1
|
The Ferredoxin-Like Protein FerR Regulates PrbP Activity in Liberibacter asiaticus. Appl Environ Microbiol 2019; 85:AEM.02605-18. [PMID: 30552192 DOI: 10.1128/aem.02605-18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 12/08/2018] [Indexed: 12/26/2022] Open
Abstract
In Liberibacter asiaticus, PrbP is an important transcriptional accessory protein that regulates gene expression through interactions with the RNA polymerase β-subunit and a specific sequence on the promoter region. The constitutive expression of prbP observed upon chemical inactivation of PrbP-DNA interactions in vivo indicated that the expression of prbP was not autoregulated at the level of transcription. This observation suggested that a modulatory mechanism via protein-protein interactions may be involved. In silico genome association analysis identified FerR (CLIBASIA_01505), a putative ferredoxin-like protein, as a PrbP-interacting protein. Using a bacterial two-hybrid system and immunoprecipitation assays, interactions between PrbP and FerR were confirmed. In vitro transcription assays were used to show that FerR can increase the activity of PrbP by 16-fold when present in the PrbP-RNA polymerase reaction mixture. The FerR protein-protein interaction surface was predicted by structural modeling and followed by site-directed mutagenesis. Amino acids V20, V23, and C40 were identified as the most important residues in FerR involved in the modulation of PrbP activity in vitro The regulatory mechanism of FerR abundance was examined at the transcription level. In contrast to prbP of L. asiaticus (prbP Las), mRNA levels of ferR of L. asiaticus (ferR Las) are induced by an increase in osmotic pressure. The results of this study revealed that the activity of the transcriptional activator PrbPLas is modulated via interactions with FerRLas The induction of ferR Las expression by osmolarity provides insight into the mechanisms of adjusting gene expression in response to host environmental signals in L. asiaticus IMPORTANCE The rapid spread and aggressive progression of huanglongbing (HLB) in the major citrus-producing areas have raised global recognition of and vigilance to this disease. As a result, the causative agent, Liberibacter asiaticus, has been investigated from various perspectives. However, gene expression regulatory mechanisms that are important for the survival and persistence of this intracellular pathogen remain largely unexplored. PrbP is a transcriptional accessory protein important for L. asiaticus survival in the plant host. In this study, we investigated the interactions between PrbP in L. asiaticus (PrbPLas) and a ferredoxin-like protein (FerR) in L. asiaticus, FerRLas We show that the presence of FerR stabilizes and augments the activity of PrbPLas In addition, we demonstrate that the expression of ferR is induced by increases in osmolarity in Liberibacter crescens Altogether, these results suggest that FerRLas and PrbPLas may play important roles in the regulation of gene expression in response to changing environmental signals during L. asiaticus infection in the citrus host.
Collapse
|
2
|
Abstract
The biological reduction of nitrogen gas to ammonia is limited to a select group of nitrogen-fixing prokaryotes. While nitrogenase is the catalyst of nitrogen fixation in these biological systems, a consortium of additional gene products is required for the synthesis, activation, and catalytic competency of this oxygen-sensitive metalloenzyme. Thus, the biochemical complexity of this process often requires functional studies and isolation of gene products from the native nitrogen-fixing organisms. The strict aerobe Azotobacter vinelandii is the best-studied model bacterium among diazotrophs. This chapter provides a description of procedures for targeted genomic manipulation and isolation of A. vinelandii strains. These methods have enabled identification and characterization of gene products with roles in nitrogen fixation and other related aspects of metabolism. The ability to modify and control expression levels of targeted sequences provides a biotechnological tool to uncover molecular details associated with nitrogen fixation, as well as to exploit this model system as a host for expression of oxygen-sensitive proteins.
Collapse
|
3
|
Abstract
Advances in sequencing technology in the past decade have enabled the sequencing of genomes of thousands of organisms including diazotrophs. Genomics have enabled thorough analysis of the gene organization of nitrogen-fixing species, the identification of new genes involved in nitrogen fixation, and the identification of new diazotrophic species. This chapter reviews key characteristics of nitrogen-fixing genomes and methods to identify and analyze genomes of new diazotrophs using genome scanning. This chapter refers to Azotobacter vinelandii, a well-studied nitrogen-fixing organism, as a model for studying nitrogen-fixing genomes. We discuss the main nitrogen fixation genes as well as accessory genes that contribute to diazotrophy. We also review approaches that can be used to modify genomes in order to study nitrogen fixation at the genetic, biochemical, and biophysical level.
Collapse
|
4
|
Yeom S, Yeom J, Park W. Molecular characterization of FinR, a novel redox-sensing transcriptional regulator in Pseudomonas putida KT2440. Microbiology (Reading) 2010; 156:1487-1496. [DOI: 10.1099/mic.0.034181-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
FinR is required for the induction of fpr (ferredoxin-NADP+ reductase) under superoxide stress conditions in Pseudomonas putida. Many proteobacteria harbour FinR homologues in their genome as a putative LysR-type protein. Three cysteine residues (at positions 150, 239 and 289 in P. putida FinR) are conserved in all FinR homologues. When these conserved cysteines, along with two other cysteine residues present in FinR, were individually mutated to serines, the FinR remained active, unlike SoxR and OxyR in Escherichia coli. The results of our in vitro DNA-binding assay with cellular extracts showed that FinR binds directly to the fpr promoter region. In order to identify the FinR functional domain for sensing superoxide stress, we employed random and site-directed mutagenesis of FinR. Among 18 single amino acid mutants, three mutants (T39A, R194A and E225A) abolished fpr induction without any alteration of their DNA-binding ability, whereas other mutants also abrogated their DNA-binding abilities. Interestingly, two mutants (L215P and D51A) appeared to be constitutively active, regardless of superoxide stress conditions. Ferrous iron depletion, ferric iron addition and fdxA (ferredoxin) gene deletion also participate in the regulation of fpr. These data indicate that FinR has unusual residues for redox sensing and that the redox-sensing mechanism of FinR differs from the well-known mechanisms of OxyR and SoxR.
Collapse
Affiliation(s)
- Sujin Yeom
- Division of Environmental Science and Ecological Engineering, Korea University, Anam-Dong 5 Ga 136-713, Seoul, Republic of Korea
| | - Jinki Yeom
- Division of Environmental Science and Ecological Engineering, Korea University, Anam-Dong 5 Ga 136-713, Seoul, Republic of Korea
| | - Woojun Park
- Division of Environmental Science and Ecological Engineering, Korea University, Anam-Dong 5 Ga 136-713, Seoul, Republic of Korea
| |
Collapse
|
5
|
Heeb S, Blumer C, Haas D. Regulatory RNA as mediator in GacA/RsmA-dependent global control of exoproduct formation in Pseudomonas fluorescens CHA0. J Bacteriol 2002; 184:1046-56. [PMID: 11807065 PMCID: PMC134805 DOI: 10.1128/jb.184.4.1046-1056.2002] [Citation(s) in RCA: 266] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Pseudomonas fluorescens CHA0, an antagonist of root-pathogenic fungi, the GacS/GacA two-component system tightly controls the expression of antifungal secondary metabolites and exoenzymes at a posttranscriptional level, involving the RNA-binding protein and global regulator of secondary metabolism RsmA. This protein was purified from P. fluorescens, and RNA bound to it was converted to cDNA, which served as a probe to isolate the corresponding chromosomal locus, rsmZ. This gene encoded a regulatory RNA of 127 nucleotides and a truncated form lacking 35 nucleotides at the 3' end. Expression of rsmZ depended on GacA, increased with increasing population density, and was stimulated by the addition of a solvent-extractable extracellular signal produced by strain CHA0 at the end of exponential growth. This signal appeared to be unrelated to N-acyl-homoserine lactones. A conserved upstream element in the rsmZ promoter, but not the stress sigma factor RpoS, was involved in rsmZ expression. Overexpression of rsmZ effectively suppressed the negative effect of gacS and gacA mutations on target genes, i.e., hcnA (for hydrogen cyanide synthase) and aprA (for the major exoprotease). Mutational inactivation of rsmZ resulted in reduced expression of these target genes in the presence of added signal. Overexpression of rsmA had a similar, albeit stronger negative effect. These results support a model in which GacA upregulates the expression of regulatory RNAs, such as RsmZ of strain CHA0, in response to a bacterial signal. By a titration effect, RsmZ may then alleviate the repressing activity of RsmA on the expression of target mRNAs.
Collapse
Affiliation(s)
- Stephan Heeb
- Laboratoire de Biologie Microbienne, Université de Lausanne, CH-1015 Lausanne, Switzerland
| | | | | |
Collapse
|
6
|
Jung YS, Bonagura CA, Tilley GJ, Gao-Sheridan HS, Armstrong FA, Stout CD, Burgess BK. Structure of C42D Azotobacter vinelandii FdI. A Cys-X-X-Asp-X-X-Cys motif ligates an air-stable [4Fe-4S]2+/+ cluster. J Biol Chem 2000; 275:36974-83. [PMID: 10961993 DOI: 10.1074/jbc.m004947200] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
All naturally occurring ferredoxins that have Cys-X-X-Asp-X-X-Cys motifs contain [4Fe-4S](2+/+) clusters that can be easily and reversibly converted to [3Fe-4S](+/0) clusters. In contrast, ferredoxins with unmodified Cys-X-X-Cys-X-X-Cys motifs assemble [4Fe-4S](2+/+) clusters that cannot be easily interconverted with [3Fe-4S](+/0) clusters. In this study we changed the central cysteine of the Cys(39)-X-X-Cys(42)-X-X-Cys(45) of Azotobacter vinelandii FdI, which coordinates its [4Fe-4S](2+/+) cluster, into an aspartate. UV-visible, EPR, and CD spectroscopies, metal analysis, and x-ray crystallography show that, like native FdI, aerobically purified C42D FdI is a seven-iron protein retaining its [4Fe-4S](2+/+) cluster with monodentate aspartate ligation to one iron. Unlike known clusters of this type the reduced [4Fe-4S](+) cluster of C42D FdI exhibits only an S = 1/2 EPR with no higher spin signals detected. The cluster shows only a minor change in reduction potential relative to the native protein. All attempts to convert the cluster to a 3Fe cluster using conventional methods of oxygen or ferricyanide oxidation or thiol exchange were not successful. The cluster conversion was ultimately accomplished using a new electrochemical method. Hydrophobic and electrostatic interaction and the lack of Gly residues adjacent to the Asp ligand explain the remarkable stability of this cluster.
Collapse
Affiliation(s)
- Y S Jung
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697, USA
| | | | | | | | | | | | | |
Collapse
|
7
|
Tindale AE, Mehrotra M, Ottem D, Page WJ. Dual regulation of catecholate siderophore biosynthesis in Azotobacter vinelandii by iron and oxidative stress. MICROBIOLOGY (READING, ENGLAND) 2000; 146 ( Pt 7):1617-1626. [PMID: 10878126 DOI: 10.1099/00221287-146-7-1617] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Azotobacter vinelandii forms both catecholate and azotobactin siderophores during iron-limited growth. Azotobactin is repressed by about 3 microM iron, but catecholate siderophore synthesis continues up to a maximum of 10 microM iron. This suggests that catecholate siderophore synthesis is regulated by other factors in addition to the ferric uptake repressor (Fur). In this study the first gene required for catecholate siderophore biosynthesis, which encodes an isochorismate synthase (csbC), was isolated. The region upstream of csbC contained a typical sigma(70) promoter, with an iron-box overlapping the -35 sequence and a Sox-box (Box 1) overlapping the -10 sequence. Another Sox-box was found further upstream of the -35 sequence (Box 2). Also upstream, an unidentified gene (orfA) was detected which would be transcribed from a divergent promoter, also controlled by an iron-box. The activity of csbC and a csbC::luxAB fusion was negatively regulated by iron availability and upregulated by increased aeration and by superoxide stress. The iron-box in the csbC promoter was 74% identical to the Fur-binding consensus sequence and bound the Fur protein of Escherichia coli with relatively high affinity. Both Box 1 and Box 2 were in good agreement with the consensus sequence for binding the SoxS protein of E. coli and Box 1 was in very good agreement with the Sox-box found in the fpr promoter of A. vinelandii, which is also regulated by superoxide stress. Both Sox-boxes bound a protein found in A. vinelandii cell extracts, with Box 1 exhibiting the higher binding affinity. The Sox protein identified in this assay appeared to be constitutive, rather than inducible by superoxide stress. This indicates that the Sox response in A. vinelandii is different from that in E. coli. These data support the hypothesis that catecholate siderophore biosynthesis is under dual control, repressed by a Fur-iron complex and activated by another DNA-binding protein in response to superoxide stress. The interaction between these regulators is likely to account for the delay in ferric repression of catecholate siderophore production, since these siderophores have an additional role to play in the protection of iron-limited cells against oxidative damage.
Collapse
Affiliation(s)
- Anne E Tindale
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2E91
| | - Manisha Mehrotra
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2E91
| | - Derek Ottem
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2E91
| | - William J Page
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2E91
| |
Collapse
|
8
|
Cornish AS, Page WJ. Role of molybdate and other transition metals in the accumulation of protochelin by Azotobacter vinelandii. Appl Environ Microbiol 2000; 66:1580-6. [PMID: 10742245 PMCID: PMC92026 DOI: 10.1128/aem.66.4.1580-1586.2000] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/1999] [Accepted: 01/24/2000] [Indexed: 11/20/2022] Open
Abstract
Both molybdate and iron are metals that are required by the obligately aerobic organism Azotobacter vinelandii to survive in the nutrient-limited conditions of its natural soil environment. Previous studies have shown that a high concentration of molybdate (1 mM) affects the formation of A. vinelandii siderophores such that the tricatecholate protochelin is formed to the exclusion of the other catecholate siderophores, azotochelin and aminochelin. It has been shown previously that molybdate combines readily with catecholates and interferes with siderophore function. In this study, we found that the manner in which each catecholate siderophore interacted with molybdate was consistent with the structure and binding potential of the siderophore. The affinity that each siderophore had for molybdate was high enough that stable molybdo-siderophore complexes were formed but low enough that the complexes were readily destabilized by Fe(3+). Thus, competition between Fe(3+) and molybdate did not appear to be the primary cause of protochelin accumulation; in addition, we determined that protochelin accumulated in the presence of vanadate, tungstate, Zn(2+), and Mn(2+). We found that all five of these metal ions partially inhibited uptake of (55)Fe-protochelin and (55)Fe-azotochelin complexes. Also, each of these metal ions partially inhibited the activity of ferric reductase, an enzyme important in the deferration of ferric siderophores. Our results suggest that protochelin accumulates in the presence of molybdate because protochelin uptake and conversion into its component parts, azotochelin and aminochelin, are inhibited by interference with ferric reductase.
Collapse
Affiliation(s)
- A S Cornish
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2E9
| | | |
Collapse
|
9
|
Jung YS, Gao-Sheridan HS, Christiansen J, Dean DR, Burgess BK. Purification and biophysical characterization of a new [2Fe-2S] ferredoxin from Azotobacter vinelandii, a putative [Fe-S] cluster assembly/repair protein. J Biol Chem 1999; 274:32402-10. [PMID: 10542283 DOI: 10.1074/jbc.274.45.32402] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
During the purification of site-directed mutant variants of Azotobacter vinelandii ferredoxin I (FdI), a pink protein, which was not observed in native FdI preparations, appeared to associate specifically with variants that had mutations in ligands to FdI [Fe-S] clusters. That protein, which we designate FdIV, has now been purified. NH(2)-terminal sequence analysis revealed that the protein is the product of a previously described gene, herein designated fdxD, that is in the A. vinelandii iscSUA operon that encodes proteins involved in iron-sulfur cluster assembly or repair. An apoprotein molecular mass of 12,434.03 +/- 0.21 Da was determined by mass spectrometry consistent with the known gene sequence. The monomeric protein was shown to contain a single [2Fe-2S](2+/+) cluster by UV/visible, CD, and EPR spectroscopies with a reduction potential of -344 mV versus the standard hydrogen electrode. When overexpressed in Escherichia coli, recombinant FdIV holoprotein was successfully assembled. However, the polypeptide of the recombinant protein was modified in some way such that the apoprotein molecular mass increased by 52 Da. Antibodies raised against FdIV and EPR spectroscopy were used to examine the relative levels of FdIV and FdI in various A. vinelandii strains leading to the conclusion that FdIV levels appear to be specifically increased under conditions where another protein, NADPH:ferredoxin reductase is also up-regulated. In that case, the fpr gene is known to be activated in response to oxidative stress. This suggests that the fdxD gene and other genes in the iron-sulfur cluster assembly or repair operon might be similarly up-regulated in response to oxidative stress.
Collapse
Affiliation(s)
- Y S Jung
- Department of Molecular Biology, University of California, Irvine, California 92697, USA
| | | | | | | | | |
Collapse
|
10
|
Regnström K, Sauge-Merle S, Chen K, Burgess BK. In Azotobacter vinelandii, the E1 subunit of the pyruvate dehydrogenase complex binds fpr promoter region DNA and ferredoxin I. Proc Natl Acad Sci U S A 1999; 96:12389-93. [PMID: 10535932 PMCID: PMC22927 DOI: 10.1073/pnas.96.22.12389] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/1999] [Accepted: 08/25/1999] [Indexed: 11/18/2022] Open
Abstract
In Azotobacter vinelandii, deletion of the fdxA gene that encodes a well characterized seven-iron ferredoxin (FdI) is known to lead to overexpression of the FdI redox partner, NADPH:ferredoxin reductase (FPR). Previous studies have established that this is an oxidative stress response in which the fpr gene is transcriptionally activated to the same extent in response to either addition of the superoxide propagator paraquat to the cells or to fdxA deletion. In both cases, the activation occurs through a specific DNA sequence located upstream of the fpr gene. Here, we report the identification of the A. vinelandii protein that binds specifically to the paraquat activatable fpr promoter region as the E1 subunit of the pyruvate dehydrogenase complex (PDHE1), a central enzyme in aerobic respiration. Sequence analysis shows that PDHE1, which was not previously suspected to be a DNA-binding protein, has a helix-turn-helix motif. The data presented here further show that FdI binds specifically to the DNA-bound PDHE1.
Collapse
Affiliation(s)
- K Regnström
- Department of Molecular Biology, University of California, Irvine, CA 92697-3900, USA
| | | | | | | |
Collapse
|
11
|
Jung YS, Roberts VA, Stout CD, Burgess BK. Complex formation between Azotobacter vinelandii ferredoxin I and its physiological electron donor NADPH-ferredoxin reductase. J Biol Chem 1999; 274:2978-87. [PMID: 9915836 DOI: 10.1074/jbc.274.5.2978] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In Azotobacter vinelandii, deletion of the fdxA gene, which encodes ferredoxin I (FdI), leads to activation of the expression of the fpr gene, which encodes NADPH-ferredoxin reductase (FPR). In order to investigate the relationship of these two proteins further, the interactions of the two purified proteins have been examined. AvFdI forms a specific 1:1 cross-linked complex with AvFPR through ionic interactions formed between the Lys residues of FPR and Asp/Glu residues of FdI. The Lys in FPR has been identified as Lys258, a residue that forms a salt bridge with one of the phosphate oxygens of FAD in the absence of FdI. UV-Vis and circular dichroism data show that on binding FdI, the spectrum of the FPR flavin is hyperchromatic and red-shifted, confirming the interaction region close to the FAD. Cytochrome c reductase assays and electron paramagnetic resonance data show that electron transfer between the two proteins is pH-dependent and that the [3Fe-4S]+ cluster of FdI is specifically reduced by NADPH via FPR, suggesting that the [3Fe-4S] cluster is near FAD in the complex. To further investigate the FPR:FdI interaction, the electrostatic potentials for each protein were calculated. Strongly negative regions around the [3Fe-4S] cluster of FdI are electrostatically complementary with a strongly positive region overlaying the FAD of FPR, centered on Lys258. These proposed interactions of FdI with FPR are consistent with cross-linking, peptide mapping, spectroscopic, and electron transfer data and strongly support the suggestion that the two proteins are physiological redox partners.
Collapse
Affiliation(s)
- Y S Jung
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697, USA
| | | | | | | |
Collapse
|
12
|
Johnson MK, Duderstadt RE, Duin EC. Biological and Synthetic [Fe3S4] Clusters. ADVANCES IN INORGANIC CHEMISTRY 1999. [DOI: 10.1016/s0898-8838(08)60076-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
13
|
Gao-Sheridan HS, Kemper MA, Khayat R, Tilley GJ, Armstrong FA, Sridhar V, Prasad GS, Stout CD, Burgess BK. A T14C variant of Azotobacter vinelandii ferredoxin I undergoes facile [3Fe-4S]0 to [4Fe-4S]2+ conversion in vitro but not in vivo. J Biol Chem 1998; 273:33692-701. [PMID: 9837955 DOI: 10.1074/jbc.273.50.33692] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
[4Fe-4S]2+/+ clusters that are ligated by Cys-X-X-Cys-X-X-Cys sequence motifs share the general feature of being hard to convert to [3Fe-4S]+/0 clusters, whereas those that contain a Cys-X-X-Asp-X-X-Cys motif undergo facile and reversible cluster interconversion. Little is known about the factors that control the in vivo assembly and conversion of these clusters. In this study we have designed and constructed a 3Fe to 4Fe cluster conversion variant of Azotobacter vinelandii ferredoxin I (FdI) in which the sequence that ligates the [3Fe-4S] cluster in native FdI was altered by converting a nearby residue, Thr-14, to Cys. Spectroscopic and electrochemical characterization shows that when purified in the presence of dithionite, T14C FdI is an O2-sensitive 8Fe protein. Both the new and the indigenous clusters have reduction potentials that are significantly shifted compared with those in native FdI, strongly suggesting a significantly altered environment around the clusters. Interestingly, whole cell EPR have revealed that T14C FdI exists as a 7Fe protein in vivo. This 7Fe form of T14C FdI is extremely similar to native FdI in its spectroscopic, electrochemical, and structural features. However, unlike native FdI which does not undergo facile cluster conversion, the 7Fe form T14C FdI quickly converts to the 8Fe form with a high efficiency under reducing conditions.
Collapse
Affiliation(s)
- H S Gao-Sheridan
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697-3900, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Sridhar Prasad G, Kresge N, Muhlberg AB, Shaw A, Jung YS, Burgess BK, Stout CD. The crystal structure of NADPH:ferredoxin reductase from Azotobacter vinelandii. Protein Sci 1998; 7:2541-9. [PMID: 9865948 PMCID: PMC2143901 DOI: 10.1002/pro.5560071207] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
NADPH:ferredoxin reductase (AvFPR) is involved in the response to oxidative stress in Azotobacter vinelandii. The crystal structure of AvFPR has been determined at 2.0 A resolution. The polypeptide fold is homologous with six other oxidoreductases whose structures have been solved including Escherichia coli flavodoxin reductase (EcFldR) and spinach, and Anabaena ferredoxin:NADP+ reductases (FNR). AvFPR is overall most homologous to EcFldR. The structure is comprised of a N-terminal six-stranded antiparallel beta-barrel domain, which binds FAD, and a C-terminal five-stranded parallel beta-sheet domain, which binds NADPH/NADP+ and has a classical nucleotide binding fold. The two domains associate to form a deep cleft where the NADPH and FAD binding sites are juxtaposed. The structure displays sequence conserved motifs in the region surrounding the two dinucleotide binding sites, which are characteristic of the homologous enzymes. The folded over conformation of FAD in AvFPR is similar to that in EcFldR due to stacking of Phe255 on the adenine ring of FAD, but it differs from that in the FNR enzymes, which lack a homologous aromatic residue. The structure of AvFPR displays three unique features in the environment of the bound FAD. Two features may affect the rate of reduction of FAD: the absence of an aromatic residue stacked on the isoalloxazine ring in the NADPH binding site; and the interaction of a carbonyl group with N10 of the flavin. Both of these features are due to the substitution of a conserved C-terminal tyrosine residue with alanine (Ala254) in AvFPR. An additional unique feature may affect the interaction of AvFPR with its redox partner ferredoxin I (FdI). This is the extension of the C-terminus by three residues relative to EcFldR and by four residues relative to FNR. The C-terminal residue, Lys258, interacts with the AMP phosphate of FAD. Consequently, both phosphate groups are paired with a basic group due to the simultaneous interaction of the FMN phosphate with Arg51 in a conserved FAD binding motif. The fourth feature, common to homologous oxidoreductases, is a concentration of 10 basic residues on the face of the protein surrounding the active site, in addition to Arg51 and Lys258.
Collapse
Affiliation(s)
- G Sridhar Prasad
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California 92037-1093, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Cornish AS, Page WJ. The catecholate siderophores of Azotobacter vinelandii: their affinity for iron and role in oxygen stress management. Microbiology (Reading) 1998; 144:1747-1754. [DOI: 10.1099/00221287-144-7-1747] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In iron-limited medium, Azotobacter vinelandii strain UW produces three catecholate siderophores: the tricatecholate protochelin, the dicatecholate azotochelin and the monocatecholate aminochelin. Each siderophore was found to bind Fe3+ preferentially to Fe2+, in a ligand:Fe ratio of 1:1, 3:2 and 3:1, respectively. Protochelin had the highest affinity for Fe3+, with a calculated proton-independent solubility coefficient of 10439, comparable to ferrioxamine B. Iron-limited wild-type strain UW grown under N2-fixing or nitrogen-sufficient conditions hyper-produced catecholate siderophores in response to oxidative stress caused by high aeration. In addition, superoxide dismutase activity was greatly diminished in iron-limited cells, whereas catalase activity was maintained. The ferredoxin I (Fdl)-negative A. vinelandii strain LM100 also hyper-produced catecholates, especially protochelin, under oxidative stress conditions, but had decreased activities of both superoxide dismutase and catalase, and was about 10 times more sensitive to paraquat than strain UW. Protochelin and azotochelin held Fe3+ firmly enough to prevent its reduction by.O-
2 and did not promote the generation of hydroxyl radical by the Fenton reaction. Ferric-aminochelin was unable to resist reduction by O-
2 and was a Fenton catalyst. These data suggest that under iron-limited conditions, A. vinelandii suffers oxidative stress caused by.O-
2. The catecholate siderophores azotochelin, and especially protochelin, are hyper-produced to offer chemical protection from oxidative damage catalysed by.O-
2 and Fe3+. The results are also consistent with Fdl being required for oxidative stress management in A. vinelandii.
Collapse
|
16
|
Gao-Sheridan HS, Pershad HR, Armstrong FA, Burgess BK. Discovery of a novel ferredoxin from Azotobacter vinelandii containing two [4Fe-4S] clusters with widely differing and very negative reduction potentials. J Biol Chem 1998; 273:5514-9. [PMID: 9488675 DOI: 10.1074/jbc.273.10.5514] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ferredoxins that contain 2[4Fe-4S]2+/+ clusters can be divided into two classes. The "clostridial-type" ferredoxins have two Cys-Xaa-Xaa-Cys-Xaa-Xaa-Cys-Xaa-Xaa-Xaa-Cys-Pro motifs. The "chromatium-type" ferredoxins have one motif of that type and one more unusual Cys-Xaa-Xaa-Cys-Xaa7-9-Cys-Xaa-Xaa-Xaa-Cys-Pro motif. Here we report the purification of a novel ferredoxin (FdIII) from Azotobacter vinelandii which brings to 12 the number of small [Fe-S] proteins that have now been reported from this organism. NH2-terminal sequencing of the first 56 amino acid residues shows that FdIII is a chromatium-type ferredoxin with 77% identity and 88% similarity to Chromatium vinosum ferredoxin. Studies of the purified protein by matrix-assisted laser desorption ionization-time of flight mass spectroscopy, iron analysis, absorption, circular dichroism, and electron paramagnetic resonance spectroscopies show that FdIII contains 2[4Fe-4S]2+/+ clusters in a 9,220-Da polypeptide. All 2[4Fe-4S]2+/+ ferredoxins that have been studied to date, including C. vinosum ferredoxin, are reported to have extremely similar or identical reduction potentials for the two clusters. In contrast, electrochemical characterization of FdIII clearly establishes that the two [4Fe-4S]2+/+ clusters have very different and highly negative reduction potentials of -486 mV and -644 mV versus the standard hydrogen electrode.
Collapse
Affiliation(s)
- H S Gao-Sheridan
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697-3900, USA
| | | | | | | |
Collapse
|
17
|
Kemper MA, Stout CD, Lloyd SJ, Prasad GS, Fawcett SE, Armstrong FA, Shen B, Burgess BK, Lloyd SE, Fawcett S. Y13C Azotobacter vinelandii ferredoxin I. A designed [Fe-S] ligand motif contains a cysteine persulfide. J Biol Chem 1997; 272:15620-7. [PMID: 9188450 DOI: 10.1074/jbc.272.25.15620] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Ferredoxins that contain [4Fe-4S]2+/+ clusters often obtain three of their four cysteine ligands from a highly conserved CysXXCysXXCys sequence motif. Little is known about the in vivo assembly of these clusters and the role that this sequence motif plays in that process. In this study, we have used structure as a guide in attempts to direct the formation of a [4Fe-4S]2+/+ in the [3Fe-4S]+/0 location of native (7Fe) Azotobacter vinelandii ferredoxin I (AvFdI) by providing the correct three-dimensional orientation of cysteine ligands without introducing a CysXXCysXXCys motif. Tyr13 of AvFdI occupies the position of the fourth ligating cysteine in the homologous and structurally characterized 8Fe ferredoxin from Peptococcus aerogenes and a Y13C variant of AvFdI could be easily modeled as an 8Fe protein. However, characterization of purified Y13C FdI by UV-visible spectra, circular dichroism, electron paramagnetic resonance spectroscopies, and by x-ray crystallography revealed that the protein failed to use the introduced cysteine as a ligand and retained its [3Fe-4S]+/0 cluster. Further, electrochemical characterization showed that the redox potential and pH behavior of the cluster were unaffected by the substitution of Tyr by Cys. Although Y13C FdI is functional in vivo it does differ significantly from native FdI in that it is extremely unstable in the reduced state possibly due to increased solvent exposure of the [3Fe-4S]0 cluster. Surprisingly, the x-ray structure showed that the introduced cysteine was modified to become a persulfide. This modification may have occurred in vivo via the action of NifS, which is known to be expressed under the growth conditions used. It is interesting to note that neither of the two free cysteines present in FdI was modified. Thus, if NifS is involved in modifying the introduced cysteine there must be specificity to the reaction.
Collapse
Affiliation(s)
- M A Kemper
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697-3900, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Yannone SM, Burgess BK. Identification of a palindromic sequence that is responsible for the up-regulation of NAPDH-ferredoxin reductase in a ferredoxin I deletion strain of Azotobacter vinelandii. J Biol Chem 1997; 272:14454-8. [PMID: 9162086 DOI: 10.1074/jbc.272.22.14454] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Azotobacter vinelandii ferredoxin I (AvFdI) is one member of a class of 7Fe ferredoxins found in a variety of organisms that are all capable of aerobic growth. Disruption of the fdxA gene, which encodes AvFdI, leads to overexpression of its redox partner, NADPH-ferredoxin reductase (FPR). In this study the mechanism of FdI-mediated regulation of FPR was investigated. Northern analysis has shown that regulation is at the level of fpr transcription, the start site for transcription has been identified, and it is preceded by a canonical sigma 70-type bacterial promoter. Gel mobility shift assays show that there is a putative regulatory protein in A. vinelandii that binds specifically upstream of the -35 region. That protein is not AvFdI. A palindromic sequence was identified as a putative binding site, and randomization of that sequence completely eliminates binding of the putative regulatory protein. A luciferase reporter gene was placed under control of the A. vinelandii fpr promoter and introduced into wild type and FdI- strains of A. vinelandii. Luciferase activity was enhanced 7-fold in the FdI- mutant relative to the wild type. Alteration of the palindromic sequence reduced the luciferase levels in the FdI- strain to those of the wild type, demonstrating that FdI regulates FPR through the palindrome and that the reaction is an activation rather than a repression. The identified palindrome is approximately 50% identical to the SoxS binding site upstream of Escherichia coli fpr, suggesting that A. vinelandii may have a SoxS-like regulatory system and that the function of FdI might be to specifically inactivate that system.
Collapse
Affiliation(s)
- S M Yannone
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697-3900, USA
| | | |
Collapse
|
19
|
Ishikawa Y, Yoch DC. Amino acid sequence of ferredoxin II from the phototroph Rhodospirillum rubrum: Characteristics of a 7Fe ferredoxin. PHOTOSYNTHESIS RESEARCH 1995; 46:371-376. [PMID: 24301605 DOI: 10.1007/bf00020453] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/1995] [Accepted: 05/25/1995] [Indexed: 06/02/2023]
Abstract
The complete sequence of amino acids of ferredoxin II (FdII) from Rhodospirillum rubrum was determined by repetitive Edman degradation using pyridylethylated-ferredoxin and oxidized, denatured ferredoxin. Peptides derived from trypsin, pepsin, Glu-C endoproteinase, Arg-C endoproteinase, tryptophan specific cleavage and partial acid hydrolysis and C-terminal sequence from carboxypeptidase digestion were used to construct the total sequence. RrFdII is a polypeptide of 104 amino acids having a calculated molecular weight of 11556 excluding the iron and sulfur atoms. The complete amino acid sequence was: PYVVTENCIKCKYQDCVEVCPVDCFYEGENFLVINPDECIDCGVCNPECPAEAIAGKWLEINRKFADLWPNITRKGPAL ADADDWKDKPDKTGLLSENPGKGTV. Sequence comparisons, EPR characteristics and iron analyses indicate that RrFdII has structural features in common with ferredoxins containing [3Fe-4S], [4Fe-4S] centers. Of 104 amino acids, 60 (58%) including all 9 cysteines, are found in identical locations in the 7Fe ferredoxin prototype, Azotobacter vinelandii FdI.
Collapse
Affiliation(s)
- Y Ishikawa
- Department of Chemistry and Biochemistry, University of South Carolina, 29208, Columbia, South Carolina, USA
| | | |
Collapse
|
20
|
Isas JM, Yannone SM, Burgess BK. Azotobacter vinelandii NADPH:ferredoxin reductase cloning, sequencing, and overexpression. J Biol Chem 1995; 270:21258-63. [PMID: 7673160 DOI: 10.1074/jbc.270.36.21258] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Azotobacter vinelandii ferredoxin I (AvFdI) controls the expression of another protein that was originally designated Protein X. Recently we reported that Protein X is a NADPH-specific flavoprotein that binds specifically to FdI (Isas, J.M., and Burgess, B.K. (1994) J. Biol. Chem. 269, 19404-19409). The gene encoding this protein has now been cloned and sequenced. Protein X is 33% identical and has an overall 53% similarity with the fpr gene product from Escherichia coli that encodes NADPH:ferredoxin reductase. On the basis of this similarity and the similarity of the physical properties of the two proteins, we now designate Protein X as A. vinelandii NADPH:ferredoxin reductase and its gene as the fpr gene. The protein has been overexpressed in its native background in A. vinelandii by using the broad host range multicopy plasmid, pKT230. In addition to being regulated by FdI, the fpr gene product is overexpressed when A. vinelandii is grown under N2-fixing conditions even though the fpr gene is not preceded by a nif specific promoter. By analogy to what is known about fpr expression in E. coli, we propose that FdI may exert its regulatory effect on fpr by interacting with the SoxRS regulon.
Collapse
Affiliation(s)
- J M Isas
- Department of Molecular Biology and Biochemistry, University of California, Irvine 92717, USA
| | | | | |
Collapse
|
21
|
Armengaud J, Gaillard J, Forest E, Jouanneau Y. Characterization of a 2[4Fe-4S] ferredoxin obtained by chemical insertion of the Fe-S clusters into the apoferredoxin II from Rhodobacter capsulatus. EUROPEAN JOURNAL OF BIOCHEMISTRY 1995; 231:396-404. [PMID: 7635151 DOI: 10.1111/j.1432-1033.1995.tb20712.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The Rhodobacter capsulatus ferredoxin II (FdII) belongs to a family of 7Fe ferredoxins containing one [3Fe-4S] cluster and one [4Fe-4S] cluster. This protein, encoded by the fdxA gene, has been overproduced in Escherichia coli as a soluble apoferredoxin. The purified recombinant protein was subjected to reconstitution experiments by chemical incorporation of the Fe-S clusters under anaerobic conditions. A brown protein was obtained, the formation of which was dependent upon the complete unfolding of the polypeptide prior to incorporation of iron and sulfur atoms. The yield of the reconstituted product was higher when the reaction was carried out at slightly basic pH. The reconstituted ferredoxin was purified and shown to be distinct from the native [7Fe-8S] ferredoxin, based on several biochemical and spectroscopic criteria. In the oxidized state, EPR revealed the quasi-absence of [3Fe-4S] cluster. 1H-NMR spectroscopic analyses provided evidence that the protein was reconstituted as a 2[4Fe-4S] ferredoxin. This conclusion was further supported by the determination by electrospray mass spectrometry of the molecular mass of the reconstituted protein, which matched within 2 Da to the mass of the FdII polypeptide incremented of eight atoms each of iron and sulfur. Exposure of the reconstituted protein to air resulted in a fast and irreversible oxidative denaturation of the Fe-S clusters, without formation of [7Fe-8S] form. Unlike the natural 7Fe ferredoxin, the reconstituted ferredoxin appeared incompetent in an electron-transfer assay coupled to nitrogenase activity. The fact that the apoFdII was reconstituted as a highly unstable 8Fe ferredoxin instead of the 7Fe naturally occurring FdII is discussed in relation to the results obtained with other types of ferredoxins.
Collapse
Affiliation(s)
- J Armengaud
- CEA, CNRS URA 1130 alliée à l'INSERM, Département de Biologie Moléculaire et Structurale, Centre d'Etudes Nucléaires de Grenoble, France
| | | | | | | |
Collapse
|
22
|
Arendsen AF, Schalk JS, van Dongen WM, Hagen WR. Characterization of a ferredoxin from Desulfovibrio vulgaris (Hildenborough) that interacts with RNA. EUROPEAN JOURNAL OF BIOCHEMISTRY 1995; 231:352-7. [PMID: 7543409 DOI: 10.1111/j.1432-1033.1995.tb20707.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The purification and characterization of a ferredoxin from Desulfovibrio vulgaris (Hildenborough) is described. The protein can be isolated in two forms; the major form is strongly complexed to RNA, while a minor form is free from nucleic acid. Bound RNA cannot be removed by digestion with nucleases, or by heating to 70 degrees C, and it can only be partially removed by rechromatography. The ultraviolet/visible spectrum shows typical absorption maxima at 280 nm and 400 nm for the RNA-free ferredoxin. The RNA-bound protein exhibits an additional strong peak at 260 nm. The RNA can be extracted from the protein with phenol. The ferredoxin is a dimer of subunits, each of 7.5 kDa; its pI is 3.9. The protein contains a [4Fe-4S](2+;1+) cluster with an EPR spectrum (g = 1.90, 1.93 and 2.05) in the reduced state. A reduction potential of -360 mV was determined for the RNA-free ferredoxin with reversible voltammetry at glassy carbon. From the temperature dependence of the reduction potential, the unusually high standard reaction entropy was calculated as delta S degree = -230 J.K-1.mol-1. No electrochemical response was obtained with the RNA-bound ferredoxin. Binding of RNA appears to require the presence of an intact cluster, since the absence of absorption at 400 nm runs in parallel with the absence of absorption at 260 nm. The possibility is discussed that the binding to the RNA has a regulatory function and is controlled by the state of the cluster.
Collapse
Affiliation(s)
- A F Arendsen
- Department of Biochemistry, Wageningen Agricultural University, The Netherlands
| | | | | | | |
Collapse
|
23
|
Wang SP, Kang PJ, Chen YP, Ely B. Synthesis of the Caulobacter ferredoxin protein, FdxA, is cell cycle controlled. J Bacteriol 1995; 177:2901-7. [PMID: 7751303 PMCID: PMC176965 DOI: 10.1128/jb.177.10.2901-2907.1995] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The fdxA gene was identified upstream of and in the opposite direction from the Caulobacter crescentus cysC gene. Analyses of the nucleotide sequence and the deduced amino acid sequence of the fdxA gene demonstrated that it encodes a ferredoxin with a molecular mass of 12,080 Da. This ferredoxin has common structural features with ferredoxins that contain a [3Fe-4S] and a [4Fe-4S] cluster, including seven conserved cysteines responsible for the binding of the two clusters. A mutation in the fdxA gene was obtained, and the resulting strain did not produce one of the two ferredoxins (FdI) found in C. crescentus. Further experiments demonstrated that the fdxA gene is temporally expressed in C. crescentus and that FdI is required for completion of the cell cycle at 37 degrees C.
Collapse
Affiliation(s)
- S P Wang
- Department of Biological Sciences, University of South Carolina, Columbia 29208, USA
| | | | | | | |
Collapse
|
24
|
Moshiri F, Kim JW, Fu C, Maier RJ. The FeSII protein of Azotobacter vinelandii is not essential for aerobic nitrogen fixation, but confers significant protection to oxygen-mediated inactivation of nitrogenase in vitro and in vivo. Mol Microbiol 1994; 14:101-14. [PMID: 7830548 DOI: 10.1111/j.1365-2958.1994.tb01270.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The FeSII protein of Azotobacter vinelandii has been proposed to mediate the 'conformational protection' of the molybdenum-dependent nitrogenase components against oxygen inactivation. We have cloned and characterized the structural gene for the FeSII protein (the fesII locus). Hybridization studies did not reveal the presence of fesII-like genes in a number of diverse species of well-studied nitrogen-fixing bacteria, with the exception of Azotobacter chroococcum. The fesII locus is transcriptionally expressed during both nitrogen fixing and non-nitrogen fixing conditions, although the level of its message is upregulated by approximately 2.5-fold during nitrogen fixation. The promoter region was identified by primer extension analysis, and is similar to other sigma 70-type promoters. Mutants devoid of the FeSII protein were constructed. These mutants possessed growth characteristics on a variety of carbon substrates during non-diazotrophic as well as diazotrophic growth that were essentially indistinguishable from the wild-type strain. Nevertheless, the nitrogenase activity in cell-free extracts is significantly more sensitive to irreversible oxygen inactivation in the mutants as compared with the wild type. When treated with 250 mM NaCl (a condition known to dissociate FeSII from nitrogenase components), the wild-type and mutant extracts were equally hypersensitive to oxygen inactivation. Upon energy starvation, conditions in which 'respiratory protection' is inoperable, the MoFe and Fe proteins of nitrogenase are degraded much more rapidly in vivo in the deletion mutants, compared to the wild type. Strains relying on either the vanadium or the 'iron-only' alternative nitrogenases exhibited similar growth rates irrespective of the presence or absence of the FeSII protein, and the in vitro inactivation of the vanadium nitrogenase components was not affected by the lack of the FeSII protein. All in all, these results are consistent with a model whereby 'respiratory protection' is the major physiological mechanism responsible for the protection of all three nitrogenases during energy-supplemented growth. Upon energy starvation, however, 'conformational protection', mediated by the FeSII protein is capable of temporarily protecting the conventional molybdenum nitrogenase components from inactivation and subsequent degradation.
Collapse
Affiliation(s)
- F Moshiri
- Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218
| | | | | | | |
Collapse
|
25
|
Isas J, Burgess B. Purification and characterization of a NADP+/NADPH-specific flavoprotein that is overexpressed in FdI- strains of Azotobacter vinelandii. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)32183-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
26
|
Shen B, Jollie D, Stout C, Diller T, Armstrong F, Gorst C, La Mar G, Stephens P, Burgess B. Azotobacter vinelandii ferredoxin I. Alteration of individual surface charges and the [4FE-4S]2+/+ cluster reduction potential. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)37232-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
27
|
Schmehl M, Jahn A, Meyer zu Vilsendorf A, Hennecke S, Masepohl B, Schuppler M, Marxer M, Oelze J, Klipp W. Identification of a new class of nitrogen fixation genes in Rhodobacter capsulatus: a putative membrane complex involved in electron transport to nitrogenase. MOLECULAR & GENERAL GENETICS : MGG 1993; 241:602-15. [PMID: 8264535 DOI: 10.1007/bf00279903] [Citation(s) in RCA: 182] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
DNA sequence analysis of a 12236 bp fragment, which is located upstream of nifE in Rhodobacter capsulatus nif region A, revealed the presence of ten open reading frames. With the exception of fdxC and fdxN, which encode a plant-type and a bacterial-type ferredoxin, the deduced products of these coding regions exhibited no significant homology to known proteins. Analysis of defined insertion and deletion mutants demonstrated that six of these genes were required for nitrogen fixation. Therefore, we propose to call these genes rnfA, rnfB, rnfC, rnfD, rnfE and rnfF (for Rhodobacter nitrogen fixation). Secondary structure predictions suggested that the rnf genes encode four potential membrane proteins and two putative iron-sulphur proteins, which contain cysteine motifs (C-X2-C-X2-C-X3-C-P) typical for [4Fe--4S] proteins. Comparison of the in vivo and in vitro nitrogenase activities of fdxN and rnf mutants suggested that the products encoded by these genes are involved in electron transport to nitrogenase. In addition, these mutants were shown to contain significantly reduced amounts of nitrogenase. The hypothesis that this new class of nitrogen fixation genes encodes components of an electron transfer system to nitrogenase was corroborated by analysing the effect of metronidazole. Both the fdxN and rnf mutants had higher growth yields in the presence of metronidazole than the wild type, suggesting that these mutants contained lower amounts of reduced ferredoxins.
Collapse
Affiliation(s)
- M Schmehl
- Lehrstuhl für Genetik, Fakultät für Biologie, Universität Bielefeld, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Le O, Shen B, Iismaa SE, Burgess BK. Azotobacter vinelandii mutS: nucleotide sequence and mutant analysis. J Bacteriol 1993; 175:7707-10. [PMID: 8244942 PMCID: PMC206931 DOI: 10.1128/jb.175.23.7707-7710.1993] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
An Azotobacter vinelandii homolog to the Salmonella typhimurium mutS gene was discovered upstream of the fdxA gene. The product of this gene is much more similar to S. typhimurium MutS than either is to the HexA protein of Streptococcus pneumoniae. An A. vinelandii delta mutS mutant strain was shown to have a spontaneous mutation frequency 65-fold greater than that of the wild type.
Collapse
Affiliation(s)
- O Le
- Department of Molecular Biology and Biochemistry, University of California, Irvine 92717
| | | | | | | |
Collapse
|
29
|
Stout CD. Crystal structures of oxidized and reduced Azotobacter vinelandii ferredoxin at pH 8 and 6. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(19)74475-5] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
30
|
Rodríguez-Quiñones F, Bosch R, Imperial J. Expression of the nifBfdxNnifOQ region of Azotobacter vinelandii and its role in nitrogenase activity. J Bacteriol 1993; 175:2926-35. [PMID: 8491713 PMCID: PMC204610 DOI: 10.1128/jb.175.10.2926-2935.1993] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The nifBQ transcriptional unit of Azotobacter vinelandii has been previously shown to be required for activity of the three nitrogenase systems, Mo nitrogenase, V nitrogenase, and Fe nitrogenase, present in this organism. We studied regulation of expression and the role of the nifBQ region by means of translational beta-galactosidase fusions to each of the five open reading frames: nifB, orf2 (fdxN), orf3 (nifO), nifQ, and orf5. Expression of the first three open reading frames was observed under all three diazotrophic conditions; expression of orf5 was never observed. Genes nifB and fdxN were expressed at similar levels. With Mo, expression of nifO and nifQ was approximately 20- and approximately 400-fold lower than that of fdxN, respectively. Without Mo, expression of nifB dropped three- to fourfold and that of nifQ dropped to the detection limit. However, expression of nifO increased threefold. The products of nifB, fdxN, nifO, and nifQ have been visualized in A. vinelandii as beta-galactosidase fusion proteins with the expected molecular masses. The NifB- fusion lacked activity for any of the three nitrogenase systems and showed an iron-molybdenum cofactor-deficient phenotype in the presence of Mo. The FdxN- mutation resulted in reduced nitrogenase activities, especially when V was present. Dinitrogenase activity in extracts was similarly affected, suggesting a role of FdxN in iron-molybdenum cofactor synthesis. The NifO(-)-producing mutation did not affect any of the nitrogenases under standard diazotrophic conditions. The NifQ(-)-producing mutation resulted in an increased (approximately 1,000-fold) Mo requirement for Mo nitrogenase activity, a phenotype already observed with Klebsiella pneumoniae. No effect of the NifQ(-)-producing mutation on V or Fe nitrogenase was found; this is consistent with its very low expression under those conditions. Mutations in orf5 had no effect on nitrogenase activity.
Collapse
Affiliation(s)
- F Rodríguez-Quiñones
- Institut d'Estudis Avançats, Consejo Superior de Investigaciones Cientificas, Universitat de les Illes Balears, Ctra. de Valldemossa, Palma de Mallorca, Spain
| | | | | |
Collapse
|
31
|
Raina R, Bageshwar UK, Das HK. The ORF encoding a putative ferredoxin-like protein downstream of the vnfH gene in Azotobacter vinelandii is involved in the vanadium-dependent alternative pathway of nitrogen fixation. MOLECULAR & GENERAL GENETICS : MGG 1993; 236:459-62. [PMID: 8437593 DOI: 10.1007/bf00277149] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
An open reading frame (ORF) in the same operon as, but downstream of, vnfH in Azotobacter vinelandii can code for a ferredoxin-like protein. The role this ORF may play in the vnf (vanadium-dependent alternative) pathway of nitrogen fixation was investigated. Site-directed mutagenesis was used to alter one base in each of the codons specifying amino acids 18 and 19 generating a unique Bg/II site. A kanamycin resistance cartridge was cloned into the Bg/II site. This construct was mobilized into A. vinelandii CA12 (delta nifHDK) strain by conjugation and the mutation was introduced into the genome by marker exchange. The resulting mutant was unable to fix nitrogen under conditions in which the vnf pathway of nitrogen fixation operates. This suggests that this ORF is functional and is essential for the vanadium-dependent alternative pathway of nitrogen fixation in A. vinelandii.
Collapse
Affiliation(s)
- R Raina
- Genetic Engineering Unit, Jawaharlal Nehru University, New Delhi, India
| | | | | |
Collapse
|
32
|
Duport C, Jouanneau Y, Vignais PM. Transcriptional analysis and promoter mapping of the fdxA gene which encodes the 7Fe ferredoxin (FdII) of Rhodobacter capsulatus. MOLECULAR & GENERAL GENETICS : MGG 1992; 231:323-8. [PMID: 1736101 DOI: 10.1007/bf00279806] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The structural gene (fdxA) coding for ferredoxin II (FdII) of the photosynthetic bacterium Rhodobacter capsulatus has been previously cloned and sequenced. Transcription of the fdxA gene was studied by mRNA analyses and by use of plasmid-borne fdxA::lacZ translational fusions. The transcription start site was mapped 23 bp upstream of the initiation codon, as deduced from analysis of mRNA by mung bean nuclease protection and primer extension experiments. A motif resembling the canonical sequence observed in sigma 70-dependent Escherichia coli promoters is present at the expected distance (-10/-35) from the proposed transcription start site. mRNA analysis by Northern hybridization revealed a fdxA-specific transcript of approximately 0.4 kb, indicating that fdxA is transcribed as a single gene.fdxA expression, as measured by the activity of the fdxA::lacZ fusion, was found to be constant during growth and reached a similar level under all growth conditions tested. These results suggest that FdII is constitutively synthesized in R. capsulatus.
Collapse
Affiliation(s)
- C Duport
- Biochimie Microbienne (UA 1130 CNRS alliée à l'INSERM), Département de Biologie Moléculaire et Structurale, Grenoble, France
| | | | | |
Collapse
|
33
|
Matsubara H, Saeki K. Structural and Functional Diversity of Ferredoxins and Related Proteins. ADVANCES IN INORGANIC CHEMISTRY 1992. [DOI: 10.1016/s0898-8838(08)60065-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
34
|
Soman J, Iismaa S, Stout C. Crystallographic analysis of two site-directed mutants of Azotobacter vinelandii ferredoxin. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)54674-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
35
|
Site-directed mutagenesis of Azotobacter vinelandii ferredoxin I. Changes in [4Fe-4S] cluster reduction potential and reactivity. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)54675-5] [Citation(s) in RCA: 100] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
36
|
Thomson AJ. Does ferredoxin I (Azotobacter) represent a novel class of DNA-binding proteins that regulate gene expression in response to cellular iron(II)? FEBS Lett 1991; 285:230-6. [PMID: 1855590 DOI: 10.1016/0014-5793(91)80807-f] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Azotobacter vinelandii (Av) and chroococcum (Ac) ferredoxin I contain [3Fe-4S]1 + 0 and [4Fe-4S]2+1+ clusters, when isolated aerobically, which undergo one-electron redox cycles at potentials of -460 +/- 10 mV (vs SHE) at pH 8.3 and -645 +/- 10 mV, respectively. The X-ray structure of Fd I (Av) reveals that the N-terminal half of the polypeptide folds as a sandwich of beta-strands which enclose the iron-sulphur clusters. The C-terminal sequence contains an amphiphilic alpha-helix of four turns which lies on the surface of the beta-barrel. Fd I (Av) controls expression of an unknown protein of Mr approximately 18,000. Fd I (Ac) will complex iron(II) avidly above pH approximately 8.0 only when the [3Fe-4S] cluster is reduced and provided that cellular nucleic acid is bound. Fd I (Ac) rigorously purified from nucleic acid does not undergo iron(II) uptake. These facts, together with recent evidence that the interconversion process [3Fe-4S]0 + Fe2+----[4Fe-4S]2+ in the iron-responsive element binding protein (IRE-BP) of eukaryotic cells is controlling protein expression at the level of mRNA [1991, Cell 64, 4771; 1991, Nucleic Acid Res. 19, 1739] leads to the following hypothesis. Fd I is a DNA-binding protein which interacts by single alpha-helix binding in the wide groove of DNA. The binding is regulated by iron(II) levels in the cell. The 7Fe form binds to DNA and represses gene expression. Only the DNA-bound form of the 7Fe Fd I will take up iron(II), not the form free in solution. Iron(II) becomes bound when the [3Fe-4S] cluster is reduced. The 8Fe Fd I thus generated no longer binds DNA and the gene is de-repressed. Sequence comparisons and the crystal structure suggests that the two central turns of the alpha-helix are important elements of the DNA-recognition process and that residues Gln69 and Glu73, which lie on the outer surface of the helix, hydrogen-bond with specific base pairs.
Collapse
Affiliation(s)
- A J Thomson
- Centre for Metalloprotein Spectroscopy and Biology, School of Chemical Sciences, University of East Anglia, Norwich, UK
| |
Collapse
|
37
|
Saeki K, Suetsugu Y, Tokuda K, Miyatake Y, Young D, Marrs B, Matsubara H. Genetic analysis of functional differences among distinct ferredoxins in Rhodobacter capsulatus. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)98778-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
38
|
Stephens PJ, Jensen GM, Devlin FJ, Morgan TV, Stout CD, Martin AE, Burgess BK. Circular dichroism and magnetic circular dichroism of Azotobacter vinelandii ferredoxin I. Biochemistry 1991; 30:3200-9. [PMID: 2009261 DOI: 10.1021/bi00227a007] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Room temperature circular dichroism (CD) and low temperature magnetic circular dichroism (MCD) spectra of air-oxidized and dithionite-reduced Azotobacter vinelandii ferredoxin I (FdI), a [( 4Fe-4S]2+/1+, [3Fe-4S]1+/0) protein, are reported. Unlike the CD of oxidized FdI, the CD of dithionite-reduced FdI exhibits significant pH dependence, consistent with protonation-deprotonation at or near the cluster reduced: the [3Fe-4S] cluster. The MCD of reduced FdI, which originates in the paramagnetic reduced [3Fe-4S]0 cluster, is also pH-dependent. Detailed studies of the field dependence and temperature dependence of the MCD of oxidized and reduced FdI, in the latter case at pH 6.0 and 8.3, are reported. The low-field temperature dependence of the MCD of oxidized FdI, which originates in the paramagnetic oxidized [3Fe-4S]1+ cluster, establishes the absence of a significant population of excited electronic states of this cluster up to 60 K. The low-field temperature dependence of the MCD of reduced FdI establishes that the ground-state manifold of the reduced [3Fe-4S]0 cluster possesses S greater than or equal to 2 at both pH 6.0 and 8.3. Analysis, assuming S = 2 and an axial zero-field splitting Hamiltonian, leads to D = -2.0 and -3.5 cm-1 at pH 6.0 and 8.3, respectively. The site of the (de)protonation affecting the spectroscopic properties of the [3Fe-4S] cluster remains unknown.
Collapse
Affiliation(s)
- P J Stephens
- Department of Chemistry, University of Southern California, Los Angeles 90089-0482
| | | | | | | | | | | | | |
Collapse
|
39
|
Donadio S, Hutchinson CR. Cloning and characterization of the Saccharopolyspora erythraea fdxA gene encoding ferredoxin. Gene 1991; 100:231-5. [PMID: 2055472 DOI: 10.1016/0378-1119(91)90372-i] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The Saccharopolyspora erythraea gene (fdxA) corresponding to a previously purified ferredoxin [Shafiee and Hutchinson, J. Bacteriol., 170 (1988) 1548-1553] was cloned using an oligodeoxyribonucleotide probe based on the N-terminal sequence of the ferredoxin. The nucleotide sequence of a 1.3-kb segment encompassing fdxA indicates that the corresponding protein, SeFdI, is 105 amino acids long, and very similar to other 7Fe ferredoxins. A partial open reading frame closely linked to fdxA was also detected. Disruption of fdxA was attempted by replacing the wild-type allele with an in vitro mutated copy. The failure to construct an fdxA mutant strain suggests that fdxA lies in an essential region of the S. erythraea chromosome.
Collapse
Affiliation(s)
- S Donadio
- Corporate Molecular Biology, Abbott Laboratories, Abbott Park, IL 60064
| | | |
Collapse
|
40
|
Trower MK, Emptage MH, Sariaslani FS. Purification and characterization of a 7Fe ferredoxin from Streptomyces griseus. BIOCHIMICA ET BIOPHYSICA ACTA 1990; 1037:281-9. [PMID: 2155656 DOI: 10.1016/0167-4838(90)90026-c] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A ferredoxin has been purified from Streptomyces griseus grown in soybean flour-containing medium. The homogeneous protein has a molecular weight near 14,000 as determined by both PAGE and size exclusion chromatography. The iron and labile sulfide content is 6-7 atoms/mole protein. EPR spectroscopy of native S. griseus ferredoxin shows an isotropic signal at g = 2.01 which is typical of [3Fe-4S]1+ clusters and which quantitates to 0.9 spin/mole. Reduction of the ferredoxin by excess dithionite at pH 8.0 produces an EPR silent state with a small amount of a g = 1.95 type signal. Photoreduction in the presence of deazaflavin generates a signal typical of [4Fe-4S]1+ clusters at much higher yields (0.4-0.5 spin/mole) with major features at g-values of 2.06, 1.94, 1.90 and 1.88. This latter EPR signal is most similar to that seen for reduced 7Fe ferredoxins, which contain both a [3Fe-4S] and [4Fe-4S] cluster. In vitro reconstitution experiments demonstrate the ability of the S. griseus ferredoxin to couple electron transfer between spinach ferredoxin reductase and S. griseus cytochrome P-450soy for NADPH-dependent substrate oxidation. This represents a possible physiological function for the S. griseus ferredoxin, which if true, would be the first functional role demonstrated for a 7Fe ferredoxin.
Collapse
Affiliation(s)
- M K Trower
- E.I. du Pont de Nemours & Company Inc., Central Research and Development Department, Wilmington, DE 19880-0228
| | | | | |
Collapse
|
41
|
Schatt E, Jouanneau Y, Vignais PM. Molecular cloning and sequence analysis of the structural gene of ferredoxin I from the photosynthetic bacterium Rhodobacter capsulatus. J Bacteriol 1989; 171:6218-26. [PMID: 2681157 PMCID: PMC210492 DOI: 10.1128/jb.171.11.6218-6226.1989] [Citation(s) in RCA: 64] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The structural gene (fdxN) encoding ferredoxin I (FdI) in the photosynthetic bacterium Rhodobacter capsulatus was isolated from a cosmid library by using an oligonucleotide probe corresponding to the N-terminal amino acid sequence of FdI. The nucleotide sequences of the gene and of the 3'- and 5'-flanking regions were determined. The gene fdxN codes for a polypeptide of 64 mino acids having a calculated molecular weight of 6,728. Amino acid sequencing of the N- and C-terminal ends of FdI allowed the determination of 86% of the primary structure and confirmed that FdI is the fdxN gene product. Sequence comparisons indicate that FdI shares common structural features with ferredoxins containing two [4Fe-4S] clusters, including eight conserved cysteines. Maximal homology was found with a ferredoxin from Rhodo-pseudomonas palustris. Northern (RNA) hybridization using a 158-base-pair DNA fragment internal to the fdxN coding region revealed the existence of two mRNA transcripts of approximately 330 and 750 nucleotides. Neither of those transcripts was present under nif-repressing growth conditions. The 5' end of the smaller transcript was mapped by S1 nuclease protection and primer extension experiments. On the basis of Southern hybridization experiments, by using probes homologous to fdxN, nifE, and a fragment complementing a nif point mutation, fdxN was localized inside a cluster of nif genes.
Collapse
Affiliation(s)
- E Schatt
- Laboratoire de Biochimie Microbienne, Centre National de la Recherche Scientifique, France
| | | | | |
Collapse
|
42
|
Meyer TE, Cusanovich MA. Structure, function and distribution of soluble bacterial redox proteins. BIOCHIMICA ET BIOPHYSICA ACTA 1989; 975:1-28. [PMID: 2660909 DOI: 10.1016/s0005-2728(89)80196-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- T E Meyer
- Department of Biochemistry, University of Arizona, Tucson 85721
| | | |
Collapse
|
43
|
Martin AE, Burgess BK, Iismaa SE, Smartt CT, Jacobson MR, Dean DR. Construction and characterization of an Azotobacter vinelandii strain with mutations in the genes encoding flavodoxin and ferredoxin I. J Bacteriol 1989; 171:3162-7. [PMID: 2722744 PMCID: PMC210031 DOI: 10.1128/jb.171.6.3162-3167.1989] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Flavodoxin and ferredoxin I have both been implicated as components of the electron transport chain to nitrogenase in the aerobic bacterium Azotobacter vinelandii. Recently, the genes encoding flavodoxin (nifF) and ferredoxin I (fdxA) were cloned and sequenced and mutants were constructed which are unable to synthesize either flavodoxin (DJ130) or ferredoxin I (LM100). Both single mutants grow at wild-type rates under N2-fixing conditions. Here we report the construction of a double mutant (DJ138) which does not synthesize either flavodoxin or ferredoxin I. When plated on ammonium-containing medium, this mutant had a very small colony size when compared with the wild type, and in liquid culture with ammonium, this double mutant grew three times slower than the wild type or single mutant strains. This demonstrated that there is an important metabolic function unrelated to nitrogen fixation that is normally carried out by either flavodoxin or ferredoxin. If either one of these proteins is missing, the other can substitute for it. The double mutant phenotype can now be used to screen site-directed mutant versions of ferredoxin I for functionality in vivo even though the specific function of ferredoxin I is still unknown. The double mutant grew at the same slow rate under N2-fixing conditions. Thus, A. vinelandii continues to fix N2 even when both flavodoxin and ferredoxin I are missing, which suggests that a third as yet unidentified protein also serves as an electron donor to nitrogenase.
Collapse
Affiliation(s)
- A E Martin
- Department of Molecular Biology and Biochemistry, University of California, Irvine 92717
| | | | | | | | | | | |
Collapse
|
44
|
Isolation, sequencing, and mutagenesis of the nifF gene encoding flavodoxin from Azotobacter vinelandii. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(19)57311-2] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|