1
|
Miao J, Williams DL, Kruppa MD, Peters BM. Glycogen synthase activity in Candida albicans is partly controlled by the functional ortholog of Saccharomyces cerevisiae Gac1p. mSphere 2024; 9:e0057524. [PMID: 39315809 PMCID: PMC11520303 DOI: 10.1128/msphere.00575-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 08/29/2024] [Indexed: 09/25/2024] Open
Abstract
To adapt to various host microenvironments, the human fungal pathogen Candida albicans possesses the capacity to accumulate and store glycogen as an internal carbohydrate source. In the model yeast Saccharomyces cerevisiae, ScGlc7p and ScGac1p are the serine/threonine type 1 protein phosphatase catalytic and regulatory subunits that control glycogen synthesis by altering the phosphorylation state of the glycogen synthase Gsy2p. Despite recent delineation of the glycogen synthesis pathway in C. albicans, the molecular events driving synthase activation are currently undefined. In this study, using a combination of microbiologic and genetic techniques, we determined that the protein encoded by uncharacterized gene C1_01140C, and not the currently annotated C. albicans Gac1p, is the major regulatory subunit involved in glycogen synthesis. C1_01140Cp contains a conserved GVNK motif observed across multiple starch/glycogen-binding proteins in various species, and alanine substitution of each residue in this motif significantly impaired glycogen accumulation in C. albicans. Fluorescent protein tagging and microscopy indicated that C1_01140Cp-GFPy colocalized with CaGlc7p-tdTomato and CaGsy1p-tdTomato accordingly. Co-immunoprecipitation assays further confirmed that C1_01140Cp associates with CaGlc7p and CaGsy1p during glycogen synthesis. Lastly, c1_01140cΔ/Δ exhibited colonization defects in a murine model of vulvovaginal candidiasis. Collectively, our data indicate that uncharacterized C1_01140Cp is the functional ortholog of the PPP1R subunit ScGac1p in C. albicans.IMPORTANCEThe capacity to synthesize glycogen offers microbes metabolic flexibility, including the fungal pathogen Candida albicans. In Saccharomyces cerevisiae, dephosphorylation of glycogen synthase by the ScGlc7p-containing phosphatase is a critical rate-limiting step in glycogen synthesis. Subunits, including ScGac1p, target ScGlc7p to α-1,4-glucosyl primers for efficient ScGsy2p synthase activation. However, this process in C. albicans had not been delineated. Here, we show that the C. albicans genome encodes for two homologous phosphatase-binding subunits, annotated CaGac1p and uncharacterized C1_01140Cp, both containing a GVNK motif required for polysaccharide affinity. Surprisingly, loss of CaGac1p only moderately reduced glycogen accumulation, whereas loss of C1_01140Cp ablated it. Fluorescence microscopy and co-immunoprecipitation approaches revealed that C1_01140Cp associates with CaGlc7p and CaGsy1p during glycogen synthesis. Moreover, C1_01140Cp contributed to fungal fitness at the vaginal mucosa during murine vaginitis. Therefore, this work demonstrates that glycogen synthase regulation is conserved in C. albicans and C1_01140Cp is the functional ortholog of ScGac1p.
Collapse
Affiliation(s)
- Jian Miao
- Pharmaceutical Sciences Program, College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - David L. Williams
- Department of Surgery, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
- Center of Excellence in Inflammation, Infectious Disease, and Immunity, East Tennessee State University, Johnson City, Tennessee, USA
| | - Michael D. Kruppa
- Center of Excellence in Inflammation, Infectious Disease, and Immunity, East Tennessee State University, Johnson City, Tennessee, USA
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
| | - Brian M. Peters
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, USA
- Department of Microbiology, Immunology, and Biochemistry, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| |
Collapse
|
2
|
Gutowska I, Maruszewska A, Skórka-Majewicz M, Kempińska-Podhorodecka A, Kolasa A, Wszołek A, Baranowska-Bosiacka I, Żwierełło W. Fluoride as a Potential Repressor of Glycogen Metabolism in Skeletal Muscle Cell Line CCL136. Molecules 2023; 28:6065. [PMID: 37630316 PMCID: PMC10459804 DOI: 10.3390/molecules28166065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/30/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
The exposure of humans to fluorine is connected with its presence in the air, food and water. It is well known that fluorides even at a low concentration but with long time exposure accumulate in the body and lead to numerous metabolic disorders. Fluoride is recognised as a factor modulating the energy metabolism of cells. This interaction is of particular importance in muscle cells, which are cells with high metabolic activity related to the metabolism of glucose and glycogen. In someone suffering from chronic fluoride poisoning, frequent symptoms are chronic fatigue not relieved by extra sleep or rest, muscular weakness, muscle spasms, involuntary twitching. The aim of this study was to examine the effect of fluorine at concentrations determined in blood of people environmentally exposed to fluorides on activity and expression of enzymes taking part in metabolism of muscle glycogen. CCL136 cells were cultured under standard conditions with the addition of NaF. The amount of ATP produced by the cells was determined using the HPLC method, the amount and expression of genes responsible for glycogen metabolism using WB and RT PCR methods and the amount of glycogen in cells using the fluorimetric and PAS methods. It has been shown that in CCL136 cells exposed to 1, 3 and 10 μM NaF there is a change in the energy state and expression pattern of enzymes involved in the synthesis and breakdown of glycogen. It was observed that NaF caused a decrease in ATP content in CCL136 cells. Fluoride exposure also increased glycogen deposition. These changes were accompanied by a decrease in gene expression and the level of enzymatic proteins related to glycogen metabolism: glycogen synthase, glycogen synthase kinase and glycogen phosphorylase. The results obtained shed new light on the molecular mechanisms by which fluoride acts as an environmental toxin.
Collapse
Affiliation(s)
- Izabela Gutowska
- Department of Medical Chemistry, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland; (M.S.-M.); (W.Ż.)
| | - Agnieszka Maruszewska
- Department of Physiology and Biochemistry, Institute of Biology, University of Szczecin, 70-453 Szczecin, Poland; (A.M.); (A.W.)
| | - Marta Skórka-Majewicz
- Department of Medical Chemistry, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland; (M.S.-M.); (W.Ż.)
| | | | - Agnieszka Kolasa
- Department of Histology and Embriology, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland;
| | - Agata Wszołek
- Department of Physiology and Biochemistry, Institute of Biology, University of Szczecin, 70-453 Szczecin, Poland; (A.M.); (A.W.)
| | | | - Wojciech Żwierełło
- Department of Medical Chemistry, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland; (M.S.-M.); (W.Ż.)
| |
Collapse
|
3
|
Walden EA, Fong RY, Pham TT, Knill H, Laframboise SJ, Huard S, Harper ME, Baetz K. Phenomic screen identifies a role for the yeast lysine acetyltransferase NuA4 in the control of Bcy1 subcellular localization, glycogen biosynthesis, and mitochondrial morphology. PLoS Genet 2020; 16:e1009220. [PMID: 33253187 PMCID: PMC7728387 DOI: 10.1371/journal.pgen.1009220] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 12/10/2020] [Accepted: 10/22/2020] [Indexed: 11/30/2022] Open
Abstract
Cellular metabolism is tightly regulated by many signaling pathways and processes, including lysine acetylation of proteins. While lysine acetylation of metabolic enzymes can directly influence enzyme activity, there is growing evidence that lysine acetylation can also impact protein localization. As the Saccharomyces cerevisiae lysine acetyltransferase complex NuA4 has been implicated in a variety of metabolic processes, we have explored whether NuA4 controls the localization and/or protein levels of metabolic proteins. We performed a high-throughput microscopy screen of over 360 GFP-tagged metabolic proteins and identified 23 proteins whose localization and/or abundance changed upon deletion of the NuA4 scaffolding subunit, EAF1. Within this, three proteins were required for glycogen synthesis and 14 proteins were associated with the mitochondria. We determined that in eaf1Δ cells the transcription of glycogen biosynthesis genes is upregulated resulting in increased proteins and glycogen production. Further, in the absence of EAF1, mitochondria are highly fused, increasing in volume approximately 3-fold, and are chaotically distributed but remain functional. Both the increased glycogen synthesis and mitochondrial elongation in eaf1Δ cells are dependent on Bcy1, the yeast regulatory subunit of PKA. Surprisingly, in the absence of EAF1, Bcy1 localization changes from being nuclear to cytoplasmic and PKA activity is altered. We found that NuA4-dependent localization of Bcy1 is dependent on a lysine residue at position 313 of Bcy1. However, the glycogen accumulation and mitochondrial elongation phenotypes of eaf1Δ, while dependent on Bcy1, were not fully dependent on Bcy1-K313 acetylation state and subcellular localization of Bcy1. As NuA4 is highly conserved with the human Tip60 complex, our work may inform human disease biology, revealing new avenues to investigate the role of Tip60 in metabolic diseases.
Collapse
Affiliation(s)
- Elizabeth A. Walden
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
- Ottawa Institute of Systems Biology, Ottawa, Canada
| | - Roger Y. Fong
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
- Ottawa Institute of Systems Biology, Ottawa, Canada
| | - Trang T. Pham
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
- Ottawa Institute of Systems Biology, Ottawa, Canada
| | - Hana Knill
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
- Ottawa Institute of Systems Biology, Ottawa, Canada
| | - Sarah Jane Laframboise
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
- Ottawa Institute of Systems Biology, Ottawa, Canada
| | - Sylvain Huard
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
- Ottawa Institute of Systems Biology, Ottawa, Canada
| | - Mary-Ellen Harper
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
- Ottawa Institute of Systems Biology, Ottawa, Canada
| | - Kristin Baetz
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
- Ottawa Institute of Systems Biology, Ottawa, Canada
| |
Collapse
|
4
|
Masuo S, Komatsuzaki A, Takeshita N, Itoh E, Takaaki O, Zhou S, Takaya N. Spatial heterogeneity of glycogen and its metabolizing enzymes in Aspergillus nidulans hyphal tip cells. Fungal Genet Biol 2017; 110:48-55. [PMID: 29175367 DOI: 10.1016/j.fgb.2017.11.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 11/18/2017] [Accepted: 11/22/2017] [Indexed: 01/13/2023]
Abstract
Glycogen is a homopolymer of glucose and a ubiquitous cellular-storage carbon. This study investigated which Aspergillus nidulans genes are involved in glycogen metabolism. Gene disruptants of predicted glycogen synthase (gsyA) and glycogenin (glgA) genes accumulated less cellular glycogen than the wild type strain, indicating that GsyA and GlgA synthesize glycogen similarly to other eukaryotes. Meanwhile, gene disruption of gphA encoding glycogen phosphorylase increased the amount of glycogen to a higher degree than wild type during the stationary phase that accompanies carbon-source limitation. GFP-tagged GsyA and GphA were distributed in the cytosol and formed punctate and filamentous structures, respectively. Carbon starvation resulted in elongated GphA-GFP filaments and increased numbers of filaments. These structures were more frequently located in the basal regions of tip cells and adjacent cells than in the apical regions of tip cells. Cellular glycogen visualized by incorporation of a fluorescent glucose analog accumulated in cytoplasmic puncta that were more prevalent in the basal regions, a pattern similar to that seen for GsyA. The colocalization of glycogen and GsyA at punctate structures in tip and sub-apical cells likely represents the cellular machinery for synthesizing glycogen. More frequent colocalization in the basal, rather than tip cell apical regions indicated that tip cells have differentiated subcellular regions for glycogen synthesis. Our findings regarding glycogen, GsyA and GphA distribution evoke the spatial heterogeneity of glycogen metabolism in fungal hyphae.
Collapse
Affiliation(s)
- Shunsuke Masuo
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Airi Komatsuzaki
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Norio Takeshita
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Eriko Itoh
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Okazoe Takaaki
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Shengmin Zhou
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Naoki Takaya
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan.
| |
Collapse
|
5
|
Leonov A, Feldman R, Piano A, Arlia-Ciommo A, Lutchman V, Ahmadi M, Elsaser S, Fakim H, Heshmati-Moghaddam M, Hussain A, Orfali S, Rajen H, Roofigari-Esfahani N, Rosanelli L, Titorenko VI. Caloric restriction extends yeast chronological lifespan via a mechanism linking cellular aging to cell cycle regulation, maintenance of a quiescent state, entry into a non-quiescent state and survival in the non-quiescent state. Oncotarget 2017; 8:69328-69350. [PMID: 29050207 PMCID: PMC5642482 DOI: 10.18632/oncotarget.20614] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 08/14/2017] [Indexed: 12/22/2022] Open
Abstract
A yeast culture grown in a nutrient-rich medium initially containing 2% glucose is not limited in calorie supply. When yeast cells cultured in this medium consume glucose, they undergo cell cycle arrest at a checkpoint in late G1 and differentiate into quiescent and non-quiescent cell populations. Studies of such differentiation have provided insights into mechanisms of yeast chronological aging under conditions of excessive calorie intake. Caloric restriction is an aging-delaying dietary intervention. Here, we assessed how caloric restriction influences the differentiation of chronologically aging yeast cultures into quiescent and non-quiescent cells, and how it affects their properties. We found that caloric restriction extends yeast chronological lifespan via a mechanism linking cellular aging to cell cycle regulation, maintenance of quiescence, entry into a non-quiescent state and survival in this state. Our findings suggest that caloric restriction delays yeast chronological aging by causing specific changes in the following: 1) a checkpoint in G1 for cell cycle arrest and entry into a quiescent state; 2) a growth phase in which high-density quiescent cells are committed to become low-density quiescent cells; 3) the differentiation of low-density quiescent cells into low-density non-quiescent cells; and 4) the conversion of high-density quiescent cells into high-density non-quiescent cells.
Collapse
Affiliation(s)
- Anna Leonov
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | - Rachel Feldman
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | - Amanda Piano
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | | | - Vicky Lutchman
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | - Masoumeh Ahmadi
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | - Sarah Elsaser
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | - Hana Fakim
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | | | - Asimah Hussain
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | - Sandra Orfali
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | | | | | - Leana Rosanelli
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | | |
Collapse
|
6
|
Chen Y, Nielsen J. Flux control through protein phosphorylation in yeast. FEMS Yeast Res 2017; 16:fow096. [PMID: 27797916 DOI: 10.1093/femsyr/fow096] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2016] [Indexed: 01/26/2023] Open
Abstract
Protein phosphorylation is one of the most important mechanisms regulating metabolism as it can directly modify metabolic enzymes by the addition of phosphate groups. Attributed to such a rapid and reversible mechanism, cells can adjust metabolism rapidly in response to temporal changes. The yeast Saccharomyces cerevisiae, a widely used cell factory and model organism, is reported to show frequent phosphorylation events in metabolism. Studying protein phosphorylation in S. cerevisiae allows for gaining new insight into the function of regulatory networks, which may enable improved metabolic engineering as well as identify mechanisms underlying human metabolic diseases. Here we collect functional phosphorylation events of 41 enzymes involved in yeast metabolism and demonstrate functional mechanisms and the application of this information in metabolic engineering. From a systems biology perspective, we describe the development of phosphoproteomics in yeast as well as approaches to analysing the phosphoproteomics data. Finally, we focus on integrated analyses with other omics data sets and genome-scale metabolic models. Despite the advances, future studies improving both experimental technologies and computational approaches are imperative to expand the current knowledge of protein phosphorylation in S. cerevisiae.
Collapse
Affiliation(s)
- Yu Chen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China.,Department of Biology and Biological Engineering, Chalmers University of Technology, SE412 96 Gothenburg, Sweden
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE412 96 Gothenburg, Sweden.,Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK2800 Kgs. Lyngby, Denmark
| |
Collapse
|
7
|
Wilson WA, Pradhan P, Madhan N, Gist GC, Brittingham A. Glycogen synthase from the parabasalian parasite Trichomonas vaginalis: An unusual member of the starch/glycogen synthase family. Biochimie 2017; 138:90-101. [PMID: 28465215 DOI: 10.1016/j.biochi.2017.04.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 04/28/2017] [Indexed: 01/13/2023]
Abstract
Trichomonas vaginalis, a parasitic protist, is the causative agent of the common sexually-transmitted infection trichomoniasis. The organism has long been known to synthesize substantial glycogen as a storage polysaccharide, presumably mobilizing this compound during periods of carbohydrate limitation, such as might be encountered during transmission between hosts. However, little is known regarding the enzymes of glycogen metabolism in T. vaginalis. We had previously described the identification and characterization of two forms of glycogen phosphorylase in the organism. Here, we measure UDP-glucose-dependent glycogen synthase activity in cell-free extracts of T. vaginalis. We then demonstrate that the TVAG_258220 open reading frame encodes a glycosyltransferase that is presumably responsible for this synthetic activity. We show that expression of TVAG_258220 in a yeast strain lacking endogenous glycogen synthase activity is sufficient to restore glycogen accumulation. Furthermore, when TVAG_258220 is expressed in bacteria, the resulting recombinant protein has glycogen synthase activity in vitro, transferring glucose from either UDP-glucose or ADP-glucose to glycogen and using both substrates with similar affinity. This protein is also able to transfer glucose from UDP-glucose or ADP-glucose to maltose and longer oligomers of glucose but not to glucose itself. However, with these substrates, there is no evidence of processivity and sugar transfer is limited to between one and three glucose residues. Taken together with our earlier work on glycogen phosphorylase, we are now well positioned to define both how T. vaginalis synthesizes and utilizes glycogen, and how these processes are regulated.
Collapse
Affiliation(s)
- Wayne A Wilson
- Department of Biochemistry & Nutrition, Des Moines University, Des Moines, IA 50312, USA.
| | - Prajakta Pradhan
- Department of Microbiology & Immunology, Des Moines University, Des Moines, IA 50312, USA
| | - Nayasha Madhan
- Department of Microbiology & Immunology, Des Moines University, Des Moines, IA 50312, USA
| | - Galen C Gist
- Department of Microbiology & Immunology, Des Moines University, Des Moines, IA 50312, USA
| | - Andrew Brittingham
- Department of Microbiology & Immunology, Des Moines University, Des Moines, IA 50312, USA
| |
Collapse
|
8
|
Mahalingan KK, Baskaran S, DePaoli-Roach AA, Roach PJ, Hurley TD. Redox Switch for the Inhibited State of Yeast Glycogen Synthase Mimics Regulation by Phosphorylation. Biochemistry 2016; 56:179-188. [PMID: 27935293 DOI: 10.1021/acs.biochem.6b00884] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Glycogen synthase (GS) is the rate limiting enzyme in the synthesis of glycogen. Eukaryotic GS is negatively regulated by covalent phosphorylation and allosterically activated by glucose-6-phosphate (G-6-P). To gain structural insights into the inhibited state of the enzyme, we solved the crystal structure of yGsy2-R589A/R592A to a resolution of 3.3 Å. The double mutant has an activity ratio similar to the phosphorylated enzyme and also retains the ability to be activated by G-6-P. When compared to the 2.88 Å structure of the wild-type G-6-P activated enzyme, the crystal structure of the low-activity mutant showed that the N-terminal domain of the inhibited state is tightly held against the dimer-related interface thereby hindering acceptor access to the catalytic cleft. On the basis of these two structural observations, we developed a reversible redox regulatory feature in yeast GS by substituting cysteine residues for two highly conserved arginine residues. When oxidized, the cysteine mutant enzyme exhibits activity levels similar to the phosphorylated enzyme but cannot be activated by G-6-P. Upon reduction, the cysteine mutant enzyme regains normal activity levels and regulatory response to G-6-P activation.
Collapse
Affiliation(s)
- Krishna K Mahalingan
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine , Indianapolis, Indiana 46202, United States
| | - Sulochanadevi Baskaran
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine , Indianapolis, Indiana 46202, United States
| | - Anna A DePaoli-Roach
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine , Indianapolis, Indiana 46202, United States
| | - Peter J Roach
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine , Indianapolis, Indiana 46202, United States
| | - Thomas D Hurley
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine , Indianapolis, Indiana 46202, United States
| |
Collapse
|
9
|
Pichia pastoris Exhibits High Viability and a Low Maintenance Energy Requirement at Near-Zero Specific Growth Rates. Appl Environ Microbiol 2016; 82:4570-4583. [PMID: 27208115 PMCID: PMC4984280 DOI: 10.1128/aem.00638-16] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 05/16/2016] [Indexed: 12/16/2022] Open
Abstract
The yeast Pichia pastoris is a widely used host for recombinant protein production. Understanding its physiology at extremely low growth rates is a first step in the direction of decoupling product formation from cellular growth and therefore of biotechnological relevance. Retentostat cultivation is an excellent tool for studying microbes at extremely low specific growth rates but has so far not been implemented for P. pastoris. Retentostat feeding regimes were based on the maintenance energy requirement (mS) and maximum biomass yield on glucose (YX/Smax) estimated from steady-state glucose-limited chemostat cultures. Aerobic retentostat cultivation enabled reproducible, smooth transitions from a specific growth rate (μ) of 0.025 h−1 to near-zero specific growth rates (μ < 0.001 h−1). At these near-zero specific growth rates, viability remained at least 97%. The value of mS at near-zero growth rates was 3.1 ± 0.1 mg glucose per g biomass and h, which was 3-fold lower than the mS estimated from faster-growing chemostat cultures. This difference indicated that P. pastoris reduces its maintenance energy requirement at extremely low μ, a phenomenon not previously observed in eukaryotes. Intracellular levels of glycogen and trehalose increased, while μ progressively declined during retentostat cultivation. Transcriptional reprogramming toward zero growth included the upregulation of many transcription factors as well as stress-related genes and the downregulation of cell cycle genes. This study underlines the relevance of comparative analysis of maintenance energy metabolism, which has an important impact on large-scale industrial processes. IMPORTANCE The yeast Pichia pastoris naturally lives on trees and can utilize different carbon sources, among them glucose, glycerol, and methanol. In biotechnology, it is widely used for the production of recombinant proteins. For both the understanding of life in its natural habitat and optimized production processes, a better understanding of cell physiology at an extremely low growth rate would be of extraordinary value. Therefore, we have grown P. pastoris in a retentostat, which allows the cultivation of metabolically active cells even at zero growth. Here we reached doubling times as long as 38 days and found that P. pastoris decreases its maintenance energy demand 3-fold during very slow growth, which enables it to survive with a much lower substrate supply than baker's yeast.
Collapse
|
10
|
Convergent Evolution of Starch Metabolism in Cyanobacteria and Archaeplastida. Evol Biol 2016. [DOI: 10.1007/978-3-319-41324-2_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
11
|
Gsell M, Fankl A, Klug L, Mascher G, Schmidt C, Hrastnik C, Zellnig G, Daum G. A Yeast Mutant Deleted of GPH1 Bears Defects in Lipid Metabolism. PLoS One 2015; 10:e0136957. [PMID: 26327557 PMCID: PMC4556709 DOI: 10.1371/journal.pone.0136957] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 08/10/2015] [Indexed: 11/18/2022] Open
Abstract
In a previous study we demonstrated up-regulation of the yeast GPH1 gene under conditions of phosphatidylethanolamine (PE) depletion caused by deletion of the mitochondrial (M) phosphatidylserine decarboxylase 1 (PSD1) (Gsell et al., 2013, PLoS One. 8(10):e77380. doi: 10.1371/journal.pone.0077380). Gph1p has originally been identified as a glycogen phosphorylase catalyzing degradation of glycogen to glucose in the stationary growth phase of the yeast. Here we show that deletion of this gene also causes decreased levels of phosphatidylcholine (PC), triacylglycerols and steryl esters. Depletion of the two non-polar lipids in a Δgph1 strain leads to lack of lipid droplets, and decrease of the PC level results in instability of the plasma membrane. In vivo labeling experiments revealed that formation of PC via both pathways of biosynthesis, the cytidine diphosphate (CDP)-choline and the methylation route, is negatively affected by a Δgph1 mutation, although expression of genes involved is not down regulated. Altogether, Gph1p besides its function as a glycogen mobilizing enzyme appears to play a regulatory role in yeast lipid metabolism.
Collapse
Affiliation(s)
- Martina Gsell
- Institute of Biochemistry, Graz University of Technology, NaWi Graz, Petersgasse 12/2, 8010, Graz, Austria
| | - Ariane Fankl
- Institute of Biochemistry, Graz University of Technology, NaWi Graz, Petersgasse 12/2, 8010, Graz, Austria
| | - Lisa Klug
- Institute of Biochemistry, Graz University of Technology, NaWi Graz, Petersgasse 12/2, 8010, Graz, Austria
| | - Gerald Mascher
- Institute of Biochemistry, Graz University of Technology, NaWi Graz, Petersgasse 12/2, 8010, Graz, Austria
| | - Claudia Schmidt
- Institute of Biochemistry, Graz University of Technology, NaWi Graz, Petersgasse 12/2, 8010, Graz, Austria
| | - Claudia Hrastnik
- Institute of Biochemistry, Graz University of Technology, NaWi Graz, Petersgasse 12/2, 8010, Graz, Austria
| | - Günther Zellnig
- Institute of Plant Sciences, Karl Franzens University Graz, NaWi Graz, Austria
| | - Günther Daum
- Institute of Biochemistry, Graz University of Technology, NaWi Graz, Petersgasse 12/2, 8010, Graz, Austria
- * E-mail:
| |
Collapse
|
12
|
Franck WL, Gokce E, Randall SM, Oh Y, Eyre A, Muddiman DC, Dean RA. Phosphoproteome Analysis Links Protein Phosphorylation to Cellular Remodeling and Metabolic Adaptation during Magnaporthe oryzae Appressorium Development. J Proteome Res 2015; 14:2408-24. [PMID: 25926025 PMCID: PMC4838196 DOI: 10.1021/pr501064q] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The rice pathogen, Magnaporthe oryzae, undergoes a complex developmental process leading to formation of an appressorium prior to plant infection. In an effort to better understand phosphoregulation during appressorium development, a mass spectrometry based phosphoproteomics study was undertaken. A total of 2924 class I phosphosites were identified from 1514 phosphoproteins from mycelia, conidia, germlings, and appressoria of the wild type and a protein kinase A (PKA) mutant. Phosphoregulation during appressorium development was observed for 448 phosphosites on 320 phosphoproteins. In addition, a set of candidate PKA targets was identified encompassing 253 phosphosites on 227 phosphoproteins. Network analysis incorporating regulation from transcriptomic, proteomic, and phosphoproteomic data revealed new insights into the regulation of the metabolism of conidial storage reserves and phospholipids, autophagy, actin dynamics, and cell wall metabolism during appressorium formation. In particular, protein phosphorylation appears to play a central role in the regulation of autophagic recycling and actin dynamics during appressorium formation. Changes in phosphorylation were observed in multiple components of the cell wall integrity pathway providing evidence that this pathway is highly active during appressorium development. Several transcription factors were phosphoregulated during appressorium formation including the bHLH domain transcription factor MGG_05709. Functional analysis of MGG_05709 provided further evidence for the role of protein phosphorylation in regulation of glycerol metabolism and the metabolic reprogramming characteristic of appressorium formation. The data presented here represent a comprehensive investigation of the M. oryzae phosphoproteome and provide key insights on the role of protein phosphorylation during infection-related development.
Collapse
Affiliation(s)
- William L. Franck
- Center for Integrated Fungal Research, North Carolina State University, Raleigh, North Carolina, 27606
| | - Emine Gokce
- W.M. Keck Fourier Transform-ICR Mass Spectrometry Laboratory, Department of Chemistry, North Carolina State University, Raleigh, North Carolina, 27606
| | - Shan M. Randall
- W.M. Keck Fourier Transform-ICR Mass Spectrometry Laboratory, Department of Chemistry, North Carolina State University, Raleigh, North Carolina, 27606
| | - Yeonyee Oh
- Center for Integrated Fungal Research, North Carolina State University, Raleigh, North Carolina, 27606
| | - Alex Eyre
- Center for Integrated Fungal Research, North Carolina State University, Raleigh, North Carolina, 27606
| | - David C. Muddiman
- W.M. Keck Fourier Transform-ICR Mass Spectrometry Laboratory, Department of Chemistry, North Carolina State University, Raleigh, North Carolina, 27606
| | - Ralph A. Dean
- Center for Integrated Fungal Research, North Carolina State University, Raleigh, North Carolina, 27606
| |
Collapse
|
13
|
Tripodi F, Nicastro R, Reghellin V, Coccetti P. Post-translational modifications on yeast carbon metabolism: Regulatory mechanisms beyond transcriptional control. Biochim Biophys Acta Gen Subj 2015; 1850:620-7. [DOI: 10.1016/j.bbagen.2014.12.010] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 12/05/2014] [Accepted: 12/08/2014] [Indexed: 12/19/2022]
|
14
|
A protein kinase screen of Neurospora crassa mutant strains reveals that the SNF1 protein kinase promotes glycogen synthase phosphorylation. Biochem J 2014; 464:323-34. [PMID: 25253091 DOI: 10.1042/bj20140942] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Glycogen functions as a carbohydrate reserve in a variety of organisms and its metabolism is highly regulated. The activities of glycogen synthase and glycogen phosphorylase, the rate-limiting enzymes of the synthesis and degradation processes, respectively, are regulated by allosteric modulation and reversible phosphorylation. To identify the protein kinases affecting glycogen metabolism in Neurospora crassa, we performed a screen of 84 serine/threonine kinase knockout strains. We identified multiple kinases that have already been described as controlling glycogen metabolism in different organisms, such as NcSNF1, NcPHO85, NcGSK3, NcPKA, PSK2 homologue and NcATG1. In addition, many hypothetical kinases have been implicated in the control of glycogen metabolism. Two kinases, NcIME-2 and NcNIMA, already functionally characterized but with no functions related to glycogen metabolism regulation, were also identified. Among the kinases identified, it is important to mention the role of NcSNF1. We showed in the present study that this kinase was implicated in glycogen synthase phosphorylation, as demonstrated by the higher levels of glycogen accumulated during growth, along with a higher glycogen synthase (GSN) ±glucose 6-phosphate activity ratio and a lesser set of phosphorylated GSN isoforms in strain Ncsnf1KO, when compared with the wild-type strain. The results led us to conclude that, in N. crassa, this kinase promotes phosphorylation of glycogen synthase either directly or indirectly, which is the opposite of what is described for Saccharomyces cerevisiae. The kinases also play a role in gene expression regulation, in that gdn, the gene encoding the debranching enzyme, was down-regulated by the proteins identified in the screen. Some kinases affected growth and development, suggesting a connection linking glycogen metabolism with cell growth and development.
Collapse
|
15
|
Schulz JC, Zampieri M, Wanka S, von Mering C, Sauer U. Large-scale functional analysis of the roles of phosphorylation in yeast metabolic pathways. Sci Signal 2014; 7:rs6. [DOI: 10.1126/scisignal.2005602] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
16
|
Badaruddin M, Holcombe LJ, Wilson RA, Wang ZY, Kershaw MJ, Talbot NJ. Glycogen metabolic genes are involved in trehalose-6-phosphate synthase-mediated regulation of pathogenicity by the rice blast fungus Magnaporthe oryzae. PLoS Pathog 2013; 9:e1003604. [PMID: 24098112 PMCID: PMC3789717 DOI: 10.1371/journal.ppat.1003604] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 07/24/2013] [Indexed: 01/05/2023] Open
Abstract
The filamentous fungus Magnaporthe oryzae is the causal agent of rice blast disease. Here we show that glycogen metabolic genes play an important role in plant infection by M. oryzae. Targeted deletion of AGL1 and GPH1, which encode amyloglucosidase and glycogen phosphorylase, respectively, prevented mobilisation of glycogen stores during appressorium development and caused a significant reduction in the ability of M. oryzae to cause rice blast disease. By contrast, targeted mutation of GSN1, which encodes glycogen synthase, significantly reduced the synthesis of intracellular glycogen, but had no effect on fungal pathogenicity. We found that loss of AGL1 and GPH1 led to a reduction in expression of TPS1 and TPS3, which encode components of the trehalose-6-phosphate synthase complex, that acts as a genetic switch in M. oryzae. Tps1 responds to glucose-6-phosphate levels and the balance of NADP/NADPH to regulate virulence-associated gene expression, in association with Nmr transcriptional inhibitors. We show that deletion of the NMR3 transcriptional inhibitor gene partially restores virulence to a Δagl1Δgph1 mutant, suggesting that glycogen metabolic genes are necessary for operation of the NADPH-dependent genetic switch in M. oryzae.
Collapse
Affiliation(s)
- Muhammad Badaruddin
- School of Biosciences, University of Exeter, Geoffrey Pope Building, Exeter, Devon, United Kingdom
| | - Lucy J. Holcombe
- School of Biosciences, University of Exeter, Geoffrey Pope Building, Exeter, Devon, United Kingdom
| | - Richard A. Wilson
- School of Biosciences, University of Exeter, Geoffrey Pope Building, Exeter, Devon, United Kingdom
| | - Zheng-Yi Wang
- School of Biosciences, University of Exeter, Geoffrey Pope Building, Exeter, Devon, United Kingdom
| | - Michael J. Kershaw
- School of Biosciences, University of Exeter, Geoffrey Pope Building, Exeter, Devon, United Kingdom
| | - Nicholas J. Talbot
- School of Biosciences, University of Exeter, Geoffrey Pope Building, Exeter, Devon, United Kingdom
- * E-mail:
| |
Collapse
|
17
|
Palm DC, Rohwer JM, Hofmeyr JHS. Regulation of glycogen synthase from mammalian skeletal muscle--a unifying view of allosteric and covalent regulation. FEBS J 2012; 280:2-27. [PMID: 23134486 DOI: 10.1111/febs.12059] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 10/29/2012] [Accepted: 11/05/2012] [Indexed: 12/27/2022]
Abstract
It is widely accepted that insufficient insulin-stimulated activation of muscle glycogen synthesis is one of the major components of non-insulin-dependent (type 2) diabetes mellitus. Glycogen synthase, a key enzyme in muscle glycogen synthesis, is extensively regulated, both allosterically (by glucose-6-phosphate, ATP, and others) and covalently (by phosphorylation). Although glycogen synthase has been a topic of intense study for more than 50 years, its kinetic characterization has been confounded by its large number of phosphorylation states. Questions remain regarding the function of glycogen synthase regulation and the relative importance of allosteric and covalent modification in fulfilling this function. In this review, we consider both earlier kinetic studies and more recent site-directed mutagenesis and crystal structure studies in a detailed qualitative discussion of the effects of regulation on the kinetics of glycogen synthase. We propose that both allosteric and covalent modification of glycogen synthase may be described by a Monod-Wyman-Changeux model in terms of apparent changes to L, the equilibrium constant for transition between the T and R conformers. As, with the exception of L, all parameters of this model are independent of the glycogen synthase phosphorylation state, the need to determine kinetic parameters for all possible states is eliminated; only the relationship between a particular state and L must be established. We conclude by suggesting that renewed efforts to characterize the relationship between phosphorylation and the kinetics of glycogen synthase are essential in order to obtain a better quantitative understanding of the function of glycogen synthesis regulation. The model we propose may prove useful in this regard.
Collapse
Affiliation(s)
- Daniel C Palm
- Triple J Group for Molecular Cell Physiology, Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
| | | | | |
Collapse
|
18
|
Tang B, Xu Q, Zou Q, Fang Q, Wang S, Ye G. Sequencing and characterization of glycogen synthase and glycogen phosphorylase genes from Spodoptera exigua and analysis of their function in starvation and excessive sugar intake. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2012; 80:42-62. [PMID: 22550018 DOI: 10.1002/arch.21027] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Glycogen and trehalose are important energy source and key regulation factors in the development of many organisms' pass through energy metabolism, including bacteria, fungi, and insects. To study glycogen metabolism pathway in Spodoptera exigua, first cDNAs for glycogen synthase (SpoexGS) and glycogen phosphorylase (SpoexGP) were cloned from S. exigua. SpoexGS cDNA contains an open reading frame of 2,010 nucleotides encoding a protein of 669 amino acids with a predicted molecular mass of 76.19 kDa and a pI of 5.84. SpoexGP contains an open reading frame of 2,946 nucleotides, which encodes a protein of 841 amino acids with a predicted molecular mass of approximately 96.63 kDa and a pI of 6.03. Second, Northern blotting revealed that SpoexGS and SpoexGP mRNAs were expressed in brain, fat body, mid-gut, Malpighian tubules, spermary, and tracheae of S. exigua. Expression patterns for SpoexGS and SpoexGP mRNAs were similar in fat body, but differed in whole body at different developmental stages. The last, under starvation conditions, SpoexGS and SpoexGP transcript expression rapidly decreased with increasing starvation time. When the starvation stress was removed, SpoexGS and SpoexGP mRNA levels were lower in the groups starved for 6 and 12 h than in the 24-h starvation and control groups. Treatment with excessive sugar intake led to higher levels of SpoexGS and SpoexGP transcripts after 12 h compared to the control group. These findings provide new data on the tissue distribution, expression patterns, and potential function of glycogen synthase and glycogen phosphorylase proteins.
Collapse
Affiliation(s)
- Bin Tang
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | | | | | | | | | | |
Collapse
|
19
|
Rampitsch C, Tinker NA, Subramaniam R, Barkow-Oesterreicher S, Laczko E. Phosphoproteome profile of Fusarium graminearum grown in vitro under nonlimiting conditions. Proteomics 2012; 12:1002-5. [DOI: 10.1002/pmic.201100065] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
| | | | | | | | - Endre Laczko
- Functional Genomics Center; UNI ETH Zürich; Zürich; Switzerland
| |
Collapse
|
20
|
Abstract
Glycogen is a branched polymer of glucose that acts as a store of energy in times of nutritional sufficiency for utilization in times of need. Its metabolism has been the subject of extensive investigation and much is known about its regulation by hormones such as insulin, glucagon and adrenaline (epinephrine). There has been debate over the relative importance of allosteric compared with covalent control of the key biosynthetic enzyme, glycogen synthase, as well as the relative importance of glucose entry into cells compared with glycogen synthase regulation in determining glycogen accumulation. Significant new developments in eukaryotic glycogen metabolism over the last decade or so include: (i) three-dimensional structures of the biosynthetic enzymes glycogenin and glycogen synthase, with associated implications for mechanism and control; (ii) analyses of several genetically engineered mice with altered glycogen metabolism that shed light on the mechanism of control; (iii) greater appreciation of the spatial aspects of glycogen metabolism, including more focus on the lysosomal degradation of glycogen; and (iv) glycogen phosphorylation and advances in the study of Lafora disease, which is emerging as a glycogen storage disease.
Collapse
|
21
|
|
22
|
Oliveira AP, Sauer U. The importance of post-translational modifications in regulating Saccharomyces cerevisiae metabolism. FEMS Yeast Res 2011; 12:104-17. [DOI: 10.1111/j.1567-1364.2011.00765.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Revised: 11/22/2011] [Accepted: 11/23/2011] [Indexed: 11/30/2022] Open
Affiliation(s)
- Ana Paula Oliveira
- Institute of Molecular Systems Biology; Department of Biology; ETH Zurich; Zurich; Switzerland
| | - Uwe Sauer
- Institute of Molecular Systems Biology; Department of Biology; ETH Zurich; Zurich; Switzerland
| |
Collapse
|
23
|
Genetics and Regulation of Glycogen and Trehalose Metabolism in Saccharomyces cerevisiae. ACTA ACUST UNITED AC 2011. [DOI: 10.1007/978-3-642-21467-7_2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
24
|
Gonçalves RD, Cupertino FB, Freitas FZ, Luchessi AD, Bertolini MC. A genome-wide screen for Neurospora crassa transcription factors regulating glycogen metabolism. Mol Cell Proteomics 2011; 10:M111.007963. [PMID: 21768394 DOI: 10.1074/mcp.m111.007963] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Transcription factors play a key role in transcription regulation as they recognize and directly bind to defined sites in promoter regions of target genes, and thus modulate differential expression. The overall process is extremely dynamic, as they have to move through the nucleus and transiently bind to chromatin in order to regulate gene transcription. To identify transcription factors that affect glycogen accumulation in Neurospora crassa, we performed a systematic screen of a deletion strains set generated by the Neurospora Knockout Project and available at the Fungal Genetics Stock Center. In a wild-type strain of N. crassa, glycogen content reaches a maximal level at the end of the exponential growth phase, but upon heat stress the glycogen content rapidly drops. The gene encoding glycogen synthase (gsn) is transcriptionally down-regulated when the mycelium is exposed to the same stress condition. We identified 17 deleted strains having glycogen accumulation profiles different from that of the wild-type strain under both normal growth and heat stress conditions. Most of the transcription factors identified were annotated as hypothetical protein, however some of them, such as the PacC, XlnR, and NIT2 proteins, were biochemically well-characterized either in N. crassa or in other fungi. The identification of some of the transcription factors was coincident with the presence of DNA-binding motifs specific for the transcription factors in the gsn 5'-flanking region, and some of these DNA-binding motifs were demonstrated to be functional by Electrophoretic Mobility Shift Assay (EMSA) experiments. Strains knocked-out in these transcription factors presented impairment in the regulation of gsn expression, suggesting that the transcription factors regulate glycogen accumulation by directly regulating gsn gene expression. Five selected mutant strains showed defects in cell cycle progression, and two transcription factors were light-regulated. The results indicate that there are connections linking different cellular processes, such as metabolism control, biological clock, and cell cycle progression.
Collapse
Affiliation(s)
- Rodrigo Duarte Gonçalves
- Instituto de Química, UNESP, Departamento de Bioquímica e Tecnologia Química, 14800-900, Araraquara, SP, Brazil
| | | | | | | | | |
Collapse
|
25
|
Prats C, Gómez-Cabello A, Hansen AV. Intracellular compartmentalization of skeletal muscle glycogen metabolism and insulin signalling. Exp Physiol 2011; 96:385-90. [DOI: 10.1113/expphysiol.2010.052860] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
26
|
Wilson WA, Roach PJ, Montero M, Baroja-Fernández E, Muñoz FJ, Eydallin G, Viale AM, Pozueta-Romero J. Regulation of glycogen metabolism in yeast and bacteria. FEMS Microbiol Rev 2011; 34:952-85. [PMID: 20412306 DOI: 10.1111/j.1574-6976.2010.00220.x] [Citation(s) in RCA: 279] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Microorganisms have the capacity to utilize a variety of nutrients and adapt to continuously changing environmental conditions. Many microorganisms, including yeast and bacteria, accumulate carbon and energy reserves to cope with the starvation conditions temporarily present in the environment. Glycogen biosynthesis is a main strategy for such metabolic storage, and a variety of sensing and signaling mechanisms have evolved in evolutionarily distant species to ensure the production of this homopolysaccharide. At the most fundamental level, the processes of glycogen synthesis and degradation in yeast and bacteria share certain broad similarities. However, the regulation of these processes is sometimes quite distinct, indicating that they have evolved separately to respond optimally to the habitat conditions of each species. This review aims to highlight the mechanisms, both at the transcriptional and at the post-transcriptional level, that regulate glycogen metabolism in yeast and bacteria, focusing on selected areas where the greatest increase in knowledge has occurred during the last few years. In the yeast system, we focus particularly on the various signaling pathways that control the activity of the enzymes of glycogen storage. We also discuss our recent understanding of the important role played by the vacuole in glycogen metabolism. In the case of bacterial glycogen, special emphasis is placed on aspects related to the genetic regulation of glycogen metabolism and its connection with other biological processes.
Collapse
Affiliation(s)
- Wayne A Wilson
- Biochemistry and Nutrition Department, Des Moines University, Des Moines, IA, USA
| | | | | | | | | | | | | | | |
Collapse
|
27
|
|
28
|
Structural basis for glucose-6-phosphate activation of glycogen synthase. Proc Natl Acad Sci U S A 2010; 107:17563-8. [PMID: 20876143 DOI: 10.1073/pnas.1006340107] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Regulation of the storage of glycogen, one of the major energy reserves, is of utmost metabolic importance. In eukaryotes, this regulation is accomplished through glucose-6-phosphate levels and protein phosphorylation. Glycogen synthase homologs in bacteria and archaea lack regulation, while the eukaryotic enzymes are inhibited by protein kinase mediated phosphorylation and activated by protein phosphatases and glucose-6-phosphate binding. We determined the crystal structures corresponding to the basal activity state and glucose-6-phosphate activated state of yeast glycogen synthase-2. The enzyme is assembled into an unusual tetramer by an insertion unique to the eukaryotic enzymes, and this subunit interface is rearranged by the binding of glucose-6-phosphate, which frees the active site cleft and facilitates catalysis. Using both mutagenesis and intein-mediated phospho-peptide ligation experiments, we demonstrate that the enzyme's response to glucose-6-phosphate is controlled by Arg583 and Arg587, while four additional arginine residues present within the same regulatory helix regulate the response to phosphorylation.
Collapse
|
29
|
Wilson WA, Boyer MP, Davis KD, Burke M, Roach PJ. The subcellular localization of yeast glycogen synthase is dependent upon glycogen content. Can J Microbiol 2010; 56:408-20. [PMID: 20555403 PMCID: PMC2888498 DOI: 10.1139/w10-027] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The budding yeast, Saccharomyces cerevisiae, accumulates the storage polysaccharide glycogen in response to nutrient limitation. Glycogen synthase, the major form of which is encoded by the GSY2 gene, catalyzes the key regulated step in glycogen storage. Here, we utilized Gsy2p fusions to green fluorescent protein (GFP) to determine where glycogen synthase was located within cells. We demonstrated that the localization pattern of Gsy2-GFP depended upon the glycogen content of the cell. When glycogen was abundant, Gsy2-GFP was found uniformly throughout the cytoplasm, but under low glycogen conditions, Gsy2-GFP localized to discrete spots within cells. Gsy2p is known to bind to glycogen, and we propose that the subcellular distribution of Gsy2-GFP reflects the distribution of glycogen particles. In the absence of glycogen, Gsy2p translocates into the nucleus. We hypothesize that Gsy2p is normally retained in the cytoplasm through its interaction with glycogen particles. When glycogen levels are reduced, Gsy2p loses this anchor and can traffic into the nucleus.
Collapse
Affiliation(s)
- Wayne A Wilson
- Biochemistry and Nutrition Department, Des Moines University, 3200 Grand Avenue, Des Moines, IA 50312, USA.
| | | | | | | | | |
Collapse
|
30
|
Life in the midst of scarcity: adaptations to nutrient availability in Saccharomyces cerevisiae. Curr Genet 2010; 56:1-32. [PMID: 20054690 DOI: 10.1007/s00294-009-0287-1] [Citation(s) in RCA: 168] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Revised: 12/18/2009] [Accepted: 12/19/2009] [Indexed: 12/27/2022]
Abstract
Cells of all living organisms contain complex signal transduction networks to ensure that a wide range of physiological properties are properly adapted to the environmental conditions. The fundamental concepts and individual building blocks of these signalling networks are generally well-conserved from yeast to man; yet, the central role that growth factors and hormones play in the regulation of signalling cascades in higher eukaryotes is executed by nutrients in yeast. Several nutrient-controlled pathways, which regulate cell growth and proliferation, metabolism and stress resistance, have been defined in yeast. These pathways are integrated into a signalling network, which ensures that yeast cells enter a quiescent, resting phase (G0) to survive periods of nutrient scarceness and that they rapidly resume growth and cell proliferation when nutrient conditions become favourable again. A series of well-conserved nutrient-sensory protein kinases perform key roles in this signalling network: i.e. Snf1, PKA, Tor1 and Tor2, Sch9 and Pho85-Pho80. In this review, we provide a comprehensive overview on the current understanding of the signalling processes mediated via these kinases with a particular focus on how these individual pathways converge to signalling networks that ultimately ensure the dynamic translation of extracellular nutrient signals into appropriate physiological responses.
Collapse
|
31
|
cAMP signaling pathway controls glycogen metabolism in Neurospora crassa by regulating the glycogen synthase gene expression and phosphorylation. Fungal Genet Biol 2010; 47:43-52. [PMID: 19883780 DOI: 10.1016/j.fgb.2009.10.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Revised: 10/26/2009] [Accepted: 10/26/2009] [Indexed: 11/22/2022]
Abstract
The cAMP-PKA signaling pathway plays an important role in many biological processes including glycogen metabolism. In this work we investigated its role in the Neurospora crassa glycogen metabolism control using mutant strains affected in components of the pathway, the cr-1 strain deficient in adenylyl cyclase activity therefore has the PKA pathway not active, and the mcb strain a temperature-sensitive mutant defective in the regulatory subunit of PKA therefore is a strain with constitutively active PKA. We analyzed the expression of the gene encoding glycogen synthase (gsn), the regulatory enzyme in glycogen synthesis as a potential target of the regulation. The cr-1 strain accumulated, during vegetative growth, glycogen levels much higher than the wild type strain indicating a role of the PKA pathway in the glycogen accumulation. The gsn transcript was not increased in this strain but the GSN protein was less phosphorylated "in vitro", and therefore more active, suggesting that the post-translational modification of GSN is likely the main mechanism controlling glycogen accumulation during vegetative growth. Heat shock down-regulates gsn gene transcription in the two mutant strains, as well as in the wild type strain, suggesting that the PKA pathway may not be the only pathway having a direct role in gsn transcription under heat shock. DNA-protein complexes were formed between the STRE motif in the gsn promoter and nuclear proteins from heat-shocked mycelium. However STRE was not able to induce transcription of a reporter gene in Saccharomyces cerevisiae, suggesting that the motif might be involved in a different way of regulation in the N. crassa gene expression under heat shock. The CRE-like DNA elements present in the gsn promoter were shown to be bound by different proteins from the PKA mutant strains. The DNA-protein complexes were observed with proteins from the strains grown under normal condition and under heat shock indicating the functionality of this DNA element. In this work we presented some evidences that the PKA signaling pathway regulates glycogen metabolism in N. crassa in a different way when compared to the well-characterized model of regulation existent in S. cerevisiae.
Collapse
|
32
|
Staschke KA, Dey S, Zaborske JM, Palam LR, McClintick JN, Pan T, Edenberg HJ, Wek RC. Integration of general amino acid control and target of rapamycin (TOR) regulatory pathways in nitrogen assimilation in yeast. J Biol Chem 2010; 285:16893-911. [PMID: 20233714 DOI: 10.1074/jbc.m110.121947] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Two important nutrient-sensing and regulatory pathways, the general amino acid control (GAAC) and the target of rapamycin (TOR), participate in the control of yeast growth and metabolism during changes in nutrient availability. Amino acid starvation activates the GAAC through Gcn2p phosphorylation of translation factor eIF2 and preferential translation of GCN4, a transcription activator. TOR senses nitrogen availability and regulates transcription factors such as Gln3p. We used microarray analyses to address the integration of the GAAC and TOR pathways in directing the yeast transcriptome during amino acid starvation and rapamycin treatment. We found that GAAC is a major effector of the TOR pathway, with Gcn4p and Gln3p each inducing a similar number of genes during rapamycin treatment. Although Gcn4p activates a common core of 57 genes, the GAAC directs significant variations in the transcriptome during different stresses. In addition to inducing amino acid biosynthetic genes, Gcn4p in conjunction with Gln3p activates genes required for the assimilation of secondary nitrogen sources such as gamma-aminobutyric acid (GABA). Gcn2p activation upon shifting to secondary nitrogen sources is suggested to occur by means of a dual mechanism. First, Gcn2p is induced by the release of TOR repression through a mechanism involving Sit4p protein phosphatase. Second, this eIF2 kinase is activated by select uncharged tRNAs, which were shown to accumulate during the shift to the GABA medium. This study highlights the mechanisms by which the GAAC and TOR pathways are integrated to recognize changing nitrogen availability and direct the transcriptome for optimal growth adaptation.
Collapse
Affiliation(s)
- Kirk A Staschke
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Identity of the growth-limiting nutrient strongly affects storage carbohydrate accumulation in anaerobic chemostat cultures of Saccharomyces cerevisiae. Appl Environ Microbiol 2009; 75:6876-85. [PMID: 19734328 DOI: 10.1128/aem.01464-09] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Accumulation of glycogen and trehalose in nutrient-limited cultures of Saccharomyces cerevisiae is negatively correlated with the specific growth rate. Additionally, glucose-excess conditions (i.e., growth limitation by nutrients other than glucose) are often implicated in high-level accumulation of these storage carbohydrates. The present study investigates how the identity of the growth-limiting nutrient affects accumulation of storage carbohydrates in cultures grown at a fixed specific growth rate. In anaerobic chemostat cultures (dilution rate, 0.10 h(-1)) of S. cerevisiae, the identity of the growth-limiting nutrient (glucose, ammonia, sulfate, phosphate, or zinc) strongly affected storage carbohydrate accumulation. The glycogen contents of the biomass from glucose- and ammonia-limited cultures were 10- to 14-fold higher than those of the biomass from cultures grown under the other three glucose-excess regimens. Trehalose levels were specifically higher under nitrogen-limited conditions. These results demonstrate that storage carbohydrate accumulation in nutrient-limited cultures of S. cerevisiae is not a generic response to excess glucose but instead is strongly dependent on the identity of the growth-limiting nutrient. While transcriptome analysis of wild-type and msn2Delta msn4Delta strains confirmed that transcriptional upregulation of glycogen and trehalose biosynthesis genes is mediated by Msn2p/Msn4p, transcriptional regulation could not quantitatively account for the drastic changes in storage carbohydrate accumulation. The results of assays of glycogen synthase and glycogen phosphorylase activities supported involvement of posttranscriptional regulation. Consistent with the high glycogen levels in ammonia-limited cultures, the ratio of glycogen synthase to glycogen phosphorylase in these cultures was up to eightfold higher than the ratio in the other glucose-excess cultures.
Collapse
|
34
|
Chang Q, Petrash JM. Disruption of aldo-keto reductase genes leads to elevated markers of oxidative stress and inositol auxotrophy in Saccharomyces cerevisiae. BIOCHIMICA ET BIOPHYSICA ACTA 2008; 1783:237-45. [PMID: 17919749 PMCID: PMC2254213 DOI: 10.1016/j.bbamcr.2007.08.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/30/2007] [Revised: 08/13/2007] [Accepted: 08/15/2007] [Indexed: 11/21/2022]
Abstract
A large family of aldo-keto reductases with similar kinetic and structural properties but unknown physiological roles is expressed in the yeast Saccharomyces cerevisiae. Strains with one or two AKR genes disrupted have apparently normal phenotypes, but disruption of at least three AKR genes results in a heat shock phenotype and slow growth in inositol-deficient culture medium (Ino(-)). The present study was carried out to identify metabolic or signaling defects that may underlie phenotypes that emerge in AKR deficient strains. Here we demonstrate that pretreatment of a pentuple AKR null mutant with the anti-oxidative agent N-acetyl-cysteine rescues the heat shock phenotype. This indicates that AKR gene disruption may be associated with defects in oxidative stress response. We observed additional markers of oxidative stress in AKR-deficient strains, including reduced glutathione levels, constitutive nuclear localization of the oxidation-sensitive transcription factor Yap1 and upregulation of a set of Yap1 target genes whose function as a group is primarily involved in response to oxidative stress and redox balance. Genetic analysis of the Ino(-) phenotype of the null mutants showed that defects in transcriptional regulation of the INO1, which encodes for inositol-1-phosphate synthase, can be rescued through ectopic expression of a functional INO1. Taken together, these results suggest potential roles for AKRs in oxidative defense and transcriptional regulation.
Collapse
Affiliation(s)
- Qing Chang
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110-3018, USA
| | | |
Collapse
|
35
|
Chang JCH, Wu SM, Tseng YC, Lee YC, Baba O, Hwang PP. Regulation of glycogen metabolism in gills and liver of the euryhaline tilapia (Oreochromis mossambicus) during acclimation to seawater. ACTA ACUST UNITED AC 2007; 210:3494-504. [PMID: 17873003 DOI: 10.1242/jeb.007146] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Glucose, which plays a central role in providing energy for metabolism, is primarily stored as glycogen. The synthesis and degradation of glycogen are mainly initialized by glycogen synthase (GS) and glycogen phosphorylase (GP), respectively. The present study aimed to examine the glycogen metabolism in fish liver and gills during acute exposure to seawater. In tilapia (Oreochromis mossambicus) gill, GP, GS and glycogen were immunocytochemically colocalized in a specific group of glycogen-rich (GR) cells, which are adjacent to the gill's main ionocytes, mitochondrion-rich (MR) cells. Na+/K+-ATPase activity in the gills, protein expression and/or activity of GP and GS and the glycogen content of the gills and liver were examined in tilapia after their acute transfer from freshwater (FW) to 25 per thousand seawater (SW). Gill Na+/K+-ATPase activity rapidly increased immediately after SW transfer. Glycogen content in both the gills and liver were significantly depleted after SW transfer, but the depletion occurred earlier in gills than in the liver. Gill GP activity and protein expression were upregulated 1-3 h post-transfer and eventually recovered to the normal level as determined in the control group. At the same time, GS protein expression was downregulated. Similar changes in liver GP and GS protein expression were also observed but they occurred later at 6-12 h post-transfer. In conclusion, GR cells are initially stimulated to provide prompt energy for neighboring MR cells that trigger ion-secretion mechanisms. Several hours later, the liver begins to degrade its glycogen stores for the subsequent energy supply.
Collapse
Affiliation(s)
- Joshua Chia-Hsi Chang
- Institute of Cellular and Organismic Biology, Academia Sinica, Nankang, Taipei, Taiwan, Republic of China
| | | | | | | | | | | |
Collapse
|
36
|
Smith TL, Rutter J. Regulation of glucose partitioning by PAS kinase and Ugp1 phosphorylation. Mol Cell 2007; 26:491-9. [PMID: 17531808 DOI: 10.1016/j.molcel.2007.03.025] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2007] [Revised: 02/26/2007] [Accepted: 03/30/2007] [Indexed: 11/18/2022]
Abstract
The ability of cells to recognize and respond to specific metabolic deficiencies is required for all forms of life. We have uncovered a system in the yeast S. cerevisiae that, in response to a perceived deficiency in cell wall glucan, alters partitioning of glucose toward glucan synthesis and away from glycogen synthesis. The paralogous yeast PAS kinases Psk1 and Psk2 phosphorylate UDP-glucose pyrophosphorylase (Ugp1), the primary producer of UDP-glucose, the glucose donor for glucan biosynthesis. Unexpectedly, phosphorylation of Ugp1 does not affect its catalytic activity but instead alters the terminal destination of the UDP-glucose it generates. Phosphorylated Ugp1 is required for intensive glucan production, and inability to phosphorylate Ugp1 is associated with a weak cell wall, decreased glucan content, and increased glycogen content. We provide data indicating that phosphorylation by Psk1 or Psk2 targets Ugp1 to the cell periphery, where the UDP-glucose it produces is in proximity to the site of glucan synthesis. We propose that regulation of glucose partitioning by altered enzyme and substrate localization is a rapid and potent response to metabolic deficiency.
Collapse
Affiliation(s)
- Tammy L Smith
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | | |
Collapse
|
37
|
Wilson WA, Skurat AV, Probst B, de Paoli-Roach A, Roach PJ, Rutter J. Control of mammalian glycogen synthase by PAS kinase. Proc Natl Acad Sci U S A 2005; 102:16596-601. [PMID: 16275910 PMCID: PMC1283851 DOI: 10.1073/pnas.0508481102] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The regulation of glycogen metabolism is critical for the maintenance of glucose and energy homeostasis in mammals. Glycogen synthase, the enzyme responsible for glycogen production, is regulated by multisite phosphorylation in yeast and mammals. We have previously identified PAS kinase as a physiological regulator of glycogen synthase in Saccharomyces cerevisiae. We provide evidence here that PAS kinase is an important regulator of mammalian glycogen synthase. Glycogen synthase is efficiently phosphorylated by PAS kinase in vitro at Ser-640, a known regulatory phosphosite. Efficient phosphorylation requires a region of PAS kinase outside the catalytic domain. This region appears to mediate a direct interaction between glycogen synthase and PAS kinase, thereby targeting kinase activity to this substrate specifically. This interaction is regulated by the PAS kinase PAS domain, raising the possibility that this interaction (and phosphorylation event) is modulated by the cellular metabolic state. This mode of regulation provides a mechanism for metabolic status to impinge directly on the cellular decision of whether to store or use available energy.
Collapse
Affiliation(s)
- Wayne A Wilson
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | | | | | | | | | | |
Collapse
|
38
|
Torija MJ, Novo M, Lemassu A, Wilson W, Roach PJ, François J, Parrou JL. Glycogen synthesis in the absence of glycogenin in the yeast Saccharomyces cerevisiae. FEBS Lett 2005; 579:3999-4004. [PMID: 16004992 DOI: 10.1016/j.febslet.2005.06.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2005] [Revised: 05/27/2005] [Accepted: 06/07/2005] [Indexed: 11/17/2022]
Abstract
In eukaryotic cells, glycogenin is a self-glucosylating protein that primes glycogen synthesis. In yeast, the loss of function of GLG1 and GLG2, which encode glycogenin, normally leads to the inability of cells to synthesize glycogen. In this report, we show that a small fraction of colonies from glg1glg2 mutants can switch on glycogen synthesis to levels comparable to wild-type strain. The occurrence of glycogen positive glg1glg2 colonies is strongly enhanced by the presence of a hyperactive glycogen synthase and increased even more upon deletion of TPS1. In all cases, this phenotype is reversible, indicating the stochastic nature of this synthesis, which is furthermore illustrated by colour-sectoring of colonies upon iodine-staining. Altogether, these data suggest that glycogen synthesis in the absence of glycogenin relies on a combination of several factors, including an activated glycogen synthase and as yet unknown alternative primers whose synthesis and/or distribution may be controlled by TPS1 or under epigenetic silencing.
Collapse
Affiliation(s)
- María-Jesús Torija
- Centre Bioingenierie Gilbert Durand, UMR-CNRS 5504, UMR-INRA 792, Institut National des Sciences Appliquées, 31077 Toulouse Cedex 04, France
| | | | | | | | | | | | | |
Collapse
|
39
|
Hurley TD, Stout S, Miner E, Zhou J, Roach PJ. Requirements for catalysis in mammalian glycogenin. J Biol Chem 2005; 280:23892-9. [PMID: 15849187 PMCID: PMC1266300 DOI: 10.1074/jbc.m502344200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glycogenin is a glycosyltransferase that functions as the autocatalytic initiator for the synthesis of glycogen in eukaryotic organisms. Prior structural work identified the determinants responsible for the recognition and binding of UDP-glucose and the catalytic manganese ion and implicated two aspartic acid residues in the reaction mechanism for self-glucosylation. We examined the effects of substituting asparagine and serine for the aspartic acid residues at positions 159 and 162. We also examined whether the truncation of the protein at residue 270 (delta270) was compatible with its structural integrity and its functional role as the initiator for glycogen synthesis. The truncated form of the enzyme was indistinguishable from the wild-type enzyme by all measures of activity and could support glycogen accumulation in a glycogenin-deficient yeast strain. Substitution of aspartate 159 by either serine or asparagine eliminated self-glucosylation and reduced trans-glucosylation activity by at least 260-fold but only reduced UDP-glucose hydrolytic activity by 4-14-fold. Substitution of aspartate 162 by either serine or asparagine eliminated self-glucosylation activity and reduced UDP-glucose hydrolytic activity by at least 190-fold. The trans-glucosylation of maltose was reduced to undetectable levels in the asparagine 162 mutant, whereas the serine 162 enzyme showed only an 18-30-fold reduction in its ability to trans-glucosylate maltose. These data support a role for aspartate 162 in the chemical step for the glucosyltransferase reaction and a role for aspartate 159 in binding and activating the acceptor molecule.
Collapse
Affiliation(s)
- Thomas D Hurley
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202-5122, USA.
| | | | | | | | | |
Collapse
|
40
|
de Paula RM, Wilson WA, Roach PJ, Terenzi HF, Bertolini MC. Biochemical characterization of Neurospora crassa glycogenin (GNN), the self-glucosylating initiator of glycogen synthesis. FEBS Lett 2005; 579:2208-14. [PMID: 15811343 DOI: 10.1016/j.febslet.2005.02.075] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2005] [Revised: 02/01/2005] [Accepted: 02/21/2005] [Indexed: 11/27/2022]
Abstract
Glycogenin acts in the initiation step of glycogen biosynthesis by catalyzing a self-glucosylation reaction. In a previous work [de Paula et al., Arch. Biochem. Biophys. 435 (2005) 112-124], we described the isolation of the cDNA gnn, which encodes the protein glycogenin (GNN) in Neurospora crassa. This work presents a set of biochemical and functional studies confirming the GNN role in glycogen biosynthesis. Kinetic experiments showed a very low GNN K(m) (4.41 microM) for the substrate UDP-glucose. Recombinant GNN was produced in Escherichia coli and analysis by mass spectroscopy identified a peptide containing an oligosaccharide chain attached to Tyr196 residue. Site-directed mutagenesis and functional complementation of a Saccharomyces cerevisiae mutant strain confirmed the participation of this residue in the GNN self-glucosylation and indicated the Tyr198 residue as an additional, although less active, glucosylation site. The physical interaction between GNN and glycogen synthase (GSN) was analyzed by the two-hybrid assay. While the entire GSN was required for full interaction, the C-terminus in GNN was more important. Furthermore, mutation in the GNN glucosylation sites did not impair the interaction with GSN.
Collapse
Affiliation(s)
- Renato M de Paula
- Instituto de Química, UNESP, Departamento de Bioquímica e Tecnologia Química, R. Professor Francisco Degni, s/n, 14800-900 Araraquara, SP, Brazil
| | | | | | | | | |
Collapse
|
41
|
Wilson WA, Wang Z, Roach PJ. Regulation of yeast glycogen phosphorylase by the cyclin-dependent protein kinase Pho85p. Biochem Biophys Res Commun 2005; 329:161-7. [PMID: 15721288 DOI: 10.1016/j.bbrc.2005.01.106] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2005] [Indexed: 11/16/2022]
Abstract
Yeast accumulate glycogen in response to nutrient limitation. The key enzymes of glycogen synthesis and degradation, glycogen synthase, and phosphorylase, are regulated by reversible phosphorylation. Phosphorylation inactivates glycogen synthase but activates phosphorylase. The kinases and phosphatases that control glycogen synthase are well characterized whilst the enzymes modifying phosphorylase are poorly defined. Here, we show that the cyclin-dependent protein kinase, Pho85p, which we have previously found to regulate glycogen synthase also controls the phosphorylation state of phosphorylase.
Collapse
Affiliation(s)
- Wayne A Wilson
- Department of Biochemistry and Molecular Biology, Center for Diabetes Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | | | | |
Collapse
|
42
|
de Paula RM, Wilson WA, Terenzi HF, Roach PJ, Bertolini MC. GNN is a self-glucosylating protein involved in the initiation step of glycogen biosynthesis in Neurospora crassa. Arch Biochem Biophys 2005; 435:112-24. [PMID: 15680913 DOI: 10.1016/j.abb.2004.12.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2004] [Revised: 12/02/2004] [Indexed: 10/26/2022]
Abstract
The initiation of glycogen synthesis requires the protein glycogenin, which incorporates glucose residues through a self-glucosylation reaction, and then acts as substrate for chain elongation by glycogen synthase and branching enzyme. Numerous sequences of glycogenin-like proteins are available in the databases but the enzymes from mammalian skeletal muscle and from Saccharomyces cerevisiae are the best characterized. We report the isolation of a cDNA from the fungus Neurospora crassa, which encodes a protein, GNN, which has properties characteristic of glycogenin. The protein is one of the largest glycogenins but shares several conserved domains common to other family members. Recombinant GNN produced in Escherichia coli was able to incorporate glucose in a self-glucosylation reaction, to trans-glucosylate exogenous substrates, and to act as substrate for chain elongation by glycogen synthase. Recombinant protein was sensitive to C-terminal proteolysis, leading to stable species of around 31kDa, which maintained all functional properties. The role of GNN as an initiator of glycogen metabolism was confirmed by its ability to complement the glycogen deficiency of a S. cerevisiae strain (glg1 glg2) lacking glycogenin and unable to accumulate glycogen. Disruption of the gnn gene of N. crassa by repeat induced point mutation (RIP) resulted in a strain that was unable to synthesize glycogen, even though the glycogen synthase activity was unchanged. Northern blot analysis showed that the gnn gene was induced during vegetative growth and was repressed upon carbon starvation.
Collapse
Affiliation(s)
- Renato Magalhães de Paula
- Instituto de Química, UNESP, Departamento de Bioquímica e Tecnologia Química, 14800-900 Araraquara, SP, Brazil
| | | | | | | | | |
Collapse
|
43
|
Freitas FZ, Bertolini MC. Genomic organization of the Neurospora crassa gsn gene: possible involvement of the STRE and HSE elements in the modulation of transcription during heat shock. Mol Genet Genomics 2004; 272:550-61. [PMID: 15558319 DOI: 10.1007/s00438-004-1086-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2004] [Accepted: 10/26/2004] [Indexed: 10/26/2022]
Abstract
Glycogen synthase, an enzyme involved in glycogen biosynthesis, is regulated by phosphorylation and by the allosteric ligand glucose-6-phosphate (G6P). In addition, enzyme levels can be regulated by changes in gene expression. We recently cloned a cDNA for glycogen synthase ( gsn) from Neurospora crassa, and showed that gsn transcription decreased when cells were exposed to heat shock (shifted from 30 degrees C to 45 degrees C). In order to understand the mechanisms that control gsn expression, we isolated the gene, including its 5' and 3' flanking regions, from the genome of N. crassa. An ORF of approximately 2.4 kb was identified, which is interrupted by four small introns (II-V). Intron I (482 bp) is located in the 5'UTR region. Three putative Transcription Initiation Sites (TISs) were mapped, one of which lies downstream of a canonical TATA-box sequence (5'-TGTATAAA-3'). Analysis of the 5'-flanking region revealed the presence of putative transcription factor-binding sites, including Heat Shock Elements (HSEs) and STress Responsive Elements (STREs). The possible involvement of these motifs in the negative regulation of gsn transcription was investigated using Electrophoretic Mobility Shift Assays (EMSA) with nuclear extracts of N. crassa mycelium obtained before and after heat shock, and DNA fragments encompassing HSE and STRE elements from the 5'-flanking region. While elements within the promoter region are involved in transcription under heat shock, elements in the 5'UTR intron may participate in transcription during vegetative growth. The results thus suggest that N. crassa possesses trans -acting elements that interact with the 5'-flanking region to regulate gsn transcription during heat shock and vegetative growth.
Collapse
Affiliation(s)
- F Zanolli Freitas
- Departamento de Bioquímica e Tecnologia Química, Instituto de Química, UNESP, 14800-900 Araraquara, SP, Brazil
| | | |
Collapse
|
44
|
Buschiazzo A, Ugalde JE, Guerin ME, Shepard W, Ugalde RA, Alzari PM. Crystal structure of glycogen synthase: homologous enzymes catalyze glycogen synthesis and degradation. EMBO J 2004; 23:3196-205. [PMID: 15272305 PMCID: PMC514502 DOI: 10.1038/sj.emboj.7600324] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2004] [Accepted: 06/21/2004] [Indexed: 11/10/2022] Open
Abstract
Glycogen and starch are the major readily accessible energy storage compounds in nearly all living organisms. Glycogen is a very large branched glucose homopolymer containing about 90% alpha-1,4-glucosidic linkages and 10% alpha-1,6 linkages. Its synthesis and degradation constitute central pathways in the metabolism of living cells regulating a global carbon/energy buffer compartment. Glycogen biosynthesis involves the action of several enzymes among which glycogen synthase catalyzes the synthesis of the alpha-1,4-glucose backbone. We now report the first crystal structure of glycogen synthase in the presence and absence of adenosine diphosphate. The overall fold and the active site architecture of the protein are remarkably similar to those of glycogen phosphorylase, indicating a common catalytic mechanism and comparable substrate-binding properties. In contrast to glycogen phosphorylase, glycogen synthase has a much wider catalytic cleft, which is predicted to undergo an important interdomain 'closure' movement during the catalytic cycle. The structures also provide useful hints to shed light on the allosteric regulation mechanisms of yeast/mammalian glycogen synthases.
Collapse
Affiliation(s)
| | - Juan E Ugalde
- Instituto de Investigaciones Biotecnológicas, Universidad de General San Martín and CONICET, CC 30, San Martín, Argentina
| | - Marcelo E Guerin
- Unité de Biochimie Structurale, URA 2185 CNRS, Institut Pasteur, Paris, France
| | | | - Rodolfo A Ugalde
- Instituto de Investigaciones Biotecnológicas, Universidad de General San Martín and CONICET, CC 30, San Martín, Argentina
| | - Pedro M Alzari
- Unité de Biochimie Structurale, URA 2185 CNRS, Institut Pasteur, Paris, France
- Unité de Biochimie Structurale, Institut Pasteur, 25 rue du Docteur Roux, 75724 Paris cedex 15, France. Tel.: +33 1 45 68 8607; Fax: +33 1 45 68 8604; E-mail:
| |
Collapse
|
45
|
Pederson BA, Wilson WA, Roach PJ. Glycogen synthase sensitivity to glucose-6-P is important for controlling glycogen accumulation in Saccharomyces cerevisiae. J Biol Chem 2004; 279:13764-8. [PMID: 14742447 DOI: 10.1074/jbc.m312335200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glycogen is a storage form of glucose utilized as an energy reserve by many organisms. Glycogen synthase, which is essential for synthesizing this glucose polymer, is regulated by both covalent phosphorylation and the concentration of glucose-6-P. With the yeast glycogen synthase Gsy2p, we recently identified two mutants, R579A/R580A/R582A [corrected] and R586A/R588A/R591A, in which multiple arginine residues were mutated to alanine that were completely insensitive to activation by glucose-6-P in vitro (Pederson, B. A., Cheng, C., Wilson, W. A., and Roach, P. J. (2000) J. Biol. Chem. 275, 27753-27761). We report here the expression of these mutants in Saccharomyces cerevisiae and, as expected from our findings in vitro, they were not activated by glucose-6-P. The R579A/R580A/R582A [corrected] mutant, which is also resistant to inhibition by phosphorylation, caused hyperaccumulation of glycogen. In contrast, the mutant R586A/R588A/R591A, which retains the ability to be inactivated by phosphorylation, resulted in lower glycogen accumulation when compared with wild-type cells. When intracellular glucose-6-P levels were increased by mutating the PFK2 gene, glycogen storage due to the wild-type enzyme was increased, whereas that associated with R579A/R580A/R582A [corrected] was not greatly changed. This is the first direct demonstration that activation of glycogen synthase by glucose-6-P in vivo is necessary for normal glycogen accumulation.
Collapse
Affiliation(s)
- Bartholomew A Pederson
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine and the Indiana University Center for Diabetes Research, Indianapolis, Indiana 46202, USA
| | | | | |
Collapse
|
46
|
García-Gimeno MA, Muñoz I, Ariño J, Sanz P. Molecular characterization of Ypi1, a novel Saccharomyces cerevisiae type 1 protein phosphatase inhibitor. J Biol Chem 2003; 278:47744-52. [PMID: 14506263 DOI: 10.1074/jbc.m306157200] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Saccharomyces cerevisiae open reading frame YFR003c encodes a small (155-amino acid) hydrophilic protein that we identified as a novel, heat-stable inhibitor of type 1 protein phosphatase (Ypi1). Ypi1 interacts physically in vitro with both Glc7 and Ppz1 phosphatase catalytic subunits, as shown by pull-down assays. Ypi1 inhibits Glc7 but appears to be less effective toward Ppz1 phosphatase activity under the conditions tested. Ypi1 contains a 48RHNVRW53 sequence, which resembles the characteristic consensus PP1 phosphatase binding motif. A W53A mutation within this motif abolishes both binding to and inhibition of Glc7 and Ppz1 phosphatases. Deletion of YPI1 is lethal, suggesting a relevant role of the inhibitor in yeast physiology. Cells overexpressing Ypi1 display a number of phenotypes consistent with an inhibitory role of this protein on Glc7, such as decreased glycogen content and an increased growth defect in a slt2/mpk1 mitogen-activated protein kinase-deficient background. Taking together, these results define Ypi1 as the first inhibitory subunit of Glc7 identified in budding yeast.
Collapse
Affiliation(s)
- Maria Adelaida García-Gimeno
- Instituto de Biomedicina de Valencia Consejo Superior de Investigaciones Científicas, Jaime Roig 11, 46010-Valencia, Spain
| | | | | | | |
Collapse
|
47
|
Chang JS, Henry K, Wolf BL, Geli M, Lemmon SK. Protein phosphatase-1 binding to scd5p is important for regulation of actin organization and endocytosis in yeast. J Biol Chem 2002; 277:48002-8. [PMID: 12356757 DOI: 10.1074/jbc.m208471200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
SCD5, an essential gene, encodes a protein important for endocytosis and actin organization in yeast. Previous two-hybrid screens showed that Scd5p interacts with Glc7p, a yeast Ser/Thr-specific protein phosphatase-1 (PP1) that participates in a variety of cellular processes. PP1 substrate specificity in vivo is regulated by association with different regulatory or targeting subunits, many of which have a consensus PP1-binding site ((V/I)XF, with a basic residue at the -1 or -2 position). Scd5p contains two of these potential PP1-binding motifs: KVDF (amino acids 240-243) and KKVRF (amino acids 272-276). Deletion analysis mapped the PP1-binding domain to a region of Scd5p containing these motifs. Therefore, the consequence of mutating these two potential PP1-binding sites was examined. Although mutation of KVDF had no effect, alteration of KKVRF dramatically reduced Scd5p interaction with Glc7p and resulted in temperature-sensitive growth. Furthermore, this mutation caused defects in fluid phase and receptor-mediated endocytosis and actin organization. Overexpression of GLC7 suppressed the temperature-sensitive growth of the KKVRF mutant and partially rescued the actin organization phenotype. These results provide evidence that Scd5p is a PP1 targeting subunit for regulation of actin organization and endocytosis or that Scd5p is a PP1 substrate, which regulates the function of Scd5p in these processes.
Collapse
Affiliation(s)
- Ji Suk Chang
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, Ohio 44106-4960, USA
| | | | | | | | | |
Collapse
|
48
|
Rutter J. Essay: Amersham Biosciences and Science Prize. PAS domains and metabolic status signaling. Science 2002; 298:1567-8. [PMID: 12446897 DOI: 10.1126/science.1080001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Jared Rutter
- University of Texas Southwestern Medical Center, Houston, TX 75390, USA.
| |
Collapse
|
49
|
Winderickx J, Holsbeeks I, Lagatie O, Giots F, Thevelein J, de Winde H. From feast to famine; adaptation to nutrient availability in yeast. ACTA ACUST UNITED AC 2002. [DOI: 10.1007/3-540-45611-2_7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
|
50
|
Abstract
PAS kinase is a serine/threonine kinase regulated in cis by a PAS domain. A genetic study of the two PAS kinase genes in budding yeast gave evidence of the involvement of these enzymes in the control of sugar metabolism and translation. Using a biochemical screen for PAS kinase substrates, three translation factors were identified as direct phosphorylation targets. PAS kinase was also found to phosphorylate UDP-glucose pyrophosphorylase and glycogen synthase, the enzymes catalyzing the two final steps in the glycogen biosynthetic pathway. Genetic, biochemical, and physiological data provide evidence that both of these enzymes are inhibited by PAS kinase-dependent phosphorylation, thereby downregulating carbohydrate storage. These studies provide evidence of a cell-autonomous signaling system that both controls and connects the balance of fuel consumption/storage to protein synthesis.
Collapse
Affiliation(s)
- Jared Rutter
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | | | | |
Collapse
|