1
|
McCown C, Yu CH, Ivanov DN. SAMHD1 shapes deoxynucleotide triphosphate homeostasis by interconnecting the depletion and biosynthesis of different dNTPs. Nat Commun 2025; 16:793. [PMID: 39824836 PMCID: PMC11742054 DOI: 10.1038/s41467-025-56208-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 01/10/2025] [Indexed: 01/20/2025] Open
Abstract
SAMHD1 is a dNTPase that impedes replication of HIV-1 in myeloid cells and resting T lymphocytes. Here we elucidate the substrate activation mechanism of SAMHD1, which involves dNTP binding at allosteric sites and transient tetramerization. Our findings reveal that tetramerization alone is insufficient to promote dNTP hydrolysis; instead, the activation mechanism requires an inactive tetrameric intermediate with partially occupied allosteric sites. The equilibrium between inactive and active tetrameric states regulates dNTPase activity, driven by the binding and dissociation of additional allosteric dNTP ligands to the preassembled tetramer. Furthermore, catalytic efficiency, but not substrate specificity, is modulated by the identity of the dNTPs occupying the allosteric sites. We show how this allosteric regulation shapes deoxynucleotide homeostasis by balancing dNTP production and SAMHD1-catalyzed depletion. Notably, SAMHD1 exhibits a distinct functionality, which we term facilitated dNTP depletion, whereby increased biosynthesis of certain dNTPs enhances the depletion of others. The regulatory relationship between the biosynthesis and depletion of different dNTPs sheds light on the emerging role of SAMHD1 in the biology of dNTP homeostasis with implications for HIV/AIDS, innate antiviral immunity, T cell disorders, telomere maintenance and therapeutic efficacy of nucleoside analogs.
Collapse
Affiliation(s)
- Claudia McCown
- Department of Biochemistry and Structural Biology, UT Health San Antonio, San Antonio, TX, USA
| | - Corey H Yu
- Department of Biochemistry and Structural Biology, UT Health San Antonio, San Antonio, TX, USA
| | - Dmitri N Ivanov
- Department of Biochemistry and Structural Biology, UT Health San Antonio, San Antonio, TX, USA.
| |
Collapse
|
2
|
Kato S, Deguchi K, Obana M, Fujio Y, Fukuda Y, Inoue T. Metabolite phosphatase from anhydrobiotic tardigrades. FEBS J 2024; 291:5195-5213. [PMID: 39417615 PMCID: PMC11616004 DOI: 10.1111/febs.17296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 07/09/2024] [Accepted: 10/03/2024] [Indexed: 10/19/2024]
Abstract
Terrestrial organisms have systems to escape from desiccation stresses. For example, tardigrades (also known as water bears) can survive severe dried and other extreme environments by anhydrobiosis. Although their extraordinary ability has enchanted people, little is known about the detailed molecular mechanisms of anhydrobiosis. Here, we focused on the tardigrade Ramazzottius varieornatus, one of the toughest animals on Earth. A transcriptome database of R. varieornatus shows that genes encoding a Ferritin-like protein are upregulated during desiccation or ultraviolet radiation. This protein shows sequence similarity to enigmatic proteins in desiccation-tolerant bacteria and plants, which are hypothesized to be desiccation-related. However, because these proteins lack detailed biological information, their functions are relatively unknown. We determined an atomic (1.05 Å) resolution crystal structure of a Ferritin-like protein from R. varieornatus. The structure revealed a dinuclear metal binding site, and we showed that this Ferritin-like protein has phosphatase activity toward several metabolite compounds including unusual nucleotide phosphates produced by oxidative or radiation damage. We also found that a homologous protein from a desiccation- and ultraviolet-tolerant bacterium Deinococcus radiodurans is a metabolite phosphatase. Our results indicate that through cleaning up damaged metabolites or regulation of metabolite levels, this phosphatase family can contribute to stress tolerances. This study provides a clue to one of the universal molecular bases of desiccation-stress tolerance.
Collapse
Affiliation(s)
- Subaru Kato
- Graduate School of Pharmaceutical SciencesOsaka UniversitySuitaJapan
| | - Koki Deguchi
- Graduate School of Pharmaceutical SciencesOsaka UniversitySuitaJapan
| | - Masanori Obana
- Graduate School of Pharmaceutical SciencesOsaka UniversitySuitaJapan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI)Osaka UniversitySuitaJapan
| | - Yasushi Fujio
- Graduate School of Pharmaceutical SciencesOsaka UniversitySuitaJapan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI)Osaka UniversitySuitaJapan
| | - Yohta Fukuda
- Graduate School of Pharmaceutical SciencesOsaka UniversitySuitaJapan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI)Osaka UniversitySuitaJapan
| | - Tsuyoshi Inoue
- Graduate School of Pharmaceutical SciencesOsaka UniversitySuitaJapan
| |
Collapse
|
3
|
McCown C, Yu CH, Ivanov DN. Allosteric substrate activation of SAMHD1 shapes deoxynucleotide triphosphate imbalances by interconnecting the depletion and biosynthesis of different dNTPs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.14.567083. [PMID: 38014186 PMCID: PMC10680743 DOI: 10.1101/2023.11.14.567083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
SAMHD1 is a dNTPase that impedes replication of HIV-1 in myeloid cells and resting T lymphocytes. Here we elucidate the substrate activation mechanism of SAMHD1 that depends on dNTP binding at allosteric sites and the concomitant tetramerization of the enzyme. The study reveals that SAMHD1 activation involves an inactive tetrameric intermediate with partial occupancy of the allosteric sites. The equilibrium between the inactive and active tetrameric states, which is coupled to cooperative binding/dissociation of at least two allosteric dNTP ligands, controls the dNTPase activity of the enzyme, which, in addition, depends on the identity of the dNTPs occupying the four allosteric sites of the active tetramer. We show how such allosteric regulation determines deoxynucleotide triphosphate levels established in the dynamic equilibria between dNTP production and SAMHD1-catalyzed depletion. Notably, the mechanism enables a distinctive functionality of SAMHD1, which we call facilitated dNTP depletion, whereby elevated biosynthesis of some dNTPs results in more efficient depletion of others. The regulatory relationship between the biosynthesis and depletion of different dNTPs sheds light on the emerging role of SAMHD1 in the biology of dNTP homeostasis with implications for HIV/AIDS, innate antiviral immunity, T cell disorders, telomere maintenance and therapeutic efficacy of nucleoside analogs.
Collapse
Affiliation(s)
- Claudia McCown
- Department of Biochemistry and Structural Biology, UT Health San Antonio, San Antonio, TX 78229, USA
| | - Corey H. Yu
- Department of Biochemistry and Structural Biology, UT Health San Antonio, San Antonio, TX 78229, USA
| | - Dmitri N. Ivanov
- Department of Biochemistry and Structural Biology, UT Health San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
4
|
Klemm BP, Singh D, Smith CE, Hsu AL, Dillard LB, Krahn JM, London RE, Mueller GA, Borgnia MJ, Schaaper RM. Mechanism by which T7 bacteriophage protein Gp1.2 inhibits Escherichia coli dGTPase. Proc Natl Acad Sci U S A 2022; 119:e2123092119. [PMID: 36067314 PMCID: PMC9478638 DOI: 10.1073/pnas.2123092119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 08/09/2022] [Indexed: 11/18/2022] Open
Abstract
Levels of the cellular dNTPs, the direct precursors for DNA synthesis, are important for DNA replication fidelity, cell cycle control, and resistance against viruses. Escherichia coli encodes a dGTPase (2'-deoxyguanosine-5'-triphosphate [dGTP] triphosphohydrolase [dGTPase]; dgt gene, Dgt) that establishes the normal dGTP level required for accurate DNA replication but also plays a role in protecting E. coli against bacteriophage T7 infection by limiting the dGTP required for viral DNA replication. T7 counteracts Dgt using an inhibitor, the gene 1.2 product (Gp1.2). This interaction is a useful model system for studying the ongoing evolutionary virus/host "arms race." We determined the structure of Gp1.2 by NMR spectroscopy and solved high-resolution cryo-electron microscopy structures of the Dgt-Gp1.2 complex also including either dGTP substrate or GTP coinhibitor bound in the active site. These structures reveal the mechanism by which Gp1.2 inhibits Dgt and indicate that Gp1.2 preferentially binds the GTP-bound form of Dgt. Biochemical assays reveal that the two inhibitors use different modes of inhibition and bind to Dgt in combination to yield enhanced inhibition. We thus propose an in vivo inhibition model wherein the Dgt-Gp1.2 complex equilibrates with GTP to fully inactivate Dgt, limiting dGTP hydrolysis and preserving the dGTP pool for viral DNA replication.
Collapse
Affiliation(s)
- Bradley P. Klemm
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709
| | - Deepa Singh
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709
| | - Cassandra E. Smith
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709
| | - Allen L. Hsu
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709
| | - Lucas B. Dillard
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709
| | - Juno M. Krahn
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709
| | - Robert E. London
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709
| | - Geoffrey A. Mueller
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709
| | - Mario J. Borgnia
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709
| | - Roel M. Schaaper
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709
| |
Collapse
|
5
|
Klemm BP, Sikkema AP, Hsu AL, Horng JC, Hall TMT, Borgnia MJ, Schaaper RM. High-resolution structures of the SAMHD1 dGTPase homolog from Leeuwenhoekiella blandensis reveal a novel mechanism of allosteric activation by dATP. J Biol Chem 2022; 298:102073. [PMID: 35643313 PMCID: PMC9257424 DOI: 10.1016/j.jbc.2022.102073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 10/27/2022] Open
Abstract
Deoxynucleoside triphosphate (dNTP) triphosphohydrolases (dNTPases) are important enzymes that may perform multiple functions in the cell, including regulating the dNTP pools and contributing to innate immunity against viruses. Among the homologs that are best studied are human sterile alpha motif and HD domain-containing protein 1 (SAMHD1), a tetrameric dNTPase, and the hexameric Escherichia coli dGTPase; however, it is unclear whether these are representative of all dNTPases given their wide distribution throughout life. Here, we investigated a hexameric homolog from the marine bacterium Leeuwenhoekiella blandensis, revealing that it is a dGTPase that is subject to allosteric activation by dATP, specifically. Allosteric regulation mediated solely by dATP represents a novel regulatory feature among dNTPases that may facilitate maintenance of cellular dNTP pools in L. blandensis. We present high-resolution X-ray crystallographic structures (1.80-2.26 Å) in catalytically important conformations as well as cryo-EM structures (2.1-2.7 Å) of the enzyme bound to dGTP and dATP ligands. The structures, the highest resolution cryo-EM structures of any SAMHD1-like dNTPase to date, reveal an intact metal-binding site with the dGTP substrate coordinated to three metal ions. These structural and biochemical data yield insights into the catalytic mechanism and support a conserved catalytic mechanism for the tetrameric and hexameric dNTPase homologs. We conclude that the allosteric activation by dATP appears to rely on structural connectivity between the allosteric and active sites, as opposed to the changes in oligomeric state upon ligand binding used by SAMHD1.
Collapse
Affiliation(s)
- Bradley P Klemm
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, North Carolina, USA
| | - Andrew P Sikkema
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, North Carolina, USA
| | - Allen L Hsu
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, North Carolina, USA
| | - James C Horng
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, North Carolina, USA
| | - Traci M Tanaka Hall
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, North Carolina, USA
| | - Mario J Borgnia
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, North Carolina, USA
| | - Roel M Schaaper
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, North Carolina, USA.
| |
Collapse
|
6
|
Oh HB, Lee KC, Park SC, Song WS, Yoon SI. Structural analysis of the dNTP triphosphohydrolase PA1124 from Pseudomonas aeruginosa. Biochem Biophys Res Commun 2021; 589:78-84. [PMID: 34894560 DOI: 10.1016/j.bbrc.2021.12.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 12/11/2022]
Abstract
dNTP triphosphohydrolase (TPH) belongs to the histidine/aspartate (HD) superfamily and catalyzes the hydrolysis of dNTPs into 2'-deoxyribonucleoside and inorganic triphosphate. TPHs are required for cellular dNTP homeostasis and DNA replication fidelity and are employed as a host defense mechanism. PA1124 from the pathogenic Pseudomonas aeruginosa bacterium functions as a dGTP and dTTP triphosphohydrolase. To reveal how PA1124 drives dNTP hydrolysis and is regulated, we performed a structural study of PA1124. PA1124 assembles into a hexameric architecture as a trimer of dimers. Each monomer has an interdomain dent where a metal ion is coordinated by conserved histidine and aspartate residues. A structure-based comparative analysis suggests that PA1124 accommodates the dNTP substrate into the interdomain dent near the metal ion. Interestingly, PA1124 interacts with ssDNA, presumably as an allosteric regulator, using a positively charged intersubunit cleft that is generated via dimerization. Furthermore, our phylogenetic analysis highlights similar or distinct oligomerization profiles across the TPH family.
Collapse
Affiliation(s)
- Han Byeol Oh
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon, 24341, South Korea
| | - Kang-Cheon Lee
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon, 24341, South Korea
| | - Sun Cheol Park
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon, 24341, South Korea
| | - Wan Seok Song
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon, 24341, South Korea; Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon, 24341, South Korea.
| | - Sung-Il Yoon
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon, 24341, South Korea; Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon, 24341, South Korea.
| |
Collapse
|
7
|
Wang Z, Bhattacharya A, White T, Buffone C, McCabe A, Nguyen LA, Shepard CN, Pardo S, Kim B, Weintraub ST, Demeler B, Diaz-Griffero F, Ivanov DN. Functionality of Redox-Active Cysteines Is Required for Restriction of Retroviral Replication by SAMHD1. Cell Rep 2020; 24:815-823. [PMID: 30044979 PMCID: PMC6067006 DOI: 10.1016/j.celrep.2018.06.090] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 05/01/2018] [Accepted: 06/21/2018] [Indexed: 01/04/2023] Open
Abstract
SAMHD1 is a dNTP triphosphohydrolase (dNTPase) that impairs retroviral replication in a subset of noncycling immune cells. Here we show that SAMHD1 is a redox-sensitive enzyme and identify three redox-active cysteines within the protein: C341, C350, and C522. The three cysteines reside near one another and the allosteric nucleotide binding site. Mutations C341S and C522S abolish the ability of SAMHD1 to restrict HIV replication, whereas the C350S mutant remains restriction competent. The C522S mutation makes the protein resistant to inhibition by hydrogen peroxide but has no effect on the tetramerization-dependent dNTPase activity of SAMHD1 in vitro or on the ability of SAMHD1 to deplete cellular dNTPs. Our results reveal that enzymatic activation of SAMHD1 via nucleotide-dependent tetramerization is not sufficient for the establishment of the antiviral state and that retroviral restriction depends on the ability of the protein to undergo redox transformations.
Collapse
Affiliation(s)
- Zhonghua Wang
- Department of Biochemistry & Structural Biology, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Akash Bhattacharya
- Department of Biochemistry & Structural Biology, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Tommy White
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Cindy Buffone
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Aine McCabe
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Laura A Nguyen
- Center for Drug Discovery, Department of Pediatrics, Emory School of Medicine, Atlanta, GA 30322, USA
| | - Caitlin N Shepard
- Center for Drug Discovery, Department of Pediatrics, Emory School of Medicine, Atlanta, GA 30322, USA
| | - Sammy Pardo
- Department of Biochemistry & Structural Biology, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Baek Kim
- Center for Drug Discovery, Department of Pediatrics, Emory School of Medicine, Atlanta, GA 30322, USA; School of Pharmacy, Kyunghee University, Seoul, South Korea
| | - Susan T Weintraub
- Department of Biochemistry & Structural Biology, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Borries Demeler
- Department of Biochemistry & Structural Biology, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Felipe Diaz-Griffero
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - Dmitri N Ivanov
- Department of Biochemistry & Structural Biology, University of Texas Health Science Center, San Antonio, TX 78229, USA.
| |
Collapse
|
8
|
The crystal structure of dGTPase reveals the molecular basis of dGTP selectivity. Proc Natl Acad Sci U S A 2019; 116:9333-9339. [PMID: 31019074 PMCID: PMC6511015 DOI: 10.1073/pnas.1814999116] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
While cellular dNTPases display broad activity toward dNTPs (e.g., SAMHD1), Escherichia coli (Ec)-dGTPase is the only known enzyme that specifically hydrolyzes dGTP. Here, we present methods for highly efficient, fixed-target X-ray free-electron laser data collection, which is broadly applicable to multiple crystal systems including RNA polymerase II complexes, and the free Ec-dGTPase enzyme. Structures of free and bound Ec-dGTPase shed light on the mechanisms of dGTP selectivity, highlighted by a dynamic active site where conformational changes are coupled to dGTP binding. Moreover, despite no sequence homology between Ec-dGTPase and SAMHD1, both enzymes share similar active-site architectures; however, dGTPase residues at the end of the substrate-binding pocket provide dGTP specificity, while a 7-Å cleft separates SAMHD1 residues from dNTP. Deoxynucleotide triphosphohydrolases (dNTPases) play a critical role in cellular survival and DNA replication through the proper maintenance of cellular dNTP pools. While the vast majority of these enzymes display broad activity toward canonical dNTPs, such as the dNTPase SAMHD1 that blocks reverse transcription of retroviruses in macrophages by maintaining dNTP pools at low levels, Escherichia coli (Ec)-dGTPase is the only known enzyme that specifically hydrolyzes dGTP. However, the mechanism behind dGTP selectivity is unclear. Here we present the free-, ligand (dGTP)- and inhibitor (GTP)-bound structures of hexameric Ec-dGTPase, including an X-ray free-electron laser structure of the free Ec-dGTPase enzyme to 3.2 Å. To obtain this structure, we developed a method that applied UV-fluorescence microscopy, video analysis, and highly automated goniometer-based instrumentation to map and rapidly position individual crystals randomly located on fixed target holders, resulting in the highest indexing rates observed for a serial femtosecond crystallography experiment. Our structures show a highly dynamic active site where conformational changes are coupled to substrate (dGTP), but not inhibitor binding, since GTP locks dGTPase in its apo- form. Moreover, despite no sequence homology, Ec-dGTPase and SAMHD1 share similar active-site and HD motif architectures; however, Ec-dGTPase residues at the end of the substrate-binding pocket mimic Watson–Crick interactions providing guanine base specificity, while a 7-Å cleft separates SAMHD1 residues from dNTP bases, abolishing nucleotide-type discrimination. Furthermore, the structures shed light on the mechanism by which long distance binding (25 Å) of single-stranded DNA in an allosteric site primes the active site by conformationally “opening” a tyrosine gate allowing enhanced substrate binding.
Collapse
|
9
|
Seamon KJ, Bumpus NN, Stivers JT. Single-Stranded Nucleic Acids Bind to the Tetramer Interface of SAMHD1 and Prevent Formation of the Catalytic Homotetramer. Biochemistry 2016; 55:6087-6099. [PMID: 27775344 DOI: 10.1021/acs.biochem.6b00986] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Sterile alpha motif and HD domain protein 1 (SAMHD1) is a unique enzyme that plays important roles in nucleic acid metabolism, viral restriction, and the pathogenesis of autoimmune diseases and cancer. Although much attention has been focused on its dNTP triphosphohydrolase activity in viral restriction and disease, SAMHD1 also binds to single-stranded RNA and DNA. Here we utilize a UV cross-linking method using 5-bromodeoxyuridine-substituted oligonucleotides coupled with high-resolution mass spectrometry to identify the binding site for single-stranded nucleic acids (ssNAs) on SAMHD1. Mapping cross-linked amino acids on the surface of existing crystal structures demonstrated that the ssNA binding site lies largely along the dimer-dimer interface, sterically blocking the formation of the homotetramer required for dNTPase activity. Surprisingly, the disordered C-terminus of SAMHD1 (residues 583-626) was also implicated in ssNA binding. An interaction between this region and ssNA was confirmed in binding studies using the purified SAMHD1 583-626 peptide. Despite a recent report that SAMHD1 possesses polyribonucleotide phosphorylase activity, we did not detect any such activity in the presence of inorganic phosphate, indicating that nucleic acid binding is unrelated to this proposed activity. These data suggest an antagonistic regulatory mechanism in which the mutually exclusive oligomeric state requirements for ssNA binding and dNTP hydrolase activity modulate these two functions of SAMHD1 within the cell.
Collapse
Affiliation(s)
- Kyle J Seamon
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine , 725 North Wolfe Street, WBSB 314, Baltimore, Maryland 21205, United States
| | - Namandjé N Bumpus
- Department of Medicine, Division of Clinical Pharmacology, Johns Hopkins University School of Medicine , 725 North Wolfe Street, Biophysics 307, Baltimore, Maryland 21205, United States
| | - James T Stivers
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine , 725 North Wolfe Street, WBSB 314, Baltimore, Maryland 21205, United States
| |
Collapse
|
10
|
Wang Z, Bhattacharya A, Villacorta J, Diaz-Griffero F, Ivanov DN. Allosteric Activation of SAMHD1 Protein by Deoxynucleotide Triphosphate (dNTP)-dependent Tetramerization Requires dNTP Concentrations That Are Similar to dNTP Concentrations Observed in Cycling T Cells. J Biol Chem 2016; 291:21407-21413. [PMID: 27566548 DOI: 10.1074/jbc.c116.751446] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 08/25/2016] [Indexed: 12/16/2022] Open
Abstract
SAMHD1 is a dNTP hydrolase, whose activity is required for maintaining low dNTP concentrations in non-cycling T cells, dendritic cells, and macrophages. SAMHD1-dependent dNTP depletion is thought to impair retroviral replication in these cells, but the relationship between the dNTPase activity and retroviral restriction is not fully understood. In this study, we investigate allosteric activation of SAMHD1 by deoxynucleotide-dependent tetramerization and measure how the lifetime of the enzymatically active tetramer is affected by different dNTP ligands bound in the allosteric site. The EC50dNTP values for SAMHD1 activation by dNTPs are in the 2-20 μm range, and the half-life of the assembled tetramer after deoxynucleotide depletion varies from minutes to hours depending on what dNTP is bound in the A2 allosteric site. Comparison of the wild-type SAMHD1 and the T592D mutant reveals that the phosphomimetic mutation affects the rates of tetramer dissociation, but has no effect on the equilibrium of allosteric activation by deoxynucleotides. Collectively, our data suggest that deoxynucleotide-dependent tetramerization contributes to regulation of deoxynucleotide levels in cycling cells, whereas in non-cycling cells restrictive to retroviral replication, SAMHD1 activation is likely to be achieved through a distinct mechanism.
Collapse
Affiliation(s)
- Zhonghua Wang
- From the Department of Biochemistry, University of Texas Health Science Center, San Antonio, Texas 78229 and
| | - Akash Bhattacharya
- From the Department of Biochemistry, University of Texas Health Science Center, San Antonio, Texas 78229 and
| | - Jessica Villacorta
- From the Department of Biochemistry, University of Texas Health Science Center, San Antonio, Texas 78229 and
| | - Felipe Diaz-Griffero
- the Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Dmitri N Ivanov
- From the Department of Biochemistry, University of Texas Health Science Center, San Antonio, Texas 78229 and
| |
Collapse
|
11
|
Bhattacharya A, Wang Z, White T, Buffone C, Nguyen LA, Shepard CN, Kim B, Demeler B, Diaz-Griffero F, Ivanov DN. Effects of T592 phosphomimetic mutations on tetramer stability and dNTPase activity of SAMHD1 can not explain the retroviral restriction defect. Sci Rep 2016; 6:31353. [PMID: 27511536 PMCID: PMC4980677 DOI: 10.1038/srep31353] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 07/18/2016] [Indexed: 12/30/2022] Open
Abstract
SAMHD1, a dNTP triphosphohydrolase, contributes to interferon signaling and restriction of retroviral replication. SAMHD1-mediated retroviral restriction is thought to result from the depletion of cellular dNTP pools, but it remains controversial whether the dNTPase activity of SAMHD1 is sufficient for restriction. The restriction ability of SAMHD1 is regulated in cells by phosphorylation on T592. Phosphomimetic mutations of T592 are not restriction competent, but appear intact in their ability to deplete cellular dNTPs. Here we use analytical ultracentrifugation, fluorescence polarization and NMR-based enzymatic assays to investigate the impact of phosphomimetic mutations on SAMHD1 tetramerization and dNTPase activity in vitro. We find that phosphomimetic mutations affect kinetics of tetramer assembly and disassembly, but their effects on tetramerization equilibrium and dNTPase activity are insignificant. In contrast, the Y146S/Y154S dimerization-defective mutant displays a severe dNTPase defect in vitro, but is indistinguishable from WT in its ability to deplete cellular dNTP pools and to restrict HIV replication. Our data suggest that the effect of T592 phosphorylation on SAMHD1 tetramerization is not likely to explain the retroviral restriction defect, and we hypothesize that enzymatic activity of SAMHD1 is subject to additional cellular regulatory mechanisms that have not yet been recapitulated in vitro.
Collapse
Affiliation(s)
- Akash Bhattacharya
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Zhonghua Wang
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Tommy White
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Cindy Buffone
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Laura A Nguyen
- Center for Drug Discovery, Department of Pediatrics, Emory School of Medicine, Atlanta, GA 30322, USA
| | - Caitlin N Shepard
- Center for Drug Discovery, Department of Pediatrics, Emory School of Medicine, Atlanta, GA 30322, USA
| | - Baek Kim
- Center for Drug Discovery, Department of Pediatrics, Emory School of Medicine, Atlanta, GA 30322, USA.,School of Pharmacy, Kyunghee University, Seoul, South Korea
| | - Borries Demeler
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Felipe Diaz-Griffero
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Dmitri N Ivanov
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, TX 78229, USA
| |
Collapse
|
12
|
Leskinen K, Blasdel BG, Lavigne R, Skurnik M. RNA-Sequencing Reveals the Progression of Phage-Host Interactions between φR1-37 and Yersinia enterocolitica. Viruses 2016; 8:111. [PMID: 27110815 PMCID: PMC4848604 DOI: 10.3390/v8040111] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 04/05/2016] [Accepted: 04/13/2016] [Indexed: 01/05/2023] Open
Abstract
Despite the expanding interest in bacterial viruses (bacteriophages), insights into the intracellular development of bacteriophage and its impact on bacterial physiology are still scarce. Here we investigate during lytic infection the whole-genome transcription of the giant phage vB_YecM_φR1-37 (φR1-37) and its host, the gastroenteritis causing bacterium Yersinia enterocolitica. RNA sequencing reveals that the gene expression of φR1-37 does not follow a pattern typical observed in other lytic bacteriophages, as only selected genes could be classified as typically early, middle or late genes. The majority of the genes appear to be expressed constitutively throughout infection. Additionally, our study demonstrates that transcription occurs mainly from the positive strand, while the negative strand encodes only genes with low to medium expression levels. Interestingly, we also detected the presence of antisense RNA species, as well as one non-coding intragenic RNA species. Gene expression in the phage-infected cell is characterized by the broad replacement of host transcripts with phage transcripts. However, the host response in the late phase of infection was also characterized by up-regulation of several specific bacterial gene products known to be involved in stress response and membrane stability, including the Cpx pathway regulators, ATP-binding cassette (ABC) transporters, phage- and cold-shock proteins.
Collapse
Affiliation(s)
- Katarzyna Leskinen
- Department of Bacteriology and Immunology, Medicum, and Research Programs Unit, Immunobiology, University of Helsinki, P.O.Box 21 (Haartmaninkatu 3), FIN-00014 HY Helsinki, Finland.
| | - Bob G Blasdel
- Laboratory of Gene Technology, KU Leuven, BE-3001 Leuven, Belgium.
| | - Rob Lavigne
- Laboratory of Gene Technology, KU Leuven, BE-3001 Leuven, Belgium.
| | - Mikael Skurnik
- Department of Bacteriology and Immunology, Medicum, and Research Programs Unit, Immunobiology, University of Helsinki, P.O.Box 21 (Haartmaninkatu 3), FIN-00014 HY Helsinki, Finland.
- Division of Clinical Microbiology, Helsinki University Hospital, HUSLAB, FIN-00270 Helsinki, Finland.
| |
Collapse
|
13
|
|
14
|
Singh D, Schaaper RM, Hochkoeppler A. A continuous spectrophotometric enzyme-coupled assay for deoxynucleoside triphosphate triphosphohydrolases. Anal Biochem 2015; 496:43-9. [PMID: 26723493 DOI: 10.1016/j.ab.2015.11.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 11/19/2015] [Accepted: 11/24/2015] [Indexed: 02/03/2023]
Abstract
We describe a continuous, spectrophotometric, enzyme-coupled assay useful to monitor reactions catalyzed by nucleoside triphosphohydrolases. In particular, using Escherichia coli deoxynucleoside triphosphohydrolase (Dgt), which hydrolyzes dGTP to deoxyguanosine and tripolyphosphate (PPPi) as the enzyme to be tested, we devised a procedure relying on purine nucleoside phosphorylase (PNPase) and xanthine oxidase (XOD) as the auxiliary enzymes. The deoxyguanosine released by Dgt can indeed be conveniently subjected to phosphorolysis by PNPase, yielding deoxyribose-1-phosphate and guanine, which in turn can be oxidized to 8-oxoguanine by XOD. By this means, it was possible to continuously detect Dgt activity at 297 nm, at which wavelength the difference between the molar extinction coefficients of 8-oxoguanine (8000 M(-1) cm(-1)) and guanine (1090 M(-1) cm(-1)) is maximal. The initial velocities of Dgt-catalyzed reactions were then determined in parallel with the enzyme-coupled assay and with a discontinuous high-performance liquid chromatography (HPLC) method able to selectively detect deoxyguanosine. Under appropriate conditions of excess auxiliary enzymes, the activities determined with our continuous enzyme-coupled assay were quantitatively comparable to those observed with the HPLC method. Moreover, the enzyme-coupled assay proved to be more sensitive than the chromatographic procedure, permitting reliable detection of Dgt activity at low dGTP substrate concentrations.
Collapse
Affiliation(s)
- Deepa Singh
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Roel M Schaaper
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Alejandro Hochkoeppler
- Department of Pharmacy and Biotechnology, University of Bologna, 40136 Bologna, Italy; CSGI, University of Firenze, 50019 Sesto Fiorentino, FI, Italy.
| |
Collapse
|
15
|
Khodursky A, Guzmán EC, Hanawalt PC. Thymineless Death Lives On: New Insights into a Classic Phenomenon. Annu Rev Microbiol 2015; 69:247-63. [PMID: 26253395 DOI: 10.1146/annurev-micro-092412-155749] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The primary mechanisms by which bacteria lose viability when deprived of thymine have been elusive for over half a century. Early research focused on stalled replication forks and the deleterious effects of uracil incorporation into DNA from thymidine-deficient nucleotide pools. The initiation of the replication cycle and origin-proximal DNA degradation during thymine starvation have now been quantified via whole-genome microarrays and other approaches. These advances have fostered innovative models and informative experiments in bacteria since this topic was last reviewed. Given that thymineless death is similar in mammalian cells and that certain antibacterial and chemotherapeutic drugs elicit thymine deficiency, a mechanistic understanding of this phenomenon might have valuable biomedical applications.
Collapse
Affiliation(s)
- Arkady Khodursky
- Biotechnology Institute and Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, St. Paul, Minnesota 55108;
| | - Elena C Guzmán
- Departamento de Bioquímica Biología Molecular y Genética, Universidad de Extremadura, 06071 Badajoz, Spain;
| | - Philip C Hanawalt
- Department of Biology, Stanford University, Stanford, California 94305;
| |
Collapse
|
16
|
Singh D, Gawel D, Itsko M, Hochkoeppler A, Krahn JM, London RE, Schaaper RM. Structure of Escherichia coli dGTP triphosphohydrolase: a hexameric enzyme with DNA effector molecules. J Biol Chem 2015; 290:10418-29. [PMID: 25694425 DOI: 10.1074/jbc.m115.636936] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Indexed: 01/23/2023] Open
Abstract
The Escherichia coli dgt gene encodes a dGTP triphosphohydrolase whose detailed role still remains to be determined. Deletion of dgt creates a mutator phenotype, indicating that the dGTPase has a fidelity role, possibly by affecting the cellular dNTP pool. In the present study, we have investigated the structure of the Dgt protein at 3.1-Å resolution. One of the obtained structures revealed a protein hexamer that contained two molecules of single-stranded DNA. The presence of DNA caused significant conformational changes in the enzyme, including in the catalytic site of the enzyme. Dgt preparations lacking DNA were able to bind single-stranded DNA with high affinity (Kd ∼ 50 nM). DNA binding positively affected the activity of the enzyme: dGTPase activity displayed sigmoidal (cooperative) behavior without DNA but hyperbolic (Michaelis-Menten) kinetics in its presence, consistent with a specific lowering of the apparent Km for dGTP. A mutant Dgt enzyme was also created containing residue changes in the DNA binding cleft. This mutant enzyme, whereas still active, was incapable of DNA binding and could no longer be stimulated by addition of DNA. We also created an E. coli strain containing the mutant dgt gene on the chromosome replacing the wild-type gene. The mutant also displayed a mutator phenotype. Our results provide insight into the allosteric regulation of the enzyme and support a physiologically important role of DNA binding.
Collapse
Affiliation(s)
- Deepa Singh
- From the Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709
| | - Damian Gawel
- the Department of Biochemistry and Molecular Biology, Center of Postgraduate Medical Education, 01-813 Warsaw, Poland, and
| | - Mark Itsko
- From the Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709
| | | | - Juno M Krahn
- From the Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709
| | - Robert E London
- From the Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709
| | - Roel M Schaaper
- From the Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709,
| |
Collapse
|
17
|
Helicase dissociation and annealing of RNA-DNA hybrids by Escherichia coli Cas3 protein. Biochem J 2011; 439:85-95. [PMID: 21699496 DOI: 10.1042/bj20110901] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
CRISPR (clustered regularly interspaced short palindromic repeat)/Cas (CRISPR-associated) is a nucleic acid processing system in bacteria and archaea that interacts with mobile genetic elements. CRISPR DNA and RNA sequences are processed by Cas proteins: in Escherichia coli K-12, one CRISPR locus links to eight cas genes (cas1, 2, 3 and casABCDE), whose protein products promote protection against phage. In the present paper, we report that purified E. coli Cas3 catalyses ATP-independent annealing of RNA with DNA forming R-loops, hybrids of RNA base-paired into duplex DNA. ATP abolishes Cas3 R-loop formation and instead powers Cas3 helicase unwinding of the invading RNA strand of a model R-loop substrate. R-loop formation by Cas3 requires magnesium as a co-factor and is inactivated by mutagenesis of a conserved amino acid motif. Cells expressing the mutant Cas3 protein are more sensitive to plaque formation by the phage λvir. A complex of CasABCDE ('Cascade') also promotes R-loop formation and we discuss possible overlapping roles of Cas3 and Cascade in E. coli, and the apparently antagonistic roles of Cas3 catalysing RNA-DNA annealing and ATP-dependent helicase unwinding.
Collapse
|
18
|
Powell RD, Holland PJ, Hollis T, Perrino FW. Aicardi-Goutieres syndrome gene and HIV-1 restriction factor SAMHD1 is a dGTP-regulated deoxynucleotide triphosphohydrolase. J Biol Chem 2011; 286:43596-43600. [PMID: 22069334 DOI: 10.1074/jbc.c111.317628] [Citation(s) in RCA: 286] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The SAMHD1 protein is an HIV-1 restriction factor that is targeted by the HIV-2 accessory protein Vpx in myeloid lineage cells. Mutations in the SAMHD1 gene cause Aicardi-Goutières syndrome, a genetic disease that mimics congenital viral infection. To determine the physiological function of the SAMHD1 protein, the SAMHD1 gene was cloned, recombinant protein was produced, and the catalytic activity of the purified enzyme was identified. We show that SAMHD1 contains a dGTP-regulated deoxynucleotide triphosphohydrolase. We propose that Vpx targets SAMHD1 for degradation in a viral strategy to control cellular deoxynucleotide levels for efficient replication.
Collapse
Affiliation(s)
- Rebecca D Powell
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157
| | - Paul J Holland
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157
| | - Thomas Hollis
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157
| | - Fred W Perrino
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157.
| |
Collapse
|
19
|
HIV-1 restriction factor SAMHD1 is a deoxynucleoside triphosphate triphosphohydrolase. Nature 2011; 480:379-82. [DOI: 10.1038/nature10623] [Citation(s) in RCA: 618] [Impact Index Per Article: 44.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Accepted: 10/11/2011] [Indexed: 12/20/2022]
|
20
|
Mulepati S, Bailey S. Structural and biochemical analysis of nuclease domain of clustered regularly interspaced short palindromic repeat (CRISPR)-associated protein 3 (Cas3). J Biol Chem 2011; 286:31896-903. [PMID: 21775431 DOI: 10.1074/jbc.m111.270017] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
RNA transcribed from clustered regularly interspaced short palindromic repeats (CRISPRs) protects many prokaryotes from invasion by foreign DNA such as viruses, conjugative plasmids, and transposable elements. Cas3 (CRISPR-associated protein 3) is essential for this CRISPR protection and is thought to mediate cleavage of the foreign DNA through its N-terminal histidine-aspartate (HD) domain. We report here the 1.8 Å crystal structure of the HD domain of Cas3 from Thermus thermophilus HB8. Structural and biochemical studies predict that this enzyme binds two metal ions at its active site. We also demonstrate that the single-stranded DNA endonuclease activity of this T. thermophilus domain is activated not by magnesium but by transition metal ions such as manganese and nickel. Structure-guided mutagenesis confirms the importance of the metal-binding residues for the nuclease activity and identifies other active site residues. Overall, these results provide a framework for understanding the role of Cas3 in the CRISPR system.
Collapse
Affiliation(s)
- Sabin Mulepati
- Department of Biochemistry and Molecular Biology, Johns Hopkins School of Public Health, Baltimore, Maryland 21205, USA
| | | |
Collapse
|
21
|
Vorontsov II, Minasov G, Kiryukhina O, Brunzelle JS, Shuvalova L, Anderson WF. Characterization of the deoxynucleotide triphosphate triphosphohydrolase (dNTPase) activity of the EF1143 protein from Enterococcus faecalis and crystal structure of the activator-substrate complex. J Biol Chem 2011; 286:33158-66. [PMID: 21757692 PMCID: PMC3190883 DOI: 10.1074/jbc.m111.250456] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The EF1143 protein from Enterococcus faecalis is a distant homolog of deoxynucleotide triphosphate triphosphohydrolases (dNTPases) from Escherichia coli and Thermus thermophilus. These dNTPases are important components in the regulation of the dNTP pool in bacteria. Biochemical assays of the EF1143 dNTPase activity demonstrated nonspecific hydrolysis of all canonical dNTPs in the presence of Mn(2+). In contrast, with Mg(2+) hydrolysis required the presence of dGTP as an effector, activating the degradation of dATP and dCTP with dGTP also being consumed in the reaction with dATP. The crystal structure of EF1143 and dynamic light scattering measurements in solution revealed a tetrameric oligomer as the most probable biologically active unit. The tetramer contains four dGTP specific allosteric regulatory sites and four active sites. Examination of the active site with the dATP substrate suggests an in-line nucleophilic attack on the α-phosphate center as a possible mechanism of the hydrolysis and two highly conserved residues, His-129 and Glu-122, as an acid-base catalytic dyad. Structural differences between EF1143 apo and holo forms revealed mobility of the α3 helix that can regulate the size of the active site binding pocket and could be stabilized in the open conformation upon formation of the tetramer and dGTP effector binding.
Collapse
Affiliation(s)
- Ivan I Vorontsov
- Department of Molecular Pharmacology and Biological Chemistry, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | | | | | | | | | | |
Collapse
|
22
|
Itsko M, Schaaper RM. The dgt gene of Escherichia coli facilitates thymine utilization in thymine-requiring strains. Mol Microbiol 2011; 81:1221-32. [PMID: 21736641 DOI: 10.1111/j.1365-2958.2011.07756.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The Escherichia coli dGTP triphosphohydrolase (dGTPase) encoded by the dgt gene catalyses the hydrolysis of dGTP to deoxyguanosine and triphosphate. The recent discovery of a mutator effect associated with deletion of dgt indicated participation of the triphosphohydrolase in preventing mutagenesis. Here, we have investigated the possible involvement of dgt in facilitating thymine utilization through its ability to provide intracellular deoxyguanosine, which is readily converted by the DeoD phosphorylase to deoxyribose-1-phosphate, the critical intermediate that enables uptake and utilization of thymine. Indeed, we observed that the minimal amount of thymine required for growth of thymine-requiring (thyA) strains decreased with increased expression level of the dgt gene. As expected, this dgt-mediated effect was dependent on the DeoD purine nucleoside phosphorylase. We also observed that thyA strains experience growth difficulties upon nutritional shift-up and that the dgt gene facilitates adaptation to the new growth conditions. Blockage of the alternative yjjG (dUMP phosphatase) pathway for deoxyribose-1-phosphate generation greatly exacerbated the severity of thymine starvation in enriched media, and under these conditions the dgt pathway becomes crucial in protecting the cells against thymineless death. Overall, our results suggest that the dgt-dependent pathway for deoxyribose-1-phosphate generation may operate under various cell conditions to provide deoxyribosyl donors.
Collapse
Affiliation(s)
- Mark Itsko
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | | |
Collapse
|
23
|
Li V, Hogg M, Reha-Krantz LJ. Identification of a new motif in family B DNA polymerases by mutational analyses of the bacteriophage t4 DNA polymerase. J Mol Biol 2010; 400:295-308. [PMID: 20493878 DOI: 10.1016/j.jmb.2010.05.030] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Revised: 04/28/2010] [Accepted: 05/14/2010] [Indexed: 10/19/2022]
Abstract
Structure-based protein sequence alignments of family B DNA polymerases revealed a conserved motif that is formed from interacting residues between loops from the N-terminal and palm domains and between the N-terminal loop and a conserved proline residue. The importance of the motif for function of the bacteriophage T4 DNA polymerase was revealed by suppressor analysis. T4 DNA polymerases that form weak replicating complexes cannot replicate DNA when the dGTP pool is reduced. The conditional lethality provides the means to identify amino acid substitutions that restore replication activity under low-dGTP conditions either by correcting the defect produced by the first amino acid substitution or by generally increasing the stability of polymerase complexes; the second type are global suppressors that can effectively counter the reduced stability caused by a variety of amino acid substitutions. Some amino acid substitutions that increase the stability of polymerase complexes produce a new phenotype-sensitivity to the antiviral drug phosphonoacetic acid. Amino acid substitutions that confer decreased ability to replicate DNA under low-dGTP conditions or drug sensitivity were identified in the new motif, which suggests that the motif functions in regulating the stability of polymerase complexes. Additional suppressor analyses revealed an apparent network of interactions that link the new motif to the fingers domain and to two patches of conserved residues that bind DNA. The collection of mutant T4 DNA polymerases provides a foundation for future biochemical studies to determine how DNA polymerases remain stably associated with DNA while waiting for the next available dNTP, how DNA polymerases translocate, and the biochemical basis for sensitivity to antiviral drugs.
Collapse
Affiliation(s)
- Vincent Li
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2E9
| | | | | |
Collapse
|
24
|
Mutagenesis and functional characterization of the four domains of GlnD, a bifunctional nitrogen sensor protein. J Bacteriol 2010; 192:2711-21. [PMID: 20363937 DOI: 10.1128/jb.01674-09] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
GlnD is a bifunctional uridylyltransferase/uridylyl-removing enzyme (UTase/UR) and is believed to be the primary sensor of nitrogen status in the cell by sensing the level of glutamine in enteric bacteria. It plays an important role in nitrogen assimilation and metabolism by reversibly regulating the modification of P(II) protein; P(II) in turn regulates a variety of other proteins. GlnD appears to have four distinct domains: an N-terminal nucleotidyltransferase (NT) domain; a central HD domain, named after conserved histidine and aspartate residues; and two C-terminal ACT domains, named after three of the allosterically regulated enzymes in which this domain is found. Here we report the functional analysis of these domains of GlnD from Escherichia coli and Rhodospirillum rubrum. We confirm the assignment of UTase activity to the NT domain and show that the UR activity is a property specifically of the HD domain: substitutions in this domain eliminated UR activity, and a truncated protein lacking the NT domain displayed UR activity. The deletion of C-terminal ACT domains had little effect on UR activity itself but eliminated the ability of glutamine to stimulate that activity, suggesting a role for glutamine sensing by these domains. The deletion of C-terminal ACT domains also dramatically decreased UTase activity under all conditions tested, but some of these effects are due to the competition of UTase activity with unregulated UR activity in these variants.
Collapse
|
25
|
Mega R, Kondo N, Nakagawa N, Kuramitsu S, Masui R. Two dNTP triphosphohydrolases from Pseudomonas aeruginosa possess diverse substrate specificities. FEBS J 2009; 276:3211-21. [PMID: 19438719 DOI: 10.1111/j.1742-4658.2009.07035.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Nucleotide hydrolases are known to hydrolyze not only noncanonical dNTPs to reduce the risk of mutation, but also canonical dNTPs to maintain the dNTP concentrations in the cell. dGTP triphosphohydrolase from Escherichia coli is known as an enzyme that hydrolyzes dGTP. Recently, we identified a triphosphohydrolase from Thermus thermophilus HB8 that hydrolyzes all canonical dNTPs through a complex activation mechanism. These dNTP triphosphohydrolases are widely distributed in eubacteria, but it is difficult to predict whether they possess hydrolytic activity for dGTP or dNTP. To obtain information concerning the structure-function relationships of this protein family, we characterized two dNTP triphosphohydrolases, PA1124 and PA3043, from Pseudomonas aeruginosa. Molecular phylogenic analysis showed that dNTP triphosphohydrolases can be classified into three groups. Experimentally, PA1124 had a preference for dGTP, similar to the E. coli enzyme, whereas PA3043 displayed a broad substrate specificity. Both enzymes hydrolyzed substrates in the absence of additional dNTP as an activating effector. These kinetic data suggest that PA3043 is a novel type distinct from both the E. coli and T. thermophilus enzymes. On the basis of these results, we propose that the dNTP triphosphohydrolase family should be classified into at least three subfamilies.
Collapse
Affiliation(s)
- Ryosuke Mega
- Graduate School of Frontier Biological Sciences, Osaka University, Osaka, Japan
| | | | | | | | | |
Collapse
|
26
|
A novel mutator of Escherichia coli carrying a defect in the dgt gene, encoding a dGTP triphosphohydrolase. J Bacteriol 2008; 190:6931-9. [PMID: 18776019 DOI: 10.1128/jb.00935-08] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A novel mutator locus in Escherichia coli was identified from a collection of random transposon insertion mutants. Several mutators in this collection were found to have an insertion in the dgt gene, encoding a previously characterized dGTP triphosphohydrolase. The mutator activity of the dgt mutants displays an unusual specificity. Among the six possible base pair substitutions in a lacZ reversion system, the G.C-->C.G transversion and A.T-->G.C transition are strongly enhanced (10- to 50-fold), while a modest effect (two- to threefold) is also observed for the G.C-->A.T transition. Interestingly, a two- to threefold reduction in mutant frequency (antimutator effect) is observed for the G.C-->T.A transversion. In the absence of DNA mismatch repair (mutL) some of these effects are reduced or abolished, while other effects remain unchanged. Analysis of these effects, combined with the DNA sequence contexts in which the reversions take place, suggests that alterations of the dGTP pools as well as alterations in the level of some modified dNTP derivatives could affect the fidelity of in vivo DNA replication and, hence, account for the overall mutator effects.
Collapse
|
27
|
Zimmerman MD, Proudfoot M, Yakunin A, Minor W. Structural insight into the mechanism of substrate specificity and catalytic activity of an HD-domain phosphohydrolase: the 5'-deoxyribonucleotidase YfbR from Escherichia coli. J Mol Biol 2008; 378:215-26. [PMID: 18353368 DOI: 10.1016/j.jmb.2008.02.036] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2007] [Revised: 02/13/2008] [Accepted: 02/16/2008] [Indexed: 11/19/2022]
Abstract
HD-domain phosphohydrolases have nucleotidase and phosphodiesterase activities and play important roles in the metabolism of nucleotides and in signaling. We present three 2.1-A-resolution crystal structures (one in the free state and two complexed with natural substrates) of an HD-domain phosphohydrolase, the Escherichia coli 5'-nucleotidase YfbR. The free-state structure of YfbR contains a large cavity accommodating the metal-coordinating HD motif (H33, H68, D69, and D137) and other conserved residues (R18, E72, and D77). Alanine scanning mutagenesis confirms that these residues are important for activity. Two structures of the catalytically inactive mutant E72A complexed with Co(2+) and either thymidine-5'-monophosphate or 2'-deoxyriboadenosine-5'-monophosphate disclose the novel binding mode of deoxyribonucleotides in the active site. Residue R18 stabilizes the phosphate on the Co(2+), and residue D77 forms a strong hydrogen bond critical for binding the ribose. The indole side chain of W19 is located close to the 2'-carbon atom of the deoxyribose moiety and is proposed to act as the selectivity switch for deoxyribonucleotide, which is supported by comparison to YfdR, another 5'-nucleotidase in E. coli. The nucleotide bases of both deoxyriboadenosine-5'-monophosphate and thymidine-5'-monophosphate make no specific hydrogen bonds with the protein, explaining the lack of nucleotide base selectivity. The YfbR E72A substrate complex structures also suggest a plausible single-step nucleophilic substitution mechanism. This is the first proposed molecular mechanism for an HD-domain phosphohydrolase based directly on substrate-bound crystal structures.
Collapse
Affiliation(s)
- Matthew D Zimmerman
- Department of Molecular Physiology and Biological Physics, University of Virginia, 1340 Jefferson Park Ave, Charlottesville, VA 22908, USA
| | | | | | | |
Collapse
|
28
|
Kondo N, Nishikubo T, Wakamatsu T, Ishikawa H, Nakagawa N, Kuramitsu S, Masui R. Insights into different dependence of dNTP triphosphohydrolase on metal ion species from intracellular ion concentrations in Thermus thermophilus. Extremophiles 2007; 12:217-23. [PMID: 17989916 DOI: 10.1007/s00792-007-0118-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2007] [Accepted: 10/08/2007] [Indexed: 11/28/2022]
Abstract
Deoxyribonucleoside triphosphate (dNTP) triphosphohydrolase (dNTPase) from Thermus thermophilus HB8 (TTHB8) hydrolyzes wide variety of dNTPs to deoxyribonucleoside and inorganic triphosphate in magnesium-dependent manner. In this paper, we assess the specificity for various metal ions and of the dNTP triphosphohydrolase activity of the dNTPase from TTHB8. Manganese and cobalt ions more effectively induced the activity for dNTPs than magnesium and, unexpectedly, brought about the degradation of single kind of dNTP. Manganese and cobalt concentrations of 10 nM were enough to induce the activity, while magnesium of about 1 mM was required for the induction of the activity. To further evaluate metal ions inherent to dNTPase in TTHB8 cells, we measured intracellular concentrations of major metal ions in TTHB8 cells by inductively coupled plasma emission spectroscopy and compared them with the dependence of metal ion concentration on dNTPase activity. Though cobalt ion was below detectable level, magnesium and manganese ions were detected at sufficient level to induce dNTPase activity. These results suggest that both manganese and magnesium ions are likely to be functional under intracellular condition. In addition, the proposed model of dNTPase activity induced by magnesium and multiple dNTPs was discussed based on the results obtained in this study.
Collapse
Affiliation(s)
- Naoyuki Kondo
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | | | | | | | | | | | | |
Collapse
|
29
|
Proudfoot M, Kuznetsova E, Brown G, Rao NN, Kitagawa M, Mori H, Savchenko A, Yakunin AF. General enzymatic screens identify three new nucleotidases in Escherichia coli. Biochemical characterization of SurE, YfbR, and YjjG. J Biol Chem 2004; 279:54687-94. [PMID: 15489502 DOI: 10.1074/jbc.m411023200] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To find proteins with nucleotidase activity in Escherichia coli, purified unknown proteins were screened for the presence of phosphatase activity using the general phosphatase substrate p-nitrophenyl phosphate. Proteins exhibiting catalytic activity were then assayed for nucleotidase activity against various nucleotides. These screens identified the presence of nucleotidase activity in three uncharacterized E. coli proteins, SurE, YfbR, and YjjG, that belong to different enzyme superfamilies: SurE-like family, HD domain family (YfbR), and haloacid dehalogenase (HAD)-like superfamily (YjjG). The phosphatase activity of these proteins had a neutral pH optimum (pH 7.0-8.0) and was strictly dependent on the presence of divalent metal cations (SurE: Mn(2+) > Co(2+) > Ni(2+) > Mg(2+); YfbR: Co(2+) > Mn(2+) > Cu(2+); YjjG: Mg(2+) > Mn(2+) > Co(2+)). Further biochemical characterization of SurE revealed that it has a broad substrate specificity and can dephosphorylate various ribo- and deoxyribonucleoside 5'-monophosphates and ribonucleoside 3'-monophosphates with highest affinity to 3'-AMP. SurE also hydrolyzed polyphosphate (exopolyphosphatase activity) with the preference for short-chain-length substrates (P(20-25)). YfbR was strictly specific to deoxyribonucleoside 5'-monophosphates, whereas YjjG showed narrow specificity to 5'-dTMP, 5'-dUMP, and 5'-UMP. The three enzymes also exhibited different sensitivities to inhibition by various nucleoside di- and triphosphates: YfbR was equally sensitive to both di- and triphosphates, SurE was inhibited only by triphosphates, and YjjG was insensitive to these effectors. The differences in their sensitivities to nucleotides and their varied substrate specificities suggest that these enzymes play unique functions in the intracellular nucleotide metabolism in E. coli.
Collapse
Affiliation(s)
- Michael Proudfoot
- Banting and Best Department of Medical Research, University of Toronto, Ontario M5G 1L6, Canada
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Yakunin AF, Proudfoot M, Kuznetsova E, Savchenko A, Brown G, Arrowsmith CH, Edwards AM. The HD domain of the Escherichia coli tRNA nucleotidyltransferase has 2',3'-cyclic phosphodiesterase, 2'-nucleotidase, and phosphatase activities. J Biol Chem 2004; 279:36819-27. [PMID: 15210699 DOI: 10.1074/jbc.m405120200] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In all mature tRNAs, the 3'-terminal CCA sequence is synthesized or repaired by a template-independent nucleotidyltransferase (ATP(CTP):tRNA nucleotidyltransferase; EC 2.7.7.25). The Escherichia coli enzyme comprises two domains: an N-terminal domain containing the nucleotidyltransferase activity and an uncharacterized C-terminal HD domain. The HD motif defines a superfamily of metal-dependent phosphohydrolases that includes a variety of uncharacterized proteins and domains associated with nucleotidyltransferases and helicases from bacteria, archaea, and eukaryotes. The C-terminal HD domain in E. coli tRNA nucleotidyltransferase demonstrated Ni(2+)-dependent phosphatase activity toward pyrophosphate, canonical 5'-nucleoside tri- and diphosphates, NADP, and 2'-AMP. Assays with phosphodiesterase substrates revealed surprising metal-independent phosphodiesterase activity toward 2',3'-cAMP, -cGMP, and -cCMP. Without metal or in the presence of Mg(2+), the tRNA nucleotidyltransferase hydrolyzed 2',3'-cyclic substrates with the formation of 2'-nucleotides, whereas in the presence of Ni(2+), the protein also produced some 3'-nucleotides. Mutations at the conserved His-255 and Asp-256 residues comprising the C-terminal HD domain of this protein inactivated both phosphodiesterase and phosphatase activities, indicating that these activities are associated with the HD domain. Low concentrations of the E. coli tRNA (10 nm) had a strong inhibiting effect on both phosphatase and phosphodiesterase activities. The competitive character of inhibition by tRNA suggests that it might be a natural substrate for these activities. This inhibition was completely abolished by the addition of Mg(2+), Mn(2+), or Ca(2+), but not Ni(2+). The data suggest that the phosphohydrolase activities of the HD domain of the E. coli tRNA nucleotidyltransferase are involved in the repair of the 3'-CCA end of tRNA.
Collapse
Affiliation(s)
- Alexander F Yakunin
- Banting and Best Department of Medical Research and Structural Genomics Consortium, 112 College St., University of Toronto, Toronto, Ontario M5G 1L6, Canada.
| | | | | | | | | | | | | |
Collapse
|
31
|
Kozmin SG, Schaaper RM, Shcherbakova PV, Kulikov VN, Noskov VN, Guetsova ML, Alenin VV, Rogozin IB, Makarova KS, Pavlov YI. Multiple antimutagenesis mechanisms affect mutagenic activity and specificity of the base analog 6-N-hydroxylaminopurine in bacteria and yeast. Mutat Res 1998; 402:41-50. [PMID: 9675240 DOI: 10.1016/s0027-5107(97)00280-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Base analog 6-N-hydroxylaminopurine is a potent mutagen in variety of prokaryotic and eukaryotic organisms. In the review, we discuss recent results of the studies of HAP mutagenic activity, genetic control and specificity in bacteria and yeast with the emphasis to the mechanisms protecting living cells from mutagenic and toxic effects of this base analog.
Collapse
Affiliation(s)
- S G Kozmin
- Department of Genetics, Sankt-Petersburg University, Sankt-Petersburg, 199034, Russian Federation
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Quirk S, Do BT. Cloning, purification, and characterization of the Shigella boydii dGTP triphosphohydrolase. J Biol Chem 1997; 272:332-6. [PMID: 8995266 DOI: 10.1074/jbc.272.1.332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The nucleotide sequence of the Shigella boydii dgt gene, which encodes the enzyme deoxyguanosine triphosphate triphosphohydrolase (dGTPase, EC 3.1.5.1), has been determined. The 1515-nucleotide Shigella dgt open reading frame has been subcloned into a T7 RNA polymerase-based expression vector. The resulting expressed protein has been purified to homogeneity using a novel single-day chromatographic regime. The protocol includes ion exchange, affinity, and hydrophobic interaction chromatography. The purified 505-amino acid (59.4 kDa) protein exists in solution as a heat-stable homotetramer, and enzymatic assays reveal that the expressed enzyme is fully active. Substrate specificity can be explained by the array of potential hydrogen bond donors/acceptors displayed on the base moiety of the (deoxy)nucleoside triphosphate. Shigella dGTPase can be inhibited by the addition of stoichiometric amounts of reducing agents. The loss of activity is both time- and concentration-dependent and is accompanied by a decrease in the thermal stability of the enzyme. Shigella dGTPase in the fully reduced form is destabilized by 1.8 kcal/mol compared with the oxidized form. Hence, disulfide bonds play a pivotal role in the maintenance of dGTPase stability and enzymatic functionality. Initial Shigella dGTPase protein crystals have been formed.
Collapse
Affiliation(s)
- S Quirk
- School of Chemistry and Biochemistry, The Georgia Institute of Technology, Atlanta 30332, USA.
| | | |
Collapse
|
33
|
Reha-Krantz LJ, Wong C. Selection of bacteriophage T4 antimutator DNA polymerases: a link between proofreading and sensitivity to phosphonoacetic acid. Mutat Res 1996; 350:9-16. [PMID: 8657202 DOI: 10.1016/0027-5107(95)00085-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
During DNA replication, DNA polymerases alternate between DNA synthesis and proofreading the newly synthesized DNA. In order to understand the molecular details of how DNA polymerases determine the balance between polymerase and proofreading activities, it would be useful to have mutants which switch between the two activities either more or less frequently. Antimutator DNA polymerases switch more frequently and thus have more opportunity for proofreading. We have observed that mutant DNA polymerases which proofread less frequently have a mutator phenotype and are inhibited by the pyrophosphate analogue phosphonoacetic acid. Sensitivity to phosphonoacetic acid can be used to isolate second-site suppressor mutations. These suppressor mutations encode amino acid substitutions which produce antimutator DNA polymerases.
Collapse
Affiliation(s)
- L J Reha-Krantz
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
| | | |
Collapse
|
34
|
Reha-Krantz LJ. Use of genetic analyses to probe structure, function, and dynamics of bacteriophage T4 DNA polymerase. Methods Enzymol 1995; 262:323-31. [PMID: 8594358 DOI: 10.1016/0076-6879(95)62027-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Functionally distinct mutant DNA polymerases have been isolated by the genetic selection strategies described here. These methods can be supplemented by the use of targeted mutagenesis procedures to enhance mutagenesis of DNA polymerase genes and to direct mutagenesis to specific sites in cloned DNA polymerases (see [22-24, 28], this volume). The power of genetic selection is in the ability to identify amino acid residues that are critical for protein structure and function that may not be obvious from studies of structural data alone. For the study of DNA polymerases, it is essential to identify residues involved in the movement of the DNA polymerase along the DNA template and in shuttling the DNA between the polymerase and exonuclease active centers. Ongoing studies are directed toward these goals.
Collapse
Affiliation(s)
- L J Reha-Krantz
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City 84132, USA
| |
Collapse
|
35
|
Motif A of bacteriophage T4 DNA polymerase: role in primer extension and DNA replication fidelity. Isolation of new antimutator and mutator DNA polymerases. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)37508-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
36
|
Spacciapoli P, Nossal N. A single mutation in bacteriophage T4 DNA polymerase (A737V, tsL141) decreases its processivity as a polymerase and increases its processivity as a 3‘–>5‘ exonuclease. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)42370-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
37
|
Wurgler S, Richardson C. DNA binding properties of the deoxyguanosine triphosphate triphosphohydrolase of Escherichia coli. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(20)80692-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
38
|
Quirk S, Bessman MJ. dGTP triphosphohydrolase, a unique enzyme confined to members of the family Enterobacteriaceae. J Bacteriol 1991; 173:6665-9. [PMID: 1657865 PMCID: PMC209013 DOI: 10.1128/jb.173.21.6665-6669.1991] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The enzyme dGTP triphosphohydrolase (dGTPase; EC 3.1.5.1) was assayed in partially purified extracts of several genera of bacteria, and it was found to be strictly confined to members of the family Enterobacteriaceae. Whereas 11 of 12 enteric bacteria had comparable activity for this enzyme, 8 of 8 nonenteric bacteria, including species in the very closely related genera Vibrio and Aeromonas, did not assay positively for this enzyme. When challenged with Escherichia coli anti-dGTPase antiserum, the active enzymes fell into three groups, retaining 0, approximately 50, or 100% of their original activity. A computer search has revealed an amino acid sequence in the E. coli enzyme which matches well with the single-stranded-DNA binding motif of Prasad and Chiu (J. Mol. Biol. 193:579-584, 1987) and may account for the enzyme's observed interaction with DNA. As far as we are aware, this is the only enzymatic activity so far reported to be present solely in the enteric bacteria.
Collapse
Affiliation(s)
- S Quirk
- McCollum-Pratt Institute, Johns Hopkins University, Baltimore, Maryland 21218
| | | |
Collapse
|
39
|
Seto D, Rohrabacher C, Seto J, Hood L. Phosphorescent zinc sulfide is a nonradioactive alternative for marking autoradiograms. Anal Biochem 1990; 189:51-3. [PMID: 2278390 DOI: 10.1016/0003-2697(90)90042-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Phosphorescent zinc sulfide is a nonradioactive alternative for making orientation and identification markings on autoradiograms. Measurements with a luminometer show that light emission is linear with respect to ZnS concentration. A minimum activation time of 5 s has been determined, using an incandescent lamp as a light source. Emission decay kinetics show light emissions reached background levels within minutes, depending on the ZnS concentration. This time period is sufficient for X-ray films to be permanently marked. Because of its efficiency and nontoxicity, this autoradiogram marker could be extremely useful in many protocols, including high-throughput radioactive DNA sequencing. This nonradioactive marker will also be useful in protocols utilizing nonradioactive detection systems, such as those calling for biotinylated and chemiluminescent probes.
Collapse
Affiliation(s)
- D Seto
- Division of Biology, California Institute of Technology, Pasadena 91125
| | | | | | | |
Collapse
|
40
|
Quirk S, Bhatnagar SK, Bessman MJ. Primary structure of the deoxyguanosine triphosphate triphosphohydrolase-encoding gene (dgt) of Escherichia coli. Gene 1990; 89:13-8. [PMID: 2165018 DOI: 10.1016/0378-1119(90)90200-b] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The complete nucleotide sequence has been determined for a 2027-bp region that encompasses the structural gene (dgt) encoding deoxyguanosine triphosphate triphosphohydrolase (dGTPase) from Escherichia coli. The gene resides between the htrA and dapD loci at 3.75-3.8' on the bacterial chromosome. Using homologous recombination in a recD recipient, a dgt- bacterial strain was constructed that was deficient in producing functional dGTPase. Comparison of dGTP pools in this and other strains revealed that dGTPase synthesized in vivo does to some degree modulate the level of dGTP in the bacterial cell, yet the magnitude of this modulation may be insufficient to explain the physiological function of dGTPase.
Collapse
Affiliation(s)
- S Quirk
- McCollum-Pratt Institute, Department of Biology, Johns Hopkins University, Baltimore, MD 21218
| | | | | |
Collapse
|
41
|
Nakai H, Richardson CC. The gene 1.2 protein of bacteriophage T7 interacts with the Escherichia coli dGTP triphosphohydrolase to form a GTP-binding protein. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)39580-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
42
|
Abstract
We have examined the initiation of bacteriophage T7 DNA replication in vivo using a pulse-labeling technique. The pulse-labeling technique permits the rapid identification of initiation sites on the T7 chromosome and a determination of the rate of movement of the replication fork. This technique has been used to analyze a number of phage mutants having alterations in the nucleotide sequence of the primary origin. The experiments confirm the results obtained by electron microscope analysis on the mapping of the primary origin region and demonstrate the requirement for a T7 promoter in the primary origin. The secondary origins were found to be located near the center and at the right end of the genome. Analysis of T7 phage harboring mutations in the essential replication genes of T7 shows that they fell into three classes. The first, including those mutated in genes 4 and 5, do not initiate DNA synthesis. The second, in genes 3, 6, and 1.2, initiate and elongate as wild-type phage, albeit some with lower rates of synthesis, during the first round of replication and then cease DNA synthesis. Mutations in gene 2 have no apparent effect on initiation or elongation.
Collapse
Affiliation(s)
- S D Rabkin
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115
| | | |
Collapse
|
43
|
Quirk S, Seto D, Bhatnagar SK, Gauss P, Gold L, Bessman MJ. Location and molecular cloning of the structural gene for the deoxyguanosine triphosphate triphosphohydrolase of Escherichia coli. Mol Microbiol 1989; 3:1391-5. [PMID: 2559296 DOI: 10.1111/j.1365-2958.1989.tb00121.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The structural gene for deoxyguanosine triphosphate triphosphohydrolase (dGTPase) (EC 3.1.5.1) and its regulator, optA, have been located on a lambda phage carrying a 17.5kb Escherichia coli DNA insert. The DNA fragment has been excised and ligated into pBR325 and also transferred to another lambda vector. From the results of transduction and transformation experiments, we find that the structural gene for dGTPase is very closely linked to optA and dapD, which locates it at approximately 3.6 minutes on the genetic map of E. coli K12. We propose the mnemonic dgt as the designation for the structural gene for this enzyme.
Collapse
Affiliation(s)
- S Quirk
- McCollum-Pratt Institute, Baltimore, Maryland
| | | | | | | | | | | |
Collapse
|
44
|
Huber HE, Beauchamp BB, Richardson CC. Escherichia coli dGTP triphosphohydrolase is inhibited by gene 1.2 protein of bacteriophage T7. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(18)68277-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|