1
|
Martin CP, Chen M, Martinez MF, Ding Y, Caranto JD. The Ferric-Superoxo Intermediate of the TxtE Nitration Pathway Resists Reduction, Facilitating Its Reaction with Nitric Oxide. Biochemistry 2021; 60:2436-2446. [PMID: 34319079 DOI: 10.1021/acs.biochem.1c00416] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
TxtE is a cytochrome P450 (CYP) homologue that mediates the nitric oxide (NO)-dependent direct nitration of l-tryptophan (Trp) to form 4-nitro-l-tryptophan (4-NO2-Trp). A recent report showed evidence that TxtE activity requires NO to react with a ferric-superoxo intermediate. Given this minimal mechanism, it is not clear how TxtE avoids Trp hydroxylation, a mechanism that also traverses the ferric-superoxo intermediate. To provide insight into canonical CYP intermediates that TxtE can access, electron coupling efficiencies to form 4-NO2-Trp under single- or limited-turnover conditions were measured and compared to steady-state efficiencies. As previously reported, Trp nitration by TxtE is supported by the engineered self-sufficient variant, TB14, as well as by reduced putidaredoxin. Ferrous (FeII) TxtE exhibits excellent electron coupling (70%), which is 50-fold higher than that observed under turnover conditions. In addition, two- or four-electron reduced TB14 exhibits electron coupling (∼6%) that is 2-fold higher than that of one-electron reduced TB14 (3%). The combined results suggest (1) autoxidation is the sole TxtE uncoupling pathway and (2) the TxtE ferric-superoxo intermediate cannot be reduced by these electron transfer partners. The latter conclusion is further supported by ultraviolet-visible absorption spectral time courses showing neither spectral nor kinetic evidence for reduction of the ferric-superoxo intermediate. We conclude that resistance of the ferric-superoxo intermediate to reduction is a key feature of TxtE that increases the lifetime of the intermediate and enables its reaction with NO and efficient nitration activity.
Collapse
Affiliation(s)
- Christopher P Martin
- Department of Chemistry, University of Central Florida, 4111 Libra Drive, Room 255, Orlando, Florida 32816, United States
| | - Manyun Chen
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development, University of Florida, 1345 Center Drive, Room P6-27, Gainesville, Florida 32610, United States
| | - Maria F Martinez
- Department of Chemistry, University of Central Florida, 4111 Libra Drive, Room 255, Orlando, Florida 32816, United States
| | - Yousong Ding
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development, University of Florida, 1345 Center Drive, Room P6-27, Gainesville, Florida 32610, United States
| | - Jonathan D Caranto
- Department of Chemistry, University of Central Florida, 4111 Libra Drive, Room 255, Orlando, Florida 32816, United States
| |
Collapse
|
2
|
Liu Y, Denisov IG, Sligar SG, Kincaid JR. Substrate-Specific Allosteric Effects on the Enhancement of CYP17A1 Lyase Efficiency by Cytochrome b5. J Am Chem Soc 2021; 143:3729-3733. [PMID: 33656879 DOI: 10.1021/jacs.1c00581] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
CYP17A1 is an essential human steroidogenic enzyme, which catalyzes two sequential reactions leading to the formation of androstenedione from progesterone and dehydroepiandrosterone from pregnenolone. The second reaction is the C17-C20 bond scission, which is strongly dependent on the presence of cytochrome b5 and displays a heretofore unexplained more pronounced acceleration when 17OH-progesteone (17OH-PROG) is a substrate. The origin of the stimulating effect of cytochrome b5 on C-C bond scission catalyzed by CYP17A1 is still debated as mostly due to either the acceleration of the electron transfer to the P450 oxy complex or allosteric effects of cytochrome b5 favoring active site conformations that promote lyase activity. Using resonance Raman spectroscopy, we compared the effect of Mn-substituted cytochrome b5 (Mn-Cytb5) on the oxy complex of CYP17A1 with both proteins co-incorporated in lipid nanodiscs. For CYP17A1 with 17OH-PROG, a characteristic shift of the Fe-O mode is observed in the presence of Mn-b5, indicating reorientation of a hydrogen bond between the 17OH group of the substrate from the terminal to the proximal oxygen atom of the Fe-O-O moiety, a configuration favorable for the lyase catalysis. For 17OH-pregnenolone, no such shift is observed, the favorable H-bonding orientation being present even without Mn-Cytb5. These new data provide a precise allosteric interpretation for the more pronounced acceleration seen for the 17OH-PROG substrate.
Collapse
Affiliation(s)
- Yilin Liu
- Department of Chemistry, Marquette University, 1414W Clybourn Street, Milwaukee, Wisconsin 53233, United States
| | | | | | - James R Kincaid
- Department of Chemistry, Marquette University, 1414W Clybourn Street, Milwaukee, Wisconsin 53233, United States
| |
Collapse
|
3
|
Molecular mechanism of metabolic NAD(P)H-dependent electron-transfer systems: The role of redox cofactors. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1860:233-258. [PMID: 30419202 DOI: 10.1016/j.bbabio.2018.11.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 10/30/2018] [Accepted: 11/07/2018] [Indexed: 12/14/2022]
Abstract
NAD(P)H-dependent electron-transfer (ET) systems require three functional components: a flavin-containing NAD(P)H-dehydrogenase, one-electron carrier and metal-containing redox center. In principle, these ET systems consist of one-, two- and three-components, and the electron flux from pyridine nucleotide cofactors, NADPH or NADH to final electron acceptor follows a linear pathway: NAD(P)H → flavin → one-electron carrier → metal containing redox center. In each step ET is primarily controlled by one- and two-electron midpoint reduction potentials of protein-bound redox cofactors in which the redox-linked conformational changes during the catalytic cycle are required for the domain-domain interactions. These interactions play an effective ET reactions in the multi-component ET systems. The microsomal and mitochondrial cytochrome P450 (cyt P450) ET systems, nitric oxide synthase (NOS) isozymes, cytochrome b5 (cyt b5) ET systems and methionine synthase (MS) ET system include a combination of multi-domain, and their organizations display similarities as well as differences in their components. However, these ET systems are sharing of a similar mechanism. More recent structural information obtained by X-ray and cryo-electron microscopy (cryo-EM) analysis provides more detail for the mechanisms associated with multi-domain ET systems. Therefore, this review summarizes the roles of redox cofactors in the metabolic ET systems on the basis of one-electron redox potentials. In final Section, evolutionary aspects of NAD(P)H-dependent multi-domain ET systems will be discussed.
Collapse
|
4
|
Bhatt MR, Khatri Y, Rodgers RJ, Martin LL. Role of cytochrome b5 in the modulation of the enzymatic activities of cytochrome P450 17α-hydroxylase/17,20-lyase (P450 17A1). J Steroid Biochem Mol Biol 2017; 170:2-18. [PMID: 26976652 DOI: 10.1016/j.jsbmb.2016.02.033] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 02/25/2016] [Accepted: 02/27/2016] [Indexed: 12/13/2022]
Abstract
Cytochrome b5 (cyt b5) is a small hemoprotein that plays a significant role in the modulation of activities of an important steroidogenic enzyme, cytochrome P450 17α-hydroxylase/17,20-lyase (P450 17A1, CYP17A1). Located in the zona fasciculata and zona reticularis of the adrenal cortex and in the gonads, P450 17A1 catalyzes two different reactions in the steroidogenic pathway; the 17α-hydroxylation and 17,20-lyase, in the endoplasmic reticulum of these respective tissues. The activities of P450 17A1 are regulated by cyt b5 that enhances the 17,20-lyase reaction by promoting the coupling of P450 17A1 and cytochrome P450 reductase (CPR), allosterically. Cyt b5 can also act as an electron donor to enhance the 16-ene-synthase activity of human P450 17A1. In this review, we discuss the many roles of cyt b5 and focus on the modulation of CYP17A1 activities by cyt b5 and the mechanisms involved.
Collapse
Affiliation(s)
- Megh Raj Bhatt
- Everest Biotech Pvt. Ltd., Khumaltar, Lalitpur, P.O. Box 21608, Kathmandu 44600, Nepal
| | - Yogan Khatri
- Institute of Biochemistry, Saarland University, 66123 Saarbrücken, Germany
| | - Raymond J Rodgers
- School of Medicine, Robinson Research Institute, University of Adelaide, Adelaide SA 5005, Australia
| | - Lisandra L Martin
- School of Chemistry, Monash University, Clayton, 3800, Victoria, Australia.
| |
Collapse
|
5
|
Evidence that cytochrome b5 acts as a redox donor in CYP17A1 mediated androgen synthesis. Biochem Biophys Res Commun 2016; 477:202-8. [PMID: 27297105 DOI: 10.1016/j.bbrc.2016.06.043] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 06/09/2016] [Indexed: 02/02/2023]
Abstract
Cytochrome P450 17A1 (CYP17A1) is an important drug target for castration resistant prostate cancer. It is a bi-functional enzyme, catalyzing production of glucocorticoid precursors by hydroxylation of pregnene-nucleus, and androgen biosynthesis by a second CC lyase step, at the expense of glucocorticoid production. Cytochrome b5 (cyt b5) is known to be a key regulator of the androgen synthesis reaction in vivo, by a mechanism that is not well understood. Two hypotheses have been proposed for the mechanism by which cyt b5 increases androgen biosynthesis. Cyt b5 could act as an allosteric effector, binding to CYP17A1 and either changing its selective substrate affinity or altering the conformation of the P450 to increase the catalytic rate or decrease unproductive uncoupling channels. Alternatively, cyt b5 could act as a redox donor for supply of the second electron in the P450 cycle, reducing the oxyferrous complex to form the reactive peroxo-intermediate. To understand the mechanism of lyase enhancement by cyt b5, we generated a redox-inactive form of cyt b5, in which the heme is replaced with a Manganese-protoporphyrin IX (Mn-b5), and investigated enhancement of androgen producing lyase reaction by CYP17A1. Given the critical significance of a stable membrane anchor for all of the proteins involved and the need for controlled stoichiometric ratios, we employed the Nanodisc system for this study. The redox inactive form was observed to have no effect on the lyase reaction, while reactions with the normal heme-iron containing cyt b5 were enhanced ∼5 fold as compared to reactions in the absence of cyt b5. We also performed resonance Raman measurements on ferric CYP17A1 bound to Mn-b5. Upon addition of Mn-b5 to Nanodisc reconstituted CYP17A1, we observed clear evidence for the formation of a b5-CYP17A1 complex, as noted by changes in the porphyrin modes and alteration in the proximal FeS vibrational frequency. Thus, although Mn-b5 binds to CYP17A1, it is unable to enhance the lyase reaction, strongly suggesting that cyt b5 has a redox effector role in enhancement of the CYP17A1 mediated lyase reaction necessary for androgen synthesis.
Collapse
|
6
|
Burkhardt T, Letzel T, Drewes JE, Grassmann J. Comprehensive assessment of Cytochrome P450 reactions: A multiplex approach using real-time ESI-MS. Biochim Biophys Acta Gen Subj 2015; 1850:2573-81. [PMID: 26409144 DOI: 10.1016/j.bbagen.2015.09.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 09/01/2015] [Accepted: 09/22/2015] [Indexed: 01/14/2023]
Abstract
BACKGROUND The detailed analysis of Cytochrome P450 (CYP) catalyzed reactions is of great interest, since those are of importance for biotechnical applications, drug interaction studies and environmental research. Often cocktail approaches are carried out in order to monitor several CYP activities in a single experiment. Commonly in these approaches product formation is detected and IC50 values are determined. METHODS In the present work, the reactions of two different CYP isoforms were monitored using real-time electrospray ionization mass spectrometry. Multiplex experiments using the highly specific CYP2A6 with its corresponding substrate coumarin as well as the highly promiscuous CYP3A4 with testosterone were conducted. Product formation and substrate depletion were simultaneously monitored and compared to the single CYP experiments. The diffusion-controlled rate of reaction and conversion rates that are used as parameters to assess the enzymatic activity were calculated for all measurements conducted. RESULTS Differences in conversion rates and the theoretical rate of reaction that were observed for single CYP and multiplex experiments, respectively, reveal the complexity of the underlying mechanisms. Findings of this study imply that there might be distinct deviations between product formation and substrate degradation when mixtures are used. CONCLUSIONS Detailed results indicate that for a comprehensive assessment of these enzymatic reactions both product and substrate should be considered. GENERAL SIGNIFICANCE The direct hyphenation of enzymatic reactions to mass spectrometry allows for a comprehensive assessment of enzymatic behavior. Due to the benefits of this technique, the entire system which includes substrate, product and intermediates can be investigated. Thus, besides IC50 values further information regarding the enzymatic behavior offers the opportunity for a more detailed insight.
Collapse
Affiliation(s)
- Therese Burkhardt
- Chair of Urban Water Systems Engineering, Technical University of Munich, Am Coulombwall, 85748 Garching, Germany.
| | - Thomas Letzel
- Chair of Urban Water Systems Engineering, Technical University of Munich, Am Coulombwall, 85748 Garching, Germany.
| | - Jörg E Drewes
- Chair of Urban Water Systems Engineering, Technical University of Munich, Am Coulombwall, 85748 Garching, Germany.
| | - Johanna Grassmann
- Chair of Urban Water Systems Engineering, Technical University of Munich, Am Coulombwall, 85748 Garching, Germany.
| |
Collapse
|
7
|
Ječmen T, Ptáčková R, Černá V, Dračínská H, Hodek P, Stiborová M, Hudeček J, Šulc M. Photo-initiated crosslinking extends mapping of the protein-protein interface to membrane-embedded portions of cytochromes P450 2B4 and b₅. Methods 2015; 89:128-37. [PMID: 26235815 DOI: 10.1016/j.ymeth.2015.07.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 07/27/2015] [Accepted: 07/28/2015] [Indexed: 01/17/2023] Open
Abstract
Protein-protein interactions play a central role in the regulation of many biochemical processes (e.g. the system participating in enzyme catalysis). Therefore, a deeper understanding of protein-protein interactions may contribute to the elucidation of many biologically important mechanisms. For this purpose, it is necessary to establish the composition and stoichiometry of supramolecular complexes and to identify the crucial portions of the interacting molecules. This study is devoted to structure-functional relationships in the microsomal Mixed Function Oxidase (MFO) complex, which is responsible for biotransformation of many hydrophobic endogenous compounds and xenobiotics. In particular, the cytochrome b5 interaction with MFO terminal oxygenase cytochrome P-450 (P450) was studied. To create photolabile probes suitable for this purpose, we prepared cytochrome b5 which had a photolabile diazirine analog of methionine (pMet) incorporated into the protein sequence, employing recombinant expression in Escherichia coli. In addition to wild-type cytochrome b5, where three methionines (Met) are located at positions 96, 126, and 131, six mutants containing only one Met in the sequence were designed and expressed (see Table 1). In these mutants, a single Met was engineered into the catalytic domain (at positions 23, 41, or 46), into the linker between the protein domains (at position 96), or into the membrane region (at positions 126 or 131). These mutants should confirm or exclude these portions of cytochrome b5 which are involved in the interaction with P450. After UV irradiation, the pMet group(s) in the photolabile cytochrome b5 probe was(were) activated, producing covalent crosslinks with the interacting parts of P450 2B4 in the close vicinity. The covalent complexes were analyzed by the "bottom up" approach with high-accuracy mass spectrometry. The analysis provided an identification of the contacts in the supramolecular complex with low structural resolution. We found that all the above-mentioned cytochrome b5 Met residues can form intermolecular crosslinks and thus participate in the interaction. In addition, our results indicate the existence of at least two P450:cytochrome b5 complexes which differ in the orientation of individual proteins. The results demonstrate the advantages of the photo-initiated crosslinking technique which is able to map the protein-protein interfaces not only in the solvent exposed regions, but also in the membrane-embedded segments (compared to a typical crosslinking approach which generally only identifies crosslinks in solvent exposed regions).
Collapse
Affiliation(s)
- Tomáš Ječmen
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova 2030, CZ-12843 Prague 2, Czech Republic; Institute of Microbiology v.v.i., Academy of Sciences of the Czech Republic, Vídeňská 1083, CZ-14220 Prague 4, Czech Republic
| | - Renata Ptáčková
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova 2030, CZ-12843 Prague 2, Czech Republic; Institute of Microbiology v.v.i., Academy of Sciences of the Czech Republic, Vídeňská 1083, CZ-14220 Prague 4, Czech Republic
| | - Věra Černá
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova 2030, CZ-12843 Prague 2, Czech Republic
| | - Helena Dračínská
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova 2030, CZ-12843 Prague 2, Czech Republic
| | - Petr Hodek
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova 2030, CZ-12843 Prague 2, Czech Republic
| | - Marie Stiborová
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova 2030, CZ-12843 Prague 2, Czech Republic
| | - Jiří Hudeček
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova 2030, CZ-12843 Prague 2, Czech Republic
| | - Miroslav Šulc
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova 2030, CZ-12843 Prague 2, Czech Republic; Institute of Microbiology v.v.i., Academy of Sciences of the Czech Republic, Vídeňská 1083, CZ-14220 Prague 4, Czech Republic.
| |
Collapse
|
8
|
Laursen T, Møller BL, Bassard JE. Plasticity of specialized metabolism as mediated by dynamic metabolons. TRENDS IN PLANT SCIENCE 2015; 20:20-32. [PMID: 25435320 DOI: 10.1016/j.tplants.2014.11.002] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 10/24/2014] [Accepted: 11/07/2014] [Indexed: 05/02/2023]
Abstract
The formation of specialized metabolites enables plants to respond to biotic and abiotic stresses, but requires the sequential action of multiple enzymes. To facilitate swift production and to avoid leakage of potentially toxic and labile intermediates, many of the biosynthetic pathways are thought to organize in multienzyme clusters termed metabolons. Dynamic assembly and disassembly enable the plant to rapidly switch the product profile and thereby prioritize its resources. The lifetime of metabolons is largely unknown mainly due to technological limitations. This review focuses on the factors that facilitate and stimulate the dynamic assembly of metabolons, including microenvironments, noncatalytic proteins, and allosteric regulation. Understanding how plants organize carbon fluxes within their metabolic grids would enable targeted bioengineering of high-value specialized metabolites.
Collapse
Affiliation(s)
- Tomas Laursen
- VILLUM Research Center for Plant Plasticity, Center for Synthetic Biology 'bioSYNergy', and Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, 40 Thorvaldsensvej, DK-1871 Frederiksberg C, Copenhagen, Denmark
| | - Birger Lindberg Møller
- VILLUM Research Center for Plant Plasticity, Center for Synthetic Biology 'bioSYNergy', and Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, 40 Thorvaldsensvej, DK-1871 Frederiksberg C, Copenhagen, Denmark; Carlsberg Laboratory, 10 Gamle Carlsberg Vej, DK-1799 Copenhagen V, Denmark.
| | - Jean-Etienne Bassard
- VILLUM Research Center for Plant Plasticity, Center for Synthetic Biology 'bioSYNergy', and Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, 40 Thorvaldsensvej, DK-1871 Frederiksberg C, Copenhagen, Denmark
| |
Collapse
|
9
|
Yang Y, Zhang H, Usharani D, Bu W, Im S, Tarasev M, Rwere F, Pearl NM, Meagher J, Sun C, Stuckey J, Shaik S, Waskell L. Structural and functional characterization of a cytochrome P450 2B4 F429H mutant with an axial thiolate-histidine hydrogen bond. Biochemistry 2014; 53:5080-91. [PMID: 25029089 PMCID: PMC4131899 DOI: 10.1021/bi5003794] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 07/15/2014] [Indexed: 02/02/2023]
Abstract
The structural basis of the regulation of microsomal cytochrome P450 (P450) activity was investigated by mutating the highly conserved heme binding motif residue, Phe429, on the proximal side of cytochrome P450 2B4 to a histidine. Spectroscopic, pre-steady-state and steady-state kinetic, thermodynamic, theoretical, and structural studies of the mutant demonstrate that formation of an H-bond between His429 and the unbonded electron pair of the Cys436 axial thiolate significantly alters the properties of the enzyme. The mutant lost >90% of its activity; its redox potential was increased by 87 mV, and the half-life of the oxyferrous mutant was increased ∼37-fold. Single-crystal electronic absorption and resonance Raman spectroscopy demonstrated that the mutant was reduced by a small dose of X-ray photons. The structure revealed that the δN atom of His429 forms an H-bond with the axial Cys436 thiolate whereas the εN atom forms an H-bond with the solvent and the side chain of Gln357. The amide of Gly438 forms the only other H-bond to the tetrahedral thiolate. Theoretical quantification of the histidine-thiolate interaction demonstrates a significant electron withdrawing effect on the heme iron. Comparisons of structures of class I-IV P450s demonstrate that either a phenylalanine or tryptophan is often found at the location corresponding to Phe429. Depending on the structure of the distal pocket heme, the residue at this location may or may not regulate the thermodynamic properties of the P450. Regardless, this residue appears to protect the thiolate from solvent, oxidation, protonations, and other deleterious reactions.
Collapse
Affiliation(s)
- Yuting Yang
- Department
of Anesthesiology, University of Michigan
and VA Medical Center, 2215 Fuller Road, Building 31, Room 225, Ann
Arbor, Michigan 48105, United States
| | - Haoming Zhang
- Department
of Anesthesiology, University of Michigan
and VA Medical Center, 2215 Fuller Road, Building 31, Room 225, Ann
Arbor, Michigan 48105, United States
| | - Dandamudi Usharani
- Institute
of Chemistry and Lise Meitner-Minerva Center for Computational Quantum
Chemistry, Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| | - Weishu Bu
- Department
of Anesthesiology, University of Michigan
and VA Medical Center, 2215 Fuller Road, Building 31, Room 225, Ann
Arbor, Michigan 48105, United States
| | - Sangchoul Im
- Department
of Anesthesiology, University of Michigan
and VA Medical Center, 2215 Fuller Road, Building 31, Room 225, Ann
Arbor, Michigan 48105, United States
| | - Michael Tarasev
- Department
of Anesthesiology, University of Michigan
and VA Medical Center, 2215 Fuller Road, Building 31, Room 225, Ann
Arbor, Michigan 48105, United States
| | - Freeborn Rwere
- Department
of Anesthesiology, University of Michigan
and VA Medical Center, 2215 Fuller Road, Building 31, Room 225, Ann
Arbor, Michigan 48105, United States
| | - Naw May Pearl
- Department
of Anesthesiology, University of Michigan
and VA Medical Center, 2215 Fuller Road, Building 31, Room 225, Ann
Arbor, Michigan 48105, United States
| | - Jennifer Meagher
- Life
Science Institute, University of Michigan, 210 Washtenaw Avenue, Ann Arbor, Michigan 48109, United States
| | - Cuthbert Sun
- Department
of Anesthesiology, University of Michigan
and VA Medical Center, 2215 Fuller Road, Building 31, Room 225, Ann
Arbor, Michigan 48105, United States
| | - Jeanne Stuckey
- Life
Science Institute, University of Michigan, 210 Washtenaw Avenue, Ann Arbor, Michigan 48109, United States
| | - Sason Shaik
- Institute
of Chemistry and Lise Meitner-Minerva Center for Computational Quantum
Chemistry, Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| | - Lucy Waskell
- Department
of Anesthesiology, University of Michigan
and VA Medical Center, 2215 Fuller Road, Building 31, Room 225, Ann
Arbor, Michigan 48105, United States
| |
Collapse
|
10
|
Kenaan C, Shea EV, Lin HL, Zhang H, Pratt-Hyatt MJ, Hollenberg PF. Interactions between CYP2E1 and CYP2B4: effects on affinity for NADPH-cytochrome P450 reductase and substrate metabolism. Drug Metab Dispos 2013; 41:101-10. [PMID: 23043184 PMCID: PMC3533429 DOI: 10.1124/dmd.112.046094] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 10/05/2012] [Indexed: 11/22/2022] Open
Abstract
Studies in microsomal and reconstituted systems have shown that the presence of one cytochrome P450 isoform can significantly influence the catalytic activity of another isoform. In this study, we assessed whether CYP2E1 could influence the catalytic activity of CYP2B4 under steady-state turnover conditions. The results show that CYP2E1 inhibits CYP2B4-mediated metabolism of benzphetamine (BNZ) with a K(i) of 0.04 µM. However, CYP2B4 is not an inhibitor of CYP2E1-mediated p-nitrophenol hydroxylation. When these inhibition studies were performed with the artificial oxidant tert-butyl hydroperoxide, CYP2E1 did not significantly inhibit CYP2B4 activity. Determinations of the apparent K(M) and k(cat) of CYP2B4 for CPR in the presence of increasing concentrations of CYP2E1 revealed a mixed inhibition of CYP2B4 by CYP2E1. At low concentrations of CYP2E1, the apparent K(M) of CYP2B4 for CPR increased up to 23-fold with virtually no change in the k(cat) for the reaction, however, at higher concentrations of CYP2E1, the apparent K(M) of CYP2B4 for CPR decreased to levels similar to those observed in the absence of CYP2E1 and the k(cat) also decreased by 11-fold. Additionally, CYP2E1 increased the apparent K(M) of CYP2B4 for BNZ by 8-fold and the apparent K(M) did not decrease to its original value when saturating concentrations of CPR were used. While the individual apparent K(M) values of CYP2B4 and CYP2E1 for CPR are similar, the apparent K(M) of CYP2E1 for CPR in the presence of CYP2B4 decreased significantly, thus suggesting that CYP2B4 enhances the affinity of CYP2E1 for CPR and this may allow CYP2E1 to out-compete CYP2B4 for CPR.
Collapse
Affiliation(s)
- Cesar Kenaan
- Chemical Biology Doctoral Program, The University of Michigan, Ann Arbor, Michigan, USA
| | | | | | | | | | | |
Collapse
|
11
|
Zhao C, Gao Q, Roberts AG, Shaffer SA, Doneanu CE, Xue S, Goodlett DR, Nelson SD, Atkins WM. Cross-linking mass spectrometry and mutagenesis confirm the functional importance of surface interactions between CYP3A4 and holo/apo cytochrome b(5). Biochemistry 2012; 51:9488-500. [PMID: 23150942 DOI: 10.1021/bi301069r] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cytochrome b(5) (cyt b(5)) is one of the key components in the microsomal cytochrome P450 monooxygenase system. Consensus has not been reached about the underlying mechanism of cyt b(5) modulation of CYP catalysis. Both cyt b(5) and apo b(5) are reported to stimulate the activity of several P450 isoforms. In this study, the surface interactions of both holo and apo b(5) with CYP3A4 were investigated and compared for the first time. Chemical cross-linking coupled with mass spectrometric analysis was used to identify the potential electrostatic interactions between the protein surfaces. Subsequently, the models of interaction of holo/apo b(5) with CYP3A4 were built using the identified interacting sites as constraints. Both cyt b(5) and apo b(5) were predicted to bind to the same groove on CYP3A4 with close contacts to the B-B' loop of CYP3A4, a substrate recognition site. Mutagenesis studies further confirmed that the interacting sites on CYP3A4 (Lys96, Lys127, and Lys421) are functionally important. Mutation of these residues reduced or abolished cyt b(5) binding affinity. The critical role of Arg446 on CYP3A4 in binding to cyt b(5) and/or cytochrome P450 reductase was also discovered. The results indicated that electrostatic interactions on the interface of the two proteins are functionally important. The results indicate that apo b(5) can dock with CYP3A4 in a manner analogous to that of holo b(5), so electron transfer from cyt b(5) is not required for its effects.
Collapse
Affiliation(s)
- Chunsheng Zhao
- Department of Medicinal Chemistry, University of Washington, Box 357610, Seattle, WA 98195, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Celik H, Arinç E. Evaluation of bioreductive activation of anticancer drugs idarubicin and mitomycin C by NADH-cytochrome b5 reductase and cytochrome P450 2B4. Xenobiotica 2012; 43:263-75. [PMID: 22928801 DOI: 10.3109/00498254.2012.715212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Abstract
This study attempted to investigate the ability of microsomal NADH-cytochrome b5 reductase and cytochrome P450 2B4 to reductively activate idarubicin and mitomycin C. In vitro plasmid DNA damage experiments and assays using purified hepatic enzymes were employed to examine their respective roles in the metabolic activation of anticancer drugs. Mitomycin C was found to be not a good substrate for microsomal b5 reductase unlike P450 reductase. It produced low amounts of strand breaks in DNA when incubated with b5 reductase and its one-electron reduction by purified enzyme was found as negligible. Our findings revealed that P450 reductase-mediated metabolism of idarubicin resulted in a large increase in single-strand DNA breaks, whereas, b5 reductase neither catalyzed the reduction of idarubicin nor mediated the formation of DNA damage in the presence of idarubicin. The reconstitution studies, on the other hand, have identified rabbit liver CYP2B4 isozyme as being a potential candidate enzyme for reductive bioactivation of idarubicin and mitomycin C. Thus, the present novel findings strongly suggest that while b5 reductase could not play a key role in the cytotoxic and/or antitumor effects of idarubicin and mitomycin C, CYP2B4 could potentiate their activity in combination with P450 reductase.
Collapse
Affiliation(s)
- Haydar Celik
- Biochemistry Graduate Programme and Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | | |
Collapse
|
13
|
Yu CT, Guo YL, Lü L, Wang YH, Yao P, Huang ZX. Study on the Gas Phase Stability of Heme-binding Pocket in Cytochrome Tb5 and Its Mutants by Electrospray Mass Spectrometry. CHINESE J CHEM 2010. [DOI: 10.1002/cjoc.20020201215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
14
|
Grindflek E, Berget I, Moe M, Oeth P, Lien S. Transcript profiling of candidate genes in testis of pigs exhibiting large differences in androstenone levels. BMC Genet 2010; 11:4. [PMID: 20100319 PMCID: PMC2823645 DOI: 10.1186/1471-2156-11-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2009] [Accepted: 01/25/2010] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Boar taint is an unpleasant odor and flavor of the meat and occurs in a high proportion of uncastrated male pigs. Androstenone, a steroid produced in testis and acting as a sex pheromone regulating reproductive function in female pigs, is one of the main compounds responsible for boar taint. The primary goal of the present investigation was to determine the differential gene expression of selected candidate genes related to levels of androstenone in pigs. RESULTS Altogether 2560 boars from the Norwegian Landrace and Duroc populations were included in this study. Testicle samples from the 192 boars with most extreme high or low levels of androstenone in fat were used for RNA extraction, and 15 candidate genes were selected and analyzed by real-competitive PCR analysis. The genes Cytochrome P450 c17 (CYP17A1), Steroidogenic acute regulatory protein (STAR), Aldo-keto reductase family 1 member C4 (AKR1C4), Short-chain dehydrogenase/reductase family member 4 (DHRS4), Ferritin light polypeptide (FTL), Sulfotransferase family 2A, dehydroepiandrosterone-preferring member 1 (SULT2A1), Cytochrome P450 subfamily XIA polypeptide 1 (CYP11A1), Cytochrome b5 (CYB5A), and 17-beta-Hydroxysteroid dehydrogenase IV (HSD17B4) were all found to be significantly (P < 0.05) up-regulated in high androstenone boars in both Duroc and Landrace. Furthermore, Cytochrome P450 c19A2 (CYP19A2) was down-regulated and progesterone receptor membrane component 1 (PGRMC1) was up-regulated in high-androstenone Duroc boars only, while CYP21 was significantly down-regulated (2.5) in high-androstenone Landrace only. The genes Nuclear Receptor co-activator 4 (NCOA4), Sphingomyrlin phosphodiesterase 1 (SMPD1) and 3beta-hydroxysteroid dehydrogenase (HSD3B) were not significantly differentially expressed in any breeds. Additionally, association studies were performed for the genes with one or more detected SNPs. Association between SNP and androstenone level was observed in CYB5A only, suggesting cis-regulation of the differential transcription in this gene. CONCLUSION A large pig material of highly extreme androstenone levels is investigated. The current study contributes to the knowledge about which genes that is differentially expressed regard to the levels of androstenone in pigs. Results in this paper suggest that several genes are important in the regulation of androstenone level in boars and warrant further evaluation of the above mentioned candidate genes, including analyses in different breeds, identification of causal mutations and possible gene interactions.
Collapse
Affiliation(s)
- Eli Grindflek
- NORSVIN, The Norwegian Pig Breeders Association, Hamar, Norway.
| | | | | | | | | |
Collapse
|
15
|
Sue Masters B, Marohnic CC. Cytochromes P450—A Family of Proteins and Scientists–Understanding their Relationships. Drug Metab Rev 2008; 38:209-25. [PMID: 16684658 DOI: 10.1080/03602530600570065] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The unifying thread of this review involves NADPH-cytochrome P450 reductase (CYPOR), the microsomal enzyme responsible for transferring electrons to cytochromes P450, as well as several other monooxygenase systems, a lifelong interest of the corresponding author. The intersection of her research with that of Dr. David Kupfer, their resulting collaboration, and the beginning of a long-standing study of fatty acid- and eicosanoid-metabolizing cytochromes P450 (CYP4A gene subfamily), including the role of cytochrome b5, will be reported. The culmination of this interest now involves purification and characterization of the human mutants of CYPOR that have been implicated in pathologies, such as Antley-Bixler syndrome.
Collapse
|
16
|
de Virville JD, Cochet F, Tasseva G, Moreau F, Zachowski A. Changes in electron transport pathways in endoplasmic reticulum of rapeseed in response to cold. PLANTA 2008; 228:875-882. [PMID: 18663470 DOI: 10.1007/s00425-008-0793-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2008] [Accepted: 07/11/2008] [Indexed: 05/26/2023]
Abstract
We studied changes induced by cold on electron transfer pathways (linked to NADH or NADPH oxidation) in endoplasmic reticulum of rapeseed hypocotyls (Brassica napus L.) from a freezing-sensitive variety (ISL) and freezing-tolerant variety (Tradition). Plantlets were grown at 22 degrees C then submitted to a cold shock of 13 or 35 days at 4 degrees C. We measured the content in NADH, NADPH, NAD and NADP of the hypocotyls and the redox power was estimated by the reduced versus oxidized nucleotide ratio. The contents in cytochromes b (5) and P-450, electron acceptors of NADH and NADPH respectively, were determined by differential spectrophotometry. Finally, activity of both NADH-cytochrome b (5) reductase (E.C.1.6.2.2) and NADPH cytochrome P-450 reductase (E.C.1.6.2.4) was determined by reduction of exogenous cytochrome c. Results show that during cold shock, along with an increase of linolenic acid content, there was a general activation of the NADPH pathway which was observed more quickly in Tradition plantlets than in ISL ones. Due to transfer of electrons that can occur between NADPH reductase and cytochrome b (5), this could favor fatty acid desaturation in Tradition, explaining why linolenic acid accumulation was more pronounced in this variety. Besides, more cytochrome P-450 accumulated in ISL that could compete for electrons needed by the FAD3 desaturase, resulting in a relative slower enrichment in 18:3 fatty acid in these plantlets.
Collapse
Affiliation(s)
- Jacques Davy de Virville
- Laboratoire de Physiologie Cellulaire et Moléculaire des Plantes, Université Pierre et Marie Curie, UMR CNRS 7180, case 154, 3 rue Galilée, Ivry-sur-Seine, 94200, Paris, France.
| | | | | | | | | |
Collapse
|
17
|
Yeh HC, Hsu PY, Tsai AL, Wang LH. Spectroscopic characterization of the oxyferrous complex of prostacyclin synthase in solution and in trapped sol-gel matrix. FEBS J 2008; 275:2305-14. [PMID: 18397321 DOI: 10.1111/j.1742-4658.2008.06385.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Prostacyclin synthase (PGIS) is a member of the cytochrome P450 family in which the oxyferrous complexes are generally labile in the absence of substrate. At 4 degrees C, the on-rate constants and off-rate constants of oxygen binding to PGIS in solution are 5.9 x 10(5) m(-1).s(-1) and 29 s(-1), respectively. The oxyferrous complex decays to a ferric form at a rate of 12 s(-1). We report, for the first time, a stable oxyferrous complex of PGIS in a transparent sol-gel monolith. The encapsulated ferric PGIS retained the same spectroscopic features as in solution. The binding capabilities of the encapsulated PGIS were demonstrated by spectral changes upon the addition of O-based, N-based and C-based ligands. The peroxidase activity of PGIS in sol-gel was three orders of magnitude slower than that in solution owing to the restricted diffusion of the substrate in sol-gel. The oxyferrous complex in sol-gel was observable for 24 h at room temperature and displayed a much red-shifted Soret peak. Stabilization of the ferrous-carbon monoxide complex in sol-gel was observed as an enrichment of the 450-nm species over the 420-nm species. This result suggests that the sol-gel method may be applied to other P450s to generate a stable intermediate in the di-oxygen activation.
Collapse
Affiliation(s)
- Hui-Chun Yeh
- Division of Hematology, Department of Internal Medicine, University of Texas Health Science Center, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
18
|
Zhang H, Hamdane D, Im SC, Waskell L. Cytochrome b5 Inhibits Electron Transfer from NADPH-Cytochrome P450 Reductase to Ferric Cytochrome P450 2B4. J Biol Chem 2008; 283:5217-25. [DOI: 10.1074/jbc.m709094200] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
19
|
Noble MA, Girvan HM, Smith SJ, Smith WE, Murataliev M, Guzov VM, Feyereisen R, Munro AW. Analysis of the interactions of cytochrome b5 with flavocytochrome P450 BM3 and its domains. Drug Metab Rev 2007; 39:599-617. [PMID: 17786641 DOI: 10.1080/03602530701468458] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Interactions between a soluble form of microsomal cytochrome b(5) (b(5)) from Musca domestica (housefly) and Bacillus megaterium flavocytochrome P450 BM3 and its component reductase (CPR), heme (P450) and FAD/NADPH-binding (FAD) domains were analyzed by a combination of steady-state and stopped-flow kinetics methods, and optical spectroscopy techniques. The high affinity binding of b(5) to P450 BM3 induced a low-spin to high-spin transition in the P450 heme iron (K(d) for b(5) binding = 0.44 microM and 0.72 microM for the heme domain and intact flavocytochrome, respectively). The b(5) had modest inhibitory effects on steady-state turnover of P450 BM3 with fatty acids, and the ferrous-carbon monoxy P450 complex was substantially stabilized on binding b(5). Single turnover reduction of b(5) by BM3 using stopped-flow absorption spectroscopy (k(lim) = 116 s(-1)) was substantially faster than steady-state reduction of b(5) by P450 BM3 (or its CPR and FAD domains), indicating rate-limiting step(s) other than BM3 flavin-to-b(5) heme electron transfer in the steady-state reaction. Steady-state b(5) reduction by P450 BM3 was considerably accelerated at high ionic strength. Pre-reduction of P450 BM3 by NADPH decreased the k(lim) for b(5) reduction approximately 10-fold, and also resulted in a lag phase in steady-state b(5) reduction that was likely due to BM3 conformational perturbations sensitive to the reduction state of the flavocytochrome. Ferrous b(5) could not reduce the ferric P450 BM3 heme domain under anaerobic conditions, consistent with heme iron reduction potentials of the two proteins. However, rapid oxidation of both hemoproteins occurred on aeration of the ferrous protein mixture (and despite the much slower autoxidation rate of b(5) in isolation), consistent with electron transfer occurring from b(5) to the oxyferrous P450 BM3 in the complex. The results demonstrate that strong interactions occur between a eukaryotic b(5) and a model prokaryotic P450. Binding of b(5) perturbs BM3 heme iron spin-state equilibrium, as is seen in many physiologically relevant b(5) interactions with eukaryotic P450s. These results are consistent with the conservation of structure of P450s (particularly at the heme proximal face) between prokaryotes and eukaryotes, and may point to as yet undiscovered roles for b(5)-like proteins in the control of activities of certain prokaryotic P450s.
Collapse
|
20
|
Zhang H, Im SC, Waskell L. Cytochrome b5 increases the rate of product formation by cytochrome P450 2B4 and competes with cytochrome P450 reductase for a binding site on cytochrome P450 2B4. J Biol Chem 2007; 282:29766-76. [PMID: 17693640 DOI: 10.1074/jbc.m703845200] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The kinetics of product formation by cytochrome P450 2B4 were compared in the presence of cytochrome b(5) (cyt b(5)) and NADPH-cyt P450 reductase (CPR) under conditions in which cytochrome P450 (cyt P450) underwent a single catalytic cycle with two substrates, benzphetamine and cyclohexane. At a cyt P450:cyt b(5) molar ratio of 1:1 under single turnover conditions, cyt P450 2B4 catalyzes the oxidation of the substrates, benzphetamine and cyclohexane, with rate constants of 18 +/- 2 and 29 +/- 4.5 s(-1), respectively. Approximately 500 pmol of norbenzphetamine and 58 pmol of cyclohexanol were formed per nmol of cyt P450. In marked contrast, at a cyt P450:CPR molar ratio of 1:1, cyt P450 2B4 catalyzes the oxidation of benzphetamine congruent with100-fold (k = 0.15 +/- 0.05 s(-1)) and cyclohexane congruent with10-fold (k = 2.5 +/- 0.35 s(-1)) more slowly. Four hundred picomoles of norbenzphetamine and 21 pmol of cyclohexanol were formed per nmol of cyt P450. In the presence of equimolar concentrations of cyt P450, cyt b(5), and CPR, product formation is biphasic and occurs with fast and slow rate constants characteristic of catalysis by cyt b(5) and CPR. Increasing the concentration of cyt b(5) enhanced the amount of product formed by cyt b(5) while decreasing the amount of product generated by CPR. Under steady-state conditions at all cyt b(5):cyt P450 molar ratios examined, cyt b(5) inhibits the rate of NADPH consumption. Nevertheless, at low cyt b(5):cyt P450 molar ratios <or=1:1, the rate of metabolism of cyclohexane and benzphetamine is enhanced, whereas at higher cyt b(5):cyt P450 molar ratios, cyt b(5) progressively inhibits both NADPH consumption and the rate of metabolism. It is proposed that the ability of cyt b(5) to enhance substrate metabolism by cyt P450 is related to its ability to increase the rate of catalysis and that the inhibitory properties of cyt b(5) are because of its ability to occupy the reductase-binding site on cyt P450 2B4, thereby preventing reduction of ferric cyt P450 and initiation of the catalytic cycle. It is proposed that cyt b(5) and CPR compete for a binding site on cyt P450 2B4.
Collapse
Affiliation(s)
- Haoming Zhang
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, Michigan 48105, USA
| | | | | |
Collapse
|
21
|
Hlavica P. Models and mechanisms of O-O bond activation by cytochrome P450. A critical assessment of the potential role of multiple active intermediates in oxidative catalysis. ACTA ACUST UNITED AC 2004; 271:4335-60. [PMID: 15560776 DOI: 10.1111/j.1432-1033.2004.04380.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cytochrome P450 enzymes promote a number of oxidative biotransformations including the hydroxylation of unactivated hydrocarbons. Whereas the long-standing consensus view of the P450 mechanism implicates a high-valent iron-oxene species as the predominant oxidant in the radicalar hydrogen abstraction/oxygen rebound pathway, more recent studies on isotope partitioning, product rearrangements with 'radical clocks', and the impact of threonine mutagenesis in P450s on hydroxylation rates support the notion of the nucleophilic and/or electrophilic (hydro)peroxo-iron intermediate(s) to be operative in P450 catalysis in addition to the electrophilic oxenoid-iron entity; this may contribute to the remarkable versatility of P450s in substrate modification. Precedent to this mechanistic concept is given by studies with natural and synthetic P450 biomimics. While the concept of an alternative electrophilic oxidant necessitates C-H hydroxylation to be brought about by a cationic insertion process, recent calculations employing density functional theory favour a 'two-state reactivity' scenario, implicating the usual ferryl-dependent oxygen rebound pathway to proceed via two spin states (doublet and quartet); state crossing is thought to be associated with either an insertion or a radicalar mechanism. Hence, challenge to future strategies should be to fold the disparate and sometimes contradictory data into a harmonized overall picture.
Collapse
Affiliation(s)
- Peter Hlavica
- Walther-Straub-Institut für Pharmakologie und Toxikologie der LMU, München, Germany.
| |
Collapse
|
22
|
Reed JR, Hollenberg PF. Examining the mechanism of stimulation of cytochrome P450 by cytochrome b5: the effect of cytochrome b5 on the interaction between cytochrome P450 2B4 and P450 reductase. J Inorg Biochem 2004; 97:265-75. [PMID: 14511889 DOI: 10.1016/s0162-0134(03)00275-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Dissociation constants K(d) for cytochrome P450 reductase (reductase) and cytochrome P450 2B4 are measured in the presence of various substrates. Aminopyrine increases the dissociation constant for binding of the two proteins. Furthermore, cytochrome b(5) (b(5)) stimulates metabolism of this substrate and dramatically decreases the substrate-related K(d) values. Experiments are performed to test if the b(5)-mediated stimulation is effected through a conformational change of P450. The effects of a redox-inactive analogue of b(5) (Mn b(5)) on product formation and reaction stoichiometry are determined. Variations in the concentration of Mn b(5) stock solution that have been shown to effect the aggregation state of the protein alter the rate of P450-mediated NADPH oxidation but have no effect on the rate of product formation. Thus, the electron transfer capability of b(5) is necessary for stimulation of metabolism. Furthermore, stopped flow spectrometry measurements of the rate of first electron reduction of the P450 by reductase indicate that the coupling of P450 2B4-mediated metabolism improves, in the presence of Mn b(5), with slower delivery of the first electron of the catalytic cycle by the reductase. These results are consistent with a model involving the regulation of the P450 catalytic cycle by conformational changes of the P450 enzyme. We propose that the conformational change(s) necessary for progression of the catalytic cycle is inhibited when reduced, but not oxidized, reductase is bound to the P450.
Collapse
Affiliation(s)
- James R Reed
- Department of Drug Metabolism, Merck and Co., PO Box 2000, Rahway, NJ 07065, USA.
| | | |
Collapse
|
23
|
Zhang H, Gruenke L, Arscott D, Shen A, Kasper C, Harris DL, Glavanovich M, Johnson R, Waskell L. Determination of the rate of reduction of oxyferrous cytochrome P450 2B4 by 5-deazariboflavin adenine dinucleotide T491V cytochrome P450 reductase. Biochemistry 2004; 42:11594-603. [PMID: 14529269 DOI: 10.1021/bi034968u] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The use of 5-deazaFAD T491V cytochrome P450 reductase has made it possible to directly measure the rate of electron transfer to microsomal oxyferrous cytochrome (cyt) P450 2B4. In this reductase the FMN moiety can be reduced to the hydroquinone, FMNH(2), while the 5-deazaFAD moiety remains oxidized [Zhang, H., et al. (2003) Biochemistry 42, 6804-6813]. The rate of electron transfer from 5-deazaFAD cyt P450 reductase to oxyferrous cyt P450 was determined by rapidly mixing the ferrous cyt P450-2-electron-reduced 5-deazaFAD T491V reductase complex with oxygen in the presence of substrate. The 5-deazaFAD T491V reductase which can only donate a single electron reduces the oxyferrous cyt P450 and oxidizes to the air-stable semiquinone, with rate constants of 8.4 and 0.37 s(-1) at 15 degrees C. Surprisingly, oxyferrous cyt P450 turns over more slowly with a rate constant of 0.09 s(-1), which is the rate of catalysis under steady-state conditions at 15 degrees C (k(cat) = 0.08 s(-1)). In contrast, the rate constant for electron transfer from ferrous cyt b(5) to oxyferrous cyt P450 is 10 s(-1) with oxyferrous cyt P450 and cyt b(5) simultaneously undergoing spectral changes. Quantitative analyses by LC-MS/MS revealed that the product, norbenzphetamine, was formed with a coupling efficiency of 52% with cyt b(5) and 32% with 5-deazaFAD T491V reductase. Collectively, these results suggest that during catalysis a relatively stable reduced oxyferrous intermediate of cyt P450 is formed in the presence of cyt P450 reductase but not cyt b(5) and that the rate-limiting step in catalysis follows introduction of the second electron.
Collapse
Affiliation(s)
- Haoming Zhang
- University of Michigan and VA Medical Research Center, 2215 Fuller Road, Ann Arbor, Michigan 48105, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Yamaori S, Yamazaki H, Suzuki A, Yamada A, Tani H, Kamidate T, Fujita KI, Kamataki T. Effects of cytochrome b(5) on drug oxidation activities of human cytochrome P450 (CYP) 3As: similarity of CYP3A5 with CYP3A4 but not CYP3A7. Biochem Pharmacol 2004; 66:2333-40. [PMID: 14637191 DOI: 10.1016/j.bcp.2003.08.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Effects of cytochrome b(5) (b(5)) on catalytic activities of human cytochrome P450 (CYP) 3A5, CYP3A4, and CYP3A7 coexpressed with human NADPH-cytochrome P450 reductase in Escherichia coli membranes were investigated using 14 substrates. The activities of CYP3A5 were enhanced by addition of b(5) in approximately one third of the substrates employed in this study. Such enhancement by b(5) was roughly similar to that of CYP3A4, while the activities of CYP3A7 were not enhanced by b(5) with any substrates employed. V(max) values for midazolam 1'-hydroxylation and amitriptyline N-demethylation by CYP3A5 were increased about twice by addition of b(5), which was also seen with CYP3A4, although the extent of the effects of b(5) on S(50) (K(m)) and Hill coefficient differed dependent on substrates used. In contrast, b(5) did not alter any of these kinetic parameters of CYP3A7. The effects of b(5) on kinetic parameters of CYP3A5 were similar to those of CYP3A4 but not CYP3A7. These results suggest that roles of b(5) in drug oxidation activities of CYP3A5 and CYP3A4 are different from those of CYP3A7.
Collapse
Affiliation(s)
- Satoshi Yamaori
- Laboratory of Drug Metabolism, Graduate School of Pharmaceutical Sciences, Hokkaido University, 060-0812 Sapporo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Hurshman AR, Krebs C, Edmondson DE, Marletta MA. Ability of tetrahydrobiopterin analogues to support catalysis by inducible nitric oxide synthase: formation of a pterin radical is required for enzyme activity. Biochemistry 2003; 42:13287-303. [PMID: 14609340 DOI: 10.1021/bi035491p] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Pterin-free inducible nitric oxide synthase (iNOS) was reconstituted with tetrahydrobiopterin (H(4)B) or tetrahydrobiopterin analogues (5-methyl-H(4)B and 4-amino-H(4)B), and the ability of bound 5-methyl-H(4)B and 4-amino-H(4)B to support catalysis by either full-length iNOS (FLiNOS) or the isolated heme domain (HDiNOS) was examined. In a single turnover with HDiNOS, 5-methyl-H(4)B forms a very stable radical, 5-methyl-H(3)B(*), that accumulates in the arginine reaction to approximately 60% of the HDiNOS concentration and decays approximately 400-fold more slowly than H(3)B(*) (0.0003 vs 0.12 s(-1)). The amount of radical (5-methyl-H(3)B(*) or H(3)B(*)) observed in the NHA reaction is very small (<3% of HDiNOS). The activity of 5-methyl-H(4)B-saturated FLiNOS and HDiNOS is similar to that when H(4)B is bound: arginine is hydroxylated to NHA, and NHA is oxidized exclusively to citrulline and (*)NO. A pterin radical was not observed with 4-amino-H(4)B- or pterin-free HDiNOS with either substrate. The catalytic activity of 4-amino-H(4)B-bound FLiNOS and HDiNOS resembles that of pterin-free iNOS: the hydroxylation of arginine is very unfavorable (<2% that of H(4)B-bound iNOS), and NHA is oxidized to a mixture of amino acid products (citrulline and cyanoornithine) and NO(-) rather than (*)NO. These results demonstrate that the bound pterin cofactor undergoes a one-electron oxidation (to form a pterin radical), which is essential to its ability to support normal NOS turnover. Although binding of H(4)B also stabilizes the NOS structure and active site, the most critical role of the pterin cofactor in NOS appears to be in electron transfer.
Collapse
Affiliation(s)
- Amy R Hurshman
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109-0606, USA
| | | | | | | |
Collapse
|
26
|
Abstract
Cytochrome b(5), a 17-kDa hemeprotein associated primarily with the endoplasmic reticulum of eukaryotic cells, has long been known to augment some cytochrome P450 monooxygenase reactions, but the mechanism of stimulation has remained controversial. Studies in recent years have clarified this issue by delineating three pathways by which cytochrome b(5) augments P450 reactions: direct electron transfer of both required electrons from NADH-cytochrome b(5) reductase to P450, in a pathway separate and independent of NADPH-cytochrome P450 reductase; transfer of the second electron to oxyferrous P450 from either cytochrome b(5) reductase or cytochrome P450 reductase; and allosteric stimulation of P450 without electron transfer. Evidence now indicates that each of these pathways is likely to operate in vivo.
Collapse
Affiliation(s)
- Todd D Porter
- Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536-0082, USA
| |
Collapse
|
27
|
Abstract
Four distinct suggestions have been made to explain the mechanism of the cytochrome b(5)-imposed positive modifier action of the cytochrome P450 monooxygenase reaction. The first mechanism involves a direct input of an electron into the monooxygenase cycle. This is the second of the two electrons necessary for activation of molecular oxygen, and appears to be a rate-limiting step in the monooxygenase reaction. P450 monooxygenases all appear to be uncoupled to varying extents, releasing superoxide and hydrogen peroxide instead of oxidized substrate. A second mechanism suggests that cytochrome b(5) acts as a positive modifier of the monooxygenase by decreasing the extent of uncoupling of the monooxygenase reaction. The implication is that a slow input of the second electron allows uncoupling of a superoxide anion instead of formation of two-electron reduced oxygen. Faster input of the second electron via cytochrome b(5) would result in formation of more of the activated oxygen that reacts with substrate to form product. A third suggestion involves formation of a two-hemoprotein complex between cytochrome b(5) and cytochrome P450 that allows acceptance of two electrons from NADPH-cytochrome P450 reductase. Uncomplexed cytochrome P450 accepts an electron from the reductase, dissociates from it, binds oxygen, and re-associates with the reductase to accept another electron. Complexation with cytochrome b(5) enhances the rate of formation of the active oxygen by obviating the need for two interactions with reductase. The fourth mechanism has cytochrome b(5) serving as an effector without a reduction-oxidation role in the monooxygenation reaction. This effector function may be to enhance the breakdown of the oxygenated hemoprotein to products or to facilitate flow of electrons through the system.
Collapse
Affiliation(s)
- John B Schenkman
- Department of Pharmacology, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030, USA.
| | | |
Collapse
|
28
|
Reed JR, Hollenberg PF. Comparison of substrate metabolism by cytochromes P450 2B1, 2B4, and 2B6: relationship of heme spin state, catalysis, and the effects of cytochrome b5. J Inorg Biochem 2003; 93:152-60. [PMID: 12576277 DOI: 10.1016/s0162-0134(02)00597-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The metabolism of selected substrates by cytochromes P450 (P450) 2B1, 2B4, and 2B6 was compared, and the effects of cytochrome b(5) (b(5)) on these reactions were assessed. There did not appear to be any trends regarding the effects of b(5) when the metabolism of a given substrate by the different P450 enzymes was compared. The changes in spin states of the P450 enzymes as a result of interactions with substrates and cytochrome b(5) were also determined. Only P450 2B4 demonstrated a relationship between spin state, reaction coupling and b(5) effects. The rates of benzphetamine and 7-ethoxy-4-trifluoromethylcoumarin metabolism by the three enzymes could be correlated with the proportions of high spin heme. Similarly, the proportion of reaction coupling during the metabolism of selected substrates was approximately equal to the proportion of high spin P450. The data are interpreted to indicate that a P450 conformational equilibrium coordinately regulates catalysis and spin state changes.
Collapse
Affiliation(s)
- James R Reed
- Merck Research Laboratories, P.O. Box 2000, Mail Stop RY80L-109, Rahway, NJ 07065, USA.
| | | |
Collapse
|
29
|
Yao P, Wu J, Wang YH, Sun BY, Xia ZX, Huang ZX. X-ray crystallography, CD and kinetic studies revealed the essence of the abnormal behaviors of the cytochrome b5 Phe35-->Tyr mutant. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:4287-96. [PMID: 12199707 DOI: 10.1046/j.1432-1033.2002.03120.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Conserved phenylalanine 35 is one of the hydrophobic patch residues on the surface of cytochrome b5 (cyt b5). This patch is partially exposed on the surface of cyt b5 while its buried face is in direct van der Waals' contact with heme b. Residues Phe35 and Phe/Tyr74 also form an aromatic channel with His39, which is one of the axial ligands of heme b. By site-directed mutagenesis we have produced three mutants of cyt b5: Phe35-->Tyr, Phe35-->Leu, and Phe35-->His. We found that of these three mutants, the Phe35-->Tyr mutant displays abnormal properties. The redox potential of the Phe35-->Tyr mutant is 66 mV more negative than that of the wild-type cyt b5 and the oxidized Phe35-->Tyr mutant is more stable towards thermal and chemical denaturation than wild-type cyt b5. In this study we studied the most interesting mutant, Phe35-->Tyr, by X-ray crystallography, thermal denaturation, CD and kinetic studies of heme dissociation to explore the origin of its unusual behaviors. Analysis of crystal structure of the Phe35-->Tyr mutant shows that the overall structure of the mutant is basically the same as that of the wild-type protein. However, the introduction of a hydroxyl group in the heme pocket, and the increased van der Waals' and electrostatic interactions between the side chain of Tyr35 and the heme probably result in enhancement of stability of the Phe35-->Tyr mutant. The kinetic difference of the heme trapped by the heme pocket also supports this conclusion. The detailed conformational changes of the proteins in response to heat have been studied by CD for the first time, revealing the existence of the folding intermediate.
Collapse
Affiliation(s)
- Ping Yao
- Chemical Biology Laboratory, Department of Chemistry, Fudan University, Shanghai, People's Republic of China
| | | | | | | | | | | |
Collapse
|
30
|
Aitken AE, Roman LJ, Loughran PA, de la Garza M, Masters BS. Expressed CYP4A4 metabolism of prostaglandin E(1) and arachidonic acid. Arch Biochem Biophys 2001; 393:329-38. [PMID: 11556821 DOI: 10.1006/abbi.2001.2501] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cytochrome P4504A4 (CYP4A4) is a hormonally induced pulmonary cytochrome P450 which metabolizes prostaglandins and arachidonic acid (AA) to their omega-hydroxylated products. Although the physiological function of this enzyme is unknown, prostaglandins play an important role in the regulation of reproductive, vascular, intestinal, and inflammatory systems and 20-hydroxyeicosatetraenoic acid, the omega-hydroxylated product of arachidonate, is a potent vasoconstrictor. Therefore, it is important to obtain sufficient quantities of the protein for kinetic and biophysical characterization. A CYP4A4 construct was prepared and expressed in Escherichia coli. The enzyme was purified, and its activity with substrates prostaglandin E(1) (PGE(1)) and AA was examined in the presence and absence of cytochrome b(5) (cyt b(5)) and with a heme-depleted form of cyt b(5) (apo b(5)). The stimulatory role played by cyt b(5) in this system is not dependent on electron transfer from cyt b(5) to the CYP4A4 as similar stimulation was observed with apo b(5). Rapid kinetic measurement of CYP4A4 electron transfer rates confirmed this result. Both flavin and heme reduction rates were constant in the absence and presence of cyt b(5) or apo b(5). CD spectroscopy demonstrated that a conformational change occurred in CYP4A4 protein upon binding of cyt b(5) or apo b(5). Finally, acetylenic fatty acid inhibitors 17-octadecynoic acid, 12-hydroxy-16-heptadecynoic acid, 15-hexadecynoic acid, and 10-undecynoic acid (10-UDYA) were used to probe the substrate-binding pocket of CYP4A4. The short-chain fatty acid inhibitor 10-UDYA was unable to inhibit either PGE(1) or AA metabolism. All but 10-UDYA were effective inhibitors of CYP4A4.
Collapse
Affiliation(s)
- A E Aitken
- Department of Biochemistry, The University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, Texas 78284-7760, USA
| | | | | | | | | |
Collapse
|
31
|
Hlavica P, Lewis DF. Allosteric phenomena in cytochrome P450-catalyzed monooxygenations. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:4817-32. [PMID: 11559350 DOI: 10.1046/j.1432-1327.2001.02412.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Allosteric regulation of monooxygenase activity is shown to occur with diverse cytochrome P450 isoforms and is characterized by kinetic patterns deviating from the Michaelis-Menten model. Homotropic and heterotropic phenomena are encountered in both substrate activation and productive coupling of the electron donors NADPH-cytochrome P450 reductase and cytochrome b5, and the lipid environment of the system also appears to play a role as an effector. Circumstantial analysis reveals the components of the electron transfer chain to be mutually beneficial in interactions with each other depending on the substrate used and type of cytochrome P450 operative. It is noteworthy that association of diatomic gaseous ligands may be amenable to allosteric regulation as well. Thus, dioxygen binding to cytochrome P450 displays nonhyperbolic kinetic profiles in the presence of certain substrates; the latter, together with redox proteins such as cytochrome b5, can exert efficient control of the abortive breakdown of the oxyferrous intermediates formed. Similarly, substrates may modulate the structural features of the access channel for solutes such as carbon monoxide in specific cytochrome P450 isozymes to either facilitate or impair ligand diffusion to the heme iron. The in vivo importance of allosteric regulation of enzyme activity is discussed in detail.
Collapse
Affiliation(s)
- P Hlavica
- Walther-Straub-Institut für Pharmakologie und Toxikologie der LMU, München, Germany.
| | | |
Collapse
|
32
|
Guryev OL, Gilep AA, Usanov SA, Estabrook RW. Interaction of apo-cytochrome b5 with cytochromes P4503A4 and P45017A: relevance of heme transfer reactions. Biochemistry 2001; 40:5018-31. [PMID: 11305918 DOI: 10.1021/bi002305w] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Maximal activity of CYP3A4 is obtained using a reconstitution system consisting of NADPH-P450 reductase (CPR), dioleoylphosphatidylcholine (DOPC), an ionic detergent, and cytochrome b(5) (b(5)). The mechanism by which b(5) stimulates the catalytic activity of CYP3A4 is controversial. Recent data report that apo-cytochrome b(5) (apo-b(5)) can substitute for holo-b(5) by serving as an allosteric effector. These authors concluded that b(5) is not directly involved in electron transfer reactions to CYP3A4. We have studied the effect of apo-b(5) on the ability of purified CYP3A4 to catalyze the 6beta-hydroxylation of testosterone and horse CYP17A to catalyze the 17,20-lyase reaction. The high molecular weight form of holo-b(5) (HMW-holo-b(5)) stimulates the 6beta-hydroxylation of testosterone while the low molecular weight (truncated) form of holo-b(5) (LMW-holo-b(5)) does not. When added to the reconstituted system, HMW-apo-b(5) stimulates the activity of CYP3A4 to a level 50-60% of that obtained with HMW-holo-b(5). A similar stimulation of 17alpha-hydroxyprogesterone metabolism is seen when studying the CYP17A-catalyzed reaction. Neither LMW-holo-b(5) nor LMW-apo-b(5) stimulates the activity of CYP3A4 or CYP17A. CYP3A4 forms a complex during affinity chromatography with immobilized HMW-holo-b(5) but not with immobilized HMW-apo-b(5). Incubation of apo-b(5) with CYP3A4, using conditions required for reconstitution of enzymatic activities, results in the transfer of heme from the CYP3A4 preparation to apo-b(5), thereby forming holo-b(5). The separation of heme proteins by thiol-disulfide exchange chromatography confirms the formation of holo-b(5). A His67Ala mutant of HMW-b(5) as well as the Zn-substituted protoporphyrin derivative of HMW-b(5) do not stimulate the activity of either CYP3A4 or CYP17A. These data show that the mechanism of stimulation of CYP3A4 and CYP17A activities by apo-b(5) results from the formation of holo-b(5) by a heme transfer reaction.
Collapse
Affiliation(s)
- O L Guryev
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9038, USA
| | | | | | | |
Collapse
|
33
|
Xue LL, Wang YH, Xie Y, Yao P, Wang WH, Qian W, Huang ZX, Wu J, Xia ZX. Effect of mutation at valine 61 on the three-dimensional structure, stability, and redox potential of cytochrome b5. Biochemistry 1999; 38:11961-72. [PMID: 10508399 DOI: 10.1021/bi990893b] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
To elucidate the role played by Val61 of cytochrome b(5), this residue of the tryptic fragment of bovine liver cytochrome b(5) was chosen for replacement with tyrosine (Val61Tyr), histidine (Val61His), glutamic acid (Val61Glu), and lysine (Val61Lys) by means of site-directed mutagenesis. The mutants Val61Tyr, Val61Glu, Val61His, and Val61Lys exhibit electronic spectra identical to that of the wild type, suggesting that mutation at Val61 did not affect the overall protein structure significantly. The redox potentials determined by differential pulse voltammetry were -10 (wild type), -25 (Val61Glu), -33 (Val61Tyr), 12 (Val61His), and 17 mV (Val61Lys) versus NHE. The thermal stabilities and urea-mediated denaturation of wild-type cytochrome b(5) and its mutants were in the following order: wild type > Val61Glu > Val61Tyr > Val61His > Val61Lys. The kinetics of denaturation of cytochrome b(5) by urea was also analyzed. The first-order rate constants of heme transfer between cytochrome b(5) and apomyoglobin at 20 +/- 0.2 degrees C were 0.25 +/- 0.01 (wild type), 0.42 +/- 0.02 (Val61Tyr), 0.93 +/- 0.04 (Val61Glu), 2.88 +/- 0.01 (Val61His), and 3.88 +/- 0.02 h(-)(1) (Val61Lys). The crystal structure of Val61His was determined using the molecular replacement method and refined at 2.1 A resolution, showing that the imidazole side chain of His61 points away from the heme-binding pocket and extends into the solvent, the coordination distances from Fe to NE2 atoms of two axial ligands are approximately 0.6 A longer than the reported value, and the hydrogen bond network involving Val61, the heme propionates, and three water molecules no longer exists. We conclude that the conserved residue Val61 is located at one of the key positions, the "electrostatic potential" around the heme-exposed area and the hydrophobicity of the heme pocket are determinant factors modulating the redox potential of cytochrome b(5), and the hydrogen bond network around the exposed heme edge is also an important factor affecting the heme stability.
Collapse
Affiliation(s)
- L L Xue
- Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, PRC
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Affiliation(s)
- J B Schenkman
- Department of Pharmacology, University of Connecticut Health Center, Farmington 06030, USA
| | | |
Collapse
|
35
|
Qian W, Sun YL, Wang YH, Zhuang JH, Xie Y, Huang ZX. The influence of mutation at Glu44 and Glu56 of cytochrome b5 on the protein's stabilization and interaction between cytochrome c and cytochrome b5. Biochemistry 1998; 37:14137-50. [PMID: 9760250 DOI: 10.1021/bi9805036] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
To characterize the roles played by Glu44 and Glu56 of cytochrome b5 in the formation of the electrostatic complex between cytochrome c and cytochrome b5, the Glu44, Glu56, or both sites were changed to alanine by site-directed mutagenesis. The influence of these two residues on the protein stability was probed by investigating the kinetic behaviors of protein denaturation in urea or upon heating and the heme-transfer reactions between apo-myoglobin and the variants of cytochrome b5. It has been found that when the Glu44 and/or Glu56 are mutated to alanine, the protein stability increases slightly due to the fact that the hydrophilic residue is changed to a hydrophobic one, resulting in the two pairs of helices surrounding the heme taking a more compact conformation. The difference in voltammetric behavior of cytochrome c, cytochrome b5, and its three mutants, Cyt b5 E44A, E56A, and E44/56A, alone and in 1:1 protein complexes demonstrates that both Glu44 and Glu56 of cytochrome b5 take part in the electrostatic interaction with cytochrome c. The entropy changes, DeltaS degreesrc and enthalpy changes, DeltaH degrees, derived from the temperature dependence of the formal reduction potentials of each protein in different protein systems suggest that, because of the mutual interaction with cytochrome c, cytochrome b5 mutants, especially the E44A-containing mutants, in the protein complexes suffer greater conformational changes upon reduction than that of the wild type. The variation of these thermodynamic parameters indicates that the strength of mutual interactions between cytochrome c and cytochrome b5 or its mutants has the following order: Cyt c/Cyt b5 > Cyt c/Cyt b5 E56A > Cyt c/Cyt b5 E44A > Cyt c/Cyt b5 E44/56A.
Collapse
Affiliation(s)
- W Qian
- Department of Chemistry, Fudan University, Shanghai, China
| | | | | | | | | | | |
Collapse
|
36
|
Perret A, Pompon D. Electron shuttle between membrane-bound cytochrome P450 3A4 and b5 rules uncoupling mechanisms. Biochemistry 1998; 37:11412-24. [PMID: 9708976 DOI: 10.1021/bi980908q] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Contradictory mechanisms involving conformational or redox effects have been proposed for the enhancement of cytochrome P450 activities by cytochrome b5 in reconstituted systems. These mechanisms were reinvestigated for human liver P450 3A4 bound to recombinant yeast membranes including human P450 reductase and various levels of human b5. Species conversions were calculated on the basis of substrate, oxygen, and electronic balances in six different substrate conditions. Electron flow from P450 reductase to ferric 3A4 was highly dependent on the nature of substrate but not on the presence of b5. P450 uncoupling by hydrogen peroxide formation was decreased by b5, leading to a corresponding increase in the rate of ferryl-oxo complex formation. Nevertheless, the major b5 effects mainly relied on an increased partition of ferryl-oxo complex to substrate oxidation compared to reduction to water, which could support a conformation change based mechanism. However, further steady-state investigations evidenced that electron carrier properties of b5 were strictly required for this modulation and that redox state of b5 was ruled by the nature and concentration of 3A4 substrates. Moreover, rapid kinetic analysis of b5 reduction following NADPH addition suggested that b5 was reduced by the 3A4 ferrous-dioxygen complex and reoxidized by subsequent P450 oxygenated intermediates. A kinetic model involving a 3A4-b5 electron shuttle within a single productive P450 cycle was designed and adjusted. This model semiquantitatively simulated all presented experimental data and can be made compatible with the effect of the redox-inactive b5 analogue previously reported in reconstituted systems. In this model, synchronization of the b5 and 3A4 redox cycles, binding site overlap between b5 and reductase, and dynamics of the b5-3A4 complex were critical features. This model opened the way for designing complementary experiments for unification of b5 action mechanisms on P450s.
Collapse
Affiliation(s)
- A Perret
- Laboratoire d'Ingénierie des Protéines Membranaires, Centre de Génétique Moléculaire du CNRS, Gif-sur-Yvette, France
| | | |
Collapse
|
37
|
Yamazaki H, Johnson WW, Ueng YF, Shimada T, Guengerich FP. Lack of electron transfer from cytochrome b5 in stimulation of catalytic activities of cytochrome P450 3A4. Characterization of a reconstituted cytochrome P450 3A4/NADPH-cytochrome P450 reductase system and studies with apo-cytochrome b5. J Biol Chem 1996; 271:27438-44. [PMID: 8910324 DOI: 10.1074/jbc.271.44.27438] [Citation(s) in RCA: 130] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Many catalytic activities of cytochrome P450 (P450) 3A4, the major human liver P450 enzyme, require cytochrome b5 (b5) for optimal rates. The stimulatory effect of b5 on P450 reactions has generally been thought to be due to transfer of electrons from ferrous b5 to the ferrous P450-O2-substrate complex. We found that apo-b5, devoid of heme, could substitute for b5 in stimulating two prototypic activities, testosterone 6beta hydroxylation and nifedipine oxidation. The stimulatory effect was not seen with albumin, hemoglobin, catalase, or cytochrome c. Apo-b5 could not substitute for b5 in a testosterone 6beta hydroxylation system composed of NADH-b5 reductase and P450 3A4. Rates of electron transfer from NADPH-P450 reductase to ferric P450 3A4 were too slow (<2 min-1) to support testosterone 6beta hydroxylation ( approximately 14 min-1) unless b5 or apo-b5 was present, when rates of approximately 700 min-1 were measured. The oxidation-reduction potential (Em,7) of the ferric/ferrous couple of P450 3A4 was unchanged ( approximately -310 mV) under different conditions in which the kinetics of reduction were altered by the addition of substrate and/or apo-b5. Rapid reduction of P450 3A4 required substrate and a preformed complex of P450 3A4, NADPH-P450 reductase, and b5; the rates of binding of the proteins to each other were 2-3 orders of magnitude less than reduction rates. We conclude that b5 can facilitate some P450 3A4-catalyzed oxidations by complexing with P450 3A4 and enhancing its reduction by NADPH-P450 reductase, without directly transferring electrons to P450.
Collapse
Affiliation(s)
- H Yamazaki
- Osaka Prefectural Institute of Public Health, Osaka 537, Japan.
| | | | | | | | | |
Collapse
|
38
|
Electron Transfer Proteins of Cytochrome P450 Systems. ADVANCES IN MOLECULAR AND CELL BIOLOGY 1996. [DOI: 10.1016/s1569-2558(08)60339-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
39
|
Gruenke LD, Konopka K, Cadieu M, Waskell L. The stoichiometry of the cytochrome P-450-catalyzed metabolism of methoxyflurane and benzphetamine in the presence and absence of cytochrome b5. J Biol Chem 1995; 270:24707-18. [PMID: 7559586 DOI: 10.1074/jbc.270.42.24707] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The complete stoichiometry of the metabolism of the cytochrome b5 (cyt b5)-requiring substrate, methoxyflurane, by purified cytochrome P-450 2B4 was compared to that of another substrate, benzphetamine, which does not require cyt b5 for its metabolism. Cyt b5 invariably improved the efficiency of product formation. That is, in the presence of cyt b5 a greater percentage of the reducing equivalents from NADPH were utilized to generate substrate metabolites, primarily at the expense of the side product, superoxide. With methoxyflurane, cyt b5 addition always resulted in an increased rate of product formation, while with benzphetamine the rate of product formation remained unchanged, increased or decreased. The apparently contradictory observations of increased reaction efficiency but decrease in total product formation for benzphetamine can be explained by a second effect of cyt b5. Under some experimental conditions cyt b5 inhibits total NADPH consumption. Whether stimulation, inhibition, or no change in product formation is observed in the presence of cyt b5 depends on the net effect of the stimulatory and inhibitory effects of cyt b5. When total NADPH consumption is inhibited by cyt b5, the rapidly metabolized, highly coupled (approximately equal to 50%) substrate, benzphetamine, undergoes a net decrease in metabolism not counterbalanced by the increase in the efficiency (2-20%) of the reaction. In contrast, in the presence of the slowly metabolized, poorly coupled (approximately equal to 0.5-3%) substrate, methoxyflurane, inhibition of total NADPH consumption by cyt b5 was never sufficient to overcome the stimulation of product formation due to an increase in efficiency of the reaction.
Collapse
Affiliation(s)
- L D Gruenke
- Department of Anesthesia, University of California, San Francisco, USA
| | | | | | | |
Collapse
|
40
|
Arinç E, Adali O, Pasha RP, Başaran N. Different influences of two fractions of lung cytochrome b5 on reconstituted lung benzphetamine N-demethylase system. Int J Biochem Cell Biol 1995; 27:1095-105. [PMID: 7496999 DOI: 10.1016/1357-2725(95)00062-t] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Chromatography of lung microsomal cytochrome b5 obtained from DEAE-cellulose columns, yielded two distinct cytochrome b5 fractions. These cytochrome b5 fractions were further purified by Sephadex G-100 gel filtration chromatography. The specific cytochrome b5 content of fraction 1 and fraction 2 was found to be 16.5 and 16.4 nmol/mg protein respectively. Both fractions were free of cytochrome P-450, NADPH-cytochrome P-450 reductase and NADH-cytochrome b5 reductase activities. The effects of lung cytochrome b5 (fraction 1 and fraction 2) and liver cytochrome b5 on benzphetamine N-demethylase activity were examined. Four different reconstitution systems were used. Lung cytochrome b5 fraction 2 and liver cytochrome b5 stimulated N-demethylase activity in all four systems when b5:P-450 molar ratio was low, i.e. 0.25 or 0.5. Both cytochrome b5 samples inhibited N-demethylase activity when b5:P-450 ratio exceeded 1:1 molar ratio. In contrast lung cytochrome b5 fraction 1 stimulated N-demethylase activity in all four systems. Maximal enhancement of the activity was obtained when b5:P-450 ratio was 0.5. The greatest increase in N-demethylation activity was observed in the reconstitution system with the lowest concentration of cytochrome P-450 reductase, conditions which most closely resemble intact microsomes.
Collapse
Affiliation(s)
- E Arinç
- Department of Biology, Middle East Technical University, Inonu Bulvari, Ankara, Turkey
| | | | | | | |
Collapse
|
41
|
Bernhardt R. Cytochrome P450: structure, function, and generation of reactive oxygen species. Rev Physiol Biochem Pharmacol 1995; 127:137-221. [PMID: 8533008 DOI: 10.1007/bfb0048267] [Citation(s) in RCA: 113] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- R Bernhardt
- Max-Delbrück-Centrum für Molekulare Medizin, Berlin, Germany
| |
Collapse
|
42
|
Hlavica P, Kellermann J, Golly I, Lehnerer M. Chemical modification of Tyr34 and Tyr129 in rabbit liver microsomal cytochrome b5 affects interaction with cytochrome P-450 2B4. EUROPEAN JOURNAL OF BIOCHEMISTRY 1994; 224:1039-46. [PMID: 7925401 DOI: 10.1111/j.1432-1033.1994.01039.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Rabbit liver microsomal cytochrome b5 was allowed to react with tetranitromethane. Up to three tyrosine residues in each cytochrome b5 molecule were found to be accessible to the nitrating agent. Co-modification of tryptophan and histidine residues could be disregarded. CD-spectral measurements disproved gross changes in cytochrome b5 structure as a consequence of derivatization. Introduction of 1.6 nitro groups/polypeptide chain resulted in a fivefold increase in binding affinity for cytochrome P-450 2B4 (P-450 2B4), whereas spectral interaction with cytochrome c remained unaffected. Furthermore, the capacity of nitrated cytochrome b5 to shift the spin equilibrium to the high-spin conformer of P-4502B4 was diminished by 44% compared with the control. This corresponded with the partial disruption of NADH-dependent electron flow to ferric P-450 2B4. Changes in the redox potential of cytochrome b5 could be discounted as being responsible for this effect. The overall oxidative turnover of 4-nitroanisole did not respond to cytochrome b5 modification. MS analysis and sequencing of peptide fragments produced by tryptic digestion of modified cytochrome b5 permitted the detection of three nitrated tyrosine residues located at positions 11, 34 and 129. Derivatization of cytochrome b5 in the presence of a protective amount of P-450 2B4 provided evidence of the involvement of Tyr34 and Tyr129 in complexation of the two hemoproteins. It is proposed that Tyr129 might control docking of cytochrome b5 to P-450 2B4, whereas Tyr34 could be of functional importance in electron transfer.
Collapse
Affiliation(s)
- P Hlavica
- Walther Straub-Institut für Pharmakologie und Toxikologie, Universität München, Germany
| | | | | | | |
Collapse
|
43
|
Arinç E, Pasha RP, Adali O, Başaran N. Stimulatory effects of lung cytochrome b5 on benzphetamine N-demethylation in a reconstituted system containing lung cytochrome P450LgM2. THE INTERNATIONAL JOURNAL OF BIOCHEMISTRY 1994; 26:1033-42. [PMID: 8088413 DOI: 10.1016/0020-711x(94)90075-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Cytochrome b5 was partially purified from sheep lung microsomes in the presence of detergents Emulgen 913 and cholate by three consecutive DEAE-cellulose and Sephadex G-100 gel filtration chromatographies. The specific content of cytochrome b5 was 16.5 nmol/mg protein and purified cytochrome b5 fractions were free of cytochrome P450, NADPH-cytochrome P450 reductase and NADH-cytochrome b5 reductase activities. The influences of increasing concentrations of lung cytochrome b5 on benzphetamine N-demethylation reactions were examined in four different reconstitution systems containing lung cytochrome P450LgM2, lung cytochrome P450 reductase and lipid. In each system concentration of reductase was doubled with respect to former system. In all systems cytochrome b5 stimulated benzphetamine N-demethylase activity especially when cytochrome b5 was present at 0.5:1 molar ratio with respect to cytochrome P450LgM2. Besides, the greatest fold of increase in benzphetamine N-demethylation activity due to addition of cytochrome b5 was observed in System 1 with the lowest concentration of reductase.
Collapse
Affiliation(s)
- E Arinç
- Department of Biology, Middle East Technical University, Ankara, Turkey
| | | | | | | |
Collapse
|
44
|
Abstract
The family of b5-like cytochromes encompasses, besides cytochrome b5 itself, hemoprotein domains covalently associated with other redox proteins, in flavocytochrome b2 (L-lactate dehydrogenase), sulfite oxidase and assimilatory nitrate reductase. A comparison of about 40 amino acid sequences deposited in data banks shows that eight residues are invariant and about 15 positions carry strongly conservative substitutions. Examination of the location of these invariant and conserved positions in the light of the three-dimensional structures of beef cytochrome b5 and S cerevisiae flavocytochrome b2 suggests a strongly conserved protein structure for the b5-like heme-binding domain throughout evolution. Numerous NMR studies have demonstrated the existence of a positional isomerism for the heme, which involves both a 180 degree-rotation around the heme alpha,gamma-meso carbon atoms and a rotation through an axis normal to the heme plane at the iron. NMR studies did not detect significant differences in protein structure between reduced and oxidized states, or between species. The role of a number of side chains was probed by site-directed mutagenesis. Studies of complex formation and of electron transfer rates between cytochrome b5 and redox partners have led to the idea that complexation is driven by electrostatic forces, that it is generally the exposed heme edge which makes contact with electron donors and acceptors, but that there are multiple overlapping sites within this general area. For the bi- and trifunctional members of the family, extrapolation of available data would suggest a mobile heme-binding domain within a complex structure. In these cases the existence of a single interaction area for both electron donor and acceptor, or of two different ones, remains open to discussion.
Collapse
Affiliation(s)
- F Lederer
- CNRS-URA 1461, Hôpital Necker, Paris, France
| |
Collapse
|
45
|
Hlavica P. Regulatory mechanisms in the activation of nitrogenous compounds by mammalian cytochrome P-450 isozymes. Drug Metab Rev 1994; 26:325-48. [PMID: 8082573 DOI: 10.3109/03602539409029801] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Metabolic activation of nitrogenous compounds by the cytochrome P-450 system is a highly complex process. Inherent substrate factors, such as basicity, electronic state, lipophilicity, and conformation control binding of the diverse classes of amines to cytochrome P-450. Accommodation of these compounds in the enzyme cavity and proper orientation of the molecules are governed by intrinsic properties of the peptide structure of cytochrome P-450, which may be subject to modification by the action of effectors. On the membrane level, phospholipid might have some impact on substrate binding. On the other hand, bound amine substrate is beneficial to the productive interaction of the electron transport chains with the terminal acceptor, improving economy of the system. Certain amines appear to regulate O2 association with cytochrome P-450 and stabilize the various oxy species formed. Considering the selective prerequisites for oxidative attack by cytochrome P-450 at vulnerable nitrogen centers, many cytotoxic amines belonging to the category of relatively rigid, planar molecules undergo N-oxidative activation by the cytochrome P-450IA subfamily, while more bulky amines with flexible conformation are N-oxygenated preferentially by phenobarbital-inducible cytochromes P-450. Small differences in protein structure between the various cytochrome P-450 subforms might serve to stabilize aminium radicals to permit oxygen rebound. Collectively, the selective regulatory mechanisms operative in the bioactivation of nitrogen-containing compounds appear to be determined largely by the type of substrate used and the isozyme involved in catalysis. With respect to the latter, the interplay of the multiple cytochromes P-450 in the various organs of animal species thus serves to rationalize the differences in the particular selectivities for amine substrates. These are responsible for the mode and/or extent to which activation of nitrogenous compounds, including promutagens and procarcinogens, occurs, and this may explain the tissue-specific response to the tumorigenic action of these agents.
Collapse
Affiliation(s)
- P Hlavica
- Walther Straub-Institut für Pharmakologie und Toxikologie der Universität, München, Germany
| |
Collapse
|
46
|
Golly I, Hlavica P. Inactivation of phenobarbital-inducible rabbit-liver microsomal cytochrome P-450 by allylisopropylacetamide: impact on electron transfer. BIOCHIMICA ET BIOPHYSICA ACTA 1993; 1142:74-82. [PMID: 8457584 DOI: 10.1016/0005-2728(93)90086-u] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Application of a single dose of allylisopropylacetamide (AIA) to phenobarbital-pretreated rabbits resulted in partial destruction of the heme moiety of liver microsomal cytochrome P-450. A minor fraction of chromophore loss was accounted for by heme-derived product(s) covalently attached to microsomal proteins. Interestingly, cytochrome P-450 appeared to have undergone significant drug-mediated alkylation of the apohemoprotein. The modified species was purified to apparent homogeneity and shown to arise from AIA-induced blockage of about 2 histidines in the cytochrome P-450LM2 molecule located close to the heme edge. AIA administration to the animals caused inhibition of hexobarbital-promoted electron flow from NADPH-cytochrome P-450 reductase to phenobarbital-inducible ferricytochrome P-450 both in microsomal particles and reconstituted systems. The impaired interaction between the proteins was shown not to originate from decreased capacity to bind each other but more likely to be due to some defect in a step subsequent to complex formation. In contrast, treatment with the porphyrogenic agent did not affect microsomal electron transmission from cytochrome b5 to the ferric monooxygenase. However, when the intermediate carrier was to donate reducing equivalents to the ferrous oxycytochrome in the presence of benzphetamine, there was a pronounced deceleration of the electron flux observable. These findings were interpreted to mean that there exist multiple reductase- and cytochrome-b5-binding domains in phenobarbital-inducible cytochrome P-450, some of which seem to be common to the two redox proteins. This sheds interesting light on the molecular organization of the catalytic electron transfer complexes.
Collapse
Affiliation(s)
- I Golly
- Walther Straub-Institut für Pharmakologie und Toxikologie, Universität, München, Germany
| | | |
Collapse
|
47
|
Blanck J, Ristau O, Zhukov AA, Archakov AI, Rein H, Ruckpaul K. Cytochrome P-450 spin state and leakiness of the monooxygenase pathway. Xenobiotica 1991; 21:121-35. [PMID: 1848383 DOI: 10.3109/00498259109039456] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
1. The monooxygenase and oxidase activities of liver microsomes from phenobarbital (PB)-treated rabbits were investigated for their dependence on the high spin shift (delta alpha) of the ferric cytochrome P-450 induced by a series of benzphetamine analogues. 2. The spin shift activity of the substrate determines, via the first electron transfer kinetics, the steady-state level of the reaction intermediate oxycytochrome P-450. Correlation of the amount or oxycytochrome P-450 with delta alpha can be experimentally proved. 3. The spin-state-dependent formation of oxycytochrome P-450 regulates quantitatively the rates of NADPH oxidation and substrate N-demethylation. Both activities correlate with delta alpha. Oxycytochrome P-450 is substrate-stabilized towards decay with the formation of O2- which, upon dismutation, gives rise to H2O2. 4. The ratio of N-demethylase to NADPH oxidase activity (coupling ratio) also increases with the spin shift, delta alpha. Concomitantly, the proportion of NADPH accounted for by H2O2 and H2O formation via two- and four-electron reduction of dioxygen decreases. This indicates that the substrate-induced structural changes in the enzyme active centre which give rise to spin transition may likewise modify the coupling properties. 5. Perfluorinated compounds, which fail to undergo monooxygenation, fall in line with the benzphetamine derivatives with respect to the dependence of NADPH oxidation rate and steady-state oxycytochrome P-450 level on delta alpha. The increased oxidase activity results mostly in H2O formation. 6. The leakiness of the PB-induced monooxygenase pathway in the biotransformation of oxygen in the presence of the benzphetamines and perfluorinated compounds does not result in marked increases in H2O2 formation. Therefore, the increase of NADPH oxidase activity by these substrates does not significantly enhance H2O2-mediated oxygen tissue toxicity.
Collapse
Affiliation(s)
- J Blanck
- Department of Biocatalysis and Heme Catalysis, Academy of Sciences of the GDR, Berlin
| | | | | | | | | | | |
Collapse
|
48
|
Mkrtchian SL, Andersson KK. A possible role of cAMP dependent phosphorylation of hepatic microsomal cytochrome P450: a mechanism to increase lipid peroxidation in response to hormone. Biochem Biophys Res Commun 1990; 166:787-93. [PMID: 2154220 DOI: 10.1016/0006-291x(90)90878-q] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Enzymatic lipid peroxidation in hepatocytes is believed to involve cytochrome P450. cAMP dependent phosphorylation of cytochrome P450 was found to increase the NADPH dependent production of malondialdehyde (lipid peroxidation) by about 30%. The cytochrome P450 inhibitor cyanide abolished this activity. The presence of spermine decreased the cytochrome P450 dependent lipid peroxidation in non-phosphorylated microsomes, phosphorylation partially reversed this effect. Thus, phosphorylation of cytochrome P450 and the associated increased lipid peroxidation may be a hormone dependent response to pathological conditions e.g. stress Phosphorylation was observed to subtly alter other properties of cytochrome P450. The rate of 7-ethoxycoumarin deethylase activity was reduced and the microwave power required to saturate the EPR spectrum of the low spin cytochrome P450 was decreased. It is hypothesized that phosphorylation of cytochrome P450 alters the interaction between the components of the cytochrome P450 system, which may enhance production of free radical species, initiating lipid peroxidation.
Collapse
Affiliation(s)
- S L Mkrtchian
- Department of Biochemistry, University of Bergen, Norway
| | | |
Collapse
|
49
|
Stayton PS, Poulos TL, Sligar SG. Putidaredoxin competitively inhibits cytochrome b5-cytochrome P-450cam association: a proposed molecular model for a cytochrome P-450cam electron-transfer complex. Biochemistry 1989; 28:8201-5. [PMID: 2690937 DOI: 10.1021/bi00446a035] [Citation(s) in RCA: 111] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Cytochrome b5 has been genetically engineered to afford a fluorescent derivative capable of monitoring its association with cytochrome P-450cam from Pseudomonas putida [Stayton, P. S., Fisher, M. T., & Sligar, S. G. (1988) J. Biol. Chem. 263, 13544-13548]. In the mutant cytochrome b5, threonine is replaced by a cysteine at position 65 (T65C) and has been labeled with the environmentally sensitive fluorophore acrylodan. In this paper, the physiological P-450cam reductant putidaredoxin, an Fe2S2.Cys4 iron-sulfur protein, is shown to competitively inhibit the cytochrome b5 association, suggesting that cytochrome b5 and putidaredoxin bind to a similar site on the cytochrome P-450cam surface. Since the crystal structures for both cytochrome b5 and cytochrome P-450cam have been solved to high resolution, the complex has been computer modeled, and a good fit was found on the proximal surface of nearest approach to the P-450cam heme prosthetic group. The proposed model includes electrostatic contacts between conserved cytochrome b5 carboxylates Glu-44, Glu-48, Asp-60, and the exposed heme propionate with cytochrome P-450cam basic residues Lys-344, Arg-72, Arg-112, and Arg-364, respectively. Putidaredoxin has similarly been shown to contain a carboxylate-based binding surface, and the current results suggest that if the model is correct, then it also interacts at the proposed site, probably utilizing similar P-450cam electrostatic contacts.
Collapse
Affiliation(s)
- P S Stayton
- Department of Biochemistry University of Illinois, Urbana 61801
| | | | | |
Collapse
|
50
|
Kim CH, King TE, Balny C. Electron transfer between liposomal cytochrome c1 and cytochrome c: catalytic implications of electrostatic potentials. Biochem Biophys Res Commun 1989; 163:276-83. [PMID: 2549990 DOI: 10.1016/0006-291x(89)92132-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Kinetics measurements of the electron transfer between ferricytochrome c and liposomal ferrocytochrome c1 (with and without the hinge protein) were performed. The observed rate constants(kobs) of electron transfer between liposomal ferrocytochrome c1 and ferricytochrome c at different ionic strengths were measured in cacodylate buffer, pH 7.4, at 2 C. The effect of ionic strength on the rate constant(kobs) of electron transfer between liposomal cytochrome c1 and cytochrome c is far greater than that in the solution kinetics (Kim, C.H., Balny, C. and King, T.E. (1987) J. Biol. Chem. 262, 8103-8108). The result demonstrates that the membrane bound cytochrome c1 creates a polyelectrolytic microenvironment which appears to be involved in the control of electron transfer and can be modulated by the ionic strength. The involvement of electrostatic potentials in the electron transfer between the membrane bound cytochrome c1 and cytochrome c is discussed in accord with the experimental results and a polyelectrolyte theory.
Collapse
Affiliation(s)
- C H Kim
- Department of Biology, Rensselaer Polytechnic Institute, Troy, NY 12181
| | | | | |
Collapse
|