1
|
Seifert-Dávila W, Chaban A, Baudin F, Girbig M, Hauptmann L, Hoffmann T, Duss O, Eustermann S, Müller C. Structural and kinetic insights into tRNA promoter engagement by yeast general transcription factor TFIIIC. Nucleic Acids Res 2025; 53:gkae1174. [PMID: 39657784 PMCID: PMC11724288 DOI: 10.1093/nar/gkae1174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/06/2024] [Accepted: 11/11/2024] [Indexed: 12/12/2024] Open
Abstract
Transcription of transfer RNA (tRNA) genes by RNA polymerase (Pol) III requires the general transcription factor IIIC (TFIIIC), which recognizes intragenic A-box and B-box DNA motifs of type II gene promoters. However, the underlying mechanism has remained elusive, in part due to missing structural information for A-box recognition. In this study, we use single-particle cryogenic electron microscopy (cryo-EM) and single-molecule fluorescence resonance energy transfer (smFRET) to reveal structural and real-time kinetic insights into how the 520-kDa yeast TFIIIC complex engages A-box and B-box DNA motifs in the context of a tRNA gene promoter. Cryo-EM structures of τA and τB subcomplexes bound to the A-box and B-box were obtained at 3.7 and 2.5 Å resolution, respectively, while cryo-EM single-particle mapping determined the specific distance and relative orientation of the τA and τB subcomplexes revealing a fully engaged state of TFIIIC. smFRET experiments show that overall recruitment and residence times of TFIIIC on a tRNA gene are primarily governed by B-box recognition, while footprinting experiments suggest a key role of τA and the A-box in TFIIIB and Pol III recruitment following TFIIIC recognition of type II promoters.
Collapse
Affiliation(s)
- Wolfram Seifert-Dávila
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Anastasiia Chaban
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Im Neuenheimer Feld 234, 69120 Heidelberg, Germany
| | - Florence Baudin
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Mathias Girbig
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Straße 10, 35043 Marburg, Germany
| | - Luis Hauptmann
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Thomas Hoffmann
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Olivier Duss
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Sebastian Eustermann
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Christoph W Müller
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| |
Collapse
|
2
|
Ray A, Khan P, Nag Chaudhuri R. Deacetylation of H4 lysine16 affects acetylation of lysine residues in histone H3 and H4 and promotes transcription of constitutive genes. Epigenetics 2020; 16:597-617. [PMID: 32795161 DOI: 10.1080/15592294.2020.1809896] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Histone modification map of H4 N-terminal tail residues in Saccharomyces cerevisiae reveals the prominence of lysine acetylation. Previous reports have indicated the importance of lysine acetylation in maintaining chromatin structure and function. H4K16, a residue with highly regulated acetylation dynamics has unique functions not overlapping with the other H4 N- terminal acetylable residues. The present work unravels the role of H4K16 acetylation in regulating expression of constitutive genes. H4K16 gets distinctly deacetylated over the coding region of constitutively expressed genes. Deacetylation of H4K16 reduces H3K9 acetylation at the cellular and gene level. Reduced H3K9 acetylation however did not negatively correlate with active gene transcription. Significantly, H4K16 deacetylation was found to be associated with hypoacetylated H4K12 throughout the locus of constitutive genes. H4K16 and K12 deacetylation is known to favour active transcription. Sas2, the HAT mutant showed similar patterns of hypoacetylated H3K9 and H4K12 at the active loci, clearly implying that the modifications were associated with deacetylation state of H4K16. Deacetylation of H4K16 was also concurrent with increased H3K56 acetylation in the promoter region and ORF of the constitutive genes. Combination of all these histone modifications significantly reduced H3 occupancy, increased promoter accessibility and enhanced RNAPII recruitment at the constitutively active loci. Consequently, we found that expression of active genes was higher in H4K16R mutant which mimic deacetylated state, but not in H4K16Q mimicking constitutive acetylation. To summarize, H4K16 deacetylation linked with H4K12 and H3K9 hypoacetylation along with H3K56 hyperacetylation generate a chromatin landscape that is conducive for transcription of constitutive genes.
Collapse
Affiliation(s)
- Anagh Ray
- Department of Biotechnology, St. Xavier's College, Kolkata, India
| | - Preeti Khan
- Department of Biotechnology, St. Xavier's College, Kolkata, India
| | | |
Collapse
|
3
|
Dumay-Odelot H, Marck C, Durrieu-Gaillard S, Lefebvre O, Jourdain S, Prochazkova M, Pflieger A, Teichmann M. Identification, molecular cloning, and characterization of the sixth subunit of human transcription factor TFIIIC. J Biol Chem 2007; 282:17179-89. [PMID: 17409385 DOI: 10.1074/jbc.m611542200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
TFIIIC in yeast and humans is required for transcription of tRNA and 5 S RNA genes by RNA polymerase III. In the yeast Saccharomyces cerevisiae, TFIIIC is composed of six subunits, five of which are conserved in humans. We report the identification, molecular cloning, and characterization of the sixth subunit of human TFIIIC, TFIIIC35, which is related to the smallest subunit of yeast TFIIIC. Human TFIIIC35 does not contain the phosphoglycerate mutase domain of its yeast counterpart, and these two proteins display only limited homology within a 34-amino acid domain. Homologs of the sixth TFIIIC subunit are also identified in other eukaryotes, and their phylogenic evolution is analyzed. Affinity-purified human TFIIIC from an epitope-tagged TFIIIC35 cell line is active in binding to and in transcription of the VA1 gene in vitro. Furthermore, TFIIIC35 specifically interacts with the human TFIIIC subunits TFIIIC63 and, to a lesser extent, TFIIIC90 in vitro. Finally, we determined a limited region in the smallest subunit of yeast TFIIIC that is sufficient for interacting with the yeast TFIIIC subunit ScTfc1 (orthologous to TFIIIC63) and found it to be adjacent to and overlap the 34-amino acid domain that is conserved from yeast to humans.
Collapse
Affiliation(s)
- Hélène Dumay-Odelot
- Institut Européen de Chimie et Biologie (I.E.C.B.), Université Bordeaux 2 Victor Ségalen, INSERM U869, rue Robert Escarpit, Pessac, F-33607, France
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Roberts DN, Stewart AJ, Huff JT, Cairns BR. The RNA polymerase III transcriptome revealed by genome-wide localization and activity-occupancy relationships. Proc Natl Acad Sci U S A 2003; 100:14695-700. [PMID: 14634212 PMCID: PMC299761 DOI: 10.1073/pnas.2435566100] [Citation(s) in RCA: 143] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
RNA polymerase III (Pol III) transcribes small untranslated RNAs, such as tRNAs. To define the Pol III transcriptome in Saccharomyces cerevisiae, we performed genome-wide chromatin immunoprecipitation using subunits of Pol III, TFIIIB and TFIIIC. Virtually all of the predicted targets of Pol III, as well as several novel candidates, were occupied by Pol III machinery. Interestingly, TATA box-binding protein occupancy was greater at Pol III targets than virtually all Pol II targets, and the highly occupied Pol II targets are generally strongly transcribed. The temporal relationships between factor occupancy and gene activity were then investigated at selected targets. Nutrient deprivation rapidly reduced both Pol III transcription and Pol III occupancy of both a tRNA gene and RPR1. In contrast, TFIIIB remained bound, suggesting that TFIIIB release is not a critical aspect of the onset of repression. Remarkably, TFIIIC occupancy increased dramatically during repression. Nutrient addition generally reestablished transcription and initial occupancy levels. Our results are consistent with active Pol III displacing TFIIIC, and with inactivation/release of Pol III enabling TFIIIC to bind, marking targets for later activation. These studies reveal new aspects of the kinetics, dynamics, and targets of the Pol III system.
Collapse
Affiliation(s)
- Douglas N Roberts
- Howard Hughes Medical Institute and Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | | | | | | |
Collapse
|
5
|
Dumay-Odelot H, Acker J, Arrebola R, Sentenac A, Marck C. Multiple roles of the tau131 subunit of yeast transcription factor IIIC (TFIIIC) in TFIIIB assembly. Mol Cell Biol 2002; 22:298-308. [PMID: 11739742 PMCID: PMC134217 DOI: 10.1128/mcb.22.1.298-308.2002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Yeast transcription factor IIIC (TFIIIC) plays a key role in assembling the transcription initiation factor TFIIIB on class III genes after TFIIIC-DNA binding. The second largest subunit of TFIIIC, tau131, is thought to initiate TFIIIB assembly by interacting with Brf1/TFIIIB70. In this work, we have analyzed a TFIIIC mutant (tau131-DeltaTPR2) harboring a deletion in tau131 removing the second of its 11 tetratricopeptide repeats. Remarkably, this thermosensitive mutation was selectively suppressed in vivo by overexpression of B"/TFIIIB90, but not Brf1 or TATA-binding protein. In vitro, the mutant factor preincubated at restrictive temperature bound DNA efficiently but lost transcription factor activity. The in vitro transcription defect was abolished at high concentrations of B" but not Brf1. Copurification experiments of baculovirus-expressed proteins confirmed a direct physical interaction between tau131 and B". tau131, therefore, appears to be involved in the recruitment of both Brf1 and B".
Collapse
Affiliation(s)
- Hélène Dumay-Odelot
- Service de Biochimie et de Génétique Moléculaire, CEA/Saclay, F-91191 Gif-sur-Yvette Cedex, France
| | | | | | | | | |
Collapse
|
6
|
Affiliation(s)
- E P Geiduschek
- Division of Biology and Center for Molecular Genetics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0634, USA.
| | | |
Collapse
|
7
|
Huang Y, Hamada M, Maraia RJ. Isolation and cloning of four subunits of a fission yeast TFIIIC complex that includes an ortholog of the human regulatory protein TFIIICbeta. J Biol Chem 2000; 275:31480-7. [PMID: 10906331 DOI: 10.1074/jbc.m004635200] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Eukaryotic tRNA genes are controlled by proximal and downstream elements that direct transcription by RNA polymerase (pol) III. Transcription factors (TFs) that reside near the initiation site are related in Saccharomyces cerevisiae and humans, while those that reside at or downstream of the B box share no recognizable sequence relatedness. Human TFIIICbeta is a transcriptional regulator that exhibits no homology to S. cerevisiae sequences on its own. We cloned an essential Schizosaccharomyces pombe gene that encodes a protein, Sfc6p, with homology to the S. cerevisiae TFIIIC subunit, TFC6p, that extends to human TFIIICbeta. We also isolated and cloned S. pombe homologs of three other TFIIIC subunits, Sfc3p, Sfc4p, and Sfc1p, the latter two of which are conserved from S. cerevisiae to humans, while the former shares homology with the S. cerevisiae B box-binding homolog only. Sfc6p is a component of a sequence-specific DNA-binding complex that also contains the B box-binding homolog, Sfc3p. Immunoprecipitation of Sfc3p further revealed that Sfc1p, Sfc3p, Sfc4p, and Sfc6p are associated in vivo and that the isolated Sfc3p complex is active for pol III-mediated transcription of a S. pombe tRNA gene in vitro. These results establish a link between the downstream pol III TFs in yeast and humans.
Collapse
Affiliation(s)
- Y Huang
- Laboratory of Molecular Growth Regulation, NICHD, National Institutes of Health, Bethesda, Maryland 20892-2753, USA
| | | | | |
Collapse
|
8
|
Deprez E, Arrebola R, Conesa C, Sentenac A. A subunit of yeast TFIIIC participates in the recruitment of TATA-binding protein. Mol Cell Biol 1999; 19:8042-51. [PMID: 10567530 PMCID: PMC84889 DOI: 10.1128/mcb.19.12.8042] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
TFIIIC plays a key role in nucleating the assembly of the initiation factor TFIIIB on class III genes. We have characterized an essential gene, TFC8, encoding the 60-kDa polypeptide, tau60, present in affinity-purified TFIIIC. Hemagglutinin-tagged variants of tau60 were found to be part of TFIIIC-tDNA complexes and to reside at least in part in the downstream DNA-binding domain tauB. Unexpectedly, the thermosensitive phenotype of N-terminally tagged tau60 was suppressed by overexpression of tau95, which belongs to the tauA domain, and by two TFIIIB components, TATA-binding protein (TBP) and B"/TFIIIB90 (but not by TFIIIB70). Mutant TFIIIC was deficient in the activation of certain tRNA genes in vitro, and the transcription defect was selectively alleviated by increasing TBP concentration. Coimmunoprecipitation experiments support a direct interaction between TBP and tau60. It is suggested that tau60 links tauA and tauB domains and participates in TFIIIB assembly via its interaction with TBP.
Collapse
Affiliation(s)
- E Deprez
- Service de Biochimie et de Génétique Moléculaire, CEA/Saclay, F-91191 Gif-sur-Yvette Cedex, France
| | | | | | | |
Collapse
|
9
|
Dumay H, Rubbi L, Sentenac A, Marck C. Interaction between yeast RNA polymerase III and transcription factor TFIIIC via ABC10alpha and tau131 subunits. J Biol Chem 1999; 274:33462-8. [PMID: 10559229 DOI: 10.1074/jbc.274.47.33462] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Yeast TFIIIC mediates transcription of class III genes by promoting the assembly of a stable TFIIIB-DNA complex that is sufficient for RNA polymerase III recruitment and function. Unexpectedly, we found an interaction in vivo and in vitro between the TFIIIB-recruiting subunit of TFIIIC, tau131, and ABC10alpha, a small essential subunit common to the three forms of nuclear RNA polymerases. This interaction was mapped to the C-terminal region of ABC10alpha. A thermosensitive mutation in the C terminus region of ABC10alpha (rpc10-30) was found to be selectively suppressed by overexpression of a mutant form of tau131 (tau131-DeltaTPR2) that lacks the second TPR repeat. Remarkably, the rpc10-30 mutation weakened the ABC10alpha-tau131 interaction, and the suppressive mutation, tau131-DeltaTPR2 increased the interaction between the two proteins in the two-hybrid assay. These results point to the potential importance of a functional contact between TFIIIC and RNA polymerase III.
Collapse
Affiliation(s)
- H Dumay
- Service de Biochimie et de Génétique Moléculaire, Bâtiment 142, CEA/Saclay, Gif-sur-Yvette, F-91191 Cedex, France
| | | | | | | |
Collapse
|
10
|
Hsieh YJ, Wang Z, Kovelman R, Roeder RG. Cloning and characterization of two evolutionarily conserved subunits (TFIIIC102 and TFIIIC63) of human TFIIIC and their involvement in functional interactions with TFIIIB and RNA polymerase III. Mol Cell Biol 1999; 19:4944-52. [PMID: 10373544 PMCID: PMC84305 DOI: 10.1128/mcb.19.7.4944] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human transcription factor IIIC (hTFIIIC) is a multisubunit complex that mediates transcription of class III genes through direct recognition of promoters (for tRNA and virus-associated RNA genes) or promoter-TFIIIA complexes (for the 5S RNA gene) and subsequent recruitment of TFIIIB and RNA polymerase III. We describe the cognate cDNA cloning and characterization of two subunits (hTFIIIC63 and hTFIIIC102) that are present within a DNA-binding subcomplex (TFIIIC2) of TFIIIC and are related in structure and function to two yeast TFIIIC subunits (yTFIIIC95 and yTFIIIC131) previously shown to interact, respectively, with the promoter (A box) and with a subunit of yeast TFIIIB. hTFIIIC63 and hTFIIIC102 show parallel in vitro interactions with the homologous human TFIIIB and RNA polymerase III components, as well as additional interactions that may facilitate both TFIIIB and RNA polymerase III recruitment. These include novel interactions of hTFIIIC63 with hTFIIIC102, with hTFIIIB90, and with hRPC62, in addition to the hTFIIIC102-hTFIIIB90 and hTFIIIB90-hRPC39 interactions that parallel the previously described interactions in yeast. As reported for yTFIIIC131, hTFIIIC102 contains acidic and basic regions, tetratricopeptide repeats (TPRs), and a helix-loop-helix domain, and mutagenesis studies have implicated the TPRs in interactions both with hTFIIIC63 and with hTFIIIB90. These observations further document conservation from yeast to human of the structure and function of the RNA polymerase III transcription machinery, but in addition, they provide new insights into the function of hTFIIIC and suggest direct involvement in recruitment of both TFIIIB and RNA polymerase III.
Collapse
Affiliation(s)
- Y J Hsieh
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, New York 10021, USA
| | | | | | | |
Collapse
|
11
|
Manaud N, Arrebola R, Buffin-Meyer B, Lefebvre O, Voss H, Riva M, Conesa C, Sentenac A. A chimeric subunit of yeast transcription factor IIIC forms a subcomplex with tau95. Mol Cell Biol 1998; 18:3191-200. [PMID: 9584160 PMCID: PMC108901 DOI: 10.1128/mcb.18.6.3191] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/1998] [Accepted: 03/05/1998] [Indexed: 02/07/2023] Open
Abstract
The multisubunit yeast transcription factor IIIC (TFIIIC) is a multifunctional protein required for promoter recognition, transcription factor IIIB recruitment, and chromatin antirepression. We report the isolation and characterization of TFC7, an essential gene encoding the 55-kDa polypeptide, tau55, present in affinity-purified TFIIIC. tau55 is a chimeric protein generated by an ancient chromosomal rearrangement. Its C-terminal half is essential for cell viability and sufficient to ensure TFIIIC function in DNA binding and transcription assays. The N-terminal half is nonessential and highly similar to a putative yeast protein encoded on another chromosome and to a cyanobacterial protein of unknown function. Partial deletions of the N-terminal domain impaired tau55 function at a high temperature or in media containing glycerol or ethanol, suggesting a link between PolIII transcription and metabolic pathways. Interestingly, tau55 was found, together with TFIIIC subunit tau95, in a protein complex which was distinct from TFIIIC and which may play a role in the regulation of PolIII transcription, possibly in relation to cell metabolism.
Collapse
Affiliation(s)
- N Manaud
- Service de Biochimie et de Génétique Moléculaire, CEA/Saclay, F-91191 Gif-sur-Yvette Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Arrebola R, Manaud N, Rozenfeld S, Marsolier MC, Lefebvre O, Carles C, Thuriaux P, Conesa C, Sentenac A. Tau91, an essential subunit of yeast transcription factor IIIC, cooperates with tau138 in DNA binding. Mol Cell Biol 1998; 18:1-9. [PMID: 9418847 PMCID: PMC121441 DOI: 10.1128/mcb.18.1.1] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Transcription factor IIIC (TFIIIC) (or tau) is a large multisubunit and multifunctional factor required for transcription of all class III genes in Saccharomyces cerevisiae. It is responsible for promoter recognition and TFIIIB assembly. We report here the cloning and characterization of TFC6, an essential gene encoding the 91-kDa polypeptide, tau91, present in affinity-purified TFIIIC. Tau91 has a predicted molecular mass of 74 kDa. It harbors a central cluster of His and Cys residues and has basic and acidic amino acid regions, but it shows no specific similarity to known proteins or predicted open reading frames. The TFIIIC subunit status of tau91 was established by the following biochemical and genetic evidence. Antibodies to tau91 bound TFIIIC-DNA complexes in gel shift assays; in vivo, a B block-deficient U6 RNA gene (SNR6) harboring GAL4 binding sites was reactivated by fusing the GAL4 DNA binding domain to tau91; and a point mutation in TFC6 (tau91-E330K) was found to suppress the thermosensitive phenotype of a tfc3-G349E mutant affected in the B block binding subunit (tau138). The suppressor mutation alleviated the DNA binding and transcription defects of mutant TFIIIC in vitro. These results indicated that tau91 cooperates with tau138 for DNA binding. Recombinant tau91 by itself did not interact with a tRNA gene, although it showed a strong affinity for single-stranded DNA.
Collapse
Affiliation(s)
- R Arrebola
- Service de Biochemie et de Génétique Moléculaire, CEA/Saclay, Gif-sur-Yvette, France
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Lefebvre O, Rüth J, Sentenac A. A mutation in the largest subunit of yeast TFIIIC affects tRNA and 5 S RNA synthesis. Identification of two classes of suppressors. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)31663-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
14
|
Tapping R, Syroid D, Capone J. Upstream interactions of functional mammalian tRNA gene transcription complexes probed using a heterologous DNA-binding protein. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)31876-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
15
|
|
16
|
Conesa C, Swanson R, Schultz P, Oudet P, Sentenac A. On the subunit composition, stoichiometry, and phosphorylation of the yeast transcription factor TFIIIC/tau. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(17)46809-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
17
|
Willis IM. RNA polymerase III. Genes, factors and transcriptional specificity. EUROPEAN JOURNAL OF BIOCHEMISTRY 1993; 212:1-11. [PMID: 8444147 DOI: 10.1111/j.1432-1033.1993.tb17626.x] [Citation(s) in RCA: 174] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Recent studies on RNA polymerase III (pol III) gene transcription have provided a new awareness of the molecular complexity of this process. Fortunately, while the number of transcription components has been increasing, fundamental similarities have emerged regarding the function of eukaryotic promoter elements and the factors that bind them to form preinitiation complexes. Among these, the ability of transcription factor IIIB (TFIIIB) and pol III to transcribe the Saccharomyces cerevisiae U6 gene suggests that the concept of a minimal pol II promoter comprising a TATA box and an initiator region has a parallel in the pol III system. Furthermore, for each of the three classes of eukaryotic RNA polymerase, the assembly of transcription preinitiation complexes and, to some extent, the nature of these complexes appears to be more similar than was previously anticipated. This work highlights the novel functions and transcriptional properties of newly identified pol III genes, discusses the diversity of pol III promoter structures and presents the notion that the exclusive use of extragenic promoters by some pol III genes (so-called type-3 genes) may have evolved since the divergence of yeast and higher eukaryotes. Additionally, recent progress is reviewed on the identification and cloning of subunits for TFIIIC and TFIIIB. Particular emphasis is given to two components of TFIIIB, the TATA-binding protein and a protein with TFIIB homology (PCF4), since the properties of these molecules suggest a model whereby the polymerase specificity of transcription complexes is determined.
Collapse
Affiliation(s)
- I M Willis
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461
| |
Collapse
|
18
|
Abstract
A suppressor gene was identified, which in high copy number rescues a temperature-sensitive mutation in yeast TATA-binding protein (TBP). Suppression was allele specific because the suppressor did not rescue the temperature-sensitive phenotype of another TBP mutant. This suppressor gene encodes a 596-amino-acid protein of which the amino-terminal half is homologous to the Pol II-specific factor TFIIB. Disruption of this gene, termed BRF1, showed it to be essential for growth of yeast. Deletion of sequences at either the amino or carboxyl terminus of BRF1 gave both temperature- and cold-sensitive phenotypes. These temperature- and cold-sensitive strains were used to prepare extracts deficient in BRF1 activity and were tested for transcriptional activity by RNA polymerases I, II, and III in vitro. BRF1-deficient extracts are defective in Pol III transcription and can be reconstituted for Pol III transcription by the addition of recombinant BRF1. Western analysis shows that BRF1 is present in TFIIIB but not the TFIIIC fraction, suggesting that it is a component of TFIIIB. We propose that BRF1 plays a role in Pol III initiation analogous to the role played by TFIIB for Pol II in its interaction with TBP and polymerase. The identification of a Pol III-specific TFIIB-like factor extends the previously noted similarity of transcriptional initiation by the three nuclear polymerases.
Collapse
Affiliation(s)
- T Colbert
- Fred Hutchinson Cancer Research Center, Seattle, Washington 98104-2092
| | | |
Collapse
|