10 interaction with MALT1 and also PAF-induced ubiquitination of IKKγ. Efficacy of bacteria-free CS of LA in counteracting PAF-induced inflammatory cascade suggests that soluble factor(s) in the CS of LA mediate these effects. These results define a novel mechanism by which probiotics counteract PAF-induced inflammation in IECs.
Collapse
Affiliation(s)
- Alip Borthakur
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Sumit Bhattacharyya
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Anoop Kumar
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Arivarasu Natarajan Anbazhagan
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Joanne K. Tobacman
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Pradeep K. Dudeja
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Jesse Brown VA Medical Center, Chicago, Illinois, United States of America
| |
Collapse
|
3
|
Penna C, Bassino E, Alloatti G. Platelet activating factor: the good and the bad in the ischemic/reperfused heart. Exp Biol Med (Maywood) 2011; 236:390-401. [PMID: 21378031 DOI: 10.1258/ebm.2011.010316] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The present review is focused on the dual role played by platelet-activating factor (PAF) in ischemia and reperfusion (I/R) injury of the heart. Although the involvement of PAF in the pathogenesis of myocardial reperfusion injury is well established, in the last few years it has emerged that very low concentrations of PAF exert cardioprotective effects, comparable to that afforded by ischemic preconditioning (IP). PAF is a potent phosphoglyceride involved in different pathophysiological conditions affecting the cardiovascular system, including the development of myocardial I/R injury. PAF is released from the I/R myocardium in concentrations (1-10 nmol/L) high enough to negatively modulate coronary circulation as well as electrical and contractile activities. PAF may act either directly, via generation of secondary mediators, or through the activation of inflammatory cells like platelets and polymorphonuclear neutrophils, which exacerbate postischemic myocardial injury. The effects of PAF are mediated through specific receptors (PAFRs) that belong to the superfamily of G protein-coupled receptors. Since cardiomyocytes not only produce PAF but also possess PAFRs, it is likely that PAF acts as an autocrine/paracrine mediator. Although the negative effects exerted by high concentrations of PAF are well established, several recent findings from our and other laboratories have demonstrated that very low concentrations (pmol/L) of PAF infused before ischemia induce cardioprotective effects similar to those afforded by IP, and that endogenous PAF production participates in the induction of IP itself. The IP-like action exerted by low concentrations of PAF is due to the activation/phosphorylation of kinases included in the reperfusion injury salvage kinase (RISK) pathway, such as protein kinase C, Akt/PkB and nitric oxide synthase. Together with the activation of mitochondrial K(ATP) channels, these events may allow prevention of mitochondrial permeability transition pores opening at reperfusion. Moreover, the nitric oxide-dependent S-nitrosylation of L-type Ca(2+) channels induced by PAF reduces intracellular Ca(2+) overload.
Collapse
Affiliation(s)
- Claudia Penna
- Dipartimento di Scienze Cliniche e Biologiche, ASO San Luigi, 10043 Orbassano (TO), Italy
| | | | | |
Collapse
|
4
|
Soares PMG, Lima-Junior RCP, Mota JMSC, Justino PFC, Brito GAC, Ribeiro RA, Cunha FQ, Souza MHLP. Role of platelet-activating factor in the pathogenesis of 5-fluorouracil-induced intestinal mucositis in mice. Cancer Chemother Pharmacol 2010; 68:713-20. [PMID: 21153821 DOI: 10.1007/s00280-010-1540-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Accepted: 11/24/2010] [Indexed: 10/18/2022]
Abstract
PURPOSE Gastrointestinal mucositis is a common side effect of cancer chemotherapy. Platelet-activating factor (PAF) is produced during gut inflammation. There is no evidence that PAF participates in antineoplastic-induced intestinal mucositis. This study evaluated the role of PAF in 5-fluorouracil (5-FU)-induced intestinal mucositis using a pharmacological approach and PAF receptor knockout mice (PAFR(-/-)). METHODS Wild-type mice or PAFR(-/-) mice were treated with 5-FU (450 mg/kg, i.p.). Other mice were treated with saline or BN52021 (20 mg/kg, s.c.), an antagonist of the PAF receptor, once daily followed by 5-FU administration. After the third day of treatment, animals were sacrificed and tissue samples from the duodenum were removed for morphologic evaluation. In addition, myeloperoxidase activity and the cytokine concentration were measured. RESULTS 5-FU treatment decreased the duodenal villus height/crypt depth ratio, increased MPO activity, and increased the concentration of TNF-α, IL-1β and KC in comparison with saline-treated animals. In PAFR(-/-) mice and PAFR antagonist-treated mice, 5-FU-dependent intestinal damage was reduced and a decrease in duodenal villus height/crypt depth ratio was attenuated. However, the 5-FU-dependent increase in duodenum MPO activity was not affected. Without PAFR activation, 5-FU treatment did not increase the TNF-α, IL-1β and KC concentration. CONCLUSIONS In conclusion, our study establishes the role of PAFR activation in 5-FU-induced intestinal mucositis. This study implicates treatment with PAFR antagonists as novel therapeutic strategy for this condition.
Collapse
Affiliation(s)
- Pedro M G Soares
- Department of Morphology, Federal University of Ceara, Fortaleza, CE, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Borthakur A, Bhattacharyya S, Alrefai WA, Tobacman JK, Ramaswamy K, Dudeja PK. Platelet-activating factor-induced NF-kappaB activation and IL-8 production in intestinal epithelial cells are Bcl10-dependent. Inflamm Bowel Dis 2010; 16:593-603. [PMID: 19714753 PMCID: PMC3740729 DOI: 10.1002/ibd.21092] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Platelet-activating factor (PAF), a potent proinflammatory phospholipid mediator, has been implicated in inducing intestinal inflammation in diseases such as inflammatory bowel disease (IBD) and necrotizing enterocolitis (NEC). However, its mechanisms of inducing inflammatory responses are not fully understood. Therefore, studies were designed to explore the mechanisms of PAF-induced inflammatory cascade in intestinal epithelial cells. METHODS Nuclear factor kappa B (NF-kappaB) activation was measured by luciferase assay and enzyme-linked immunosorbent assay (ELISA), and interleukin 8 (IL-8) production was determined by ELISA. B-cell lymphoma 10 (Bcl10), caspase recruitment domain-containing membrane-associated guanylate kinase protein 3 (CARMA3), and mucosa-associated lymphoid tissue lymphoma translocation protein 1 (MALT1) mRNA and protein levels were assessed by real-time reverse-transcription polymerase chain reaction (RT-PCR) and Western blot, respectively. siRNA silencing of Bcl10 was used to examine its role in PAF-induced NF-kappaB activation and IL-8 production. The promoter region of the Bcl10 gene was cloned with the PCR method and promoter activity measured by luciferase assay. RESULTS The adaptor protein Bcl10 appeared to play an important role in the PAF-induced inflammatory pathway in human intestinal epithelial cells. Bcl10 was required for PAF-induced I kappaB alpha phosphorylation, NF-kappaB activation, and IL-8 production in NCM460, a cell line derived from normal human colon, and Caco-2, a transformed human intestinal cell line. PAF also stimulated Bcl10 interactions with CARMA3 and MALT1, and upregulated Bcl10 expression in these cells via transcriptional regulation. CONCLUSIONS These findings highlight a novel PAF-induced inflammatory pathway in intestinal epithelial cells, requiring Bcl10 as a critical mediator and involving CARMA3/Bcl10/MALT1 interactions. The proinflammatory effects of PAF play prominent roles in the pathogenesis of IBD and this pathway may present important targets for intervention in chronic inflammatory diseases of the intestine.
Collapse
Affiliation(s)
- Alip Borthakur
- Author to whom all correspondence including reprint requests should be addressed: Alip Borthakur, Ph.D., Department of Medicine, Section of Digestive Diseases and Nutrition, University of Illinois at Chicago, 840 South Wood Street (MC716), Chicago, IL 60612, , Phone: 312-569-7463, FAX: 312-569-7458
| | | | | | | | | | | |
Collapse
|
6
|
Hudry-Clergeon H, Stengel D, Ninio E, Vilgrain I. Platelet-activating factor increases VE-cadherin tyrosine phosphorylation in mouse endothelial cells and its association with the PtdIns3'-kinase. FASEB J 2005; 19:512-20. [PMID: 15791001 PMCID: PMC4848345 DOI: 10.1096/fj.04-2202com] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Platelet-activating factor (PAF), a potent inflammatory mediator, is involved in endothelial permeability. This study was designed to characterize PAF receptor (PAF-R) expression and its specific contribution to the modifications of adherens junctions in mouse endothelial cells. We demonstrated that PAF-R was expressed in mouse endothelial cells and was functionally active in stimulating p42/p44 MAPK and phosphatidylinositol 3-kinase (PtdIns3'-kinase)/Akt activities. Treatment of cells with PAF induced a rapid time- and dose-dependent (10(-7) to 10(-10) M) increase in tyrosine phosphorylation of a subset of proteins ranging from 90 to 220 kDa, including the VE-cadherin, the latter effect being prevented by the tyrosine kinase inhibitors herbimycin A and bis-tyrphostin. We demonstrated that PAF promoted formation of multimeric aggregates of VE-cadherin with PtdIns3'-kinase, which was also inhibited by herbimycin and bis-tyrphostin. Finally, we show by immunostaining of endothelial cells VE-cadherin that PAF dissociated adherens junctions. The present data provide the first evidence that treatment of endothelial cells with PAF promoted activation of tyrosine kinases and the VE-cadherin tyrosine phosphorylation and PtdIns3'-kinase association, which ultimately lead to the dissociation of adherens junctions. Physical association between PtdIns3'-kinase, serving as a docking protein, and VE-cadherin may thus provide an efficient mechanism for amplification and perpetuation of PAF-induced cellular activation.
Collapse
Affiliation(s)
- Hélène Hudry-Clergeon
- Laboratoire de développement et vieillissement de l'endothélium
Université Joseph FourierINSERMCEA
| | - Dominique Stengel
- Génétique épidémiologique et moléculaire des pathologies cardiovasculaires
Université Pierre et Marie Curie - Paris 6INSERMIFR14Faculté de Médecine Pitié-Salpétrière 91, Boulevard de L'hôpital 75634 Paris cedex 13
| | - Ewa Ninio
- Génétique épidémiologique et moléculaire des pathologies cardiovasculaires
Université Pierre et Marie Curie - Paris 6INSERMIFR14Faculté de Médecine Pitié-Salpétrière 91, Boulevard de L'hôpital 75634 Paris cedex 13
| | - Isabelle Vilgrain
- Laboratoire de développement et vieillissement de l'endothélium
Université Joseph FourierINSERMCEA
- * Correspondence should be addressed to Isabelle Vilgrain
| |
Collapse
|
7
|
Abstract
An account is provided of developments in our understanding of the mechanism of corneal hydration control, particularly as regards the possibility of an active system for its regulation. Emphasis is given to issues that are contentious, such as the role of bicarbonate in the endothelial pump and the significance of water channels in both corneal limiting cell layers.
Collapse
Affiliation(s)
- Jorge Fischbarg
- Department of Ophthalmology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.
| | | |
Collapse
|
8
|
Affiliation(s)
- J H Exton
- Howard Hughes Medical Institute, Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| |
Collapse
|
9
|
Hourton D, Stengel D, Chapman MJ, Ninio E. Oxidized low density lipoproteins downregulate LPS-induced platelet-activating factor receptor expression in human monocyte-derived macrophages: implications for LPS-induced nuclear factor-kappaB binding activity. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:4489-96. [PMID: 11502209 DOI: 10.1046/j.1432-1327.2001.02372.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Monocytes/macrophages play a key role in atherogenesis due to their inflammatory properties including formation of lipid mediators such as platelet-activating-factor (PAF). We investigated the effect of oxidized low-density lipoprotein (oxLDL) on lipopolysaccharide (LPS)-induced PAF receptor (PAF-R) expression in human macrophages and the implication of the nuclear factor (NF)-kappaB in this regulation. LPS-treatment (1 microg.mL(-1)) of macrophages increased PAF binding and PAF-R mRNA expression by 56% (P < 0.05) and twofold (P < 0.01), respectively. In contrast, highly oxidized low-density lipoprotein [ox24hLDL; 100 microg.mL(-1); thiobarbituric acid reacting substances: 31 +/- 3 nmol equiv. malondialdehyde (MDA).mg protein LDL-1] diminished PAF-R expression (-69%; P < 0.05) and mRNA level (- 45%; P < 0.01). LPS pretreatment induced the activated form of p65 in the nuclear compartment of macrophages (detected by Western blotting) and NF-kappaB binding activity (by electrophoretic mobility shift assay). Treatment of macrophages with ox24hLDL suppressed the LPS-induced binding of NF-kappaB to DNA. In addition, treatment of macrophages with lysophosphatidylcholine (2 and 10 microM), a major component of oxLDL, inhibited the LPS-induced NF-kappaB binding to DNA and reduced PAF binding by 30 and 70%, respectively. In conclusion, oxLDL may downregulate PAF-R expression in human macrophages by inhibiting LPS-induced NF-kappaB binding to DNA.
Collapse
Affiliation(s)
- D Hourton
- INSERM U525 Génétique Epidémiologique Moléculaire des Pathologies Cardiovasculaires', IFR 14 'Muscle Coeur et Vaisseaux' and UFR Médecine Sud (Université Pierre et Marie Curie), Paris, France
| | | | | | | |
Collapse
|
10
|
Metzler DE, Metzler CM, Sauke DJ. Specific Aspects of Lipid Metabolism. Biochemistry 2001. [DOI: 10.1016/b978-012492543-4/50024-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
11
|
Coomber BL, Nyarko KA, Noyes TM, Gentry PA. Neutrophil-platelet interactions and their relevance to bovine respiratory disease. Vet J 2001; 161:41-62. [PMID: 11145829 DOI: 10.1053/tvjl.2000.0516] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Respiratory disease is a serious and significant health problem for the bovine industry. Classically, the clinical and research focus has been on the putative causative agents and conditions, and their interactions with host inflammatory cells, particularly alveolar macrophages and blood neutrophils. There is, currently, growing acceptance of the concept that blood platelets play a primary role in the inflammatory process. This review explores the implications of such pro-inflammatory activity, especially in the context of neutrophil-platelet interactions, and the species specificity of cellular responses. The relevance of these issues for the treatment and prevention of bovine respiratory disease is also discussed.
Collapse
Affiliation(s)
- B L Coomber
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada N1G 2W1.
| | | | | | | |
Collapse
|
12
|
Metzler DE, Metzler CM, Sauke DJ. Some Pathways of Carbohydrate Metabolism. Biochemistry 2001. [DOI: 10.1016/b978-012492543-4/50023-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
13
|
Montrucchio G, Alloatti G, Camussi G. Role of platelet-activating factor in cardiovascular pathophysiology. Physiol Rev 2000; 80:1669-99. [PMID: 11015622 DOI: 10.1152/physrev.2000.80.4.1669] [Citation(s) in RCA: 267] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Platelet-activating factor (PAF) is a phospholipid mediator that belongs to a family of biologically active, structurally related alkyl phosphoglycerides. PAF acts via a specific receptor that is coupled with a G protein, which activates a phosphatidylinositol-specific phospholipase C. In this review we focus on the aspects that are more relevant for the cell biology of the cardiovascular system. The in vitro studies provided evidence for a role of PAF both as intercellular and intracellular messenger involved in cell-to-cell communication. In the cardiovascular system, PAF may have a role in embryogenesis because it stimulates endothelial cell migration and angiogenesis and may affect cardiac function because it exhibits mechanical and electrophysiological actions on cardiomyocytes. Moreover, PAF may contribute to modulation of blood pressure mainly by affecting the renal vascular circulation. In pathological conditions, PAF has been involved in the hypotension and cardiac dysfunctions occurring in various cardiovascular stress situations such as cardiac anaphylaxis and hemorrhagic, traumatic, and septic shock syndromes. In addition, experimental studies indicate that PAF has a critical role in the development of myocardial ischemia-reperfusion injury. Indeed, PAF cooperates in the recruitment of leukocytes in inflamed tissue by promoting adhesion to the endothelium and extravascular transmigration of leukocytes. The finding that human heart can produce PAF, expresses PAF receptor, and is sensitive to the negative inotropic action of PAF suggests that this mediator may have a role also in human cardiovascular pathophysiology.
Collapse
Affiliation(s)
- G Montrucchio
- Laboratorio di Immunopatologia Renale, Dipartimento di Medicina Interna, Dipartimento di Biologia Animale e dell'Uomo e Istituto Nazionale di Fisica della Materia, Università di Torino, Torino, Italy
| | | | | |
Collapse
|
14
|
Merendino N, Dwinell MB, Varki N, Eckmann L, Kagnoff MF. Human intestinal epithelial cells express receptors for platelet-activating factor. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 277:G810-8. [PMID: 10516147 DOI: 10.1152/ajpgi.1999.277.4.g810] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
The intestinal epithelium produces and responds to cytokines and lipid mediators that play a key role in the induction and regulation of mucosal inflammation. The lipid mediator platelet-activating factor (PAF) can be produced and degraded by the human intestinal epithelium and is known to mediate a range of proinflammatory and other biological effects in the intestinal mucosa. In the studies herein, we assessed whether or not human intestinal epithelial cells express cell surface or intracellular PAF receptors (PAF-R), whether expression of these receptors can be regulated, and whether human intestinal epithelial cells respond to PAF. Several human colon epithelial cell lines (HT-29, Caco-2, T84, HCT-8, HCA-7, I407, and LS-174T) were shown by RT-PCR to constitutively express mRNA for PAF-R. In addition, PAF-R expression was demonstrated by immunoblot analysis and PAF-R was shown to be constitutively expressed on the cell surface of several of these cell lines, as assessed by flow cytometry. PAF-R expression by human colon epithelial cells was upregulated by stimulation with retinoic acid but not by stimulation with PAF, proinflammatory agonists (tumor necrosis factor-alpha, interleukin-1, interferon-gamma), or transforming growth factor-alpha. PAF-R on intestinal epithelial cells were functional, as PAF stimulation of the cells increased tyrosine phosphorylation of several cellular proteins, including proteins of 75 and 125 kDa, and this response was blocked by a PAF-R antagonist. Consistent with the findings using cell lines, PAF-R were also constitutively expressed by normal human colon and small intestinal epithelium in vivo, as shown by immunohistology. The constitutive and regulated expression of functional PAF-R by human intestinal epithelium suggests PAF produced by the intestinal epithelial cells or cells underlying the epithelium has autocrine or paracrine effects on intestinal epithelial cells.
Collapse
Affiliation(s)
- N Merendino
- Department of Medicine, University of California San Diego, La Jolla, California 92093-0623, USA
| | | | | | | | | |
Collapse
|
15
|
Calcerrada MC, Catalán RE, Pérez-Alvarez MJ, Miguel BG, Martínez AM. Platelet-activating factor stimulation of p125(FAK) and p130(Cas) tyrosine phosphorylation in brain. Brain Res 1999; 835:275-81. [PMID: 10415383 DOI: 10.1016/s0006-8993(99)01612-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The effect of platelet-activating factor (PAF) on protein tyrosine phosphorylation was studied in rat brain slices. PAF induced a time- and concentration-dependent increase in tyrosine phosphorylation of a doublet of approximately 125 kDa. These proteins were identified by immunoprecipitation as p125(FAK) and p130(Cas), using monoclonal antibodies. This effect was mediated by PAF receptors, as shown by its inhibition by the action of a PAF antagonist. The tyrosine phosphorylation evoked by PAF was dependent, at least in part, on external calcium. The involvement of protein kinase C was demonstrated by the synergistic effect of TPA on PAF-stimulated tyrosine phosphorylation. The finding that PAF stimulates tyrosine phosphorylation of both focal adhesion protein p125(FAK) and p130(Cas) suggests that PAF might modulate the integrin mediated signal transduction in the brain.
Collapse
Affiliation(s)
- M C Calcerrada
- Departamento de Bioquímica y Biología Molecular I, Facultad de Químicas, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | | | | | | | | |
Collapse
|
16
|
Petr MJ, Origitano TC, Wurster RD. PLA2 activity regulates Ca2+ storage-dependent cellular proliferation. Exp Cell Res 1998; 244:310-8. [PMID: 9770374 DOI: 10.1006/excr.1998.4181] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The objective of this study is to determine the role of arachidonic acid (AA) in cell proliferation by inhibiting AA synthetic enzyme phospholipase A2 (PLA2) and to determine its involvement in the role of the second messenger intracellular calcium (Ca2+). Methods used to determine the effects on proliferation of cell cultures of primary meningioma and astrocytoma U373-MG included treatment with micromolar concentrations of PLA2 inhibitors 4-bromophenacylbromide and quinacrine. Effects of these drugs on proliferation were further investigated by the application of concentrations that inhibit growth by 50% while antagonizing these agents with AA replacement. Free cytosolic Ca2+ was measured with the use of fluorescent dye Fura-2 during PLA2 agonist/antagonist studies. These Ca2+ measurements were performed in the absence of extracellular Ca2+ to identify the contribution of intracellular Ca2+ sources. PLA2 inhibition resulted in decreased growth of cultured astrocytoma and meningioma cells in a dose-dependent manner in the micromolar range. This inhibitory effect was antagonized by the addition of AA. PLA2 inhibition caused an elevation of basal-cytosolic-free [Ca2+] while depleting internal Ca2+ stores. These Ca2+ changes were also antagonized by the addition of AA. In conclusion, these results demonstrate that AA, a PLA2 enzyme product, is involved in regulating the growth rate of these cell types. The PLA2 pathway also regulates the maintenance of the internal Ca2+ stores. Ca2+ is known to be a growth-related intracellular second messenger. These results suggest that the growth regulatory functions of AA are mediated by Ca2+-dependent mechanisms.
Collapse
Affiliation(s)
- M J Petr
- Loyola University Medical Center, Stritch School of Medicine, Maywood, Illinois, 60153, USA
| | | | | |
Collapse
|
17
|
Lin WW, Chen BC. Pharmacological comparison of UTP- and thapsigargin-induced arachidonic acid release in mouse RAW 264.7 macrophages. Br J Pharmacol 1998; 123:1173-81. [PMID: 9559902 PMCID: PMC1565261 DOI: 10.1038/sj.bjp.0701705] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
1. Although stimulation of mouse RAW 264.7 macrophages by UTP elicits a rapid increase in intracellular free Ca2+ ([Ca2+]i), phosphoinositide (PI) turnover, and arachidonic acid (AA) release, the causal relationship between these signalling pathways is still unclear. In the present study, we investigated the involvement of phosphoinositide-dependent phospholipase C (PI-PLC) activation, Ca2+ increase and protein kinase activation in UTP-induced AA release. The effects of stimulating RAW 264.7 cells with thapsigargin, which cannot activate the inositol phosphate (IP) cascade, but results in the release of sequestered Ca2+ and an influx of extracellular Ca2+, was compared with the effects of UTP stimulation to elucidate the multiple regulatory pathways for cPLA2 activation. 2. In RAW 264.7 cells UTP (100 microM) and thapsigargin (1 microM) caused 2 and 1.2 fold increases, respectively, in [3H]-AA release. The release of [3H]-AA following treatment with UTP and thapsigargin were non-additive, totally abolished in the Ca2+-free buffer, BAPTA (30 microM)-containing buffer or in the presence of the cPLA2 inhibitor MAFP (50 microM), and inhibited by pretreatment of cells with pertussis toxin (100 ng ml(-1)) or 4-bromophenacyl bromide (100 microM). By contrast, aristolochic acid (an inhibitor of sPLA2) had no effect on UTP and thapsigargin responses. 3. U73122 (10 microM) and neomycin (3 mM), inhibitors of PI-PLC, inhibited UTP-induced IP formation (88% and 83% inhibition, respectively) and AA release (76% and 58%, respectively), accompanied by a decrease in the [Ca2+]i rise. 4. Wortmannin attenuated the IP response of UTP in a concentration-dependent manner (over the range 10 nM-3 microM), and reduced the UTP-induced AA release in parallel. RHC 80267 (30 microM), a specific diacylglycerol lipase inhibitor, had no effect on UTP-induced AA release. 5. Short-term treatment with PMA (1 microM) inhibited the UTP-stimulated accumulation of IP and increase in [Ca2+]i, but had no effect on the release of AA. In contrast, the AA release caused by thapsigargin was increased by PMA. 6. The role of PKC in UTP- and thapsigargin-mediated AA release was shown by the blockade of these effects by staurosporine (1 microM), Ro 31-8220 (10 microM), Go 6976 (1 microM) and the down-regulation of PKC. 7. Following treatment of cells with SK&F 96365 (30 microM), thapsigargin-, but not UTP-, induced Ca2+ influx, and the accompanying AA release, were down-regulated. 8. Neither PD 98059 (100 microM), MEK a inhibitor, nor genistein (100 microM), a tyrosine kinase inhibitor, had any effect on the AA responses induced by UTP and thapsigargin. 9. We conclude that UTP-induced cPLA2 activity depends on the activation of PI-PLC and the sustained elevation of intracellular Ca2+, which is essential for the activation of cPLA2 by UTP and thapsigargin. The [Ca2+]i-dependent AA release that follows treatment with both stimuli was potentiated by the activity of protein kinase C (PKC). A pertussis toxin-sensitive pathway downstream of the increase in [Ca2+]i was also shown to be involved in AA release.
Collapse
Affiliation(s)
- W W Lin
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei
| | | |
Collapse
|
18
|
McCarter MD, Naama HA, Shou J, Kwi LX, Evoy DA, Calvano SE, Daly JM. Altered macrophage intracellular signaling induced by protein-calorie malnutrition. Cell Immunol 1998; 183:131-6. [PMID: 9606997 DOI: 10.1006/cimm.1998.1241] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Protein-calorie malnutrition (PCM) contributes to increased morbidity and mortality through impairment of host defense mechanisms and reduced macrophage function. The present study examined alterations in macrophage intracellular signaling associated with the impairment in host defense capabilities. Mice were randomized to either control (regular diet) or protein-free diets (PCM) and pair-fed for 1 week. Following endotoxin stimulation, peritoneal macrophages from PCM mice produce significantly less TNF-alpha and IL-6 product and had significantly less cell-associated IL-6 when compared to macrophages from control mice. Similarly, macrophages from PCM mice had a significant reduction in mRNA levels for both TNF-alpha and IL-6. Other macrophage intracellular signaling mechanisms, such as calcium flux and tyrosine kinase phosphorylation were also altered by PCM. The etiology of PCM-induced defects in macrophage function and intracellular signaling remain unknown but may be related to the neuroendocrine response to PCM.
Collapse
Affiliation(s)
- M D McCarter
- Department of Surgery, New York Hospital-Cornell University Medical College, New York 10021, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Bennett SAL, Birnboim HC. Receptor-mediated and protein kinase-dependent growth enhancement of primary human fibroblasts by platelet activating factor. Mol Carcinog 1997. [DOI: 10.1002/(sici)1098-2744(199712)20:4<366::aid-mc6>3.0.co;2-h] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
20
|
Imaizumi TA, Yamada Y, Zimmerman GA, McIntyre TM, Stafforini DM, Prescott SM. The fate of platelet-activating factor. ADVANCES IN LIPOBIOLOGY 1996. [DOI: 10.1016/s1874-5245(96)80007-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
21
|
Izumi T, Shimizu T. Platelet-activating factor receptor: gene expression and signal transduction. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1259:317-33. [PMID: 8541341 DOI: 10.1016/0005-2760(95)00171-9] [Citation(s) in RCA: 185] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- T Izumi
- Department of Biochemistry, Faculty of Medicine, University of Tokyo, Japan
| | | |
Collapse
|
22
|
Di Marzo V. Arachidonic acid and eicosanoids as targets and effectors in second messenger interactions. Prostaglandins Leukot Essent Fatty Acids 1995; 53:239-54. [PMID: 8577777 DOI: 10.1016/0952-3278(95)90123-x] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- V Di Marzo
- Istituto per la Chimica di Molecole di Interesse Biologico, C.N.R., Naples, Italy
| |
Collapse
|
23
|
Izumi T, Takano T, Bito H, Nakamura M, Mutoh H, Honda Z, Shinizu T. Platelet-activating factor receptor. JOURNAL OF LIPID MEDIATORS AND CELL SIGNALLING 1995; 12:429-42. [PMID: 8777584 DOI: 10.1016/0929-7855(95)00028-o] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- T Izumi
- Department of Biochemistry, Faculty of Medicine, University of Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
24
|
Akarasereenont P, Mitchell JA, Appleton I, Thiemermann C, Vane JR. Involvement of tyrosine kinase in the induction of cyclo-oxygenase and nitric oxide synthase by endotoxin in cultured cells. Br J Pharmacol 1994; 113:1522-8. [PMID: 7534189 PMCID: PMC1510522 DOI: 10.1111/j.1476-5381.1994.tb17169.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
1. Cyclo-oxygenase (COX) and nitric oxide synthase (NOS) are two enzymes which have distinct cytokine-inducible isoforms (COX-2 and iNOS). Many cytokine receptors have an intracellular tyrosine kinase domain. Here we have used the tyrosine kinase inhibitors, erbstatin and genistein, to investigate the potential role of tyrosine kinase activation in the induction on COX-2 and iNOS caused by endotoxin (lipopolysaccharide; LPS) in bovine aortic endothelial cells (BAEC) and J774.2 macrophages. 2. The main COX metabolites, 6-oxo-prostaglandin F1 alpha (6-oxo-PGF1 alpha) (for BAEC) and PGF2 alpha (for 774.2 macrophages) were measured by radioimmunossay: (i) accumulation of COX metabolites from endogenous arachidonic acid was measured at 24 h after addition of LPS (1 microgram ml-1); (ii) in experiments designed to measure 'COX activity', COX metabolites generated by BAEC or J774.2 macrophages activated with LPS were assayed (at 12 h after LPS administration) after incubation of the washed cells with exogenous arachidonic acid (30 microM for 15 min). Western blot analysis with a specific antibody to COX-2 was used to determine the expression of COX-2 protein caused by LPS in cell extracts. Accumulation of nitrite (measured by the Griess reaction) was used as an indicator of NO formation and, hence, iNOS activity. 3. Erbstatin (0.05 to 5 micrograms ml-1) or genistein (0.5 to 50 micrograms ml-1) caused a dose-dependent inhibition of the accumulation of COX metabolites in the supernatant of BAEC or J774.2 macrophages activated with LPS. Erbstatin or genistein also caused a dose-dependent inhibition of 'COX activity' in both cell types. Western blot analysis showed that erbstatin (5 ig ml1') or genistein (50gg ml-') inhibited the expression of COX-2 protein in BAEC and J774.2 macrophages activated with LPS (lLgml-' for 24 h).4. Erbstatin or genistein also caused a dose-dependent inhibition of nitrite accumulation in J774.2 macrophages activated with LPS (1 sg ml-' for 24 h). In contrast to J774.2 macrophages, BAECstimulated with LPS (1 pg ml-' for 24 h) did not produce detectable amounts (<1PiM) of nitrite.5. These results suggest that tyrosine phosphorylation is part of the signal transduction mechanism that mediates (i) the induction of COX-2 and iNOS elicited by LPS in J774.2 macrophages, and (ii) the induction of COX-2 by LPS in BAEC.
Collapse
Affiliation(s)
- P Akarasereenont
- William Harvey Research Institute, St. Bartholomew's Hospital Medical College, London
| | | | | | | | | |
Collapse
|
25
|
Gravel MR, Zheng ZG, Sims SM, Dixon SJ. Platelet-activating factor induces pseudopod formation in calcitonin-treated rabbit osteoclasts. J Bone Miner Res 1994; 9:1769-76. [PMID: 7863828 DOI: 10.1002/jbmr.5650091114] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We demonstrated previously that platelet-activating factor (PAF), a potent inflammatory mediator, acts on osteoclasts to elevate cytosolic [Ca2+] and stimulate resorption. However, it is not clear whether the effects of PAF on resorptive activity are direct or indirect. In the present study, we investigated the effects of PAF on osteoclast motility. Osteoclasts were isolated from the long bones of neonatal rabbits, and cell motility and morphology were monitored using time-lapse video microscopy. Calcitonin, a hormone known to induce retraction of pseudopods and inhibit resorptive activity, was used to render osteoclasts quiescent. Within 10 minutes of calcitonin treatment (100 ng/ml, final), pronounced retraction of pseudopods was observed in 68 of 112 cells tested. When PAF (200 nM, final) was added 10 minutes after calcitonin treatment, pseudopods were evident 1 h later in 15 of 37 calcitonin-responsive cells tested. In contrast, pseudopods were evident in only 4 of 31 calcitonin-responsive cells treated with control solutions (PAF-vehicle or S-PAF, the biologically inactive stereoisomer of PAF). Pseudopod formation was quantified by measuring the planar area of pseudopods with a computer-based video analysis system. When assessed 60 minutes following PAF treatment, the pseudopod area was significantly greater in PAF-treated cells than in control cells. In some calcitonin-treated osteoclasts, PAF induced pseudopod formation when applied focally using an extracellular micropipette, consistent with a direct action of PAF. We conclude that PAF directly induces pseudopod formation in calcitonin-inhibited osteoclasts, a morphologic response indicative of osteoclast activation.
Collapse
Affiliation(s)
- M R Gravel
- Department of Physiology, Faculty of Dentistry, University of Western Ontario, London, Canada
| | | | | | | |
Collapse
|
26
|
Fernández B, Balboa MA, Solís-Herruzo JA, Balsinde J. Phosphatidate-induced arachidonic acid mobilization in mouse peritoneal macrophages. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)47077-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
27
|
Abstract
PC hydrolysis by PLA2, PLC or PLD is a widespread response elicited by most growth factors, cytokines, neurotransmitters, hormones and other extracellular signals. The mechanisms can involve G-proteins, PKC, Ca2+ and tyrosine kinase activities. Although an agonist-responsive cytosolic PLA2 has been purified, cloned and sequenced, the agonist-responsive form(s) of PC-PLC has not been identified and no form of PC-PLD has been purified or cloned. Regulation of PLA2 by Ca2+ and MAPK is well established and involves membrane translocation and phosphorylation, respectively. PKC regulation of the enzyme in intact cells is probably mediated by MAPK. The question of G-protein control of PLA2 remains controversial since the nature of the G-protein is unknown and it is not established that its interaction with the enzyme is direct or not. Growth factor regulation of PLA2 involves tyrosine kinase activity, but not necessarily PKC. It may be mediated by MAPK. The physiological significance of PLA2 activation is undoubtedly related to the release of AA for eicosanoid production, but the LPC formed may have actions also. There is much evidence that PKC regulates PC-PLC and PC-PLD and this is probably a major mechanism by which agonists that promote PI hydrolysis secondarily activate PC hydrolysis. Since no agonist-responsive forms of either phospholipase have been isolated, it is not clear that PKC exerts its effects directly on the enzymes. Although it is assumed that a phosphorylation mechanism is involved, this may not be the case, and regulation may be by protein-protein interactions. G-protein control of PC-PLD is well-established, although, again, it has not been demonstrated that this is direct, and the nature of the G-protein(s) involved is unknown. In some cell types, there is evidence of the participation of a soluble protein, which may be a low Mr GTP-binding protein. What role this plays in the activation of PC-PLD is obscure. Agonist activation of PC hydrolysis in cells is usually Ca(2+)-dependent, but the step at which Ca2+ is involved is unclear, since PC-PLD and PC-PLC per se are not influenced by physiological concentrations of the ion. Most growth factors promote PC hydrolysis and this is mainly due to activation of PKC as a result of PI breakdown. However, in some cases, PC breakdown occurs in the absence of PI hydrolysis, implying another mechanism that does not involve PI-derived DAG.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- J H Exton
- Howard Hughes Medical Institute, Nashville, TN
| |
Collapse
|
28
|
Bito H, Honda Z, Nakamura M, Shimizu T. Cloning, expression and tissue distribution of rat platelet-activating-factor-receptor cDNA. EUROPEAN JOURNAL OF BIOCHEMISTRY 1994; 221:211-8. [PMID: 8168510 DOI: 10.1111/j.1432-1033.1994.tb18731.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The biological functions of platelet-activating factor (PAF) have been extensively studied in the rat. However, the precise structure and distribution of rat PAF receptor has not been reported. To address this question, we isolated a rat PAF-receptor cDNA from a size-fractionated rat spleen cDNA library. The deduced amino acid sequence of the rat PAF receptor showed 80% and 79% identity with guinea pig and human PAF receptors, respectively. Pharmacological properties (ED50, inhibition by WEB2086) of rat PAF receptors expressed in Xenopus oocytes were similar to those for PAF receptors expressed from guinea pig or human cDNAs. Northern blot analysis showed a widespread distribution of PAF-receptor mRNA in almost all organs including spleen, small intestine, kidney, lung, liver and brain. Considerable difference in the PAF-receptor distribution detected among species suggests the existence of a species-specific and tissue-specific regulatory mechanism for PAF-receptor-mRNA expression. Isolation of rat PAF-receptor cDNA should facilitate further analysis of PAF-receptor function and pharmacology in diverse pathophysiological processes.
Collapse
Affiliation(s)
- H Bito
- Department of Biochemistry, Faculty of Medicine, University of Tokyo, Japan
| | | | | | | |
Collapse
|
29
|
Platelet-Activating Factor Antagonists: Scientific Background and Possible Clinical Applications. ADVANCES IN PHARMACOLOGY 1994. [DOI: 10.1016/s1054-3589(08)60494-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
30
|
Di Berardino W, Bourget I, Schmid-Antomarchi H, Cousin JL. Platelet-activating factor activates a Ca(2+)-dependent K+ channel which is not involved in c-fos expression in human B lymphoblastoid cells. Cell Signal 1993; 5:623-31. [PMID: 7508733 DOI: 10.1016/0898-6568(93)90057-s] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
In this report, it is shown that the platelet-activating factor (PAF) induced, in human B lymphoblastoid cells, 86Rb+ influx and efflux suggesting that it activated a K+ channel. Opening of this channel was dependent on PAF-induced Ca2+ mobilization. Ionomycin and thapsigargin--a specific inhibitor of (Ca(2+)-Mg2+)-ATPase--mimicked the effect of PAF both on intracellular calcium and activation of the channel. This channel was inhibited by charybdotoxin, high doses of tetraethylammonium and barium but was insensitive to apamin, 4-aminopyridine. These features indicate that PAF activated a Ca(2+)-dependent K+ channel. In these cells, PAF also induced the expression of c-fos oncogene. This effect was not affected by charybdotoxin indicating that this channel is not involved in the control of early gene transcription.
Collapse
Affiliation(s)
- W Di Berardino
- Laboratoire d'Immunologie Cellulaire et Moléculaire INSERM U364, Faculté de Médecine (Pasteur), Nice, France
| | | | | | | |
Collapse
|
31
|
McAllister BS, Leeb-Lundberg F, Olson MS. Bradykinin inhibition of EGF- and PDGF-induced DNA synthesis in human fibroblasts. THE AMERICAN JOURNAL OF PHYSIOLOGY 1993; 265:C477-84. [PMID: 8396328 DOI: 10.1152/ajpcell.1993.265.2.c477] [Citation(s) in RCA: 133] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Bradykinin exhibits proliferative influences in several types of cells; however, in the present study, bradykinin did not promote DNA synthesis but actually inhibited the DNA synthesis induced by epidermal growth factor (EGF) and platelet-derived growth factor (PDGF) in human gingival fibroblasts (HGF). This dose-dependent inhibitory effect was a specific intracellular interaction in that increasing concentrations of EGF did not counteract the inhibitory actions of bradykinin when added at 100 nM. The phosphoinositide-calcium signaling cascade is a likely point of interaction for the inhibitory influences of bradykinin; however, no interactions between bradykinin and EGF were observed with the generation of inositol phosphates or intracellular calcium fluxes. The inhibitory influences of bradykinin do not appear to be the result of a transmodulation of the EGF receptor, since EGF-mediated autophosphorylation was not negatively affected by bradykinin. Bradykinin-stimulated prostaglandin E2 (PGE2) release was potentiated by EGF, and, in the presence of indomethacin, the inhibition of the EGF-induced DNA synthesis by bradykinin was minimized. The results presented demonstrate that bradykinin can inhibit EGF- and PDGF-induced DNA synthesis and suggest that PGE2 synthesis is responsible for the observed bradykinin inhibition of EGF-induced DNA synthesis.
Collapse
Affiliation(s)
- B S McAllister
- Department of Biochemistry, University of Texas Health Science Center, San Antonio 78284
| | | | | |
Collapse
|
32
|
Svetlov S, Nigam S. Calphostin C, a specific protein kinase C inhibitor, activates human neutrophils: effect on phospholipase A2 and aggregation. BIOCHIMICA ET BIOPHYSICA ACTA 1993; 1177:75-8. [PMID: 7683494 DOI: 10.1016/0167-4889(93)90160-q] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In this paper we have shown that calphostin C can alone activate phospholipase A2 and induce homotypic aggregation of human neutrophils. Calphostin C stimulated the formation of [3H] platelet-activating factor (PAF) and [14C]arachidonic acid (AA) in prelabeled cells in a time-and concentration-dependent fashion. No significant elevation of intracellular [Ca2+] over the basal level was observed, suggesting a mechanism independent of [Cai2+]. In addition, neutrophil aggregation induced by 500 nM calphostin C was slightly inhibited by PAF antagonist BN 50739 but not by WEB 2086, a less potent PAF antagonist. Also, mepacrine, a phospholipase A2 inhibitor and nordihydroguaretic acid (NDGA), a lipoxygenase inhibitor, were unable to inhibit calphostin C-induced neutrophil aggregation. This suggests a dissociation between PLA2 activation and aggregation by calphostin C in human neutrophils.
Collapse
Affiliation(s)
- S Svetlov
- Department of Gynecology, Universitatsklinikum Steglitz, Free University Berlin, Germany
| | | |
Collapse
|
33
|
|
34
|
Glaser KB, Sung A, Bauer J, Weichman BM. Regulation of eicosanoid biosynthesis in the macrophage. Involvement of protein tyrosine phosphorylation and modulation by selective protein tyrosine kinase inhibitors. Biochem Pharmacol 1993; 45:711-21. [PMID: 8442770 DOI: 10.1016/0006-2952(93)90147-o] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The protein tyrosine kinase (PTK) inhibitor genistein has been demonstrated to inhibit platelet-activating factor-stimulated prostaglandin E2 (PGE2) production in lipopolysaccharide (LPS)-primed P388D1 macrophage-like cells (Glaser et al., J Biol Chem 265: 8658-8664, 1990). Therefore, the role of PTK in eicosanoid biosynthesis was investigated in murine resident peritoneal macrophages using genistein and tyrphostin-25, selective PTK inhibitors. Genistein, a competitive inhibitor of ATP binding on PTK, inhibited PGE2 production (IC50 = 20 microM) in response to zymosan, calcium ionophore A23187, and phorbol myristate acetate stimulation. Genistein also inhibited leukotriene C4 (LTC4) production in response to zymosan and calcium ionophore A23187 (IC50 = 10 and 15 microM, respectively) stimulation. Tyrphostin-25, a competitive inhibitor of substrate binding on PTK, inhibited zymosan-stimulated PGE2 and LTC4 production, IC50 = 20 and 7 microM, respectively. Neither genistein nor tyrophostin-25 had any effect on human synovial fluid phospholipase A2 (PLA2) activity in vitro or on cyclooxygenase activity in the intact macrophage; however, tyrphostin-25 did affect 5-lipoxygenase activity (determined from the metabolism of exogenously applied arachidonic acid). These results suggest PTK-mediated phosphorylation as a common event in the signal transduction mechanisms of different stimuli which activate PLA2 for arachidonic acid release and subsequent eicosanoid biosynthesis. Immunoblot analyses of zymosan-stimulated peritoneal exudate cells with the phosphotyrosine monoclonal antibody clone 4G10 demonstrated an increase in protein phosphotyrosine levels in eight major protein bands on sodium dodecyl sulfate-polyacrylamide gel electrophoresis: p59, 71, 76, 90, 100, 112, 125 and 150. Maximal phosphorylation of these protein substrates occurred after 1-2 min stimulation. Zymosan and LPS stimulation of peritoneal exudate cells produced similar patterns of protein tyrosine phosphorylation. Zymosan-stimulated tyrosine phosphorylation was inhibited by tyrphostin-25 in a concentration-dependent manner between 10 and 60 microM, demonstrating a similar concentration response between effects on tyrosine phosphorylation and eicosanoid biosynthesis in the murine peritoneal macrophage. The use of selective PTK inhibitors suggests a common role for PTK and tyrosine phosphorylation in eicosanoid biosynthesis in the murine peritoneal macrophage.
Collapse
Affiliation(s)
- K B Glaser
- Division of Immunopharmacology, Wyeth-Ayerst Research, Princeton, NJ 08543-8000
| | | | | | | |
Collapse
|