1
|
Jossier M, Oury C, Glab N, Hodges M. Purification of Recombinant N-terminal Histidine-Tagged Arabidopsis thaliana Phosphoglycolate Phosphatase 1, Glycolate Oxidase 1 and 2, and Hydroxypyruvate Reductase 1. Methods Mol Biol 2024; 2792:97-111. [PMID: 38861081 DOI: 10.1007/978-1-0716-3802-6_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
To measure the kinetic properties of photorespiratory enzymes, it is necessary to work with purified proteins. Protocols to purify photorespiratory enzymes from leaves of various plant species require several time-consuming steps. It is now possible to produce large quantities of recombinant proteins in bacterial cells. They can be rapidly purified as histidine-tagged recombinant proteins by immobilized metal affinity chromatography using Ni2+-NTA-agarose. This chapter describes protocols to purify several Arabidopsis thaliana His-tagged recombinant photorespiratory enzymes (phosphoglycolate phosphatase, glycolate oxidase, and hydroxypyruvate reductase) from Escherichia coli cell cultures using two bacterial strain-plasmid systems: BL21(DE3)-pET and LMG194-pBAD.
Collapse
Affiliation(s)
- Mathieu Jossier
- Université Paris-Saclay, CNRS, INRAe, Université Paris Cité, Université d'Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Gif-sur-Yvette, France.
| | - Céline Oury
- Université Paris-Saclay, CNRS, INRAe, Université Paris Cité, Université d'Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Gif-sur-Yvette, France
| | - Nathalie Glab
- Université Paris-Saclay, CNRS, INRAe, Université Paris Cité, Université d'Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Gif-sur-Yvette, France
| | - Michael Hodges
- Université Paris-Saclay, CNRS, INRAe, Université Paris Cité, Université d'Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Gif-sur-Yvette, France.
| |
Collapse
|
2
|
Zannier F, Portero LR, Douki T, Gärtner W, Farías ME, Albarracín VH. Proteomic Signatures of Microbial Adaptation to the Highest Ultraviolet-Irradiation on Earth: Lessons From a Soil Actinobacterium. Front Microbiol 2022; 13:791714. [PMID: 35369494 PMCID: PMC8965627 DOI: 10.3389/fmicb.2022.791714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 01/26/2022] [Indexed: 11/13/2022] Open
Abstract
In the Central Andean region in South America, high-altitude ecosystems (3500-6000 masl) are distributed across Argentina, Chile, Bolivia, and Peru, in which poly-extremophilic microbes thrive under extreme environmental conditions. In particular, in the Puna region, total solar irradiation and UV incidence are the highest on Earth, thus, restraining the physiology of individual microorganisms and the composition of microbial communities. UV-resistance of microbial strains thriving in High-Altitude Andean Lakes was demonstrated and their mechanisms were partially characterized by genomic analysis, biochemical and physiological assays. Then, the existence of a network of physiological and molecular mechanisms triggered by ultraviolet light exposure was hypothesized and called "UV-resistome". It includes some or all of the following subsystems: (i) UV sensing and effective response regulators, (ii) UV-avoidance and shielding strategies, (iii) damage tolerance and oxidative stress response, (iv) energy management and metabolic resetting, and (v) DNA damage repair. Genes involved in the described UV-resistome were recently described in the genome of Nesterenkonia sp. Act20, an actinobacterium which showed survival to high UV-B doses as well as efficient photorepairing capability. The aim of this work was to use a proteomic approach together with photoproduct measurements to help dissecting the molecular events involved in the adaptive response of a model High-Altitude Andean Lakes (HAAL) extremophilic actinobacterium, Nesterenkonia sp. Act20, under artificial UV-B radiation. Our results demonstrate that UV-B exposure induced over-abundance of a well-defined set of proteins while recovery treatments restored the proteomic profiles present before the UV-challenge. The proteins involved in this complex molecular network were categorized within the UV-resistome subsystems: damage tolerance and oxidative stress response, energy management and metabolic resetting, and DNA damage repair.
Collapse
Affiliation(s)
- Federico Zannier
- Laboratorio de Microbiología Ultraestructural y Molecular, Centro Integral de Microscopía Electrónica, Facultad de Agronomía y Zootecnia, UNT y Centro Científico Tecnológico, CONICET NOASUR, San Miguel de Tucumán, Argentina
- Laboratorio de Investigaciones Microbiológicas de Lagunas Andinas, Planta Piloto de Procesos Industriales y Microbiológicos, Centro Científico Tecnológico, CONICET NOASUR, San Miguel de Tucumán, Argentina
| | - Luciano R. Portero
- Laboratorio de Microbiología Ultraestructural y Molecular, Centro Integral de Microscopía Electrónica, Facultad de Agronomía y Zootecnia, UNT y Centro Científico Tecnológico, CONICET NOASUR, San Miguel de Tucumán, Argentina
- Laboratorio de Investigaciones Microbiológicas de Lagunas Andinas, Planta Piloto de Procesos Industriales y Microbiológicos, Centro Científico Tecnológico, CONICET NOASUR, San Miguel de Tucumán, Argentina
| | - Thierry Douki
- Université Grenoble Alpes, Commissariat a l’Energie Atomique et aux Energies Alternatives, Centre National de la Recherche Scientifique, Institut de Recherche Interdisciplinaire de Grenoble–Systèmes Moléculaires et nanoMatériaux p our l’Énergie et la Santé, Grenoble, France
| | - Wolfgang Gärtner
- Institute of Analytical Chemistry, University of Leipzig, Leipzig, Germany
| | - María E. Farías
- Laboratorio de Microbiología Ultraestructural y Molecular, Centro Integral de Microscopía Electrónica, Facultad de Agronomía y Zootecnia, UNT y Centro Científico Tecnológico, CONICET NOASUR, San Miguel de Tucumán, Argentina
| | - Virginia H. Albarracín
- Laboratorio de Microbiología Ultraestructural y Molecular, Centro Integral de Microscopía Electrónica, Facultad de Agronomía y Zootecnia, UNT y Centro Científico Tecnológico, CONICET NOASUR, San Miguel de Tucumán, Argentina
- Laboratorio de Investigaciones Microbiológicas de Lagunas Andinas, Planta Piloto de Procesos Industriales y Microbiológicos, Centro Científico Tecnológico, CONICET NOASUR, San Miguel de Tucumán, Argentina
- Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán, San Miguel de Tucumán, Argentina
| |
Collapse
|
3
|
Abstract
The endocannabinoid system is found in most, if not all, mammalian organs and is involved in a variety of physiological functions, ranging from the control of synaptic plasticity in the brain to the modulation of smooth muscle motility in the gastrointestinal tract. This signaling complex consists of G protein-coupled cannabinoid receptors, endogenous ligands for those receptors (endocannabinoids) and enzymes/transporters responsible for the formation and deactivation of these ligands. There are two subtypes of cannabinoid receptors, CB1 and CB2, and two major endocannabinoids, arachidonoylethanolamide (anandamide) and 2-arachidonoyl-sn-glycerol (2-AG), which are produced upon demand through cleavage of distinct phospholipid precursors. All molecular components of the endocannabinoid system are represented in the adipose organ, where endocannabinoid signals are thought to regulate critical homeostatic processes, including adipogenesis, lipogenesis and thermogenesis. Importantly, obesity was found to be associated with excess endocannabinoid activity in visceral fat depots, and the therapeutic potential of normalizing such activity by blocking CB1 receptors has been the focus of substantial preclinical and clinical research. Results have been mixed thus far, mostly owing to the emergence of psychiatric side effects rooted in the protective functions served by brain endocannabinoids in mood and affect regulation. Further studies about the roles played by the endocannabinoid system in the adipose organ will offer new insights into the pathogenesis of obesity and might help identify new ways to leverage this signaling complex for therapeutic benefit.
Collapse
Affiliation(s)
- Kwang-Mook Jung
- Department of Anatomy and Neurobiology, University of California, Irvine, 3101 Gillespie NRF, Irvine, CA, 92697-1275, USA
| | - Lin Lin
- Department of Anatomy and Neurobiology, University of California, Irvine, 3101 Gillespie NRF, Irvine, CA, 92697-1275, USA
| | - Daniele Piomelli
- Department of Anatomy and Neurobiology, University of California, Irvine, 3101 Gillespie NRF, Irvine, CA, 92697-1275, USA.
- Department of Pharmacology, University of California, Irvine, Irvine, CA, 92697, USA.
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA, 92697, USA.
| |
Collapse
|
4
|
Dellero Y, Jossier M, Schmitz J, Maurino VG, Hodges M. Photorespiratory glycolate-glyoxylate metabolism. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:3041-52. [PMID: 26994478 DOI: 10.1093/jxb/erw090] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Photorespiration is one of the major carbon metabolism pathways in oxygen-producing photosynthetic organisms. This pathway recycles 2-phosphoglycolate (2-PG), a toxic metabolite, to 3-phosphoglycerate when ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) uses oxygen instead of carbon dioxide. The photorespiratory cycle is in competition with photosynthetic CO2 fixation and it is accompanied by carbon, nitrogen and energy losses. Thus, photorespiration has become a target to improve crop yields. Moreover, during the photorespiratory cycle intermediate metabolites that are toxic to Calvin-Benson cycle and RuBisCO activities, such as 2-PG, glycolate and glyoxylate, are produced. Thus, the presence of an efficient 2-PG/glycolate/glyoxylate 'detoxification' pathway is required to ensure normal development of photosynthetic organisms. Here we review our current knowledge concerning the enzymes that carry out the glycolate-glyoxylate metabolic steps of photorespiration from glycolate production in the chloroplasts to the synthesis of glycine in the peroxisomes. We describe the properties of the proteins involved in glycolate-glyoxylate metabolism in Archaeplastida and the phenotypes observed when knocking down/out these specific photorespiratory players. Advances in our understanding of the regulation of glycolate-glyoxylate metabolism are highlighted.
Collapse
Affiliation(s)
- Younès Dellero
- Institut of Plant Sciences Paris-Saclay, Université Paris-Sud, CNRS, INRA, Université d'Evry, Université Paris Diderot, Université Paris-Saclay, Bât 630, 91405 Orsay Cedex, France
| | - Mathieu Jossier
- Institut of Plant Sciences Paris-Saclay, Université Paris-Sud, CNRS, INRA, Université d'Evry, Université Paris Diderot, Université Paris-Saclay, Bât 630, 91405 Orsay Cedex, France
| | - Jessica Schmitz
- Institute of Developmental and Molecular Biology of Plants, Plant Molecular Physiology and Biotechnology Group, Heinrich-Heine-Universität, and Cluster of Excellence on Plant Sciences (CEPLAS), Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Veronica G Maurino
- Institute of Developmental and Molecular Biology of Plants, Plant Molecular Physiology and Biotechnology Group, Heinrich-Heine-Universität, and Cluster of Excellence on Plant Sciences (CEPLAS), Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Michael Hodges
- Institut of Plant Sciences Paris-Saclay, Université Paris-Sud, CNRS, INRA, Université d'Evry, Université Paris Diderot, Université Paris-Saclay, Bât 630, 91405 Orsay Cedex, France
| |
Collapse
|
5
|
Peterhansel C, Horst I, Niessen M, Blume C, Kebeish R, Kürkcüoglu S, Kreuzaler F. Photorespiration. THE ARABIDOPSIS BOOK 2010; 8:e0130. [PMID: 22303256 PMCID: PMC3244903 DOI: 10.1199/tab.0130] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Photorespiration is initiated by the oxygenase activity of ribulose-1,5-bisphosphate-carboxylase/oxygenase (RUBISCO), the same enzyme that is also responsible for CO(2) fixation in almost all photosynthetic organisms. Phosphoglycolate formed by oxygen fixation is recycled to the Calvin cycle intermediate phosphoglycerate in the photorespiratory pathway. This reaction cascade consumes energy and reducing equivalents and part of the afore fixed carbon is again released as CO(2). Because of this, photorespiration was often viewed as a wasteful process. Here, we review the current knowledge on the components of the photorespiratory pathway that has been mainly achieved through genetic and biochemical studies in Arabidopsis. Based on this knowledge, the energy costs of photorespiration are calculated, but the numerous positive aspects that challenge the traditional view of photorespiration as a wasteful pathway are also discussed. An outline of possible alternative pathways beside the major pathway is provided. We summarize recent results about photorespiration in photosynthetic organisms expressing a carbon concentrating mechanism and the implications of these results for understanding Arabidopsis photorespiration. Finally, metabolic engineering approaches aiming to improve plant productivity by reducing photorespiratory losses are evaluated.
Collapse
Affiliation(s)
- Christoph Peterhansel
- Leibniz University Hannover, Institute of Botany, Herrenhaeuser Strasse 2, 30419 Hannover, Germany
| | - Ina Horst
- Leibniz University Hannover, Institute of Botany, Herrenhaeuser Strasse 2, 30419 Hannover, Germany
| | - Markus Niessen
- Leibniz University Hannover, Institute of Botany, Herrenhaeuser Strasse 2, 30419 Hannover, Germany
| | - Christian Blume
- Leibniz University Hannover, Institute of Botany, Herrenhaeuser Strasse 2, 30419 Hannover, Germany
| | - Rashad Kebeish
- Leibniz University Hannover, Institute of Botany, Herrenhaeuser Strasse 2, 30419 Hannover, Germany
| | - Sophia Kürkcüoglu
- Leibniz University Hannover, Institute of Botany, Herrenhaeuser Strasse 2, 30419 Hannover, Germany
| | - Fritz Kreuzaler
- RWTH Aachen University, Institute of Botany, Worringer Weg 1, 52056 Aachen, Germany
| |
Collapse
|
6
|
Cronin A, Homburg S, Dürk H, Richter I, Adamska M, Frère F, Arand M. Insights into the Catalytic Mechanism of Human sEH Phosphatase by Site-Directed Mutagenesis and LC–MS/MS Analysis. J Mol Biol 2008; 383:627-40. [DOI: 10.1016/j.jmb.2008.08.049] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2008] [Revised: 08/13/2008] [Accepted: 08/20/2008] [Indexed: 10/21/2022]
|
7
|
Schwarte S, Bauwe H. Identification of the photorespiratory 2-phosphoglycolate phosphatase, PGLP1, in Arabidopsis. PLANT PHYSIOLOGY 2007; 144:1580-6. [PMID: 17478634 PMCID: PMC1914141 DOI: 10.1104/pp.107.099192] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The chloroplastidal enzyme 2-phosphoglycolate phosphatase (PGLP), PGLP1, catalyzes the first reaction of the photorespiratory C(2) cycle, a major pathway of plant primary metabolism. Thirteen potential PGLP genes are annotated in the Arabidopsis (Arabidopsis thaliana) genome; however, none of these genes has been functionally characterized, and the gene encoding the photorespiratory PGLP is not known. Here, we report on the identification of the PGLP1 gene in a higher plant and provide functional evidence for a second, nonphotorespiratory PGLP, PGLP2. Two candidate genes, At5g36700 (AtPGLP1) and At5g47760 (AtPGLP2), were selected by sequence similarity to known PGLPs from microorganisms. The two encoded proteins were overexpressed in Escherichia coli and both show PGLP activity. T-DNA knockout of one of these genes, At5g36700, results in very low leaf PGLP activity. The mutant is unviable in normal air but grows well in air enriched with 0.9% CO(2). In contrast, deletion of At5g47760 does not result in a visible phenotype, and leaf PGLP activity is unaltered. Sequencing of genomic DNA from another PGLP-deficient mutant revealed a combined missense and missplicing point mutation in At5g36700. These combined data establish At5g36700 as the gene encoding the photorespiratory PGLP, PGLP1.
Collapse
Affiliation(s)
- Sandra Schwarte
- Department of Plant Physiology, University of Rostock, Rostock, Germany
| | | |
Collapse
|
8
|
Burroughs AM, Allen KN, Dunaway-Mariano D, Aravind L. Evolutionary genomics of the HAD superfamily: understanding the structural adaptations and catalytic diversity in a superfamily of phosphoesterases and allied enzymes. J Mol Biol 2006; 361:1003-34. [PMID: 16889794 DOI: 10.1016/j.jmb.2006.06.049] [Citation(s) in RCA: 333] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2005] [Revised: 06/16/2006] [Accepted: 06/20/2006] [Indexed: 11/21/2022]
Abstract
The HAD (haloacid dehalogenase) superfamily includes phosphoesterases, ATPases, phosphonatases, dehalogenases, and sugar phosphomutases acting on a remarkably diverse set of substrates. The availability of numerous crystal structures of representatives belonging to diverse branches of the HAD superfamily provides us with a unique opportunity to reconstruct their evolutionary history and uncover the principal determinants that led to their diversification of structure and function. To this end we present a comprehensive analysis of the HAD superfamily that identifies their unique structural features and provides a detailed classification of the entire superfamily. We show that at the highest level the HAD superfamily is unified with several other superfamilies, namely the DHH, receiver (CheY-like), von Willebrand A, TOPRIM, classical histone deacetylases and PIN/FLAP nuclease domains, all of which contain a specific form of the Rossmannoid fold. These Rossmannoid folds are distinguished from others by the presence of equivalently placed acidic catalytic residues, including one at the end of the first core beta-strand of the central sheet. The HAD domain is distinguished from these related Rossmannoid folds by two key structural signatures, a "squiggle" (a single helical turn) and a "flap" (a beta hairpin motif) located immediately downstream of the first beta-strand of their core Rossmanoid fold. The squiggle and the flap motifs are predicted to provide the necessary mobility to these enzymes for them to alternate between the "open" and "closed" conformations. In addition, most members of the HAD superfamily contains inserts, termed caps, occurring at either of two positions in the core Rossmannoid fold. We show that the cap modules have been independently inserted into these two stereotypic positions on multiple occasions in evolution and display extensive evolutionary diversification independent of the core catalytic domain. The first group of caps, the C1 caps, is directly inserted into the flap motif and regulates access of reactants to the active site. The second group, the C2 caps, forms a roof over the active site, and access to their internal cavities might be in part regulated by the movement of the flap. The diversification of the cap module was a major factor in the exploration of a vast substrate space in the course of the evolution of this superfamily. We show that the HAD superfamily contains 33 major families distributed across the three superkingdoms of life. Analysis of the phyletic patterns suggests that at least five distinct HAD proteins are traceable to the last universal common ancestor (LUCA) of all extant organisms. While these prototypes diverged prior to the emergence of the LUCA, the major diversification in terms of both substrate specificity and reaction types occurred after the radiation of the three superkingdoms of life, primarily in bacteria. Most major diversification events appear to correlate with the acquisition of new metabolic capabilities, especially related to the elaboration of carbohydrate metabolism in the bacteria. The newly identified relationships and functional predictions provided here are likely to aid the future exploration of the numerous poorly understood members of this large superfamily of enzymes.
Collapse
Affiliation(s)
- A Maxwell Burroughs
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | | | | | | |
Collapse
|
9
|
Rao KN, Kumaran D, Seetharaman J, Bonanno JB, Burley SK, Swaminathan S. Crystal structure of trehalose-6-phosphate phosphatase-related protein: biochemical and biological implications. Protein Sci 2006; 15:1735-44. [PMID: 16815921 PMCID: PMC2242562 DOI: 10.1110/ps.062096606] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2006] [Revised: 03/30/2006] [Accepted: 04/04/2006] [Indexed: 10/24/2022]
Abstract
We report here the crystal structure of a trehalose-6-phosphate phosphatase-related protein (T6PP) from Thermoplasma acidophilum, TA1209, determined by the dual-wavelength anomalous diffraction (DAD) method. T6PP is a member of the haloacid dehalogenase (HAD) superfamily with significant sequence homology with trehalose-6-phosphate phosphatase, phosphoserine phosphatase, P-type ATPases and other members of the family. T6PP possesses a core domain of known alpha/beta-hydrolase fold, characteristic of the HAD family, and a cap domain, with a tertiary fold consisting of a four-stranded beta-sheet with two alpha-helices on one side of the sheet. An active-site magnesium ion and a glycerol molecule bound at the interface between the two domains provide insight into the mode of substrate binding by T6PP. A trehalose-6-phosphate molecule modeled into a cage formed by the two domains makes favorable interactions with the protein molecule. We have confirmed that T6PP is a trehalose phosphatase from amino acid sequence, three-dimensional structure, and biochemical assays.
Collapse
|
10
|
Kim Y, Yakunin AF, Kuznetsova E, Xu X, Pennycooke M, Gu J, Cheung F, Proudfoot M, Arrowsmith CH, Joachimiak A, Edwards AM, Christendat D. Structure- and function-based characterization of a new phosphoglycolate phosphatase from Thermoplasma acidophilum. J Biol Chem 2004; 279:517-26. [PMID: 14555659 PMCID: PMC2795321 DOI: 10.1074/jbc.m306054200] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The protein TA0175 has a large number of sequence homologues, most of which are annotated as unknown and a few as belonging to the haloacid dehalogenase superfamily, but has no known biological function. Using a combination of amino acid sequence analysis, three-dimensional crystal structure information, and kinetic analysis, we have characterized TA0175 as phosphoglycolate phosphatase from Thermoplasma acidophilum. The crystal structure of TA0175 revealed two distinct domains, a larger core domain and a smaller cap domain. The large domain is composed of a centrally located five-stranded parallel beta-sheet with strand order S10, S9, S8, S1, S2 and a small beta-hairpin, strands S3 and S4. This central sheet is flanked by a set of three alpha-helices on one side and two helices on the other. The smaller domain is composed of an open faced beta-sandwich represented by three antiparallel beta-strands, S5, S6, and S7, flanked by two oppositely oriented alpha-helices, H3 and H4. The topology of the large domain is conserved; however, structural variation is observed in the smaller domain among the different functional classes of the haloacid dehalogenase superfamily. Enzymatic assays on TA0175 revealed that this enzyme catalyzed the dephosphorylation of phosphoglycolate in vitro with similar kinetic properties seen for eukaryotic phosphoglycolate phosphatase. Activation by divalent cations, especially Mg2+, and competitive inhibition behavior with Cl- ions are similar between TA0175 and phosphoglycolate phosphatase. The experimental evidence presented for TA0175 is indicative of phosphoglycolate phosphatase.
Collapse
Affiliation(s)
- Youngchang Kim
- Argonne National Laboratory, Structural Biology Center, Argonne, Illinois 60439
| | - Alexander F. Yakunin
- Banting and Best, Department of Medical Research, University of Toronto, Ontario M5G 1L6, Canada
| | - Ekaterina Kuznetsova
- Banting and Best, Department of Medical Research, University of Toronto, Ontario M5G 1L6, Canada
| | - Xiaohui Xu
- Clinical Genomics Centre/Proteomics, Toronto, Ontario M5G 1L7, Canada
| | - Micha Pennycooke
- Clinical Genomics Centre/Proteomics, Toronto, Ontario M5G 1L7, Canada
| | - Jun Gu
- Clinical Genomics Centre/Proteomics, Toronto, Ontario M5G 1L7, Canada
| | - Fred Cheung
- Clinical Genomics Centre/Proteomics, Toronto, Ontario M5G 1L7, Canada
| | - Michael Proudfoot
- Banting and Best, Department of Medical Research, University of Toronto, Ontario M5G 1L6, Canada
| | | | - Andrzej Joachimiak
- Argonne National Laboratory, Structural Biology Center, Argonne, Illinois 60439
| | - Aled M. Edwards
- Banting and Best, Department of Medical Research, University of Toronto, Ontario M5G 1L6, Canada
- Clinical Genomics Centre/Proteomics, Toronto, Ontario M5G 1L7, Canada
| | - Dinesh Christendat
- Department of Botany, University of Toronto, Toronto, Ontario M5S 3B2, Canada
| |
Collapse
|
11
|
Teresa Pellicer M, Felisa Nuñez M, Aguilar J, Badia J, Baldoma L. Role of 2-phosphoglycolate phosphatase of Escherichia coli in metabolism of the 2-phosphoglycolate formed in DNA repair. J Bacteriol 2003; 185:5815-21. [PMID: 13129953 PMCID: PMC193966 DOI: 10.1128/jb.185.19.5815-5821.2003] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The enzyme 2-phosphoglycolate phosphatase from Escherichia coli, encoded by the gph gene, was purified and characterized. The enzyme was highly specific for 2-phosphoglycolate and showed good catalytic efficiency (k(cat)/K(m)), which enabled the conversion of this substrate even at low intracellular concentrations. A comparison of the structural and functional features of this enzyme with those of 2-phosphoglycolate phosphatases of different origins showed a high similarity of the sequences, implying the use of the same catalytic mechanism. Western blot analysis revealed constitutive expression of the gph gene, regardless of the carbon source used, growth stage, or oxidative stress conditions. We showed that this housekeeping enzyme is involved in the dissimilation of the intracellular 2-phosphoglycolate formed in the DNA repair of 3'-phosphoglycolate ends. DNA strand breaks of this kind are caused by agents such as the radiomimetic compound bleomycin. The differential response between a 2-phosphoglycolate phosphatase-deficient mutant and its parental strain after treatment with bleomycin allowed us to connect the intracellular formation of 2-phosphoglycolate with the production of glycolate, which is subsequently incorporated into general metabolism. We thus provide evidence for a salvage function of 2-phosphoglycolate phosphatase in the metabolism of a two-carbon compound generated by the cellular DNA repair machinery.
Collapse
Affiliation(s)
- Maria Teresa Pellicer
- Department of Biochemistry, Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain
| | | | | | | | | |
Collapse
|
12
|
Collet JF, Stroobant V, Van Schaftingen E. Evidence for phosphotransferases phosphorylated on aspartate residue in N-terminal DXDX(T/V) motif. Methods Enzymol 2003; 354:177-88. [PMID: 12418225 DOI: 10.1016/s0076-6879(02)54014-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Jean-François Collet
- Laboratory of Physiological Chemistry, Catholic University of Louvain, Christian de Duve Institute of Cellular Pathology, B-1200 Brussels, Belgium
| | | | | |
Collapse
|
13
|
Parsons JF, Lim K, Tempczyk A, Krajewski W, Eisenstein E, Herzberg O. From structure to function: YrbI from Haemophilus influenzae (HI1679) is a phosphatase. Proteins 2002; 46:393-404. [PMID: 11835514 PMCID: PMC3762886 DOI: 10.1002/prot.10057] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The crystal structure of the YrbI protein from Haemophilus influenzae (HI1679) was determined at a 1.67-A resolution. The function of the protein had not been assigned previously, and it is annotated as hypothetical in sequence databases. The protein exhibits the alpha/beta-hydrolase fold (also termed the Rossmann fold) and resembles most closely the fold of the L-2-haloacid dehalogenase (HAD) superfamily. Following this observation, a detailed sequence analysis revealed remote homology to two members of the HAD superfamily, the P-domain of Ca(2+) ATPase and phosphoserine phosphatase. The 19-kDa chains of HI1679 form a tetramer both in solution and in the crystalline form. The four monomers are arranged in a ring such that four beta-hairpin loops, each inserted after the first beta-strand of the core alpha/beta-fold, form an eight-stranded barrel at the center of the assembly. Four active sites are located at the subunit interfaces. Each active site is occupied by a cobalt ion, a metal used for crystallization. The cobalt is octahedrally coordinated to two aspartate side-chains, a backbone oxygen, and three solvent molecules, indicating that the physiological metal may be magnesium. HI1679 hydrolyzes a number of phosphates, including 6-phosphogluconate and phosphotyrosine, suggesting that it functions as a phosphatase in vivo. The physiological substrate is yet to be identified; however the location of the gene on the yrb operon suggests involvement in sugar metabolism.
Collapse
Affiliation(s)
- James F. Parsons
- Center for Advanced Research in Biotechnology, University of Maryland Biotechnology Institute, Rockville, Maryland
| | - Kap Lim
- Center for Advanced Research in Biotechnology, University of Maryland Biotechnology Institute, Rockville, Maryland
| | - Aleksandra Tempczyk
- Center for Advanced Research in Biotechnology, University of Maryland Biotechnology Institute, Rockville, Maryland
| | - Wojiech Krajewski
- Center for Advanced Research in Biotechnology, University of Maryland Biotechnology Institute, Rockville, Maryland
| | - Edward Eisenstein
- National Institute of Standards and Technology, Gaithersburg, Maryland
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore, Maryland
| | - Osnat Herzberg
- Center for Advanced Research in Biotechnology, University of Maryland Biotechnology Institute, Rockville, Maryland
- Correspondence to: Osnat Herzberg, Center for Advanced Research in Biotechnology, 9600 Gudelsky Drive, Rockville, MD 20850.
| |
Collapse
|
14
|
Mamedov TG, Suzuki K, Miura K, Kucho Ki K, Fukuzawa H. Characteristics and sequence of phosphoglycolate phosphatase from a eukaryotic green alga Chlamydomonas reinhardtii. J Biol Chem 2001; 276:45573-9. [PMID: 11581250 DOI: 10.1074/jbc.m103882200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phosphoglycolate phosphatase (PGPase), a key enzyme of photorespiration in photosynthetic organisms, was purified from Chlamydomonas reinhardtii. The enzyme was an approximately 65-kDa homodimer with a pI value of 5.1 composed of approximately 32-kDa subunits not connected by any S-S bridges. It was also highly specific for phosphoglycolate with a K(m) value of 140 microm and an optimal pH between 8 and 9. The activity was strongly inhibited by CaCl(2), and it recovered competitively following the addition of MgCl(2) or EGTA. A mobility shift was observed in SDS-polyacrylamide gel electrophoresis by the addition of CaCl(2), indicating that the enzyme binds to Ca(2+). The N-terminal region of amino acid sequence deduced from cDNA sequence that was not contained in the purified PGPase had similar characteristics to those of typical stroma-targeting transit peptides in C. reinhardtii. The following region of the deduced sequence containing 302 amino acid residues was similar to p-nitrophenylphosphatase-like proteins, although the purified PGPase did not hydrolyze p-nitrophenylphosphate. Genomic DNA fragments from wild type containing the sequence homologous to the cDNA for PGPase complemented the PGPase-deficient mutant pgp1. Possible regulatory mechanisms during adaptation to limiting CO(2) were discussed based on the characteristics of the purified PGPase and the deduced amino acid sequence.
Collapse
Affiliation(s)
- T G Mamedov
- Plant Physiology Laboratory, Tohoku National Agricultural Research Center, Shimo-Kuriyagawa, Morioka 020-0198, Japan
| | | | | | | | | |
Collapse
|
15
|
Graham DE, Graupner M, Xu H, White RH. Identification of coenzyme M biosynthetic 2-phosphosulfolactate phosphatase. A member of a new class of Mg(2+)-dependent acid phosphatases. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:5176-88. [PMID: 11589710 DOI: 10.1046/j.0014-2956.2001.02451.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Coenzyme M (CoM; 2-mercaptoethanesulfonic acid) is the terminal methyl carrier in methanogenesis. Methanogenic archaea begin the production of this essential cofactor by sulfonating phosphoenolpyruvate to form 2-phospho-3-sulfolactate. After dephosphorylation, this precursor is oxidized, decarboxylated and then reductively thiolated to form CoM. A thermostable phosphosulfolactate phosphohydrolase (EC 3.1.3.-) catalyzing the second step in CoM biosynthesis, was identified in the hyperthermophilic euryarchaeon Methanococcus jannaschii. The predicted ORF MJ1140 in the genome of M. jannaschii encodes ComB, a Mg2+-dependent acid phosphatase that is specific for 2-hydroxycarboxylic acid phosphate esters. Recombinantly expressed purified ComB efficiently hydrolyzes rac-2-phosphosulfolactate, (S)-2-phospholactate, phosphoglycolate and both enantiomers of 2-phosphomalate. In contrast to previously studied phosphoglycolate phosphatases, ComB has a low pH optimum for activity, a narrow substrate specificity and an amino acid sequence dissimilar to any biochemically characterized protein. Like other phosphatases that function via covalent phosphoenzyme intermediates, ComB can catalyze a transphosphorylation reaction. Homologs of comB are identified in all available cyanobacterial genome sequences and in genomes from phylogenetically diverse bacteria and archaea; most of these organisms lack homologs of other CoM biosynthetic genes. The broad and disparate distribution of comB homologs suggests that the gene has been recruited frequently into new metabolic pathways.
Collapse
Affiliation(s)
- D E Graham
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | | | | | | |
Collapse
|
16
|
Cho H, Wang W, Kim R, Yokota H, Damo S, Kim SH, Wemmer D, Kustu S, Yan D. BeF(3)(-) acts as a phosphate analog in proteins phosphorylated on aspartate: structure of a BeF(3)(-) complex with phosphoserine phosphatase. Proc Natl Acad Sci U S A 2001; 98:8525-30. [PMID: 11438683 PMCID: PMC37469 DOI: 10.1073/pnas.131213698] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Protein phosphoaspartate bonds play a variety of roles. In response regulator proteins of two-component signal transduction systems, phosphorylation of an aspartate residue is coupled to a change from an inactive to an active conformation. In phosphatases and mutases of the haloacid dehalogenase (HAD) superfamily, phosphoaspartate serves as an intermediate in phosphotransfer reactions, and in P-type ATPases, also members of the HAD family, it serves in the conversion of chemical energy to ion gradients. In each case, lability of the phosphoaspartate linkage has hampered a detailed study of the phosphorylated form. For response regulators, this difficulty was recently overcome with a phosphate analog, BeF(3)(-), which yields persistent complexes with the active site aspartate of their receiver domains. We now extend the application of this analog to a HAD superfamily member by solving at 1.5-A resolution the x-ray crystal structure of the complex of BeF(3)(-) with phosphoserine phosphatase (PSP) from Methanococcus jannaschii. The structure is comparable to that of a phosphoenzyme intermediate: BeF(3)(-) is bound to Asp-11 with the tetrahedral geometry of a phosphoryl group, is coordinated to Mg(2+), and is bound to residues surrounding the active site that are conserved in the HAD superfamily. Comparison of the active sites of BeF(3)(-) x PSP and BeF(3)(-) x CeY, a receiver domain/response regulator, reveals striking similarities that provide insights into the function not only of PSP but also of P-type ATPases. Our results indicate that use of BeF(3)(-) for structural studies of proteins that form phosphoaspartate linkages will extend well beyond response regulators.
Collapse
Affiliation(s)
- H Cho
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Collet JF, Stroobant V, Van Schaftingen E. Mechanistic studies of phosphoserine phosphatase, an enzyme related to P-type ATPases. J Biol Chem 1999; 274:33985-90. [PMID: 10567362 DOI: 10.1074/jbc.274.48.33985] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phosphoserine phosphatase belongs to a new class of phosphotransferases forming an acylphosphate during catalysis and sharing three motifs with P-type ATPases and haloacid dehalogenases. The phosphorylated residue was identified as the first aspartate in the first motif (DXDXT) by mass spectrometry analysis of peptides derived from the phosphorylated enzyme treated with NaBH(4) or alkaline [(18)O]H(2)O. Incubation of native phosphoserine phosphatase with phosphoserine in [(18)O]H(2)O did not result in (18)O incorporation in residue Asp-20, indicating that the phosphoaspartate is hydrolyzed, as in P-type ATPases, by attack of the phosphorus atom. Mutagenesis studies bearing on conserved residues indicated that four conservative changes either did not affect (S109T) or caused a moderate decrease in activity (G178A, D179E, and D183E). Other mutations inactivated the enzyme by >80% (S109A and G180A) or even by >/=99% (D179N, D183N, K158A, and K158R). Mutations G178A and D179N decreased the affinity for phosphoserine, suggesting that these residues participate in the binding of the substrate. Mutations of Asp-179 decreased the affinity for Mg(2+), indicating that this residue interacts with the cation. Thus, investigated residues appear to play an important role in the reaction mechanism of phosphoserine phosphatase, as is known for equivalent residues in P-type ATPases and haloacid dehalogenases.
Collapse
Affiliation(s)
- J F Collet
- Laboratoire de Chimie Physiologique, Christian de Duve Institute of Cellular Pathology, B 1200 Brussels, Belgium
| | | | | |
Collapse
|
18
|
Collet JF, Stroobant V, Pirard M, Delpierre G, Van Schaftingen E. A new class of phosphotransferases phosphorylated on an aspartate residue in an amino-terminal DXDX(T/V) motif. J Biol Chem 1998; 273:14107-12. [PMID: 9603909 DOI: 10.1074/jbc.273.23.14107] [Citation(s) in RCA: 206] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
When incubated with their substrates, human phosphomannomutase and L-3-phosphoserine phosphatase are known to form phosphoenzymes with chemical characteristics of an acyl-phosphate. The phosphorylated residue in phosphomannomutase has now been identified by mass spectrometry after reduction of the phosphoenzyme with tritiated borohydride and trypsin digestion. It is the first aspartate in a conserved DVDGT motif. Replacement of either aspartate of this motif by asparagine or glutamate resulted in complete inactivation of the enzyme. The same mutations performed in the DXDST motif of L-3-phosphoserine phosphatase also resulted in complete inactivation of the enzyme, except for the replacement of the second aspartate by glutamate, which reduced the activity by only about 40%. This suggests that the first aspartate of the motif is also the phosphorylated residue in L-3-phosphoserine phosphatase. Data banks contained seven other phosphomutases or phosphatases sharing a similar, totally conserved DXDX(T/V) motif at their amino terminus. One of these (beta-phosphoglucomutase) is shown to form a phosphoenzyme with the characteristics of an acyl-phosphate. In conclusion, phosphomannomutase and L-3-phosphoserine phosphatase belong to a new phosphotransferase family with an amino-terminal DXDX(T/V) motif that serves as an intermediate phosphoryl acceptor.
Collapse
Affiliation(s)
- J F Collet
- Laboratory of Physiological Chemistry, Christian de Duve Institute of Cellular Pathology and Catholic University of Louvain, B-1200 Brussels, Belgium
| | | | | | | | | |
Collapse
|
19
|
Fonda ML, Zhang YN. Kinetic mechanism and divalent metal activation of human erythrocyte pyridoxal phosphatase. Arch Biochem Biophys 1995; 320:345-52. [PMID: 7625842 DOI: 10.1016/0003-9861(95)90018-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Human erythrocyte pyridoxal phosphatase has an essential requirement for divalent cations. Its activation by Mg2+, Co2+, Ni2+, or Mn2+ followed Michaelis-Menten kinetics. Other divalent cations inhibited the enzyme. The kinetic properties of the enzyme were investigated with pyridoxal phosphate and Mg2+ alone and in the presence of the product, Pi, or dead-end inhibitors at pH 7.4 and 37 degrees C. The enzyme bound both the substrate and Mg2+ before products were released. Pi gave competitive inhibition vs substrate and noncompetitive inhibition vs Mg2+. Molybdate also was a competitive inhibitor vs substrate and noncompetitive inhibitor vs Mg2+. Ca2+ gave competitive inhibition vs Mg2+ and noncompetitive inhibition vs substrate. The effects of Mg2+ and substrate on the inactivation of pyridoxal phosphatase by a variety of group-specific reagents were studied. The inactivation of the enzyme by iodoacetate was potentiated by MgCl2. The Kd of the enzyme-Mg complex determined in the inactivation analysis was similar to the Km of the free enzyme for Mg2+, indicating that Mg2+ binds to the free enzyme. Low concentrations of a substrate, pyridoxine phosphate, or Pi protected pyridoxal phosphatase from inactivation by N-ethylmaleimide in the absence or presence of Mg2+. Thus, the substrate binds to the free enzyme and the enzyme-Mg complex. The steady-state kinetics and the kinetics of inactivation are consistent with random binding of pyridoxal phosphate and Mg2+ and with the formation of a dead-end complex of Pi with the enzyme-Mg complex.
Collapse
Affiliation(s)
- M L Fonda
- Department of Biochemistry, University of Louisville School of Medicine, Kentucky 40292, USA
| | | |
Collapse
|