1
|
McHenry CS. Life at the replication fork: A scientific and personal journey. J Biol Chem 2024; 300:105658. [PMID: 38219819 PMCID: PMC10850973 DOI: 10.1016/j.jbc.2024.105658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2024] [Indexed: 01/16/2024] Open
Affiliation(s)
- Charles S McHenry
- Department of Biochemistry, University of Colorado, Boulder, Colorado, USA.
| |
Collapse
|
2
|
Tashjian TF, Chien P. Clamp Loader Processing Is Important during DNA Replication Stress. J Bacteriol 2023; 205:e0043722. [PMID: 36728506 PMCID: PMC9945568 DOI: 10.1128/jb.00437-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/12/2023] [Indexed: 02/03/2023] Open
Abstract
The DNA clamp loader is critical to the processivity of the DNA polymerase and coordinating synthesis on the leading and lagging strands. In bacteria, the major subunit of the clamp loader, DnaX, has two forms: the essential full-length τ form and shorter γ form. These are conserved across bacterial species, and three distinct mechanisms have been found to create them: ribosomal frameshift, transcriptional slippage, and, in Caulobacter crescentus, partial proteolysis. This conservation suggests that DnaX processing is evolutionarily important, but its role remains unknown. Here we find a bias against switching from expression of a wild-type dnaX to a nonprocessable τ-only allele in Caulobacter. Despite this bias, cells are able to adapt to the τ-only allele with little effect on growth or morphology and only minor defects during DNA damage. Motivated by transposon sequencing, we find that loss of the gene sidA in the τ-only strain slows growth and increases filamentation. Even in the absence of exogenous DNA damage treatment, the ΔsidA τ-only double mutant shows induction of and dependence on recA, likely due to a defect in resolution of DNA damage or replication fork stalling. We find that some of the phenotypes of the ΔsidA τ-only mutant can be complemented by expression of γ but that an overabundance of τ-only dnaX is also detrimental. The data presented here suggest that DnaX processing is important during resolution of DNA damage events during DNA replication stress. Although the presence of DnaX τ and γ forms is conserved across bacteria, different species have developed different mechanisms to make these forms. This conservation and independent evolution of mechanisms suggest that having two forms of DnaX is important. Despite having been discovered more than 30 years ago, the purpose of expressing both τ and γ is still unclear. Here, we present evidence that expressing two forms of DnaX and controlling the abundance and/or ratio of the forms are important during the resolution of DNA replication stress. IMPORTANCE Though the presence of DnaX τ and γ forms is conserved across bacteria, different species have developed different mechanisms to make these forms. This conservation and independent evolution of mechanisms suggest that having two forms of DnaX is important. Despite having been discovered more than 30 years ago, the purpose of expressing both τ and γ is still unclear. Here, we present evidence that expressing two forms of DnaX and controlling the abundance and/or ratio of the forms is important during the resolution of DNA replication stress.
Collapse
Affiliation(s)
- Tommy F. Tashjian
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Peter Chien
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| |
Collapse
|
3
|
Single-molecule studies of helicases and translocases in prokaryotic genome-maintenance pathways. DNA Repair (Amst) 2021; 108:103229. [PMID: 34601381 DOI: 10.1016/j.dnarep.2021.103229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 09/13/2021] [Accepted: 09/16/2021] [Indexed: 11/22/2022]
Abstract
Helicases involved in genomic maintenance are a class of nucleic-acid dependent ATPases that convert the energy of ATP hydrolysis into physical work to execute irreversible steps in DNA replication, repair, and recombination. Prokaryotic helicases provide simple models to understand broadly conserved molecular mechanisms involved in manipulating nucleic acids during genome maintenance. Our understanding of the catalytic properties, mechanisms of regulation, and roles of prokaryotic helicases in DNA metabolism has been assembled through a combination of genetic, biochemical, and structural methods, further refined by single-molecule approaches. Together, these investigations have constructed a framework for understanding the mechanisms that maintain genomic integrity in cells. This review discusses recent single-molecule insights into molecular mechanisms of prokaryotic helicases and translocases.
Collapse
|
4
|
Hernandez AJ, Lee SJ, Chang S, Lee JA, Loparo JJ, Richardson CC. Catalytically inactive T7 DNA polymerase imposes a lethal replication roadblock. J Biol Chem 2020; 295:9542-9550. [PMID: 32430399 DOI: 10.1074/jbc.ra120.013738] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/18/2020] [Indexed: 11/06/2022] Open
Abstract
Bacteriophage T7 encodes its own DNA polymerase, the product of gene 5 (gp5). In isolation, gp5 is a DNA polymerase of low processivity. However, gp5 becomes highly processive upon formation of a complex with Escherichia coli thioredoxin, the product of the trxA gene. Expression of a gp5 variant in which aspartate residues in the metal-binding site of the polymerase domain were replaced by alanine is highly toxic to E. coli cells. This toxicity depends on the presence of a functional E. coli trxA allele and T7 RNA polymerase-driven expression but is independent of the exonuclease activity of gp5. In vitro, the purified gp5 variant is devoid of any detectable polymerase activity and inhibited DNA synthesis by the replisomes of E. coli and T7 in the presence of thioredoxin by forming a stable complex with DNA that prevents replication. On the other hand, the highly homologous Klenow fragment of DNA polymerase I containing an engineered gp5 thioredoxin-binding domain did not exhibit toxicity. We conclude that gp5 alleles encoding inactive polymerases, in combination with thioredoxin, could be useful as a shutoff mechanism in the design of a bacterial cell-growth system.
Collapse
Affiliation(s)
- Alfredo J Hernandez
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - Seung-Joo Lee
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - Seungwoo Chang
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - Jaehun A Lee
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - Joseph J Loparo
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - Charles C Richardson
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
5
|
Lewis JS, Spenkelink LM, Jergic S, Wood EA, Monachino E, Horan NP, Duderstadt KE, Cox MM, Robinson A, Dixon NE, van Oijen AM. Single-molecule visualization of fast polymerase turnover in the bacterial replisome. eLife 2017; 6. [PMID: 28432790 PMCID: PMC5419744 DOI: 10.7554/elife.23932] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 04/20/2017] [Indexed: 11/13/2022] Open
Abstract
The Escherichia coli DNA replication machinery has been used as a road map to uncover design rules that enable DNA duplication with high efficiency and fidelity. Although the enzymatic activities of the replicative DNA Pol III are well understood, its dynamics within the replisome are not. Here, we test the accepted view that the Pol III holoenzyme remains stably associated within the replisome. We use in vitro single-molecule assays with fluorescently labeled polymerases to demonstrate that the Pol III* complex (holoenzyme lacking the β2 sliding clamp), is rapidly exchanged during processive DNA replication. Nevertheless, the replisome is highly resistant to dilution in the absence of Pol III* in solution. We further show similar exchange in live cells containing labeled clamp loader and polymerase. These observations suggest a concentration-dependent exchange mechanism providing a balance between stability and plasticity, facilitating replacement of replisomal components dependent on their availability in the environment. DOI:http://dx.doi.org/10.7554/eLife.23932.001
Collapse
Affiliation(s)
- Jacob S Lewis
- Centre for Medical and Molecular Bioscience, University of Wollongong, Wollongong, Australia.,Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, Australia
| | - Lisanne M Spenkelink
- Centre for Medical and Molecular Bioscience, University of Wollongong, Wollongong, Australia.,Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, Australia.,Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands
| | - Slobodan Jergic
- Centre for Medical and Molecular Bioscience, University of Wollongong, Wollongong, Australia.,Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, Australia
| | - Elizabeth A Wood
- Department of Biochemistry, University of Wisconsin-Madison, Madison, United States
| | - Enrico Monachino
- Centre for Medical and Molecular Bioscience, University of Wollongong, Wollongong, Australia.,Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, Australia.,Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands
| | - Nicholas P Horan
- Centre for Medical and Molecular Bioscience, University of Wollongong, Wollongong, Australia.,Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, Australia
| | - Karl E Duderstadt
- Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands.,Max Planck Institute of Biochemistry, Martinsried, Germany.,Physik Department, Technishche Universität München, Garching, Germany
| | - Michael M Cox
- Department of Biochemistry, University of Wisconsin-Madison, Madison, United States
| | - Andrew Robinson
- Centre for Medical and Molecular Bioscience, University of Wollongong, Wollongong, Australia.,Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, Australia
| | - Nicholas E Dixon
- Centre for Medical and Molecular Bioscience, University of Wollongong, Wollongong, Australia.,Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, Australia
| | - Antoine M van Oijen
- Centre for Medical and Molecular Bioscience, University of Wollongong, Wollongong, Australia.,Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, Australia
| |
Collapse
|
6
|
Abstract
DNA replication in Escherichia coli initiates at oriC, the origin of replication and proceeds bidirectionally, resulting in two replication forks that travel in opposite directions from the origin. Here, we focus on events at the replication fork. The replication machinery (or replisome), first assembled on both forks at oriC, contains the DnaB helicase for strand separation, and the DNA polymerase III holoenzyme (Pol III HE) for DNA synthesis. DnaB interacts transiently with the DnaG primase for RNA priming on both strands. The Pol III HE is made up of three subassemblies: (i) the αɛθ core polymerase complex that is present in two (or three) copies to simultaneously copy both DNA strands, (ii) the β2 sliding clamp that interacts with the core polymerase to ensure its processivity, and (iii) the seven-subunit clamp loader complex that loads β2 onto primer-template junctions and interacts with the α polymerase subunit of the core and the DnaB helicase to organize the two (or three) core polymerases. Here, we review the structures of the enzymatic components of replisomes, and the protein-protein and protein-DNA interactions that ensure they remain intact while undergoing substantial dynamic changes as they function to copy both the leading and lagging strands simultaneously during coordinated replication.
Collapse
Affiliation(s)
- J S Lewis
- Centre for Medical & Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| | - S Jergic
- Centre for Medical & Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| | - N E Dixon
- Centre for Medical & Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia.
| |
Collapse
|
7
|
Tondnevis F, Weiss TM, Matsui T, Bloom LB, McKenna R. Solution structure of an "open" E. coli Pol III clamp loader sliding clamp complex. J Struct Biol 2016; 194:272-81. [PMID: 26968362 DOI: 10.1016/j.jsb.2016.03.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Revised: 03/03/2016] [Accepted: 03/05/2016] [Indexed: 01/06/2023]
Abstract
Sliding clamps are opened and loaded onto primer template junctions by clamp loaders, and once loaded on DNA, confer processivity to replicative polymerases. Previously determined crystal structures of eukaryotic and T4 clamp loader-clamp complexes have captured the sliding clamps in either closed or only partially open interface conformations. In these solution structure studies, we have captured for the first time the clamp loader-sliding clamp complex from Escherichia coli using size exclusion chromatography coupled to small angle X-ray scattering (SEC-SAXS). The data suggests the sliding clamp is in an open conformation which is wide enough to permit duplex DNA binding. The data also provides information about spatial arrangement of the sliding clamp with respect to the clamp loader subunits and is compared to complex crystal structures determined from other organisms.
Collapse
Affiliation(s)
- Farzaneh Tondnevis
- Biochemistry and Molecular Biology, University of Florida, PO Box 100245, Gainesville, FL 32610, United States
| | - Thomas M Weiss
- Stanford Synchrotron Radiation Lightsource, 2575 Sand Hill Road, MS69, Menlo Park, CA 94025, United States
| | - Tsutomu Matsui
- Stanford Synchrotron Radiation Lightsource, 2575 Sand Hill Road, MS69, Menlo Park, CA 94025, United States
| | - Linda B Bloom
- Biochemistry and Molecular Biology, University of Florida, PO Box 100245, Gainesville, FL 32610, United States
| | - Robert McKenna
- Biochemistry and Molecular Biology, University of Florida, PO Box 100245, Gainesville, FL 32610, United States.
| |
Collapse
|
8
|
|
9
|
Abstract
This review describes the components of the Escherichia coli replisome and the dynamic process in which they function and interact under normal conditions. It also briefly describes the behavior of the replisome during situations in which normal replication fork movement is disturbed, such as when the replication fork collides with sites of DNA damage. E. coli DNA Pol III was isolated first from a polA mutant E. coli strain that lacked the relatively abundant DNA Pol I activity. Further biochemical studies, and the use of double mutant strains, revealed Pol III to be the replicative DNA polymerase essential to cell viability. In a replisome, DnaG primase must interact with DnaB for activity, and this constraint ensures that new RNA primers localize to the replication fork. The leading strand polymerase continually synthesizes DNA in the direction of the replication fork, whereas the lagging-strand polymerase synthesizes short, discontinuous Okazaki fragments in the opposite direction. Discontinuous lagging-strand synthesis requires that the polymerase rapidly dissociate from each new completed Okazaki fragment in order to begin the extension of a new RNA primer. Lesion bypass can be thought of as a two-step reaction that starts with the incorporation of a nucleotide opposite the lesion, followed by the extension of the resulting distorted primer terminus. A remarkable property of E. coli, and many other eubacterial organisms, is the speed at which it propagates. Rapid cell division requires the presence of an extremely efficient replication machinery for the rapid and faithful duplication of the genome.
Collapse
|
10
|
Chen D, Yue H, Spiering MM, Benkovic SJ. Insights into Okazaki fragment synthesis by the T4 replisome: the fate of lagging-strand holoenzyme components and their influence on Okazaki fragment size. J Biol Chem 2013; 288:20807-20816. [PMID: 23729670 DOI: 10.1074/jbc.m113.485961] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In this study, we employed a circular replication substrate with a low priming site frequency (1 site/1.1 kb) to quantitatively examine the size distribution and formation pattern of Okazaki fragments. Replication reactions by the T4 replisome on this substrate yielded a patterned series of Okazaki fragments whose size distribution shifted through collision and signaling mechanisms as the gp44/62 clamp loader levels changed but was insensitive to changes in the gp43 polymerase concentration, as expected for a processive, recycled lagging-strand polymerase. In addition, we showed that only one gp45 clamp is continuously associated with the replisome and that no additional clamps accumulate on the DNA, providing further evidence that the clamp departs, whereas the polymerase is recycled upon completion of an Okazaki fragment synthesis cycle. We found no support for the participation of a third polymerase in Okazaki fragment synthesis.
Collapse
Affiliation(s)
- Danqi Chen
- From 414, Wartik Laboratories, Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Hongjun Yue
- From 414, Wartik Laboratories, Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Michelle M Spiering
- From 414, Wartik Laboratories, Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Stephen J Benkovic
- From 414, Wartik Laboratories, Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802.
| |
Collapse
|
11
|
Abstract
Bacterial replicases are complex, tripartite replicative machines. They contain a polymerase, polymerase III (Pol III), a β₂ processivity factor, and a DnaX complex ATPase that loads β₂ onto DNA and chaperones Pol III onto the newly loaded β₂. Bacterial replicases are highly processive, yet cycle rapidly during Okazaki fragment synthesis in a regulated way. Many bacteria encode both a full-length τ and a shorter γ form of DnaX by a variety of mechanisms. γ appears to be uniquely placed in a single position relative to two τ protomers in a pentameric ring. The polymerase catalytic subunit of Pol III, α, contains a PHP domain that not only binds to a prototypical ε Mg²⁺-dependent exonuclease, but also contains a second Zn²⁺-dependent proofreading exonuclease, at least in some bacteria. This review focuses on a critical evaluation of recent literature and concepts pertaining to the above issues and suggests specific areas that require further investigation.
Collapse
Affiliation(s)
- Charles S McHenry
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309, USA.
| |
Collapse
|
12
|
Bichara M, Meier M, Wagner J, Cordonnier A, Lambert IB. Postreplication repair mechanisms in the presence of DNA adducts in Escherichia coli. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2011; 727:104-22. [DOI: 10.1016/j.mrrev.2011.04.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Revised: 04/25/2011] [Accepted: 04/26/2011] [Indexed: 02/02/2023]
|
13
|
Bloom LB. Loading clamps for DNA replication and repair. DNA Repair (Amst) 2009; 8:570-8. [PMID: 19213612 DOI: 10.1016/j.dnarep.2008.12.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Accepted: 12/19/2008] [Indexed: 01/25/2023]
Abstract
Sliding clamps and clamp loaders were initially identified as DNA polymerase processivity factors. Sliding clamps are ring-shaped protein complexes that encircle and slide along duplex DNA, and clamp loaders are enzymes that load these clamps onto DNA. When bound to a sliding clamp, DNA polymerases remain tightly associated with the template being copied, but are able to translocate along DNA at rates limited by rates of nucleotide incorporation. Many different enzymes required for DNA replication and repair use sliding clamps. Clamps not only increase the processivity of these enzymes, but may also serve as an attachment point to coordinate the activities of enzymes required for a given process. Clamp loaders are members of the AAA+ family of ATPases and use energy from ATP binding and hydrolysis to catalyze the mechanical reaction of loading clamps onto DNA. Many structural and functional features of clamps and clamp loaders are conserved across all domains of life. Here, the mechanism of clamp loading is reviewed by comparing features of prokaryotic and eukaryotic clamps and clamp loaders.
Collapse
Affiliation(s)
- Linda B Bloom
- Department of Biochemistry & Molecular Biology, University of Florida, Gainesville, FL 32610-0245, United States.
| |
Collapse
|
14
|
Bichara M, Fuchs RPP, Cordonnier A, Lambert IB. Preferential post-replication repair of DNA lesions situated on the leading strand of plasmids inEscherichia coli. Mol Microbiol 2009; 71:305-14. [PMID: 19017273 DOI: 10.1111/j.1365-2958.2008.06527.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Marc Bichara
- Université Strasbourg 1, Institut Gillbert Laustrait, CNRS-UMR 7175. Boulevard Sebastien Brant, BP 10413, F-67412 Illkirch-Cedex, France.
| | | | | | | |
Collapse
|
15
|
Lo YH, Tsai KL, Sun YJ, Chen WT, Huang CY, Hsiao CD. The crystal structure of a replicative hexameric helicase DnaC and its complex with single-stranded DNA. Nucleic Acids Res 2008; 37:804-14. [PMID: 19074952 PMCID: PMC2647316 DOI: 10.1093/nar/gkn999] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
DNA helicases are motor proteins that play essential roles in DNA replication, repair and recombination. In the replicative hexameric helicase, the fundamental reaction is the unwinding of duplex DNA; however, our understanding of this function remains vague due to insufficient structural information. Here, we report two crystal structures of the DnaB-family replicative helicase from Geobacillus kaustophilus HTA426 (GkDnaC) in the apo-form and bound to single-stranded DNA (ssDNA). The GkDnaC–ssDNA complex structure reveals that three symmetrical basic grooves on the interior surface of the hexamer individually encircle ssDNA. The ssDNA-binding pockets in this structure are directed toward the N-terminal domain collar of the hexameric ring, thus orienting the ssDNA toward the DnaG primase to facilitate the synthesis of short RNA primers. These findings provide insight into the mechanism of ssDNA binding and provide a working model to establish a novel mechanism for DNA translocation at the replication fork.
Collapse
Affiliation(s)
- Yu-Hua Lo
- Institute of Molecular Biology, Academia Sinica, Taipei, 115, Taiwan
| | | | | | | | | | | |
Collapse
|
16
|
Tanner NA, Hamdan SM, Jergic S, Loscha KV, Schaeffer PM, Dixon NE, van Oijen AM. Single-molecule studies of fork dynamics in Escherichia coli DNA replication. Nat Struct Mol Biol 2008; 15:170-6. [PMID: 18223657 DOI: 10.1038/nsmb.1381] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2007] [Accepted: 01/03/2008] [Indexed: 11/09/2022]
Abstract
We present single-molecule studies of the Escherichia coli replication machinery. We visualize individual E. coli DNA polymerase III (Pol III) holoenzymes engaging in primer extension and leading-strand synthesis. When coupled to the replicative helicase DnaB, Pol III mediates leading-strand synthesis with a processivity of 10.5 kilobases (kb), eight-fold higher than that by Pol III alone. Addition of the primase DnaG causes a three-fold reduction in the processivity of leading-strand synthesis, an effect dependent upon the DnaB-DnaG protein-protein interaction rather than primase activity. A single-molecule analysis of the replication kinetics with varying DnaG concentrations indicates that a cooperative binding of two or three DnaG monomers to DnaB halts synthesis. Modulation of DnaB helicase activity through the interaction with DnaG suggests a mechanism that prevents leading-strand synthesis from outpacing lagging-strand synthesis during slow primer synthesis on the lagging strand.
Collapse
Affiliation(s)
- Nathan A Tanner
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 250 Longwood Avenue, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Maul RW, Ponticelli SKS, Duzen JM, Sutton MD. Differential binding of Escherichia coli DNA polymerases to the beta-sliding clamp. Mol Microbiol 2007; 65:811-27. [PMID: 17635192 DOI: 10.1111/j.1365-2958.2007.05828.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Escherichia coli strains expressing the mutant beta159-sliding clamp protein (containing both a G66E and a G174A substitution) are temperature sensitive for growth and display altered DNA polymerase (pol) usage. We selected for suppressors of the dnaN159 allele able to grow at 42 degrees C, and identified four intragenic suppressor alleles. One of these alleles (dnaN780) contained only the G66E substitution, while a second (dnaN781) contained only the G174A substitution. Genetic characterization of isogenic E. coli strains expressing these alleles indicated that certain phenotypes were dependent upon only the G174A substitution, while others required both the G66E and G174A substitutions. In order to understand the individual contributions of the G66E and the G174A substitution to the dnaN159 phenotypes, we utilized biochemical approaches to characterize the purified mutant beta159 (G66E and G174A), beta780 (G66E) and beta781 (G174A) clamp proteins. The G66E substitution conferred a more pronounced effect on pol IV replication than it did pol II or pol III, while the G174A substitution conferred a greater effect on pol III and pol IV than it did pol II. Taken together, these findings indicate that pol II, pol III and pol IV interact with distinct, albeit overlapping surfaces of the beta clamp.
Collapse
Affiliation(s)
- Robert W Maul
- Department of Biochemistry, School of Medicine and Biomedical Sciences, University at Buffalo, SUNY, Buffalo, New York 14214, USA
| | | | | | | |
Collapse
|
18
|
Affiliation(s)
- Mike O'Donnell
- Laboratory of DNA Replication, Howard Hughes Medical Institute, The Rockefeller University, New York, New York 10021, USA.
| |
Collapse
|
19
|
Abstract
DNA replicases are multicomponent machines that have evolved clever strategies to perform their function. Although the structure of DNA is elegant in its simplicity, the job of duplicating it is far from simple. At the heart of the replicase machinery is a heteropentameric AAA+ clamp-loading machine that couples ATP hydrolysis to load circular clamp proteins onto DNA. The clamps encircle DNA and hold polymerases to the template for processive action. Clamp-loader and sliding clamp structures have been solved in both prokaryotic and eukaryotic systems. The heteropentameric clamp loaders are circular oligomers, reflecting the circular shape of their respective clamp substrates. Clamps and clamp loaders also function in other DNA metabolic processes, including repair, checkpoint mechanisms, and cell cycle progression. Twin polymerases and clamps coordinate their actions with a clamp loader and yet other proteins to form a replisome machine that advances the replication fork.
Collapse
Affiliation(s)
- Aaron Johnson
- Howard Hughes Medical Institute, New York City, New York 10021-6399, USA.
| | | |
Collapse
|
20
|
Hashem VI, Sinden RR. Duplications between direct repeats stabilized by DNA secondary structure occur preferentially in the leading strand during DNA replication. Mutat Res 2005; 570:215-26. [PMID: 15708580 DOI: 10.1016/j.mrfmmm.2004.11.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2004] [Revised: 11/01/2004] [Accepted: 11/19/2004] [Indexed: 01/01/2023]
Abstract
To ascertain a leading or lagging strand preference for duplication mutations, several short DNA sequences, i.e. mutation inserts, were designed that should demonstrate an asymmetric propensity for duplication mutations in the two complementary DNA strands during replication. The design of the mutation insert involved a 7-bp quasi inverted repeat that forms a remarkably stable hairpin in one DNA strand, but not the other. The inverted repeat is asymmetrically placed between flanking direct repeats. This sequence was cloned into a modified chloramphenicol acetyltransferase (CAT) gene containing a -1 frameshift mutation. Duplication of the mutation insert restores the reading frame of the CAT gene resulting in a chloramphenicol resistant phenotype. The mutation insert showed greater than a 200-fold preference for duplication mutations during leading strand, compared with lagging strand, replication. This result suggests that misalignment stabilized by DNA secondary structure, leading to duplication between direct repeats, occurred preferentially during leading strand synthesis.
Collapse
Affiliation(s)
- Vera I Hashem
- Laboratory of DNA Structure and Mutagenesis, Center for Genome Research, Institute of Biosciences and Technology, Texas A&M University System Health Sciences Center, 2121 West Holcombe Blvd., Houston, TX 77030-3303, USA
| | | |
Collapse
|
21
|
Trakselis MA, Roccasecca RM, Yang J, Valentine AM, Benkovic SJ. Dissociative Properties of the Proteins within the Bacteriophage T4 Replisome. J Biol Chem 2003; 278:49839-49. [PMID: 14500719 DOI: 10.1074/jbc.m307405200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNA replication is a highly processive and efficient process that involves the coordination of at least eight proteins to form the replisome in bacteriophage T4. Replication of DNA occurs in the 5' to 3' direction resulting in continuous replication on the leading strand and discontinuous replication on the lagging strand. A key question is how a continuous and discontinuous replication process is coordinated. One solution is to avoid having the completion of one Okazaki fragment to signal the start of the next but instead to have a key step such as priming proceed in parallel to lagging strand replication. Such a mechanism requires protein elements of the replisome to readily dissociate during the replication process. Protein trapping experiments were performed to test for dissociation of the clamp loader and primase from an active replisome in vitro whose template was both a small synthetic DNA minicircle and a larger DNA substrate. The primase, clamp, and clamp loader are found to dissociate from the replisome and are continuously recruited from solution. The effect of varying protein concentrations (dilution) on the size of Okazaki fragments supported the protein trapping results. These findings are in accord with previous results for the accessory proteins but, importantly now, identify the primase as dissociating from an active replisome. The recruitment of the primase from solution during DNA synthesis has also been found for Escherichia coli but not bacteriophage T7. The implications of these results for RNA priming and extension during the repetitive synthesis of Okazaki fragments are discussed.
Collapse
Affiliation(s)
- Michael A Trakselis
- Department of Chemistry, the Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | | | | | |
Collapse
|
22
|
Williams CR, Snyder AK, Kuzmic P, O'Donnell M, Bloom LB. Mechanism of loading the Escherichia coli DNA polymerase III sliding clamp: I. Two distinct activities for individual ATP sites in the gamma complex. J Biol Chem 2003; 279:4376-85. [PMID: 14610067 DOI: 10.1074/jbc.m310429200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Escherichia coli DNA polymerase III gamma complex loads the beta clamp onto DNA, and the clamp tethers the core polymerase to DNA to increase the processivity of synthesis. ATP binding and hydrolysis promote conformational changes within the gamma complex that modulate its affinity for the clamp and DNA, allowing it to accomplish the mechanical task of assembling clamps on DNA. This is the first of two reports (Snyder, A. K., Williams, C. R., Johnson, A., O'Donnell, M., and Bloom, L. B. (2004) J. Biol. Chem. 279, 4386-4393) addressing the question of how ATP binding and hydrolysis modulate specific interactions with DNA and beta. Pre-steady-state rates of ATP hydrolysis were slower when reactions were initiated by addition of ATP than when the gamma complex was equilibrated with ATP and were limited by the rate of an intramolecular reaction, possibly ATP-induced conformational changes. Kinetic modeling of assays in which the gamma complex was incubated with ATP for different periods of time prior to adding DNA to trigger hydrolysis suggests a mechanism in which a relatively slow conformational change step (kforward = 6.5 s(-1)) produces a species of the gamma complex that is activated for DNA (and beta) binding. In the absence of beta, 2 of the 3 molecules of ATP are hydrolyzed rapidly prior to releasing DNA, and the 3rd molecule is hydrolyzed slowly. In the presence of beta, all 3 molecules of ATP are hydrolyzed rapidly. These results suggest that hydrolysis of 2 molecules of ATP may be coupled to conformational changes that reduce interactions with DNA, whereas hydrolysis of the 3rd is coupled to changes that result in release of beta.
Collapse
Affiliation(s)
- Christopher R Williams
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida 32610-0245, USA
| | | | | | | | | |
Collapse
|
23
|
Yang J, Trakselis MA, Roccasecca RM, Benkovic SJ. The application of a minicircle substrate in the study of the coordinated T4 DNA replication. J Biol Chem 2003; 278:49828-38. [PMID: 14500718 DOI: 10.1074/jbc.m307406200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A reconstituted in vitro bacteriophage T4 DNA replication system was studied on a synthetic 70-mer minicircle substrate. This substrate was designed so that dGMP and dCMP were exclusively incorporated into the leading and the lagging strand, respectively. This design allows the simultaneous and independent measurement of the leading and lagging strand synthesis. In this paper, we report our results on the characterization of the 70-mer minicircle substrate. We show here that the minicircle substrate supports coordinated leading and lagging strand synthesis under the experimental conditions employed. The rate of the leading strand fork movement was at an average of approximately 150 nucleotides/s. This rate decreased to less than 30 nucleotides/s when the helicase was omitted from the reaction. These results suggest that both the holoenzyme and the primosome can be simultaneously assembled onto the minicircle substrate. The lagging strand synthesized on this substrate is of an average of 1.5 kb, and the length of the Okazaki fragments increased with decreasing [rNTPs]. The proper response of the Okazaki fragment size toward the change of the priming signal further indicates a functional replisome assembled on the minicircle template. The effects of various protein components on the leading and lagging strand synthesis were also studied. The collective results indicate that coordinated strand synthesis only takes place within certain protein concentration ranges. The optimal protein levels of the proteins that constitute the T4 replisome generally bracket the concentrations of the same proteins in vivo. Omission of the primase has little effect on the rate of dNMP incorporation or the rate of the fork movement on the leading strand within the first 30 s of the reaction. This inhibition only becomes significant at later times of the reaction and may be associated with the accumulation of single-stranded DNA leading to the collapse of active replisomes.
Collapse
Affiliation(s)
- Jingsong Yang
- Department of Chemistry, the Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | | | |
Collapse
|
24
|
Chastain PD, Makhov AM, Nossal NG, Griffith J. Architecture of the replication complex and DNA loops at the fork generated by the bacteriophage t4 proteins. J Biol Chem 2003; 278:21276-85. [PMID: 12649286 DOI: 10.1074/jbc.m301573200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rolling circle replication has previously been reconstituted in vitro using M13 duplex circles containing preformed forks and the 10 purified T4 bacteriophage replication proteins. Leading and lagging strand synthesis in these reactions is coupled and the size of the Okazaki fragments produced is typical of those generated in T4 infections. In this study the structure of the DNAs and DNA-protein complexes engaged in these in vitro reactions has been examined by electron microscopy. Following deproteinization, circular duplex templates with linear tails as great as 100 kb are observed. The tails are fully duplex except for one to three single-stranded DNA segments close to the fork. This pattern reflects Okazaki fragments stopped at different stages in their synthesis. Examination of the DNA-protein complexes in these reactions reveals M13 duplex circles in which 64% contain a single large protein mass (replication complex) and a linear duplex tail. In 56% of the replicating molecules with a tail there is at least one fully duplex loop at the replication complex resulting from the portion of the lagging strand engaged in Okazaki fragment synthesis folding back to the replisome. The single-stranded DNA segments at the fork bound by gene 32 and 59 proteins are not extended but rather appear organized into highly compact structures ("bobbins"). These bobbins constitute a major portion of the mass of the full replication complex.
Collapse
Affiliation(s)
- Paul D Chastain
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | | | |
Collapse
|
25
|
Sporbert A, Gahl A, Ankerhold R, Leonhardt H, Cardoso MC. DNA polymerase clamp shows little turnover at established replication sites but sequential de novo assembly at adjacent origin clusters. Mol Cell 2002; 10:1355-65. [PMID: 12504011 DOI: 10.1016/s1097-2765(02)00729-3] [Citation(s) in RCA: 161] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The spatial and temporal organization of DNA replication was investigated in living cells with a green fluorescent protein fusion to the DNA polymerase clamp PCNA. In situ extractions and photobleaching experiments revealed that PCNA, unlike RPA34, shows little if any turnover at replication sites, suggesting that it remains associated with the replication machinery through multiple rounds of Okazaki fragment synthesis. Photobleaching analyses further showed that the transition from earlier to later replicons occurs by disassembly into a nucleoplasmic pool of rapidly diffusing subcomponents and reassembly at newly activated sites. The fact that these replication sites were de novo assembled in close proximity to earlier ones suggests that activation of neighboring origins may occur by a domino effect possibly involving local changes in chromatin structure and accessibility.
Collapse
Affiliation(s)
- Anje Sporbert
- Max Delbrück Center for Molecular Medicine, 13125 Berlin, Advanced Imaging Microscopy, 07745, Jena, Germany
| | | | | | | | | |
Collapse
|
26
|
Abstract
The elaborate process of genomic replication requires a large collection of proteins properly assembled at a DNA replication fork. Several decades of research on the bacterium Escherichia coli and its bacteriophages T4 and T7 have defined the roles of many proteins central to DNA replication. These three different prokaryotic replication systems use the same fundamental components for synthesis at a moving DNA replication fork even though the number and nature of some individual proteins are different and many lack extensive sequence homology. The components of the replication complex can be grouped into functional categories as follows: DNA polymerase, helix destabilizing protein, polymerase accessory factors, and primosome (DNA helicase and DNA primase activities). The replication of DNA derives from a multistep enzymatic pathway that features the assembly of accessory factors and polymerases into a functional holoenzyme; the separation of the double-stranded template DNA by helicase activity and its coupling to the primase synthesis of RNA primers to initiate Okazaki fragment synthesis; and the continuous and discontinuous synthesis of the leading and lagging daughter strands by the polymerases. This review summarizes and compares and contrasts for these three systems the types, timing, and mechanism of reactions and of protein-protein interactions required to initiate, control, and coordinate the synthesis of the leading and lagging strands at a DNA replication fork and comments on their generality.
Collapse
Affiliation(s)
- S J Benkovic
- Pennsylvania State University, Department of Chemistry, 414 Wartik Laboratory, University Park, Pennsylvania 16802, USA.
| | | | | |
Collapse
|
27
|
Lee J, Chastain PD, Griffith JD, Richardson CC. Lagging strand synthesis in coordinated DNA synthesis by bacteriophage t7 replication proteins. J Mol Biol 2002; 316:19-34. [PMID: 11829500 DOI: 10.1006/jmbi.2001.5325] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The proteins of bacteriophage T7 DNA replication mediate coordinated leading and lagging strand synthesis on a minicircle template. A distinguishing feature of the coordinated synthesis is the presence of a replication loop containing double and single-stranded DNA with a combined average length of 2600 nucleotides. Lagging strands consist of multiple Okazaki fragments, with an average length of 3000 nucleotides, suggesting that the replication loop dictates the frequency of initiation of Okazaki fragments. The size of Okazaki fragments is not affected by varying the components (T7 DNA polymerase, gene 4 helicase-primase, gene 2.5 single-stranded DNA binding protein, and rNTPs) of the reaction over a relatively wide range. Changes in the size of Okazaki fragments occurs only when leading and lagging strand synthesis is no longer coordinated. The synthesis of each Okazaki fragment is initiated by the synthesis of an RNA primer by the gene 4 primase at specific recognition sites. In the absence of a primase recognition site on the minicircle template no lagging strand synthesis occurs. The size of the Okazaki fragments is not affected by the number of recognition sites on the template.
Collapse
Affiliation(s)
- Joonsoo Lee
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | | | | | | |
Collapse
|
28
|
Kadyrov FA, Drake JW. Conditional coupling of leading-strand and lagging-strand DNA synthesis at bacteriophage T4 replication forks. J Biol Chem 2001; 276:29559-66. [PMID: 11390383 DOI: 10.1074/jbc.m101310200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Eight proteins encoded by bacteriophage T4 are required for the replicative synthesis of the leading and lagging strands of T4 DNA. We show here that active T4 replication forks, which catalyze the coordinated synthesis of leading and lagging strands, remain stable in the face of dilution provided that the gp44/62 clamp loader, the gp45 sliding clamp, and the gp32 ssDNA-binding protein are present at sufficient levels after dilution. If any of these accessory proteins is omitted from the dilution mixture, uncoordinated DNA synthesis occurs, and/or large Okazaki fragments are formed. Thus, the accessory proteins must be recruited from solution for each round of initiation of lagging-strand synthesis. A modified bacteriophage T7 DNA polymerase (Sequenase) can replace the T4 DNA polymerase for leading-strand synthesis but not for well coordinated lagging-strand synthesis. Although T4 DNA polymerase has been reported to self-associate, gel-exclusion chromatography displays it as a monomer in solution in the absence of DNA. It forms no stable holoenzyme complex in solution with the accessory proteins or with the gp41-gp61 helicase-primase. Instead, template DNA is required for the assembly of the T4 replication complex, which then catalyzes coordinated synthesis of leading and lagging strands in a conditionally coupled manner.
Collapse
Affiliation(s)
- F A Kadyrov
- Laboratory of Molecular Genetics, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709-2233, USA.
| | | |
Collapse
|
29
|
Li X, Marians KJ. Two distinct triggers for cycling of the lagging strand polymerase at the replication fork. J Biol Chem 2000; 275:34757-65. [PMID: 10948202 DOI: 10.1074/jbc.m006556200] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
There are two modes of DNA synthesis at a replication fork. The leading strand is synthesized in a continuous fashion in lengths that in Escherichia coli can be in excess of 2 megabases. On the other hand, the lagging strand is synthesized in relatively short stretches of 2 kilobases. Nevertheless, identical assemblies of the DNA polymerase III core tethered to the beta sliding clamp account for both modes of DNA synthesis. Yet the same lagging strand polymerase accounts for the synthesis of all Okazaki fragments at a replication fork, cycling repeatedly every 1 or 2 s from the 3'-end of the just-completed fragment to the 3'-end of the new primer. Several models have been invoked to account for the rapid cycling of a polymerase complex that can remain bound to the template for upward of 40 min. By using isolated replication protein-DNA template complexes, we have tested these models and show here that cycling of the lagging strand polymerase can be triggered by either the action of primase binding to the replisome and synthesizing a primer or by collision of the lagging strand polymerase with the 5'-end of the previous Okazaki fragment.
Collapse
Affiliation(s)
- X Li
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA
| | | |
Collapse
|
30
|
Chastain PD, Makhov AM, Nossal NG, Griffith JD. Analysis of the Okazaki fragment distributions along single long DNAs replicated by the bacteriophage T4 proteins. Mol Cell 2000; 6:803-14. [PMID: 11090619 DOI: 10.1016/s1097-2765(05)00093-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Rolling circle replication from M13 DNA circles was previously reconstituted in vitro using purified factors encoded by bacteriophage T4. The products are duplex circles with linear tails >100 kb. When T4 DNA polymerase deficient in 3' to 5' exonuclease activity was employed, electron microscopy revealed short single-stranded DNA "flaps" along the replicated tails. This marked the beginning of each Okazaki fragment, allowing an analysis of the lengths of sequential Okazaki fragments on individual replicating molecules. DNAs containing runs of Okazaki fragments of similar length were found, but most showed large length variations over runs of six or more fragments reflecting the broad population distribution.
Collapse
Affiliation(s)
- P D Chastain
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, 27599, USA
| | | | | | | |
Collapse
|
31
|
Abstract
This report outlines the protein requirements and subunit organization of the DNA replication apparatus of Streptococcus pyogenes, a Gram-positive organism. Five proteins coordinate their actions to achieve rapid and processive DNA synthesis. These proteins are: the PolC DNA polymerase, tau, delta, delta', and beta. S. pyogenes dnaX encodes only the full-length tau, unlike the Escherichia coli system in which dnaX encodes two proteins, tau and gamma. The S. pyogenes tau binds PolC, but the interaction is not as firm as the corresponding interaction in E. coli, underlying the inability to purify a PolC holoenzyme from Gram-positive cells. The tau also binds the delta and delta' subunits to form a taudeltadelta' "clamp loader." PolC can assemble with taudeltadelta' to form a PolC.taudeltadelta' complex. After PolC.taudeltadelta' clamps beta to a primed site, it extends DNA 700 nucleotides/second in a highly processive fashion. Gram-positive cells contain a second DNA polymerase, encoded by dnaE, that has homology to the E. coli alpha subunit of E. coli DNA polymerase III. We show here that the S. pyogenes DnaE polymerase also functions with the beta clamp.
Collapse
Affiliation(s)
- I Bruck
- Howard Hughes Medical Institute, The Rockefeller University, Laboratory of DNA Replication, New York, New York 10021, USA
| | | |
Collapse
|
32
|
Affiliation(s)
- T Tsurimoto
- Faculty of Bioscience, Nara Institute of Science and Technology, Takayama, Ikoma 630-0101,
| |
Collapse
|
33
|
Hingorani MM, O'Donnell M. ATP binding to the Escherichia coli clamp loader powers opening of the ring-shaped clamp of DNA polymerase III holoenzyme. J Biol Chem 1998; 273:24550-63. [PMID: 9733750 DOI: 10.1074/jbc.273.38.24550] [Citation(s) in RCA: 122] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Escherichia coli gamma complex serves as a clamp loader, catalyzing ATP-dependent assembly of beta protein clamps onto primed DNA templates during DNA replication. These ring-shaped clamps tether DNA polymerase III holoenzyme to the template, facilitating rapid and processive DNA synthesis. This report focuses on the role of ATP binding and hydrolysis catalyzed by the gamma complex during clamp loading. We show that the energy from ATP binding to gamma complex powers several initial events in the clamp loading pathway. The gamma complex (gamma2 delta delta'chi psi) binds two ATP molecules (one per gamma subunit in the complex) with high affinity (Kd = 1-2. 5 x 10(-6) M) or two adenosine 5'-O-(3-thiotriphosphate)(ATPgammaS) molecules with slightly lower affinity (Kd = 5-6.5 x 10(-6) M). Experiments performed prior to the first ATP turnover (kcat = 4 x 10(-3) s-1 at 4 degreesC), or in the presence of ATPgammaS (kcat = 1 x 10(-4) s-1 at 37 degreesC), demonstrate that upon interaction with ATP the gamma complex undergoes a change in conformation. This ATP-bound gamma complex binds beta and opens the ring at the dimer interface. Still prior to ATP hydrolysis, the composite of gamma complex and the open beta ring binds with high affinity to primer-template DNA. Thus ATP binding powers all the steps in the clamp loading pathway leading up to the assembly of a gamma complex. open beta ring.DNA intermediate, setting the stage for ring closing and turnover of the clamp loader, steps that may be linked to subsequent hydrolysis of ATP.
Collapse
Affiliation(s)
- M M Hingorani
- Rockefeller University, New York, New York 10021, USA
| | | |
Collapse
|
34
|
Pham PT, Olson MW, McHenry CS, Schaaper RM. The base substitution and frameshift fidelity of Escherichia coli DNA polymerase III holoenzyme in vitro. J Biol Chem 1998; 273:23575-84. [PMID: 9722597 DOI: 10.1074/jbc.273.36.23575] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have investigated the in vitro fidelity of Escherichia coli DNA polymerase III holoenzyme from a wild-type and a proofreading-impaired mutD5 strain. Exonuclease assays showed the mutD5 holoenzyme to have a 30-50-fold reduced 3'-->5'-exonuclease activity. Fidelity was assayed during gap-filling synthesis across the lacId forward mutational target. The error rate for both enzymes was lowest at low dNTP concentrations (10-50 microM) and highest at high dNTP concentration (1000 microM). The mutD5 proofreading defect increased the error rate by only 3-5-fold. Both enzymes produced a high level of (-1)-frameshift mutations in addition to base substitutions. The base substitutions were mainly C-->T, G-->T, and G-->C, but dNTP pool imbalances suggested that these may reflect misincorporations opposite damaged template bases and that, instead, T-->C, G-->A, and C-->T transitions represent the normal polymerase III-mediated base.base mispairs. The frequent (-1)-frameshift mutations do not result from direct slippage but may be generated via a mechanism involving "misincorporation plus slippage." Measurements of the fidelity of wild-type and mutD5 holoenzyme during M13 in vivo replication revealed significant differences between the in vivo and in vitro fidelity with regard to both the frequency of frameshift errors and the extent of proofreading.
Collapse
Affiliation(s)
- P T Pham
- Laboratory of Molecular Genetics, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | | | | | | |
Collapse
|
35
|
Lee J, Chastain PD, Kusakabe T, Griffith JD, Richardson CC. Coordinated leading and lagging strand DNA synthesis on a minicircular template. Mol Cell 1998; 1:1001-10. [PMID: 9651583 DOI: 10.1016/s1097-2765(00)80100-8] [Citation(s) in RCA: 119] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The coordinated synthesis of both leading and lagging DNA strands is thought to involve a dimeric DNA polymerase and a looping of the lagging strand so that both strands can be synthesized in the same direction. We have constructed a minicircle with a replication fork that permits an assessment of the stoichiometry of the proteins and a measurement of the synthesis of each strand. The replisome consisting of bacteriophage T7 DNA polymerase, helicase, primase, and single-stranded DNA-binding protein mediates coordinated replication. The criteria for coordination are fulfilled: (1) a replication loop is formed, (2) leading and lagging strand synthesis are coupled, (3) the lagging strand polymerase recycles from one Okazaki fragment to another, and (4) the length of Okazaki fragments is regulated. T7 single-stranded DNA-binding protein is essential for coordination.
Collapse
Affiliation(s)
- J Lee
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
36
|
Park K, Debyser Z, Tabor S, Richardson CC, Griffith JD. Formation of a DNA loop at the replication fork generated by bacteriophage T7 replication proteins. J Biol Chem 1998; 273:5260-70. [PMID: 9478983 DOI: 10.1074/jbc.273.9.5260] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Intermediates in the replication of circular and linear M13 double-stranded DNA by bacteriophage T7 proteins have been examined by electron microscopy. Synthesis generated double-stranded DNA molecules containing a single replication fork with a linear duplex tail. A complex presumably consisting of T7 DNA polymerase and gene 4 helicase/primase molecules was present at the fork together with a variable amount of single-stranded DNA sequestered by gene 2.5 single-stranded DNA binding protein. Analysis of the length distribution of Okazaki fragments formed at different helicase/primase concentrations was consistent with coupling of leading and lagging strand replication. Fifteen to forty percent of the templates engaged in replication have a DNA loop at the replication fork. The loops are fully double-stranded with an average length of approximately 1 kilobase. Labeling with biotinylated dCTP showed that the loops consist of newly synthesized DNA, and synchronization experiments using a linear template with a G-less cassette demonstrated that the loops are formed by active displacement of the lagging strand. A long standing feature of models for coupled leading/lagging strand replication has been the presence of a DNA loop at the replication fork. This study provides the first direct demonstration of such loops.
Collapse
Affiliation(s)
- K Park
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599-7295, USA
| | | | | | | | | |
Collapse
|
37
|
Marians KJ, Hiasa H, Kim DR, McHenry CS. Role of the core DNA polymerase III subunits at the replication fork. Alpha is the only subunit required for processive replication. J Biol Chem 1998; 273:2452-7. [PMID: 9442096 DOI: 10.1074/jbc.273.4.2452] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The DNA polymerase III holoenzyme is composed of 10 subunits. The core of the polymerase contains the catalytic polymerase subunit, alpha, the proofreading 3'-->5' exonuclease, epsilon, and a subunit of unknown function, theta. The availability of the holoenzyme subunits in purified form has allowed us to investigate their roles at the replication fork. We show here that of the three subunits in the core polymerase, only alpha is required to form processive replication forks that move at high rates and that exhibit coupled leading- and lagging-strand synthesis in vitro. Taken together with previous data this suggests that the primary determinant of replication fork processivity is the interaction between another holoenzyme subunit, tau, and the replication fork helicase, DnaB.
Collapse
Affiliation(s)
- K J Marians
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA
| | | | | | | |
Collapse
|
38
|
Yurieva O, Skangalis M, Kuriyan J, O'Donnell M. Thermus thermophilis dnaX homolog encoding gamma- and tau-like proteins of the chromosomal replicase. J Biol Chem 1997; 272:27131-9. [PMID: 9341154 DOI: 10.1074/jbc.272.43.27131] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
This report identifies the dnaX homolog from Thermus thermophilis. Replicases from bacteria to humans contain subunits that are homologous to one another. These homologs are subunits of a clamp loading apparatus that loads sliding clamps onto DNA, which in turn act as mobile tethers for the replication machinery. In Escherichia coli, two of these subunits (gamma and tau) are encoded by one gene (dnaX) in nearly equal amounts by way of an efficient translational frameshift. The gamma and tau subunits form the central touchpoint that holds together two DNA polymerases with one clamp loading apparatus to form the E. coli chromosomal replicase, DNA polymerase III holoenzyme. The E. coli holoenzyme is an efficient replication machine that simultaneously replicates both strands of duplex DNA. The T. thermophilis dnaX homolog also contains a frameshift signature and produces both tau- and gamma-like proteins. Recombinant T. thermophilis tau- and gamma-like proteins, expressed in E. coli, have an oligomeric state similar to that of their E. coli counterparts and display ATPase activity that is stimulated by DNA. These results imply that T. thermophilis utilizes a DNA polymerase III holoenzyme replication machinery similar to that of E. coli.
Collapse
Affiliation(s)
- O Yurieva
- Laboratories of Molecular Biophysics, The Rockefeller University, New York, New York 10021, USA
| | | | | | | |
Collapse
|
39
|
Yuzhakov A, Turner J, O'Donnell M. Replisome assembly reveals the basis for asymmetric function in leading and lagging strand replication. Cell 1996; 86:877-86. [PMID: 8808623 DOI: 10.1016/s0092-8674(00)80163-4] [Citation(s) in RCA: 150] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The E. coli replicase, DNA polymerase III holoenzyme, contains two polymerases for replication of duplex DNA. The DNA strands are antiparallel requiring different modes of replicating the two strands: one is continuous (leading) while the other is discontinuous (lagging). The two polymerases within holoenzyme are generally thought to have asymmetric functions for replication of these two strands. This report finds that the two polymerases have equal properties, both are capable of replicating the more difficult lagging strand. Asymmetric action is, however, imposed by the helicase that encircles the lagging strand. The helicase contact defines the leading polymerase constraining it to a subset of actions, while leaving the other to cycle on the lagging strand. The symmetric actions of the two polymerases free holoenzyme to assemble into the replisome in either orientation without concern for a correct match to one or the other strand.
Collapse
Affiliation(s)
- A Yuzhakov
- Microbiology Department, Howard Hughes Medical Institute, Cornell University Medical College, New York 10021, USA
| | | | | |
Collapse
|
40
|
Tougu K, Marians KJ. The interaction between helicase and primase sets the replication fork clock. J Biol Chem 1996; 271:21398-405. [PMID: 8702921 DOI: 10.1074/jbc.271.35.21398] [Citation(s) in RCA: 121] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The synthesis of an Okazaki fragment occurs once every 1-2 s at the Escherichia coli replication fork and requires precise coordination of the enzymatic activities required. We have shown previously that the primase is recruited anew from solution for each cycle of Okazaki fragment synthesis and that association of primase with the replication fork is via a protein-protein interaction with the helicase, DnaB. We describe here mutant primases that have an altered interaction with DnaB and that direct the synthesis of Okazaki fragments of altered length compared to the wild-type. The mutant primases were deficient only in their ability to participate in replication reactions where their entry to the DNA was provided by the initial protein-protein interaction with DnaB. The primer synthesis capacity of these proteins remained unaffected, as was their ability to interact with the DNA polymerase III holoenzyme. Neither replication fork rate nor the efficiency of primer utilization was affected at replication forks programmed by the mutant enzymes. Thus, the interaction between DnaG and DnaB at the replication fork is the primary regulator of the cycle of Okazaki fragment synthesis.
Collapse
Affiliation(s)
- K Tougu
- Graduate Program in Molecular Biology, Cornell University Graduate School of Medical Sciences, New York, New York 10021, USA
| | | |
Collapse
|
41
|
Kim S, Dallmann HG, McHenry CS, Marians KJ. tau couples the leading- and lagging-strand polymerases at the Escherichia coli DNA replication fork. J Biol Chem 1996; 271:21406-12. [PMID: 8702922 DOI: 10.1074/jbc.271.35.21406] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Synthesis of an Okazaki fragment occurs once every 1 or 2 s at the Escherichia coli replication fork. To account for the rapid recycling required of the lagging-strand polymerase, it has been proposed that it is held at the replication fork by protein-protein interactions with the leading-strand polymerase as part of a dimeric polymerase assembly. Solution studies showed that the replicative polymerase, the DNA polymerase III holoenzyme, was indeed a dimer with two catalytic cores held together by the tau subunit. However, the functionality of this arrangement at the replication fork has never been demonstrated. We showed previously that the lagging-strand polymerase acted processively during multiple rounds of Okazaki fragment synthesis, i.e. the same polymerase core assembly synthesized each and every fragment made by the fork. Using extreme dilution of active replication forks and the isolation of protein-DNA complexes capable of supporting coupled leading- and lagging-strand synthesis, we demonstrate here that this coupling of leading- and lagging-strand synthesis is, in fact, mediated by the tau subunit of the holoenzyme acting as a physical bridge between the core assemblies synthesizing the leading and lagging strands.
Collapse
Affiliation(s)
- S Kim
- Graduate Program in Molecular Biology Cornell University Graduate School of Medical Sciences, New York, New York 10021, USA
| | | | | | | |
Collapse
|
42
|
Kim DR, McHenry CS. Biotin tagging deletion analysis of domain limits involved in protein-macromolecular interactions. Mapping the tau binding domain of the DNA polymerase III alpha subunit. J Biol Chem 1996; 271:20690-8. [PMID: 8702819 DOI: 10.1074/jbc.271.34.20690] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The tau subunit dimerizes DNA polymerase III via interaction with the alpha subunit, allowing DNA polymerase III holoenzyme to synthesize both leading and lagging strands simultaneously at the DNA replication fork. Here, we report a general method to map the limits of domains required for heterologous protein-protein interactions using surface plasmon resonance. The method employs fusion of a short biotinylation sequence at either the NH2 or COOH terminus of the protein to be immobilized on streptavidin-derivatized biosensor chips. Inclusion of a hexahistidine sequence permits rapid purification and separation of the fusion protein from the endogenous Escherichia coli biotin carboxyl carrier protein. Ten deletions of the alpha subunit were constructed and purified by Ni2+-nitrilotriacetic acid chromatography and, when required, monomeric avidin chromatography. Each alpha deletion protein was captured by streptavidin immobilized on a Pharmacia Biosensor BIAcore chip, and the tau binding activity of each alpha deletion was analyzed using surface plasmon resonance. The tau subunit bound very tightly to a full-length amino-terminal fusion of the biotinylation sequence with alpha (KD approximately 70 pm). Four additional NH2-terminal alpha deletion proteins (60, 240, 360, and 542 residues deleted) retained strong binding activity to the tau subunit (KD = 0.19-0.39 nM), whereas deletion of 705 residues or more from the NH2 terminus of the alpha subunit abolished tau binding activity. Full-length alpha that contained a carboxyl-terminal fusion with the biotinylation sequence bound tau strongly (KD = 0.37 nM). However, deletion of 48 amino acids from the COOH terminus totally eliminated tau binding. These results indicate that the COOH-terminal half of the alpha subunit is involved in tau interaction.
Collapse
Affiliation(s)
- D R Kim
- Department of Biochemistry, Biophysics, and Genetics, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA
| | | |
Collapse
|
43
|
Kim S, Dallmann HG, McHenry CS, Marians KJ. Coupling of a replicative polymerase and helicase: a tau-DnaB interaction mediates rapid replication fork movement. Cell 1996; 84:643-50. [PMID: 8598050 DOI: 10.1016/s0092-8674(00)81039-9] [Citation(s) in RCA: 294] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The E. coli replication fork synthesizes DNA at the rate of nearly 1000 nt/s. We show here that an interaction between the tau subunit of the replicative polymerase (the DNA polymerase III holoenzyme) and the replication fork DNA helicase (DnaB) is required to mediate this high rate of replication fork movement. In the absence of this interaction, the polymerase follows behind the helicase at a rate equal to the slow (approximately 35 nt/s) unwinding rate of the helicase alone, whereas upon establishing a tau-DnaB contact, DnaB becomes a more effective helicase, increasing its translocation rate by more than 10-fold. This finding establishes the existence of both a physical and communications link between the two major replication machines in the replisome: the DNA polymerase and the primosome.
Collapse
Affiliation(s)
- S Kim
- Graduate Program in Molecular Biology, Cornell University Graduate School of Medical Sciences, New York 10021, USA
| | | | | | | |
Collapse
|
44
|
Kim S, Dallmann HG, McHenry CS, Marians KJ. Tau protects beta in the leading-strand polymerase complex at the replication fork. J Biol Chem 1996; 271:4315-8. [PMID: 8626779 DOI: 10.1074/jbc.271.8.4315] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Replication forks formed in the absence of the tau subunit of the DNA polymerase III holoenzyme produce shorter leading and lagging strands than when tau is present. We show that one reason for this is that in the absence of tau, but in the presence of the gamma-complex, leading-strand synthesis is no longer highly processive. In the absence of tau, the size of the leading strand becomes proportional to the concentration of beta and inversely proportional to the concentration of the gamma-complex. In addition, the beta in the leading-strand complex is no longer resistant to challenge by either anti-beta antibodies or poly(dA):oligo(dT). Thus, tau is required to cement a processive leading-strand complex, presumably by preventing removal of beta catalyzed by the gamma-complex.
Collapse
Affiliation(s)
- S Kim
- Graduate Program in Molecular Biology, Cornell University Graduate School of Medical Sciences, New York, New York 10021, USA
| | | | | | | |
Collapse
|
45
|
Affiliation(s)
- D R Herendeen
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | |
Collapse
|
46
|
Dallmann HG, Thimmig RL, McHenry CS. DnaX Complex of Escherichia coli DNA Polymerase III Holoenzyme. J Biol Chem 1995. [DOI: 10.1074/jbc.270.49.29555] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
47
|
Rosche WA, Trinh TQ, Sinden RR. Differential DNA secondary structure-mediated deletion mutation in the leading and lagging strands. J Bacteriol 1995; 177:4385-91. [PMID: 7635823 PMCID: PMC177188 DOI: 10.1128/jb.177.15.4385-4391.1995] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The frequencies of deletion of short sequences (mutation inserts) inserted into the chloramphenicol acetyl-transferase (CAT) gene were measured for pBR325 and pBR523, in which the orientation of the CAT gene was reversed, in Escherichia coli. Reversal of the CAT gene changes the relationship between the transcribed strand and the leading and lagging strands of the DNA replication fork in pBR325-based plasmids. Deletion of these mutation inserts may be mediated by slipped misalignment during DNA replication. Symmetrical sequences, in which the same potential DNA structural misalignment can form in both the leading and lagging strands, exhibited an approximately twofold difference in the deletion frequencies upon reversal of the CAT gene. Sequences that contained an inverted repeat that was asymmetric with respect to flanking direct repeats were designed. With asymmetric mutation inserts, different misaligned structural intermediates could form in the leading and lagging strands, depending on the orientation of the insert and/or of the CAT gene. When slippage could be stabilized by a hairpin in the lagging strand, thereby forming a three-way junction, deletion occurred by up to 50-fold more frequently than when this structure formed in the leading strand. These results support the model that slipped misalignment involving DNA secondary structure occurs preferentially in the lagging strand during DNA replication.
Collapse
Affiliation(s)
- W A Rosche
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Ohio 45267-0524, USA
| | | | | |
Collapse
|
48
|
Hacker K, Alberts B. The rapid dissociation of the T4 DNA polymerase holoenzyme when stopped by a DNA hairpin helix. A model for polymerase release following the termination of each Okazaki fragment. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(19)51071-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
49
|
Debyser Z, Tabor S, Richardson CC. Coordination of leading and lagging strand DNA synthesis at the replication fork of bacteriophage T7. Cell 1994; 77:157-66. [PMID: 8156591 DOI: 10.1016/0092-8674(94)90243-7] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We have used the T7 DNA replication system to examine coordination of leading and lagging strand synthesis at a replication fork. The 63 kd gene 4 protein provides both helicase and primase activities; we demonstrate that primer synthesis inhibits helicase activity on a synthetic replication fork. Lagging strand DNA synthesis by a complex of gene 4 protein and T7 DNA polymerase decreases the rate of leading strand synthesis. Both leading and lagging strand synthesis are resistant to dilution of the replication proteins, and to challenge with heparin. Furthermore, dilution does not increase the average length of Okazaki fragments. We propose that leading and lagging strand synthesis at a T7 replication fork are coupled and that the replication proteins are recycled.
Collapse
Affiliation(s)
- Z Debyser
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115
| | | | | |
Collapse
|
50
|
|