1
|
Nakazawa N, Arakawa O, Ebe M, Yanagida M. Casein kinase II-dependent phosphorylation of DNA topoisomerase II suppresses the effect of a catalytic topo II inhibitor, ICRF-193, in fission yeast. J Biol Chem 2019; 294:3772-3782. [PMID: 30635402 PMCID: PMC6416453 DOI: 10.1074/jbc.ra118.004955] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 01/04/2019] [Indexed: 11/06/2022] Open
Abstract
DNA topoisomerase II (topo II) regulates the topological state of DNA and is necessary for DNA replication, transcription, and chromosome segregation. Topo II has essential functions in cell proliferation and therefore is a critical target of anticancer drugs. In this study, using Phos-tag SDS-PAGE analysis in fission yeast (Schizosaccharomyces pombe), we identified casein kinase II (Cka1/CKII)-dependent phosphorylation at the C-terminal residues Ser1363 and Ser1364 in topo II. We found that this phosphorylation decreases the inhibitory effect of an anticancer catalytic inhibitor of topo II, ICRF-193, on mitosis. Consistent with the constitutive activity of Cka1/CKII, Ser1363 and Ser1364 phosphorylation of topo II was stably maintained throughout the cell cycle. We demonstrate that ICRF-193-induced chromosomal mis-segregation is further exacerbated in two temperature-sensitive mutants, cka1-372 and cka1/orb5-19, of the catalytic subunit of CKII or in the topo II nonphosphorylatable alanine double mutant top2-S1363A,S1364A but not in cells of the phosphomimetic glutamate double mutant top2-S1363E,S1364E Our results suggest that Ser1363 and Ser1364 in topo II are targeted by Cka1/CKII kinase and that their phosphorylation facilitates topo II ATPase activity in the N-terminal region, which regulates protein turnover on chromosome DNA. Because CKII-mediated phosphorylation of the topo II C-terminal domain appears to be evolutionarily conserved, including in humans, we propose that attenuation of CKII-controlled topo II phosphorylation along with catalytic topo II inhibition may promote anticancer effects.
Collapse
Affiliation(s)
- Norihiko Nakazawa
- From the G0 Cell Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa 904-0495, Japan
| | - Orie Arakawa
- From the G0 Cell Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa 904-0495, Japan
| | - Masahiro Ebe
- From the G0 Cell Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa 904-0495, Japan
| | - Mitsuhiro Yanagida
- From the G0 Cell Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa 904-0495, Japan
| |
Collapse
|
2
|
Farr CJ, Antoniou-Kourounioti M, Mimmack ML, Volkov A, Porter ACG. The α isoform of topoisomerase II is required for hypercompaction of mitotic chromosomes in human cells. Nucleic Acids Res 2014; 42:4414-26. [PMID: 24476913 PMCID: PMC3985649 DOI: 10.1093/nar/gku076] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
As proliferating cells transit from interphase into M-phase, chromatin undergoes extensive reorganization, and topoisomerase (topo) IIα, the major isoform of this enzyme present in cycling vertebrate cells, plays a key role in this process. In this study, a human cell line conditional null mutant for topo IIα and a derivative expressing an auxin-inducible degron (AID)-tagged version of the protein have been used to distinguish real mitotic chromosome functions of topo IIα from its more general role in DNA metabolism and to investigate whether topo IIβ makes any contribution to mitotic chromosome formation. We show that topo IIβ does contribute, with endogenous levels being sufficient for the initial stages of axial shortening. However, a significant effect of topo IIα depletion, seen with or without the co-depletion of topo IIβ, is the failure of chromosomes to hypercompact when delayed in M-phase. This requires much higher levels of topo II protein and is impaired by drugs or mutations that affect enzyme activity. A prolonged delay at the G2/M border results in hyperefficient axial shortening, a process that is topo IIα-dependent. Rapid depletion of topo IIα has allowed us to show that its function during late G2 and M-phase is truly required for shaping mitotic chromosomes.
Collapse
Affiliation(s)
- Christine J Farr
- Department of Genetics, University of Cambridge, Downing St, Cambridge CB2 3EH, UK and Centre for Haematology, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, Du Cane Rd, London W12 0NN, UK
| | | | | | | | | |
Collapse
|
3
|
Vomasta D, Högner C, Branda NR, König B. Regulation of human carbonic anhydrase I (hCAI) activity by using a photochromic inhibitor. Angew Chem Int Ed Engl 2008; 47:7644-7. [PMID: 18767093 DOI: 10.1002/anie.200802242] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Daniel Vomasta
- Institute of Organic Chemistry, University of Regensburg, 93040 Regensburg, Germany
| | | | | | | |
Collapse
|
4
|
Vomasta D, Högner C, Branda N, König B. Regulation der Aktivität von humaner Carboanhydrase I (hCAI) durch einen photochromen Inhibitor. Angew Chem Int Ed Engl 2008. [DOI: 10.1002/ange.200802242] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
5
|
Iida M, Matsuda M, Komatani H. Plk3 phosphorylates topoisomerase IIalpha at Thr(1342), a site that is not recognized by Plk1. Biochem J 2008; 411:27-32. [PMID: 18062778 DOI: 10.1042/bj20071394] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The Plk (polo-like kinase) family is involved in cell-cycle machinery. Despite the possible overlapping involvement of Plk1 and Plk3 in cell-cycle distribution, the precise role of each Plk might be different. To investigate mechanisms that may differentiate their physiological roles, we compared the substrate specificities of Plk1 and Plk3 using synthetic peptides. Among these substrate peptides, topoisomerase IIalpha EKT(1342)DDE-containing synthetic peptide was strongly phosphorylated by Plk3 but not by Plk1. By modulating the topoisomerase IIalpha peptide, we identified residues at positions +1, +2 and +4 as determinants of differential substrate recognition between Plk1 and Plk3. Acidic residues at positions +2 and +4 appear to be a positive determinant for Plk3 but not Plk1. Variation at position +1 appears to be tolerated by Plk3, while a hydrophobic residue at +1 is critical for Plk1 activity. The direct phosphorylation of Thr(1342) of topoisomerase IIalpha by Plk3 was demonstrated with an in vitro kinase assay, and overexpression of Plk3 induced the phosphorylation of Thr(1342) in cellular topoisomerase IIalpha. Furthermore, the physical interaction between Plk3 and topoisomerase IIalpha was also demonstrated in cells in addition to phosphorylation. These data suggest that topoisomerase IIalpha is a novel physiological substrate for Plk3 and that Plk1 and Plk3 play different roles in cell-cycle regulation.
Collapse
Affiliation(s)
- Masato Iida
- Department of Oncology, Tsukuba Research Institute, Banyu Pharmaceutical Co. Ltd, Okubo 3, Tsukuba, Ibaraki 300-2611, Japan
| | | | | |
Collapse
|
6
|
Karandikar UC, Trott RL, Yin J, Bishop CP, Bidwai AP. Drosophila CK2 regulates eye morphogenesis via phosphorylation of E(spl)M8. Mech Dev 2004; 121:273-86. [PMID: 15003630 DOI: 10.1016/j.mod.2004.01.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2003] [Revised: 12/19/2003] [Accepted: 01/06/2004] [Indexed: 10/26/2022]
Abstract
The Notch effector E(spl)M8 is phosphorylated at Ser159 by CK2, a highly conserved Ser/Thr protein kinase. We have used the Gal4-UAS system to assess the role of M8 phosphorylation during bristle and eye morphogenesis by employing a non-phosphorylatable variant (M8SA) or one predicted to mimic the 'constitutively' phosphorylated protein (M8SD). We find that phosphorylation of M8 does not appear to be critical during bristle morphogenesis. In contrast, only M8SD elicits a severe 'reduced eye' phenotype when it is expressed in the morphogenetic furrow of the eye disc. M8SD elicits neural hypoplasia in eye discs, elicits loss of phase-shifted Atonal-positive cells, i.e. the 'founding' R8 photoreceptors, and consequently leads to apoptosis. The ommatidial phenotype of M8SD is similar to that in Nspl/Y; E(spl)D/+ flies. E(spl)D, an allele of m8, encodes a truncated protein known as M8*, which, unlike wild type M8, displays exacerbated antagonism of Atonal via direct protein-protein interactions. In line with this, we find that the M8SD-Atonal interaction appears indistinguishable from that of M8*-Atonal, whereas interaction of M8 or M8SA appears marginal, at best. These results raise the possibility that phosphorylation of M8 (at Ser159) might be required for its ability to mediate 'lateral inhibition' within proneural clusters in the developing retina. This is the first identification of a dominant allele encoding a phosphorylation-site variant of an E(spl) protein. Our studies uncover a novel functional domain that is conserved amongst a subset of E(spl)/Hes repressors in Drosophila and mammals, and suggests a potential role for CK2 during retinal patterning.
Collapse
Affiliation(s)
- Umesh C Karandikar
- Department of Biology, Life Sciences Building, P.O. Box 6057, West Virginia University, Morgantown, WV 26506, USA
| | | | | | | | | |
Collapse
|
7
|
Plo I, Hernandez H, Kohlhagen G, Lautier D, Pommier Y, Laurent G. Overexpression of the atypical protein kinase C zeta reduces topoisomerase II catalytic activity, cleavable complexes formation, and drug-induced cytotoxicity in monocytic U937 leukemia cells. J Biol Chem 2002; 277:31407-15. [PMID: 12105221 DOI: 10.1074/jbc.m204654200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In this study, we evaluated the influence of protein kinase C zeta (PKC zeta) on topoisomerase II inhibitor-induced cytotoxicity in monocytic U937 cells. In U937-zeta J and U937-zeta B cells, enforced PKC zeta expression, conferred by stable transfection of PKC zeta cDNA, resulted in total inhibition of VP-16- and mitoxantrone-induced apoptosis and decreased drug-induced cytotoxicity, compared with U937-neo control cells. In PKC zeta-overexpressing cells, drug resistance correlated with decreased VP-16-induced DNA strand breaks and DNA protein cross-links measured by alkaline elution. Kinetoplast decatenation assay revealed that PKC zeta overexpression resulted in reduced global topoisomerase II activity. Moreover, in PKC zeta-overexpressing cells, we found that PKC zeta interacted with both alpha and beta isoforms of topoisomerase II, and these two enzymes were constitutively phosphorylated. However, when human recombinant PKC zeta (rH-PKC zeta) was incubated with purified topoisomerase II isoforms, rH-PKC zeta interacted with topoisomerase II beta but not with topoisomerase II alpha. PKC zeta/topoisomerase II beta interaction resulted in phosphorylation of this enzyme and in decrease of its catalytic activity. Finally, this report shows for the first time that topoisomerase II beta is a substrate for PKC zeta, and that PKC zeta may significantly influence topoisomerase II inhibitor-induced cytotoxicity by altering topoisomerase II beta activity through its kinase function.
Collapse
Affiliation(s)
- Isabelle Plo
- INSERM E9910, Institut Claudius Régaud, 20 rue du Pont Saint Pierre, 31052 Toulouse cedex, France.
| | | | | | | | | | | |
Collapse
|
8
|
Miller MC, Woods CM, Murphy ME, Elkins A, Spielvogel BF, Hall IH. Relationship between amine-carboxyboranes and TNF alpha for the regulation of cell growth in different tumor cell lines. Biomed Pharmacother 2001; 52:169-79. [PMID: 9755812 DOI: 10.1016/s0753-3322(98)80207-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The amine-carboxyboranes were shown to be synergistic with tumor necrosis factor alpha (TNF alpha) in cytotoxicity and inhibition of DNA synthesis in select types of cancer cells depending on the presence of a TNF alpha high affinity receptor on the membrane of the cell. Initially both TNF alpha and the amine-carboxyboranes reduce the influx of calcium but later cause a significant increase intracellularly. This influx is not linked with the amine-carboxyborane activating the calcitonin receptor in the tumor cells. Neither the agents nor TNF alpha directly inhibits DNA topoisomerase II activity but both did cause decreased phosphorylation of the enzyme by protein kinase C (PKC). The two agents caused synergistic inhibition. This event correlated with increased DNA protein linked breaks, DNA fragmentation and cell death. These protein linked breaks are additive with etoposide's effects but the latter agent's mechanism is different than phosphorylation of topoisomerase II. There was no evidence that the DNA fragmentation was caused by a calcium induced endonuclease enzyme in these cancer cells. The low-molecular weight amine-carboxyboranes appear to play an identical function as TNF alpha in its role to cause DNA breaks and fragmentation to cause apoptosis.
Collapse
Affiliation(s)
- M C Miller
- Division of Medicinal Chemistry and Natural Products, School of Pharmacy, University of North Carolina, Chapel Hill 27599-7360, USA
| | | | | | | | | | | |
Collapse
|
9
|
Gemkow MJ, Dichter J, Arndt-Jovin DJ. Developmental regulation of DNA-topoisomerases during Drosophila embryogenesis. Exp Cell Res 2001; 262:114-21. [PMID: 11139335 DOI: 10.1006/excr.2000.5084] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Type I and type II DNA-topoisomerases are essential enzymes that mediate replication, transcription, recombination, and mitosis in multicellular eukaryotes but the extent of their interchange for specific reactions in vivo is controversial. Expression patterns for topoisomerase I and topoisomerase II during the embryogenesis of Drosophila melanogaster were compared with patterns of DNA replication and expression of the histone genes. In late oogenesis the maternally supplied top2 mRNA was evenly distributed throughout the egg with elevated levels at the posterior tip, a pattern that is maintained in syncytial blastoderm embryos. During gastrulation, top2 mRNA became differentially localized only to regions of DNA replication, including new expression in the gonads preceding mitosis/meiosis. Significantly higher levels of top2 mRNA were found in mitotic compared to endoreplicating tissues. The total histone mRNA was exclusively associated with DNA replication but, in contrast to top2 mRNA, mitotic and endoreplicating cells contained similar expression levels with no expression in the gonads. Striking differences exist between the distribution of the top2 mRNA and topoisomerase II protein. The protein localizes to all evolving nuclei where it persists throughout embryogenesis. A high level of top1 mRNA transcript was present without differential tissue distribution throughout embryogenesis.
Collapse
Affiliation(s)
- M J Gemkow
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, 37070, Germany
| | | | | |
Collapse
|
10
|
Petruti-Mot AS, Earnshaw WC. Two differentially spliced forms of topoisomerase IIalpha and beta mRNAs are conserved between birds and humans. Gene 2000; 258:183-92. [PMID: 11111056 DOI: 10.1016/s0378-1119(00)00465-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Screening of chicken cDNA libraries has identified four distinct forms of topoisomerase IIalpha and beta cDNAs. Two of these, designated topo IIalpha-1 and topo IIbeta-1, were previously deposited in the database. The other two, topo IIalpha-2 and topo IIbeta-2, are novel variants that appear to be conserved between chicken and human. Topo IIalpha-2 encodes a protein with an additional 35 amino acids inserted after K321 of the chicken topo IIalpha-1 protein sequence. Topo IIbeta-2 encodes a protein missing 86 amino acids following V27 in the topo IIbeta-1 protein sequence. We have also detected several alternatively spliced forms of human topo IIalpha. One of these, topo IIalpha-3, appears to correspond to chicken topo IIalpha-2. The other two are novel. The existence of these alternatively spliced forms in mature cytoplasmic RNA was confirmed by RT-PCR in several cell lines. Interestingly, these alternatively spliced forms carry sites for post-translational modification, suggesting that they may be subject to differential regulation from the canonical forms. These results suggest that cells express a more complex repertoire of topo II isoforms than previously thought, raising the possibility that different forms of topo II may fulfil specialized functions in chromosome dynamics.
Collapse
MESH Headings
- Alternative Splicing
- Amino Acid Sequence
- Animals
- Antigens, Neoplasm
- Base Sequence
- Chickens/genetics
- Conserved Sequence
- DNA/chemistry
- DNA/genetics
- DNA Topoisomerases, Type II/genetics
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- DNA, Complementary/isolation & purification
- DNA-Binding Proteins
- Genetic Variation
- HeLa Cells
- Humans
- Isoenzymes/genetics
- Molecular Sequence Data
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- A S Petruti-Mot
- Wellcome Centre for Cell Biology, Institute of Cell and Molecular Biology, University of Edinburgh, Edinburgh EH9 3JR, UK
| | | |
Collapse
|
11
|
Kwon Y, Shin BS, Chung IK. The p53 tumor suppressor stimulates the catalytic activity of human topoisomerase IIalpha by enhancing the rate of ATP hydrolysis. J Biol Chem 2000; 275:18503-10. [PMID: 10764786 DOI: 10.1074/jbc.m002081200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNA topoisomerase II is an essential nuclear enzyme for proliferation of eukaryotic cells and plays important roles in many aspects of DNA processes. In this report, we have demonstrated that the catalytic activity of topoisomerase IIalpha, as measured by decatenation of kinetoplast DNA and by relaxation of negatively supercoiled DNA, was stimulated approximately 2-3-fold by the tumor suppressor p53 protein. In order to determine the mechanism by which p53 activates the enzyme, the effects of p53 on the topoisomerase IIalpha-mediated DNA cleavage/religation equilibrium were assessed using the prototypical topoisomerase II poison, etoposide. p53 had no effect on the ability of the enzyme to make double-stranded DNA break and religate linear DNA, indicating that the stimulation of the enzyme catalytic activity by p53 was not due to alteration in the formation of covalent cleavable complexes formed between topoisomerase IIalpha and DNA. The effects of p53 on the catalytic inhibition of topoisomerase IIalpha were examined using a specific catalytic inhibitor, ICRF-193, which blocks the ATP hydrolysis step of the enzyme catalytic cycle. Clearly manifested in decatenation and relaxation assays, p53 reduced the catalytic inhibition of topoisomerase IIalpha by ICRF-193. ATP hydrolysis assays revealed that the ATPase activity of topoisomerase IIalpha was specifically enhanced by p53. Immunoprecipitation experiments revealed that p53 physically interacts with topoisomerase IIalpha to form molecular complexes without a double-stranded DNA intermediary in vitro. To investigate whether p53 stimulates the catalytic activity of topoisomerase II in vivo, we expressed wild-type and mutant p53 in Saos-2 osteosarcoma cells lacking functional p53. Wild-type, but not mutant, p53 stimulated topoisomerase II activity in nuclear extract from these transfected cells. Our data propose a new role for p53 to modulate the catalytic activity of topoisomerase IIalpha. Taken together, we suggest that the p53-mediated response of the cell cycle to DNA damage may involve activation of topoisomerase IIalpha.
Collapse
Affiliation(s)
- Y Kwon
- Department of Biology, College of Science, Bioproducts Research Center, Yonsei University, Seoul 120-749, Korea
| | | | | |
Collapse
|
12
|
Kurz EU, Leader KB, Kroll DJ, Clark M, Gieseler F. Modulation of human DNA topoisomerase IIalpha function by interaction with 14-3-3epsilon. J Biol Chem 2000; 275:13948-54. [PMID: 10788521 DOI: 10.1074/jbc.275.18.13948] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human DNA topoisomerase IIalpha (topo II), a ubiquitous nuclear enzyme, is essential for normal and neoplastic cellular proliferation and survival. Several common anticancer drugs exert their cytotoxic effects through interaction with topo II. In experimental systems, altered topo II expression has been associated with the appearance of drug resistance. This mechanism, however, does not adequately account for clinical cases of resistance to topo II-directed drugs. Modulation by protein-protein interactions represents one mechanism of topo II regulation that has not been extensively defined. Our laboratory has identified 14-3-3epsilon as a topo II-interacting protein. In this study, glutathione S-transferase co-precipitation, affinity column chromatography, and immunoprecipitations confirm the authenticity of these interactions. Three assays evaluate the impact of 14-3-3epsilon on distinct topo II functional properties. Using both a modified alkaline comet assay and a DNA cleavage assay, we demonstrate that 14-3-3epsilon negatively affects the ability of the chemotherapeutic, etoposide, to trap topo II in cleavable complexes with DNA, thereby preventing DNA strand breaks. By electrophoretic mobility shift assay, this appears to be due to reduced DNA binding activity. The association of topo II with 14-3-3 proteins does not extend to all 14-3-3 isoforms. No protein interaction or disruption of topo II function was observed with 14-3-3final sigma.
Collapse
Affiliation(s)
- E U Kurz
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Colorado Health Sciences Center and University of Colorado Cancer Center, Denver, Colorado 80262, USA
| | | | | | | | | |
Collapse
|
13
|
Scala D, Escargueil AE, Couprie J, Larsen AK. The catalytic activities of DNA topoisomerase II are most closely associated with the DNA cleavage/religation steps. Biochimie 1999; 81:771-9. [PMID: 10492025 DOI: 10.1016/s0300-9084(99)80136-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
DNA topoisomerase II regulates the three-dimensional organisation of DNA and is the principal target of many important anticancer and antimicrobial agents. These drugs usually act on the DNA cleavage/religation steps of the catalytic cycle resulting in accumulation of covalent DNA-topoisomerase II complexes. We have studied the different steps of the catalytic cycle as a function of salt concentration, which is a classical way to evaluate the biochemical properties of proteins. The results show that the catalytic activity of topoisomerase II follows a bell-shaped curve with optimum between 100 and 225 mM KCl. No straight-forward correlation exists between DNA binding and catalytic activity. The highest levels of drug-induced covalent DNA-topoisomerase II complexes are observed between 100 and 150 mM KCl. Remarkably, at salt concentrations between 150 mM and 225 mM KCl, topoisomerase II is converted into a drug-resistant form with greatly reduced levels of drug-induced DNA-topoisomerase II complexes. This is due to efficient religation rather than to absence of DNA cleavage as witnessed by relaxation of the supercoiled DNA substrate. In the absence of DNA, ATP hydrolysis is strongest at low salt concentrations. Unexpectedly, the addition of DNA stimulates ATP hydrolysis at 100 and 150 mM KCl, but has little or no effect below 100 mM KCl in spite of strong non-covalent DNA binding at these salt concentrations. Therefore, DNA-stimulated ATP hydrolysis appears to be associated with covalent rather than non-covalent binding of DNA to topoisomerase II. Taken together, the results suggest that it is the DNA cleavage/religation steps that are most closely associated with the catalytic activities of topoisomerase II providing a unifying theme for the biological and pharmacological modulation of this enzyme.
Collapse
Affiliation(s)
- D Scala
- Laboratory of Biology and Pharmacology of DNA Topoisomerases, CNRS UMR 8532, Institut Gustave-Roussy, Villejuif, France
| | | | | | | |
Collapse
|
14
|
Iwashita S, Nobukuni T, Tanaka S, Kobayashi M, Iwanaga T, Tamate HB, Masui T, Takahashi I, Hashimoto K. Partial nuclear localization of a bovine phosphoprotein, BCNT, that includes a region derived from a LINE repetitive sequence in Ruminantia. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1427:408-16. [PMID: 10350657 DOI: 10.1016/s0304-4165(99)00049-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
BCNT, named after Bucentaur, is a protein that contains a 324-amino-acid region derived from part of a long interspersed DNA sequence element (LINE) in Ruminantia. However, the unique portion is completely missing in human and mouse BCNTs. Since no significant information on their function has been obtained by homology search, we at first examined cellular localization and biochemical characteristics of bovine BCNT to get a hint on its function. Subcellular fractionation and immunohistochemical analyses using a normal bovine epithelial cell line and bovine brain revealed that a significant amount of bovine BCNT is localized in the nuclei, while the major portion is present in the cytosol. Furthermore, it was shown that bovine BCNT is a phosphoprotein and that both bovine and human BCNTs are phosphorylated by casein kinase II in vitro. These results show that BCNTs consist of a unique family, probably a substrate of casein kinase II, which may contribute further to the understanding of gene evolution.
Collapse
Affiliation(s)
- S Iwashita
- Mitsubishi Kasei Institute of Life Sciences, 11 Minamiooya, Machida-shi, Tokyo 194, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Shapiro PS, Whalen AM, Tolwinski NS, Wilsbacher J, Froelich-Ammon SJ, Garcia M, Osheroff N, Ahn NG. Extracellular signal-regulated kinase activates topoisomerase IIalpha through a mechanism independent of phosphorylation. Mol Cell Biol 1999; 19:3551-60. [PMID: 10207078 PMCID: PMC84147 DOI: 10.1128/mcb.19.5.3551] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The mitogen-activated protein (MAP) kinases, extracellular signal-related kinase 1 (ERK1) and ERK2, regulate cellular responses by mediating extracellular growth signals toward cytoplasmic and nuclear targets. A potential target for ERK is topoisomerase IIalpha, which becomes highly phosphorylated during mitosis and is required for several aspects of nucleic acid metabolism, including chromosome condensation and daughter chromosome separation. In this study, we demonstrated interactions between ERK2 and topoisomerase IIalpha proteins by coimmunoprecipitation from mixtures of purified enzymes and from nuclear extracts. In vitro, diphosphorylated active ERK2 phosphorylated topoisomerase IIalpha and enhanced its specific activity by sevenfold, as measured by DNA relaxation assays, whereas unphosphorylated ERK2 had no effect. However, activation of topoisomerase II was also observed with diphosphorylated inactive mutant ERK2, suggesting a mechanism of activation that depends on the phosphorylation state of ERK2 but not on its kinase activity. Nevertheless, activation of ERK by transient transfection of constitutively active mutant MAP kinase kinase 1 (MKK1) enhanced endogenous topoisomerase II activity by fourfold. Our findings indicate that ERK regulates topoisomerase IIalpha in vitro and in vivo, suggesting a potential target for the MKK/ERK pathway in the modulation of chromatin reorganization events during mitosis and in other phases of the cell cycle.
Collapse
Affiliation(s)
- P S Shapiro
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309, USA.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
Over the last several years topoisomerases have finally begun to yield to high-resolution structural studies. These models have greatly aided our understanding of the mechanisms of topoisomerase catalysis and drug interactions. This review will cover advances in the structural biology of topoisomerases and discuss their implications for topoisomerase function.
Collapse
Affiliation(s)
- J M Berger
- Division of Biochemistry and Molecular Biology, Department of Molecular and Cellular Biology, 229 Stanley Hall, University of California, Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
17
|
Burden DA, Osheroff N. Mechanism of action of eukaryotic topoisomerase II and drugs targeted to the enzyme. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1400:139-54. [PMID: 9748545 DOI: 10.1016/s0167-4781(98)00132-8] [Citation(s) in RCA: 378] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Topoisomerase II is a ubiquitous enzyme that is essential for the survival of all eukaryotic organisms and plays critical roles in virtually every aspect of DNA metabolism. The enzyme unknots and untangles DNA by passing an intact helix through a transient double-stranded break that it generates in a separate helix. Beyond its physiological functions, topoisomerase II is the target for some of the most active and widely prescribed anticancer drugs currently utilized for the treatment of human cancers. These drugs act in an insidious fashion and kill cells by increasing levels of covalent topoisomerase II-cleaved DNA complexes that are normally fleeting intermediates in the catalytic cycle of the enzyme. Over the past several years, we have made considerable strides in our understanding of the catalytic mechanism of topoisomerase II and the mechanism of action of drugs targeted to this enzyme. These advances have provided novel insights into the physiological functions of topoisomerase II and have led to the development of more efficacious chemotherapeutic regimens and novel anticancer drugs. Considering the importance of topoisomerase II to the eukaryotic cell and to cancer chemotherapy, it is essential to understand its enzymatic function and pharmacological properties. Therefore, this review will discuss the mechanism of action of eukaryotic topoisomerase II and topoisomerase II-targeted drugs.
Collapse
Affiliation(s)
- D A Burden
- Department of Biochemistry, 654 Medical Research Building I, Vanderbilt University School of Medicine, Nashville, TN 37232-0146, USA
| | | |
Collapse
|
18
|
Abstract
The major established cause of acute myeloid leukemia (AML) in the young is cancer chemotherapy. There are two forms of treatment-related AML (t-AML). Each form has a de novo counterpart. Alkylating agents cause t-AML characterized by antecedent myelodysplasia, a mean latency period of 5-7 years and complete or partial deletion of chromosome 5 or 7. The risk is related to cumulative alkylating agent dose. Germline NF-1 and p53 gene mutations and the GSTT1 null genotype may increase the risk. Epipodophyllotoxins and other DNA topoisomerase II inhibitors cause leukemias with translocations of the MLL gene at chromosome band 11q23 or, less often, t(8;21), t(3;21), inv(16), t(8;16), t(15;17) or t(9;22). The mean latency period is about 2 years. While most cases are of French-American-British (FAB) M4 or FAB M5 morphology, other FAB AML subtypes, myelodysplastic syndrome (MDS), acute lymphoblastic leukemia (ALL) and chronic myelogenous leukemia (CML) occur. Between 2 and 12% of patients who receive epipodophyllotoxin have developed t-AML. There is no relationship with higher cumulative epipodophyllotoxin dose and genetic predisposition has not been identified, but weekly or twice-weekly schedules and preceding l-asparaginase administration may potentiate the risk. The translocation breakpoints in MLL are heterogeneously distributed within a breakpoint cluster region (bcr) and the MLL gene translocations involve one of many partner genes. DNA topoisomerase II cleavage assays demonstrate a correspondence between DNA topoisomerase II cleavage sites and the translocation breakpoints. DNA topoisomerase II catalyzes transient double-stranded DNA cleavage and rejoining. Epipodophyllotoxins form a complex with the DNA and DNA topoisomerase II, decrease DNA rejoining and cause chromosomal breakage. Furthermore, epipodophyllotoxin metabolism generates reactive oxygen species and hydroxyl radicals that could create abasic sites, potent position-specific enhancers of DNA topoisomerase II cleavage. One proposed mechanism for the translocations entails chromosomal breakage by DNA topoisomerase II and recombination of DNA free ends from different chromosomes through DNA repair. With few exceptions, treatment-related leukemias respond less well to either chemotherapy or bone marrow transplantation than their de novo counterparts, necessitating more innovative treatments, a better mechanistic understanding of the pathogenesis, and strategies for prevention.
Collapse
Affiliation(s)
- C A Felix
- Division of Oncology, Department of Pediatrics, Abramson Research Center, The Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
19
|
Larsen AK, Skladanowski A, Bojanowski K. The roles of DNA topoisomerase II during the cell cycle. PROGRESS IN CELL CYCLE RESEARCH 1998; 2:229-39. [PMID: 9552399 DOI: 10.1007/978-1-4615-5873-6_22] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
DNA topoisomerase II (topo II) is essential for survival of all eukaryotic cells. Topo II is both an enzyme and a structural component of the nuclear matrix. It regulates the topological states of DNA by transient cleavage, strand passing and re-ligation of double-stranded DNA resulting in decatenation of intertwined DNA molecules and relaxation of supercoiled DNA. Topo II plays an important role in DNA replication and is required for condensation and segregation of chromosomes. The expression of topo II is cell cycle dependent with both protein levels and catalytic activity peaking at G2/M. Phosphorylation/dephosphorylation of topo II may be a part of regulatory checkpoints at the entry and progression of mitosis.
Collapse
Affiliation(s)
- A K Larsen
- Department of Structural Biology and Pharmacology, Institut Gustave Roussy PR2, Villejuif, France
| | | | | |
Collapse
|
20
|
Redwood C, Davies SL, Wells NJ, Fry AM, Hickson ID. Casein kinase II stabilizes the activity of human topoisomerase IIalpha in a phosphorylation-independent manner. J Biol Chem 1998; 273:3635-42. [PMID: 9452492 DOI: 10.1074/jbc.273.6.3635] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Previous reports have indicated that topoisomerase II (topo II) co-purifies with and is a substrate for casein kinase II. We have carried out a detailed study of the effect that purified casein kinase II has on the activity of purified recombinant human topo IIalpha. Co-incubation of topo IIalpha and casein kinase II led to an apparent activation of the topo IIalpha; however, in experiments in which topo IIalpha was preincubated at 37 degrees C with or without native casein kinase II prior to assaying for decatenation activity, it emerged that the kinase was exerting its "activating" function via a decrease in the rate of topo IIalpha enzyme inactivation during the incubation period. This stabilization of topo IIalpha by casein kinase II was ATP-independent and was observed in both mutated and truncated derivatives of topo IIalpha lacking the major casein kinase II phospho-acceptor sites, indicating the lack of a requirement for phosphorylation. Consistent with a nonenzymatic role for casein kinase II, stoichiometric quantities of kinase were required for topo IIalpha stabilization. These data indicate that casein kinase II plays a significant role in regulating human topo IIalpha protein action via stabilization against thermal inactivation.
Collapse
Affiliation(s)
- C Redwood
- Imperial Cancer Research Fund Laboratories, Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, United Kingdom
| | | | | | | | | |
Collapse
|
21
|
Hammonds TR, Maxwell A. The DNA dependence of the ATPase activity of human DNA topoisomerase IIalpha. J Biol Chem 1997; 272:32696-703. [PMID: 9405488 DOI: 10.1074/jbc.272.51.32696] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We have purified human topoisomerase IIalpha from HeLa cells and studied its ATPase reaction. The ATPase activity is stimulated by DNA and shows apparent Michaelis-Menten kinetics. Although the ATPase activity of human topoisomerase IIalpha is lower than that of Saccharomyces cerevisiae, it is more active in decatenation, implying more efficient coupling of the ATPase to DNA strand passage under these conditions. Using plasmid pBR322 as the DNA cofactor, the reaction shows hyperstimulation by DNA at a base pair to enzyme dimer ratio of 100-200:1. When DNA fragments are used as the cofactor, the reaction requires > approximately 100 base pairs to stimulate the activity and fragments of approximately 300 base pairs show hyperstimulation. This behavior can be rationalized in terms of the enzyme requiring fragments that can bind to both the DNA gate and the ATP-operated clamp in order for the ATPase reaction to be stimulated. Hyperstimulation is a consequence of the saturation of DNA with enzyme. The mechanistic implications of these results are discussed.
Collapse
Affiliation(s)
- T R Hammonds
- Department of Biochemistry, University of Leicester, Leicester LE1 7RH, United Kingdom
| | | |
Collapse
|
22
|
Ishida R, Iwai M, Marsh KL, Austin CA, Yano T, Shibata M, Nozaki N, Hara A. Threonine 1342 in human topoisomerase IIalpha is phosphorylated throughout the cell cycle. J Biol Chem 1996; 271:30077-82. [PMID: 8939955 DOI: 10.1074/jbc.271.47.30077] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
To investigate the relationship between the modulation of topoisomerase II activity and its phosphorylation state during the cell cycle, a monoclonal antibody against C-terminal peptide (residues 1335-1350) of topoisomerase IIalpha containing a consensus sequence of casein kinase II, TDDE and its phosphorylated threonine were prepared. In an enzyme-linked immunosorbent assay, the antibody, named PT1342, recognized the immunogenic phosphopeptide but not the non-phosphorylated form of the peptide. The PT1342 antibody reacted only with a 170-kDa protein from HeLa cells and recognized anti-topoisomerase IIalpha immunoprecipitants. Furthermore, the antibody did not react with the human topoisomerase IIalpha mutated at codon 1342 from threonine to alanine, showing that PT1342 was directed against the phosphorylated threonine 1342. To examine the level of phosphorylation of threonine 1342 of topoisomerase IIalpha through the cell cycle, HeLa cells were stained simultaneously for phosphorylated topoisomerase IIalpha and DNA and analyzed by flow cytometry. Cells in the G2-M phase contained about double the PT1341-reacted topoisomerase IIalpha than did cells in G1 or S phases. The antibody stained the nuclei in interphase and mitotic chromosomes and its periphery, as seen with anti-topoisomerase IIalpha antibody. Thus, threonine 1342 in topoisomerase IIalpha is phosphorylated throughout the cell cycle.
Collapse
Affiliation(s)
- R Ishida
- Laboratory of Biochemistry, Aichi Cancer Center Research Institute, Chikusa-Ku, Nagoya 464, Japan
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Allen GC, Lubas S, Wax MK, Devore RF. Epidermal Growth Factor Regulates Topoisomerase II Activity and Drug Sensitivity in Human KB Cells. Otolaryngol Head Neck Surg 1996; 114:785-92. [PMID: 8643303 DOI: 10.1016/s0194-59989670102-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Because of its unique DNA-cleaving and strand-passing activities, topoisomerase II is involved in many aspects of DNA metabolism, including replication, transcription, recombination, and repair. The cytotoxic potential of topoisomerase II–targeted drugs, such as etoposide, is related to their ability to stabilize covalently linked enzyme-DNA complexes, which are intermediates in the enzyme's catalytic cycle. Epidermal growth factor receptor is expressed on the cell surface of the majority of squamous cell carcinomas, and epidermal growth factor binding is known to stimulate a number of cellular transduction pathways, including tyrosine kinase, protein kinase C, and phospholipase C. Because topoisomerase II is a proliferation-dependent protein and has been shown to be a high-affinity substrate for many of these cellular transduction pathways, the effects of epidermal growth factor on cellular regulation and sensitivity to etoposide were studied with the human oral cavity squamous cell line, KB. Topoisomerase II catalytic activity was rapidly and transiently inhibited after the addition of epidermal growth factor to the cellular growth media. Western blot on nuclear extracts did not demonstrate alterations in topoisomerase II polypeptide levels to account for changes in catalytic activity. Epidermal growth factor treatment also led to the formation of stabilized, covalently linked enzyme-DNA complexes. Furthermore, epidermal growth factor-induced, topoisomerase II–mediated DNA strand breaks were additive to those induced by etoposide. This study indicates that epidermal growth factor specifically regulates the catalytic and DNA-cleaving activities of topoisomerase II in KB cells. This may direct clinical strategies for circumventing the intrinsic cellular resistance to chemotherapy commonly observed in squamous cell carcinomas of the head and neck.
Collapse
MESH Headings
- Antineoplastic Agents, Phytogenic/pharmacology
- Blotting, Western
- Carcinoma, Squamous Cell/drug therapy
- Carcinoma, Squamous Cell/enzymology
- Carcinoma, Squamous Cell/pathology
- Catalysis
- Cell Division/drug effects
- DNA Damage
- DNA Topoisomerases, Type II/drug effects
- DNA Topoisomerases, Type II/metabolism
- DNA, Neoplasm/drug effects
- Drug Screening Assays, Antitumor
- Epidermal Growth Factor/pharmacology
- Epidermal Growth Factor/physiology
- Etoposide/pharmacology
- Head and Neck Neoplasms/drug therapy
- Head and Neck Neoplasms/enzymology
- Head and Neck Neoplasms/pathology
- Humans
- KB Cells
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- G C Allen
- Department of Otolaryngology-Head and Neck Surgery, West Virginia University, Morgantown, WV 26506-9200, USA
| | | | | | | |
Collapse
|
24
|
Kimura K, Saijo M, Tanaka M, Enomoto T. Phosphorylation-independent stimulation of DNA topoisomerase II alpha activity. J Biol Chem 1996; 271:10990-5. [PMID: 8631919 DOI: 10.1074/jbc.271.18.10990] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
It has been suggested that casein kinase II phosphorylates DNA topoisomerase II alpha (topo II alpha) in mouse FM3A cells, by comparison of phosphopeptide maps of topo II alpha labeled in intact cells and of topo II alpha phosphorylated by various kinases in vitro. The phosphorylation of purified topo II alpha by casein kinase II, which attached a maximum of two phosphate groups per topo II alpha molecule, had no effect on the activity of topo II alpha. Dephosphorylation of purified topo II alpha by potato acid phosphatase, which almost completely dephosphorylated the topo II alpha, did not reduce the activity of topo II alpha. The incubation itself, regardless of phosphorylation or dephosphorylation status, stimulated the enzyme activity in both reactions. Topo II alpha activity was stimulated by incubation in a medium containing low concentrations of glycerol but not in that containing high concentrations of glycerol, such as the 50% in which purified topo II alpha is stored. The stimulation of topo II alpha activity by incubation was dependent on the concentration of topo II alpha, requiring a relatively high concentration of topo II alpha.
Collapse
Affiliation(s)
- K Kimura
- Department of Physiological Chemistry, Faculty of Pharmaceutical Sciences, University of Tokyo, Japan
| | | | | | | |
Collapse
|
25
|
Abstract
Type II DNA topoisomerases are enzymes that are capable of transporting one duplex DNA through another. Recent experimental results, including the structure of a fragment of yeast topoisomerase II, have provided new insights into the mechanism of the strand passage reaction. Other results have begun to define the role of ATP in the catalytic cycle and illuminate how DNA breaks mediated by topoisomerase II can occur.
Collapse
Affiliation(s)
- J M Berger
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | | |
Collapse
|
26
|
Wells NJ, Fry AM, Guano F, Norbury C, Hickson ID. Cell cycle phase-specific phosphorylation of human topoisomerase II alpha. Evidence of a role for protein kinase C. J Biol Chem 1995; 270:28357-63. [PMID: 7499337 DOI: 10.1074/jbc.270.47.28357] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Type II topoisomerases are essential for faithful cell division in all organisms. In human cells, the alpha isozyme of topoisomerase II has been implicated in catalyzing mitotic chromosome segregation via its action as a DNA unlinking enzyme. Here, we have shown that the enzymatic activity of topoisomerase II alpha protein purified from HeLa cell nuclei was strongly enhanced following phosphorylation by protein kinase C. We have investigated the possibility that this kinase is involved in cell cycle phase-specific phosphorylation of topoisomerase II alpha in HeLa cells. Two-dimensional tryptic phosphopeptide mapping revealed that topoisomerase II alpha protein immunoprecipitated from metabolically labeled HeLa cells was differentially phosphorylated during the G2/M phases of the cell cycle. To identify sites of phosphorylation, and the kinase(s) responsible for this modification, oligohistidine-tagged recombinant domains of topoisomerase II alpha protein were overexpressed in Escherichia coli and purified by affinity chromatography. Phosphorylation of a short fragment of the N-terminal ATPase domain of topoisomerase II alpha by protein kinase C in vitro generated two phosphopeptides that co-migrated with prominent G2/M phase-specific phosphopeptides from the HeLa cell-derived topoisomerase II alpha protein. Site-directed mutagenesis studies indicated that phosphorylation of serine 29 generated both of these phosphopeptides. Our results implicate protein kinase C in the cell cycle phase-dependent modulation of topoisomerase II alpha enzymatic activity in human cells.
Collapse
Affiliation(s)
- N J Wells
- Imperial Cancer Research Fund Laboratories, Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, United Kingdom
| | | | | | | | | |
Collapse
|
27
|
Tawfic S, Ahmed K. Growth stimulus-mediated differential translocation of casein kinase 2 to the nuclear matrix. Evidence based on androgen action in the prostate. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)31436-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
28
|
Recombinant replication protein A: expression, complex formation, and functional characterization. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(19)78100-9] [Citation(s) in RCA: 436] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
29
|
Miscellaneous Second Messengers. Mol Endocrinol 1994. [DOI: 10.1016/b978-0-12-111231-8.50015-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
30
|
Paoletti C. The localization of topoisomerase II cleavage sites on DNA in the presence of antitumor drugs. Pharmacol Ther 1993; 60:381-7. [PMID: 8022867 DOI: 10.1016/0163-7258(93)90018-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Type II topoisomerase are enzymes that break and religate DNA phosphodiester bonds while crossing over DNA strands and altering DNA topology. They also are structural proteins that play a role in the spatial organization of chromatin and are involved in several crucial biological functions, such as DNA replication and transcription, chromosome segregation and recombination. Many drugs interfere with type II topoisomerases and can be assigned to two groups. Coumarin derivatives and synthetic quinolones act at the level of ATP binding or hydrolysis and are used for controlling bacterial infections. Drugs belonging to the second group produce DNA lesions by trapping a "cleavable complex" consisting of the normal transient topoisomerase II-DNA reaction intermediate in which the enzyme and the DNA are joined by two covalent bonds. There are four main categories of antitumour drugs that form cleavable complexes in eukaryotes: acridines, anthracyclines, ellipticines and epipodophyllotoxins. These drugs are cytotoxic and many--but not all--are endowed with antitumoral properties. The mechanisms of this pharmacological activity are not understood. Topoisomerase II-induced DNA breaks generated from cleavable complexes display different levels of cytotoxicity depending on their localization on DNA. The primary structure of DNA is not the only parameter that determines this localization. The spatial organization of the enzyme-DNA complex and both the topology and the structure of the underlying chromatin fiber constitute additional critical factors. It, therefore, may be unrealistic to expect that the actual pharmacological potency of antitumor drugs that act on type II topoisomerases can be accurately predicted solely on the basis of simple in vitro test tube experiments carried out using pure enzymes and naked DNA.
Collapse
Affiliation(s)
- C Paoletti
- Institut Gustave Roussy, Villejuif, France
| |
Collapse
|
31
|
Litchfield DW, Lüscher B. Casein kinase II in signal transduction and cell cycle regulation. Mol Cell Biochem 1993; 127-128:187-99. [PMID: 7935350 DOI: 10.1007/bf01076770] [Citation(s) in RCA: 130] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Casein kinase II is a protein serine/threonine kinase that is ubiquitously distributed in eukaryotes. Molecular cloning studies and protein sequence analysis of purified proteins have demonstrated the existence of two related, but distinct, isoenzymic forms of its catalytic subunit in mammals and birds. At present, the precise role of the individual casein kinase II isoforms in biological responses is poorly understood. However, a great deal of evidence indicates that casein kinase II is an important component of signalling pathways that control the growth and division of cells. In particular, casein kinase II is known to phosphorylate, and in several cases, regulate the activity of a variety of regulatory nuclear proteins including nuclear oncoproteins, transcription factors, and enzymes involved in other aspects of DNA metabolism. In this review, we will summarize evidence relating to the involvement of casein kinase II in signal transduction events that are relevant to cell proliferation.
Collapse
|
32
|
Bojanowski K, Filhol O, Cochet C, Chambaz E, Larsen A. DNA topoisomerase II and casein kinase II associate in a molecular complex that is catalytically active. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)41614-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
33
|
Corbett AH, Fernald AW, Osheroff N. Protein kinase C modulates the catalytic activity of topoisomerase II by enhancing the rate of ATP hydrolysis: evidence for a common mechanism of regulation by phosphorylation. Biochemistry 1993; 32:2090-7. [PMID: 8383533 DOI: 10.1021/bi00059a029] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The catalytic activity of topoisomerase II is stimulated approximately 2-3-fold following phosphorylation by either casein kinase II or protein kinase C. A previous study [Corbett, A. H., DeVore, R. F., & Osheroff, N. (1992) J. Biol. Chem. 267, 20513-20518] demonstrated that casein kinase II regulates the activity of topoisomerase II by specifically enhancing the ability of the enzyme to hydrolyze its ATP cofactor. To determine whether other protein kinases use a similar mechanism to activate the enzyme, the effects of protein kinase C mediated phosphorylation on the individual steps of the topoisomerase II catalytic cycle were assessed. Modification stimulated rates of enzyme-mediated ATP hydrolysis approximately 2.7-fold, but had no effect on any reaction that preceded this step, including enzyme.DNA binding, pre- or poststrand passage DNA cleavage/religation, or the double-stranded DNA strand passage event. Furthermore, the activation of ATP hydrolysis was reversed following treatment of phosphorylated topoisomerase II with alkaline phosphatase. As determined by partial proteolytic mapping, the site(s) of protein kinase C modification was (were) localized to the 350 amino acid C-terminal regulatory domain of topoisomerase II within approximately 50 amino acids of the site(s) phosphorylated by casein kinase II. Finally, while protein kinase C and casein kinase II were able to modify the enzyme simultaneously, rates of ATP hydrolysis for doubly-modified topoisomerase II were comparable to those observed for the enzyme following phosphorylation by either individual kinase.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- A H Corbett
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
| | | | | |
Collapse
|
34
|
Abstract
The present review on casein kinases focuses mainly on the possible metabolic role of CK-2, with special emphasis on its behavior in pathological tissues. From these data at least three ways to regulate CK-2 activity emerge: (i) CK-2 activity changes during embryogenesis, being high at certain stages of development and showing basal activity values at others; (ii) CK-2 activity can be enhanced in vitro by treatment of tissue culture cells with various growth factors and serum and (iii) CK-2 activity is constitutively enhanced in rapidly proliferating cells. The regulated CK-2 activity changes during embryogenesis cannot be explained as yet. In the case of the constitutive high expression of CK-2 in tumors, genetic changes may be responsible, e.g. through alterations of the regulatory genetic elements and/or regulation by specific transcription factors. In the case of serum induction, no genetic changes are necessarily involved; the observed changes may be entirely due to a signal transduction pathway where CK-2 could be phosphorylated by another kinase(s). CK-2 cDNAs from various organisms have been isolated and characterized. From the deduced amino acid sequence it turns out that CK-2 subunits are highly conserved during evolution. The relationship between CK-2 alpha from humans and plants is still 73%. Similar relationships are reported for the beta-subunit. Chromosomal assignment of CK-2 alpha shows two gene loci, one of which is a pseudogene. They are located on different chromosomes. Expression of the CK-2 subunits in Escherichia coli and the Baculo expression system is shown. The recombinant subunits can self-assemble to a functional holoenzyme in vitro. Biochemical and biophysical analysis of the recombinant beta-subunit suggests it to be trifunctional in association with the alpha-subunit affecting: (i) stability, (ii) enzyme specificity and (iii) enzyme activity. The question where CK-2 and its subunits are located throughout the cell cycle has also been addressed, mainly because of the large discrepancies that still exist between results obtained by different investigators. Tissue-specific expression of CK-2 at the mRNA and at the protein level has also been given attention. The fact that the enzyme activity is surprisingly high in brain and low in heart and lung may be indicative of involvement of CK-2 in processes other than proliferation.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- O G Issinger
- Medizinische Fakultät, Universität des Saarlandes, Homburg (Saar), Germany
| |
Collapse
|