1
|
Sequence and haplotypes of ankyrin 1 gene (ANK1) and their association with carcass and meat quality traits in yak. Mamm Genome 2021; 32:104-114. [PMID: 33655403 DOI: 10.1007/s00335-021-09861-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 02/12/2021] [Indexed: 10/22/2022]
Abstract
Ankyrin 1 (ANK1) gene has been demonstrated to be a functional candidate gene for meat quality that helps to constitute and maintain the structure of the cell skeleton. In this study, three contiguous ANK1 regions from yak were analyzed using polymerase chain reaction-single-stranded conformational polymorphism (PCR-SSCP). As a result, nine single-nucleotide polymorphisms (SNPs) were identified, four of them in the coding region and three (c.179 C/A, c.250 G/C, and c.313 C/T) putatively resulting in amino acid changes (p. Ala 60 Glu, p. Asp 84 His, and p. Pro 105 Ser). Some SNPs in promoter region were located within or nearby the putative transcription factor binding sites, such as Sp1 and GATA, which might have an impact on the expression of the yak ANK1 gene. The presence of C1-D3 and C1-A3 were associated with an increased hot carcass weight (p = 0.0045) and a decreased drip loss rate (p = 0.0046). The presence of B1-B3, C1-A3 and C1-D3 had decreased Warner-Bratzler shear force (p = 0.0066, p = 0.0343 and p = 0.0004). The presence of one and two copies of B1-B3 and C1-A3 had decreased Warner-Bratzler shear force (p = 0.0005 and p = 0.0443), and C1-A3 had also decreased drip loss rate (p = 0.0164). These findings indicated that genetic variations of the ANK1 gene would be a preferable biomarker for the improvement of yak meat quality.
Collapse
|
2
|
Tummala H, Walne AJ, Bewicke-Copley F, Ellison A, Pontikos N, Bridger MG, Rio-Machin A, Sidhu JK, Wang J, Hasle H, Fitzgibbon J, Vulliamy T, Dokal I. A frameshift variant in specificity protein 1 triggers superactivation of Sp1-mediated transcription in familial bone marrow failure. Proc Natl Acad Sci U S A 2020; 117:17151-17155. [PMID: 32636268 PMCID: PMC7382244 DOI: 10.1073/pnas.2002857117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Inherited bone marrow failure (BMF) syndromes are a heterogeneous group of diseases characterized by defective hematopoiesis and often predisposing to myelodysplastic syndrome (MDS) and acute myelogenous leukemia. We have studied a large family consisting of several affected individuals with hematologic abnormalities, including one family member who died of acute leukemia. By whole-exome sequencing, we identified a novel frameshift variant in the ubiquitously expressed transcription factor specificity protein 1 (SP1). This heterozygous variant (c.1995delA) truncates the canonical Sp1 molecule in the highly conserved C-terminal DNA-binding zinc finger domains. Transcriptomic analysis and gene promoter characterization in patients' blood revealed a hypermorphic effect of this Sp1 variant, triggering superactivation of Sp1-mediated transcription and driving significant up-regulation of Sp1 target genes. This familial genetic study indicates a central role for Sp1 in causing autosomal dominant transmission of BMF, thereby confirming its critical role in hematopoiesis in humans.
Collapse
Affiliation(s)
- Hemanth Tummala
- Centre for Genomics and Child Health, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, E1 2AT London, United Kingdom;
| | - Amanda J Walne
- Centre for Genomics and Child Health, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, E1 2AT London, United Kingdom
| | - Findlay Bewicke-Copley
- Centre for Cancer Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, EC1M 6BQ London, United Kingdom
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, EC1M 6BQ London, United Kingdom
| | - Alicia Ellison
- Centre for Genomics and Child Health, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, E1 2AT London, United Kingdom
| | - Nikolas Pontikos
- Centre for Genomics and Child Health, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, E1 2AT London, United Kingdom
| | - Maria G Bridger
- Centre for Genomics and Child Health, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, E1 2AT London, United Kingdom
| | - Ana Rio-Machin
- Centre for Cancer Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, EC1M 6BQ London, United Kingdom
| | - Jasmin K Sidhu
- Centre for Genomics and Child Health, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, E1 2AT London, United Kingdom
| | - Jun Wang
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, EC1M 6BQ London, United Kingdom
| | - Henrik Hasle
- Department of Pediatrics, Aarhus University Hospital, 8200 Aarhus, Denmark
| | - Jude Fitzgibbon
- Centre for Cancer Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, EC1M 6BQ London, United Kingdom
| | - Tom Vulliamy
- Centre for Genomics and Child Health, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, E1 2AT London, United Kingdom
| | - Inderjeet Dokal
- Centre for Genomics and Child Health, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, E1 2AT London, United Kingdom
| |
Collapse
|
3
|
Carnevale I, Pellegrini L, D'Aquila P, Saladini S, Lococo E, Polletta L, Vernucci E, Foglio E, Coppola S, Sansone L, Passarino G, Bellizzi D, Russo MA, Fini M, Tafani M. SIRT1-SIRT3 Axis Regulates Cellular Response to Oxidative Stress and Etoposide. J Cell Physiol 2017; 232:1835-1844. [PMID: 27925196 DOI: 10.1002/jcp.25711] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 11/29/2016] [Indexed: 02/01/2023]
Abstract
Sirtuins are conserved NAD+ -dependent deacylases. SIRT1 is a nuclear and cytoplasmic sirtuin involved in the control of histones a transcription factors function. SIRT3 is a mitochondrial protein, which regulates mitochondrial function. Although, both SIRT1 and SIRT3 have been implicated in resistance to cellular stress, the link between these two sirtuins has not been studied so far. Here we aimed to unravel: i) the role of SIRT1-SIRT3 axis for cellular response to oxidative stress and DNA damage; ii) how mammalian cells modulate such SIRT1-SIRT3 axis and which mechanisms are involved. Therefore, we analyzed the response to different stress stimuli in WT or SIRT1-silenced cell lines. Our results demonstrate that SIRT1-silenced cells are more resistant to H2 O2 and etoposide treatment showing decreased ROS accumulation, γ-H2AX phosphorylation, caspase-3 activation and PARP cleavage. Interestingly, we observed that SIRT1-silenced cells show an increased SIRT3 expression. To explore such a connection, we carried out luciferase assays on SIRT3 promoter demonstrating that SIRT1-silencing increases SIRT3 promoter activity and that such an effect depends on the presence of SP1 and ZF5 recognition sequences on SIRT3 promoter. Afterwards, we performed co-immunoprecipitation assays demonstrating that SIRT1 binds and deacetylates the transcription inhibitor ZF5 and that there is a decreased interaction between SP1 and ZF5 in SIRT1-silenced cells. Therefore, we speculate that acetylated ZF5 cannot bind and sequester SP1 that is free, then, to increase SIRT3 transcription. In conclusion, we demonstrate that cells with low SIRT1 levels can maintain their resistance and survival by increasing SIRT3 expression. J. Cell. Physiol. 232: 1835-1844, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ilaria Carnevale
- Department of Experimental Medicine, University of Rome, Sapienza, Rome, Italy
| | - Laura Pellegrini
- Department of Neurorehabilitation Sciences, Casa Cura Policlinico (CCP), Milan, Italy
| | - Patrizia D'Aquila
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende, Italy
| | - Serena Saladini
- Department of Experimental Medicine, University of Rome, Sapienza, Rome, Italy
| | - Emanuela Lococo
- Department of Experimental Medicine, University of Rome, Sapienza, Rome, Italy
| | - Lucia Polletta
- Department of Experimental Medicine, University of Rome, Sapienza, Rome, Italy
| | - Enza Vernucci
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska
| | - Eleonora Foglio
- Department of Experimental Medicine, University of Rome, Sapienza, Rome, Italy
| | - Stefano Coppola
- Physics of Life Processes, Kammerlingh Onnes-Huygens Laboratory, Leiden University, Leiden, The Netherlands
| | - Luigi Sansone
- Department of Cellular and Molecular Pathology, IRCCS San Raffaele, Rome, Italy
| | - Giuseppe Passarino
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende, Italy
| | - Dina Bellizzi
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende, Italy
| | | | - Massimo Fini
- Department of Cellular and Molecular Pathology, IRCCS San Raffaele, Rome, Italy
| | - Marco Tafani
- Department of Experimental Medicine, University of Rome, Sapienza, Rome, Italy.,Department of Cellular and Molecular Pathology, IRCCS San Raffaele, Rome, Italy
| |
Collapse
|
4
|
Identification and characterization of transcriptional control region of the human beta 1,4-mannosyltransferase gene. Cytotechnology 2015; 69:417-434. [PMID: 26608959 DOI: 10.1007/s10616-015-9929-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 11/02/2015] [Indexed: 10/22/2022] Open
Abstract
All asparagine-linked glycans (N-glycans) on the eukaryotic glycoproteins are primarily derived from dolichol-linked oligosaccharides (DLO), synthesized on the rough endoplasmic reticulum membrane. We have previously reported cloning and identification of the human gene, HMT-1, which encodes chitobiosyldiphosphodolichol beta-mannosyltransferase (β1,4-MT) involved in the early assembly of DLO. Considering that N-glycosylation is one of the most ubiquitous post-translational modifications for many eukaryotic proteins, the HMT-1 could be postulated as one of the housekeeping genes, but its transcriptional regulation remains to be investigated. Here we screened a 1 kb region upstream from HMT-1 open reading frame (ORF) for transcriptionally regulatory sequences by using chloramphenicol acetyl transferase (CAT) assay, and found that the region from -33 to -1 positions might act in HMT-1 transcription at basal level and that the region from -200 to -42 should regulate its transcription either positively or negatively. In addition, results with CAT assays suggested the possibility that two GATA-1 motifs and an Sp1 motif within a 200 bp region upstream from HMT-1 ORF might significantly upregulate HMT-1 transcription. On the contrary, the observations obtained from site-directed mutational analyses revealed that an NF-1/AP-2 overlapping motif located at -148 to -134 positions should serve as a strong silencer. The control of the HMT-1 transcription by these motifs resided within the 200 bp region could partially explain the variation of expression level among various human tissues, suggesting availability and importance of this region for regulatory role in HMT-1 expression.
Collapse
|
5
|
Pace BS, Liu L, Li B, Makala LH. Cell signaling pathways involved in drug-mediated fetal hemoglobin induction: Strategies to treat sickle cell disease. Exp Biol Med (Maywood) 2015; 240:1050-64. [PMID: 26283707 DOI: 10.1177/1535370215596859] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The developmental regulation of globin gene expression has shaped research efforts to establish therapeutic modalities for individuals affected with sickle cell disease and β-thalassemia. Fetal hemoglobin has been shown to block sickle hemoglobin S polymerization to improve symptoms of sickle cell disease; moreover, fetal hemoglobin functions to replace inadequate hemoglobin A synthesis in β-thalassemia thus serving as an effective therapeutic target. In the perinatal period, fetal hemoglobin is synthesized at high levels followed by a decline to adult levels by one year of age. It is known that naturally occurring mutations in the γ-globin gene promoters and distant cis-acting transcription factors produce persistent fetal hemoglobin synthesis after birth to ameliorate clinical symptoms. Major repressor proteins that silence γ-globin during development have been targeted for gene therapy in β-hemoglobinopathies patients. In parallel effort, several classes of pharmacological agents that induce fetal hemoglobin expression through molecular and cell signaling mechanisms have been identified. Herein, we reviewed the progress made in the discovery of signaling molecules targeted by pharmacologic agents that enhance γ-globin expression and have the potential for future drug development to treat the β-hemoglobinopathies.
Collapse
Affiliation(s)
- Betty S Pace
- Department of Pediatrics, Georgia Regents University, Augusta, GA 30912, USA Department of Biochemistry and Molecular Biology, Georgia Regents University, Augusta, GA 30912, USA
| | - Li Liu
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX 75083, USA
| | - Biaoru Li
- Department of Pediatrics, Georgia Regents University, Augusta, GA 30912, USA
| | - Levi H Makala
- Department of Pediatrics, Georgia Regents University, Augusta, GA 30912, USA
| |
Collapse
|
6
|
Rigano P, Pecoraro A, Calzolari R, Troia A, Acuto S, Renda D, Pantalone GR, Maggio A, Marzo RD. Desensitization to hydroxycarbamide following long-term treatment of thalassaemia intermedia as observed in vivo and in primary erythroid cultures from treated patients. Br J Haematol 2010; 151:509-15. [DOI: 10.1111/j.1365-2141.2010.08397.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
7
|
Zhang L, Jin M, Margariti A, Wang G, Luo Z, Zampetaki A, Zeng L, Ye S, Zhu J, Xiao Q. Sp1-dependent activation of HDAC7 is required for platelet-derived growth factor-BB-induced smooth muscle cell differentiation from stem cells. J Biol Chem 2010; 285:38463-72. [PMID: 20889501 DOI: 10.1074/jbc.m110.153999] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
We have previously demonstrated that histone deacetylase 7 (HDAC7) expression and splicing play an important role in smooth muscle cell (SMC) differentiation from embryonic stem (ES) cells, but the molecular mechanisms of increased HDAC7 expression during SMC differentiation are currently unknown. In this study, we found that platelet-derived growth factor-BB (PDGF-BB) induced a 3-fold increase in the transcripts of HDAC7 in differentiating ES cells. Importantly, our data also revealed that PDGF-BB regulated HDAC7 expression not through phosphorylation of HDAC7 but through transcriptional activation. By dissecting its promoters with progressive deletion analysis, we identified the sequence between -343 and -292 bp in the 5'-flanking region of the Hdac7 gene promoter as the minimal PDGF-BB-responsive element, which contains one binding site for the transcription factor, specificity protein 1 (Sp1). Mutation of the Sp1 site within this PDGF-BB-responsive element abolished PDGF-BB-induced HDAC7 activity. PDGF-BB treatment enhanced Sp1 binding to the Hdac7 promoter in differentiated SMCs in vivo as demonstrated by the chromatin immunoprecipitation assay. Moreover, we also demonstrated that knockdown of Sp1 abrogated PDGF-BB-induced HDAC7 up-regulation and SMC differentiation gene expression in differentiating ES cells, although enforced expression of Sp1 alone was sufficient to increase the activity of the Hdac7 promoter and expression levels of SMC differentiation genes. Importantly, we further demonstrated that HDAC7 was required for Sp1-induced SMC differentiation of gene expression. Our data suggest that Sp1 plays an important role in the regulation of Hdac7 gene expression in SMC differentiation from ES cells. These findings provide novel molecular insights into the regulation of HDAC7 and enhance our knowledge in SMC differentiation and vessel formation during embryonic development.
Collapse
Affiliation(s)
- Li Zhang
- Department of Cardiology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Zinc finger-zinc finger interaction between the transcription factors, GATA-1 and Sp1. Biochem Biophys Res Commun 2010; 400:625-30. [PMID: 20807505 DOI: 10.1016/j.bbrc.2010.08.116] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Accepted: 08/26/2010] [Indexed: 11/23/2022]
Abstract
In contrast to the extensive understanding of the zinc finger-DNA interactions, less is known about zinc finger-zinc finger interactions. GATA-1 and Sp1 are transcription factors with zinc finger domains for DNA binding. The interaction between the GATA-1 and Sp1 zinc finger domains is important for synergistic transcriptional effects in erythroid genes. Despite the biological importance of the GATA-1 and Sp1 interaction, the molecular mechanism of the interaction remains unclear. We constructed a series of deletion mutants of the zinc finger domains of GATA-1 and Sp1 to identify the regions within the GATA-1 and Sp1 zinc finger domains that interact. The zinc finger-zinc finger interaction modes were also estimated from calorimetric measurements. This revealed that the interaction between the Sp1 and GATA-1 zinc finger domains was primarily electrostatic, and that the linker region of the Sp1 zinc fingers is important for the association with the GATA-1 zinc finger domains. We propose a new molecular mechanism for zinc finger-zinc finger interactions that should contribute to our understanding of the bio-functional role of the interaction between GATA-1 and Sp1.
Collapse
|
9
|
Babbitt CC, Silverman JS, Haygood R, Reininga JM, Rockman MV, Wray GA. Multiple Functional Variants in cis Modulate PDYN Expression. Mol Biol Evol 2009; 27:465-79. [PMID: 19910384 DOI: 10.1093/molbev/msp276] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Understanding genetic variation and its functional consequences within cis-regulatory regions remains an important challenge in human genetics and evolution. Here, we present a fine-scale functional analysis of segregating variation within the cis-regulatory region of prodynorphin, a gene that encodes an endogenous opioid precursor with roles in cognition and disease. In order to characterize the functional consequences of segregating variation in cis in a region under balancing selection in different human populations, we examined associations between specific polymorphisms and gene expression in vivo and in vitro. We identified five polymorphisms within the 5' flanking region that affect transcript abundance: a 68-bp repeat recognized in prior studies, as well as two microsatellites and two single nucleotide polymorphisms not previously implicated as functional variants. The impact of these variants on transcription differs by brain region, sex, and cell type, implying interactions between cis genotype and the differentiated state of cells. The effects of individual variants on expression level are not additive in some combinations, implying epistatic interactions between nearby variants. These data reveal an unexpectedly complex relationship between segregating genetic variation and its expression-trait consequences and highlights the importance of close functional scrutiny of natural genetic variation within even relatively well-studied cis-regulatory regions.
Collapse
|
10
|
Radyuk SN, Michalak K, Klichko VI, Benes J, Rebrin I, Sohal RS, Orr WC. Peroxiredoxin 5 confers protection against oxidative stress and apoptosis and also promotes longevity in Drosophila. Biochem J 2009; 419:437-45. [PMID: 19128239 PMCID: PMC2842572 DOI: 10.1042/bj20082003] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Peroxiredoxin 5 is a distinct isoform of the peroxiredoxin gene family. The antioxidative and anti-apoptotic functions of peroxiredoxin 5 have been extensively demonstrated in cell culture experiments. In the present paper, we provide the first functional analysis of peroxiredoxin 5 in a multicellular organism, Drosophila melanogaster. Similar to its mammalian, yeast or human counterparts, dPrx5 (Drosophila peroxiredoxin 5) is expressed in several cellular compartments, including the cytosol, nucleus and the mitochondrion. Global overexpression of dPrx5 in flies increased resistance to oxidative stress and extended their life span by up to 30% under normal conditions. The dprx5(-/-) null flies were comparatively more susceptible to oxidative stress, had higher incidence of apoptosis, and a shortened life span. TUNEL (terminal deoxynucleotidyl transferase-mediated dUTP nick-end labelling) analysis revealed that the dprx5(-/-) null mutant had discernible tissue-specific apoptotic patterns, similar to those observed in control flies exposed to paraquat. In addition, apoptosis was particularly notable in oenocytes. During development the dPrx5 levels co-varied with ecdysone pulses, suggesting inter-relationship between ecdystreroids and dPrx5 expression. The importance of dPrx5 for development was further underscored by the embryonic lethal phenotype of progeny derived from the dprx5(-/-) null mutant. Results from the present study suggest that the antioxidant and anti-apoptotic activities of dPrx5 play a critical role in development and aging of the fly.
Collapse
Affiliation(s)
- Svetlana N. Radyuk
- Department of Biological Sciences, Southern Methodist University, 6501 Airline Rd., Dallas, TX 75275, U.S.A
| | - Katarzyna Michalak
- Department of Biological Sciences, Southern Methodist University, 6501 Airline Rd., Dallas, TX 75275, U.S.A
| | - Vladimir I. Klichko
- Department of Biological Sciences, Southern Methodist University, 6501 Airline Rd., Dallas, TX 75275, U.S.A
| | - Judith Benes
- Department of Biological Sciences, Southern Methodist University, 6501 Airline Rd., Dallas, TX 75275, U.S.A
| | - Igor Rebrin
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, 1985 Zonal Ave., Los Angeles, CA 90089, U.S.A
| | - Rajindar S. Sohal
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, 1985 Zonal Ave., Los Angeles, CA 90089, U.S.A
| | - William C. Orr
- Department of Biological Sciences, Southern Methodist University, 6501 Airline Rd., Dallas, TX 75275, U.S.A
| |
Collapse
|
11
|
Calzolari R, Pecoraro A, Borruso V, Troia A, Acuto S, Maggio A, Di Marzo R. Induction of gamma-globin gene transcription by hydroxycarbamide in primary erythroid cell cultures from Lepore patients. Br J Haematol 2008; 141:720-7. [DOI: 10.1111/j.1365-2141.2008.07041.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
12
|
Wierstra I. Sp1: emerging roles--beyond constitutive activation of TATA-less housekeeping genes. Biochem Biophys Res Commun 2008; 372:1-13. [PMID: 18364237 DOI: 10.1016/j.bbrc.2008.03.074] [Citation(s) in RCA: 282] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2008] [Accepted: 03/17/2008] [Indexed: 01/21/2023]
|
13
|
Čokić VP, Schechter AN. Chapter 7 Effects of Nitric Oxide on Red Blood Cell Development and Phenotype. Curr Top Dev Biol 2008; 82:169-215. [DOI: 10.1016/s0070-2153(07)00007-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
14
|
Pace BS, Zein S. Understanding mechanisms of gamma-globin gene regulation to develop strategies for pharmacological fetal hemoglobin induction. Dev Dyn 2006; 235:1727-37. [PMID: 16607652 DOI: 10.1002/dvdy.20802] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The developmental regulation of gamma-globin gene expression has shaped research efforts to establish therapeutic modalities for individuals affected with sickle cell disease (SCD). Fetal hemoglobin (Hb F) synthesis is high at birth, followed by a decline to adult levels by 10 months of age. The expression of gamma-globin is controlled by a developmentally regulated transcriptional program that is recapitulated during normal erythropoiesis in the adult bone marrow. It is known that naturally occurring mutations in the gamma-gene promoters cause persistent Hb F synthesis after birth, which ameliorates symptoms in SCD by inhibiting hemoglobin S polymerization and vaso-occlusion. Several pharmacological agents have been identified over the past 2 decades that reactivate gamma-gene transcription through different cellular systems. We will review the progress made in our understanding of molecular mechanisms that control gamma-globin expression and insights gained from Hb F-inducing agents that act through signal transduction pathways.
Collapse
Affiliation(s)
- Betty S Pace
- University of Texas at Dallas, Department of Molecular and Cell Biology, Richardson, Texas 75083, USA.
| | | |
Collapse
|
15
|
Bellizzi D, Dato S, Cavalcante P, Covello G, Di Cianni F, Passarino G, Rose G, De Benedictis G. Characterization of a bidirectional promoter shared between two human genes related to aging: SIRT3 and PSMD13. Genomics 2006; 89:143-50. [PMID: 17059877 DOI: 10.1016/j.ygeno.2006.09.004] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2006] [Revised: 09/11/2006] [Accepted: 09/13/2006] [Indexed: 02/04/2023]
Abstract
The human SIRT3 gene contains an intronic VNTR enhancer whose variability is correlated with life span. The SIRT3 5' flanking region encompasses the PSMD13 gene encoding the p40.5 regulator subunit of the 26S proteasome. Proteasome is a multicatalytic proteinase whose function declines with aging. SIRT3 and PSMD13 are linked in a head-to-head configuration (788-bp intergenic region). The molecular configuration of two genes that are both related to aging prompted us to search for shared regulatory mechanisms between them. Transfection experiments carried out in HeLa cells by deletion mutants of the PSMD13-SIRT3 intergenic region showed a complex pathway of coregulation acting in both directions. Furthermore, linkage disequilibrium (LD) analyses carried out in a sample of 710 subjects (18-108 years of age) screened for A21631G (marker of PSMD13), and for G477T and VNTR(intron5) (markers of SIRT3), revealed high LD, with significantly different PSMD13-SIRT3 haplotype pools between samples of centenarians and younger people.
Collapse
Affiliation(s)
- D Bellizzi
- Department of Cell Biology, University of Calabria, 87030 Rende, Italy
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Mankidy R, Faller DV, Mabaera R, Lowrey CH, Boosalis MS, White GL, Castaneda SA, Perrine SP. Short-chain fatty acids induce gamma-globin gene expression by displacement of a HDAC3-NCoR repressor complex. Blood 2006; 108:3179-86. [PMID: 16849648 PMCID: PMC1895523 DOI: 10.1182/blood-2005-12-010934] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
High-level induction of fetal (gamma) globin gene expression for therapy of beta-hemoglobinopathies likely requires local chromatin modification and dissociation of repressor complexes for gamma-globin promoter activation. A novel gamma-globin-inducing short-chain fatty acid derivative (SCFAD), RB7, which was identified through computational modeling, produced a 6-fold induction in a reporter assay that detects only strong inducers of the gamma-globin gene promoter and in cultured human erythroid progenitors. To elucidate the molecular mechanisms used by high-potency SCFADs, chromatin immunoprecipitation (ChIP) assays performed at the human gamma- and beta-globin gene promoters in GM979 cells and in erythroid progenitors demonstrate that RB7 and butyrate induce dissociation of HDAC3 (but not HDAC1 or HDAC2) and its adaptor protein NCoR, specifically from the gamma-globin gene promoter. A coincident and proportional recruitment of RNA polymerase II to the gamma-globin gene promoter was observed with exposure to these gamma-globin inducers. Knockdown of HDAC3 by siRNA induced transcription of the gamma-globin gene promoter, demonstrating that displacement of HDAC3 from the gamma-globin gene promoter by the SCFAD is sufficient to induce gamma-globin gene expression. These studies demonstrate new dynamic alterations in transcriptional regulatory complexes associated with SCFAD-induced activation of the gamma-globin gene and provide a specific molecular target for potential therapeutic intervention.
Collapse
|
17
|
Andrianifahanana M, Moniaux N, Batra SK. Regulation of mucin expression: mechanistic aspects and implications for cancer and inflammatory diseases. Biochim Biophys Acta Rev Cancer 2006; 1765:189-222. [PMID: 16487661 DOI: 10.1016/j.bbcan.2006.01.002] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2005] [Revised: 12/30/2005] [Accepted: 01/03/2006] [Indexed: 12/31/2022]
Abstract
Mucins are large multifunctional glycoproteins whose primary functions are to protect and lubricate the surfaces of epithelial tissues lining ducts and lumens within the human body. Several lines of evidence also support the involvement of mucins in more complex biological processes such as epithelial cell renewal and differentiation, cell signaling, and cell adhesion. Recent studies have uncovered the role of select mucins in the pathogenesis of cancer, underscoring the importance of a detailed knowledge about mucin biology. Under normal physiological conditions, the production of mucins is optimally maintained by a host of elaborate and coordinated regulatory mechanisms, thereby affording a well-defined pattern of tissue-, time-, and developmental state-specific distribution. However, mucin homeostasis may be disrupted by the action of environmental and/or intrinsic factors that affect cellular integrity. This results in an altered cell behavior that often culminates into a variety of pathological conditions. Deregulated mucin production has indeed been associated with numerous types of cancers and inflammatory disorders. It is, therefore, crucial to comprehend the underlying basis of molecular mechanisms controlling mucin production in order to design and implement adequate therapeutic strategies for combating these diseases. Herein, we discuss some physiologically relevant regulatory aspects of mucin production, with a particular emphasis on aberrations that pertain to pathological situations. Our views of the achievements, the conceptual and technical limitations, as well as the future challenges associated with studies of mucin regulation are exposed.
Collapse
Affiliation(s)
- Mahefatiana Andrianifahanana
- Department of Biochemistry and Molecular Biology, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 985870 Nebraska Medical Center, Omaha, 68198-5870, USA
| | | | | |
Collapse
|
18
|
deGraffenried LA, Hopp TA, Valente AJ, Clark RA, Fuqua SAW. Regulation of the estrogen receptor alpha minimal promoter by Sp1, USF-1 and ERalpha. Breast Cancer Res Treat 2004; 85:111-20. [PMID: 15111769 DOI: 10.1023/b:brea.0000025398.93829.78] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The exact molecular mechanisms regulating estrogen receptor alpha (ERalpha) expression in breast tumors are unclear, but studies suggest that they are partly at the level of transcription. We have focused on the transcription factors that regulate the ERalpha minimal promoter, which we have previously shown to reside within the first 245 bp of the 5'-flanking region of the gene. Within this region are several elements essential for full ERalpha promoter transcriptional activity, including a GC box and an imperfect E box. In earlier studies we demonstrated an essential function for the Sp1 family of transcription factors in the regulation of ERalpha expression. We have now identified both USF-1 and ERalpha itself as components of a multi-protein complex of transcription factors that interacts at the ERalpha minimal promoter and is essential for its full transcriptional activity. Electrophoretic mobility shift assays demonstrated that Sp1 and USF-1, but not ERalpha, bind directly to the ERalpha minimal promoter. We showed by GST pull-down assays that ERalpha is able to interact in vitro with USF-1, suggesting, in addition to a possible interaction between ERalpha and Sp1, a mechanism whereby ERalpha is able to interact with the protein complex. Combined exogenous expression of the components of the complex in MCF-7 breast cancer cells resulted in a synergistic effect on transactivation of the ERalpha minimal promoter, suggesting that the importance of the protein complex is in the interactions among the components. Based upon these findings, we propose a possible model for transcription from the ERalpha minimal promoter.
Collapse
Affiliation(s)
- Linda A deGraffenried
- Department of Medicine, The University of Texas Health Science Center, San Antonio, USA
| | | | | | | | | |
Collapse
|
19
|
Howcroft TK, Raval A, Weissman JD, Gegonne A, Singer DS. Distinct transcriptional pathways regulate basal and activated major histocompatibility complex class I expression. Mol Cell Biol 2003; 23:3377-91. [PMID: 12724398 PMCID: PMC154244 DOI: 10.1128/mcb.23.10.3377-3391.2003] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transcription of major histocompatibility complex (MHC) class I genes is regulated by both tissue-specific (basal) and hormone/cytokine (activated) mechanisms. Although promoter-proximal regulatory elements have been characterized extensively, the role of the core promoter in mediating regulation has been largely undefined. We report here that the class I core promoter consists of distinct elements that are differentially utilized in basal and activated transcription pathways. These pathways recruit distinct transcription factor complexes to the core promoter elements and target distinct transcription initiation sites. Class I transcription initiates at four major sites within the core promoter and is clustered in two distinct regions: "upstream" (-14 and -18) and "downstream" (+12 and +1). Basal transcription initiates predominantly from the upstream start site region and is completely dependent upon the general transcription factor TAF1 (TAF(II)250). Activated transcription initiates predominantly from the downstream region and is TAF1 (TAF(II)250) independent. USF1 augments transcription initiating through the upstream start sites and is dependent on TAF1 (TAF(II)250), a finding consistent with its role in regulating basal class I transcription. In contrast, transcription activated by the interferon mediator CIITA is independent of TAF1 (TAF(II)250) and focuses initiation on the downstream start sites. Thus, basal and activated transcriptions of an MHC class I gene target distinct core promoter domains, nucleate distinct transcription initiation complexes and initiate at distinct sites within the promoter. We propose that transcription initiation at the core promoter is a dynamic process in which the mechanisms of core promoter function differ depending on the cellular environment.
Collapse
Affiliation(s)
- T Kevin Howcroft
- Experimental Immunology Branch, National Cancer Institute/NIH, Building 10, Room 4B-17, 10 Center Drive, MSC 1360, Bethesda, MD 20892-1360, USA.
| | | | | | | | | |
Collapse
|
20
|
Furusawa M, Taira T, Iguchi-Ariga SMM, Ariga H. Molecular cloning of the mouse AMY-1 gene and identification of the synergistic activation of the AMY-1 promoter by GATA-1 and Sp1. Genomics 2003; 81:221-33. [PMID: 12620400 DOI: 10.1016/s0888-7543(03)00006-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have reported that a novel c-Myc binding protein, AMY-1, stimulated the transcription activity of c-Myc and was translocated from the cytoplasm to the nucleus in a c-Myc-dependent manner. AMY-1 works as an inducer of human K562 cell differentiation upon induction of AraC. To characterize the expression or functional importance of AMY-1, the genomic DNA of mouse AMY-1 was cloned and characterized. Both mouse and human genomic DNAs, the latter of which was retrieved from a human DNA database, comprise five exons spanning about 11 kb. To characterize the promoter of the mouse AMY-1 gene, a series of deletion constructs of the region upstream of the first ATG was linked to the luciferase gene, and their luciferase activities were measured in human HeLa and K562 cells. The results showed that Sp1 was essential for AMY-1 expression in both cell lines and that GATA-1 is also necessary in K562 cells. Sp1 in both cell lines and GATA-1 only in K562 cells were identified as proteins binding to these sites by a mobility shift assay. Furthermore, it was found that GATA-1 stimulated AMY-1 expression synergistically with Sp1 in ectopically expressed insect cells and that both proteins were associated in K562 cells.
Collapse
Affiliation(s)
- Makoto Furusawa
- CREST, Japan Science and Technology Corporation, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | | | | | | |
Collapse
|
21
|
Cokic VP, Smith RD, Beleslin-Cokic BB, Njoroge JM, Miller JL, Gladwin MT, Schechter AN. Hydroxyurea induces fetal hemoglobin by the nitric oxide–dependent activation of soluble guanylyl cyclase. J Clin Invest 2003. [DOI: 10.1172/jci200316672] [Citation(s) in RCA: 233] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
22
|
Hansen S, Holm D, Moeller V, Vitved L, Bendixen C, Reid KBM, Skjoedt K, Holmskov U. CL-46, a novel collectin highly expressed in bovine thymus and liver. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:5726-34. [PMID: 12421952 DOI: 10.4049/jimmunol.169.10.5726] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Collectins are oligomeric molecules with C-type lectin domains attached to collagen-like regions via alpha-helical neck regions. They bind nonself glycoconjugates on the surface of microorganisms and inhibit infection by direct neutralization, agglutination, or opsonization. During the characterization of the gene encoding bovine CL-43 (43-kDa collectin), we identified a novel collectin-gene. We report the cloning and partial characterization of the novel collectin CL-46. The mRNA comprises 1188 nucleotides encoding a protein of 371 aa with an included leader peptide of 20 residues. CL-46 has two cysteine residues in the N-terminal segment, a potential N-glycosylation site in the collagen region, and an extended hydrophilic loop close to the binding site of the carbohydrate recognition domain. It is expressed in the thymus, liver, mammary gland, and tissues of the digestive system. Recombinant CL-46 corresponding to the alpha-helical neck region and the C-type lectin domain binds preferential N-acetyl-D-glucoseamine and N-acetyl-D-mannoseamine. The gene encoding CL-46 spans approximately 10 kb and consists of eight exons, with high structural resemblance to the gene encoding human surfactant protein D. It is located on the bovine chromosome 28 at position q1.8 together with the gene encoding conglutinin and CL-43. Several potential thymus-related cis-regulatory elements were identified in the 5'-upstream sequence, indicating that the expression in thymus may be modulated by signals involved in T cell development.
Collapse
Affiliation(s)
- Soren Hansen
- Department of Immunology and Microbiology, University of Southern Denmark Odense, DK-5000 Odense C, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Boulanger L, Sabatino DE, Wong EY, Cline AP, Garrett LJ, Garbarz M, Dhermy D, Bodine DM, Gallagher PG. Erythroid expression of the human alpha-spectrin gene promoter is mediated by GATA-1- and NF-E2-binding proteins. J Biol Chem 2002; 277:41563-70. [PMID: 12196550 DOI: 10.1074/jbc.m208184200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
alpha-Spectrin is a highly expressed membrane protein critical for the flexibility and stability of the erythrocyte. Qualitative and quantitative defects of alpha-spectrin are present in the erythrocytes of many patients with abnormalities of red blood cell shape including hereditary spherocytosis and elliptocytosis. We wished to determine the regulatory elements that determine the erythroid-specific expression of the alpha-spectrin gene. We mapped the 5' end of the alpha-spectrin erythroid cDNA and cloned the 5' flanking genomic DNA containing the putative alpha-spectrin gene promoter. Using transfection of promoter/reporter plasmids in human tissue culture cell lines, in vitro DNase I footprinting analyses, and gel mobility shift assays, an alpha-spectrin gene erythroid promoter with binding sites for GATA-1- and NF-E2-related proteins was identified. Both binding sites were required for full promoter activity. In transgenic mice, a reporter gene directed by the alpha-spectrin promoter was expressed in yolk sac, fetal liver, and erythroid cells of bone marrow but not adult reticulocytes. No expression of the reporter gene was detected in nonerythroid tissues. We conclude that this alpha-spectrin gene promoter contains the sequences necessary for low level expression in erythroid progenitor cells.
Collapse
Affiliation(s)
- Laurent Boulanger
- INSERM U409, Association Claude Bernard, Universite Paris 7, Faculte X. Bichat, 75870 Paris Cedex 18, France
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
The exact molecular mechanisms regulating estrogen receptor (ER)alpha expression in breast tumors are unclear, but studies suggest that the regulation is at least partly transcriptional. We therefore undertook a detailed analysis of ERalpha promoter activity in a number of breast cancer cell lines. We find that the majority of ERalpha promoter activity lies within the first 245bp of the 5'-flanking region of the gene. Three elements essential for full ERalpha promoter transcriptional activity were identified within the -245 to -192bp region in transient transactivation assays using linker-scanner mutation analysis. These three elements include two binding sites for the Sp1 family of transcription factors as well as a non-consensus E box. We show that both Sp1 and Sp3 bind to this region using electrophoretic mobility shift assays. Exogenous expression of Sp1 or Sp3 in Sp1/3-negative Drosophila Schneider SL2 cells results in transactivation of the -245 to +212bp fragment of the ERalpha promoter. These data demonstrate that transcription of ERalpha is dependent upon the expression of members of the Sp1 family.
Collapse
Affiliation(s)
- Linda A deGraffenried
- Division of Medical Oncology, The University of Texas Health Science Center, San Antonio 78229, USA
| | | | | |
Collapse
|
25
|
Sepulveda JL, Vlahopoulos S, Iyer D, Belaguli N, Schwartz RJ. Combinatorial expression of GATA4, Nkx2-5, and serum response factor directs early cardiac gene activity. J Biol Chem 2002; 277:25775-82. [PMID: 11983708 DOI: 10.1074/jbc.m203122200] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Herein, the restricted expression of serum response factors (SRF) closely overlapped with Nkx2-5 and GATA4 transcripts in early chick embryos coinciding with the earliest appearance of cardiac alpha-actin (alphaCA) transcripts and nascent myocardial cells. The combinatorial expression of SRF, a MADS box factor Nkx2-5 (a NK4 homeodomain), and/or GATA4, a dual C4 zinc finger protein, in heterologous CV1 fibroblasts and Schneider 2 insect cells demonstrated synergistic induction of alphaCA promoter activity. These three factors induced endogenous alphaCA mRNA over a 100-fold in murine embryonic stem cells. In addition, the DNA-binding defective mutant Nkx2-5pm efficiently coactivated the alphaCA promoter in the presence of SRF and GATA4 in the presence of all four SREs and was substantially weakened when individual SREs were mutated and or serially deleted. In contrast, the introduction of SRFpm, a SRF DNA-binding mutant, blocked the activation with all of the alphaCA promoter constructions. These assays indicated a dependence upon cooperative SRF binding for facilitating the recruitment of Nkx2-5 and GATA4 to the alphaCA promoter. Furthermore, the recruitment of Nkx2-5 and GATA4 by SRF was observed to strongly enhance SRF DNA binding affinity. This mechanism allowed for the formation of higher ordered alphaCA promoter DNA binding complexes, led to a model of SRF physical association with Nkx2-5 and GATA4.
Collapse
Affiliation(s)
- Jorge L Sepulveda
- Department of Pathology, University of Pittsburgh Medical Center, Pennsylvania 15213, USA
| | | | | | | | | |
Collapse
|
26
|
Han B, Liu N, Yang X, Sun HB, Yang YC. MRG1 expression in fibroblasts is regulated by Sp1/Sp3 and an Ets transcription factor. J Biol Chem 2001; 276:7937-42. [PMID: 11114295 DOI: 10.1074/jbc.m007470200] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
MRG1 (melanocyte-specific gene 1 (MSG1)-related gene), a ubiquitously expressed transcription factor that interacts with p300/CBP, TATA-binding protein and Lhx2, is the founding member of a new family of transcription factors. Initial characterization of this newly discovered transcription factor has underscored its potential involvement in many important cellular processes through transcriptional modulation. We previously demonstrated that MRG1 can be induced by various biological stimuli (Sun, H. B., Zhu, Y. X., Yin, T., Sledge, G., and Yang, Y. C. (1998) Proc. Natl. Acad. Sci. U. S. A. 95, 13555-13560). As a first step in understanding its role in different biological processes, we investigated mechanisms that regulate transcription of the mouse MRG1 gene in fibroblasts. Transient transfection of Rat1 fibroblast cells with sequential 5'-deletions of mouse MRG1 promoter-luciferase fusion constructs indicated that the -104 to +121 region contains the full promoter activity. Deletion and site-directed mutations within this region revealed that the Ets-1 site at -97 to -94 and the Sp1 site at -51 to -46 are critical for MRG1 expression in fibroblasts. Gel mobility shift and supershift assays performed with Rat1 nuclear extracts identified nucleoprotein complexes binding to the Ets-1 site and the Sp1 site. In Drosophila SL2 cells, which lack the Sp and Ets family of transcription factors, expression of Sp1, Sp3, and Ets-1 or Elf-1 functionally stimulated MRG1 promoter activity in a synergistic manner. These results suggest that multiple transcription factors acting in synergy are responsible for MRG1 expression and the responsiveness of cells to different biological stimuli.
Collapse
Affiliation(s)
- B Han
- Department of Medicine (Hematology/Oncology), Walther Oncology Center, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | | | | | | | |
Collapse
|
27
|
Block KL, Shou Y, Thorton M, Poncz M. The regulated expression of a TATA-less, platelet-specific gene, alphaIIb. Stem Cells 2001; 14 Suppl 1:38-47. [PMID: 11012201 DOI: 10.1002/stem.5530140705] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The megakaryocyte (MK)-specific integrin, alphaIIb, is the alpha-subunit of the alphaIIb/beta3 complex found on the surface of platelets. This complex is a receptor for fibrinogen and other ligands when platelets are activated. Because the alphaIIb gene is specifically expressed in MKs, this gene was studied as a potential model for MK-specific gene expression. Previous studies have defined some of the important regulatory elements in 912 bp of the immediate 5'-flanking region of this gene. These studies defined several important elements including two GATA-binding elements and an Ets-binding element. Using a primary rat marrow expression system, we demonstrated that one of the GATA-binding elements, -454 bp upstream of the transcriptional start site (GATA454), is critical for expression of the alphaIIb gene. A potential negative regulatory element was found between -100 and -200 bp upstream of both the rat and human alphaIIb genes. The biological basis by which this negative regulatory region effects expression is not well understood. Recent studies have focused on the issue of the molecular basis by which this TATA-less gene is properly transcribed. We found that a GA-rich region approximately 14 bp upstream from the transcriptional start site appears to be a nonconsensus Sp1-binding site that interacts with an Ets-consensus site approximately 20 bp further upstream. These studies provide further evidence of the role of interactions between Ets-like proteins and Sp1 in transcriptional activation when a TATA box is not present in the promoter region of a gene. Based on the presented studies and previous results, a model is proposed for the regulation of expression of the alphaIIb gene. In studies looking at more distal regulatory elements, we have found, using the primary rat marrow expression system, that 2.9 kb of 5'-flanking alphaIIb sequence has as high a level of expression as the 912 bp construct. Whether either of these lengths of 5'-flanking region can result in tissue-specific expression in transgenic models is presently being investigated. In addition, while a published report suggests that the two genes alphaIIb and beta3 are physically linked within a 250 kb region of genomic DNA, analysis of yeast artificial chromosome clones and genomic pulsed field gel electrophoresis analysis are consistent with these two genes not being tightly linked and being >1 mb apart, suggesting that these two genes do not form a single, tissue-specific locus.
Collapse
Affiliation(s)
- K L Block
- The University of Pennsylvania School of Medicine and The Children's Hospital of Philadelphia, 19104, USA
| | | | | | | |
Collapse
|
28
|
Terzano S, Flora A, Clementi F, Fornasari D. The minimal promoter of the human alpha 3 nicotinic receptor subunit gene. Molecular and functional characterization. J Biol Chem 2000; 275:41495-503. [PMID: 11018033 DOI: 10.1074/jbc.m006197200] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The minimal promoter of the human alpha(3) nicotinic receptor subunit gene has been mapped to a region of 60 base pairs and found to contain two Sp1 sites, one of which is essential for promoter activity. DNase footprinting has revealed the presence of another region of interaction with nuclear factors (named F2) immediately downstream of the Sp1 sites. This region has been found to be functional since it is capable of stimulating the minimal promoter. The F2 protection is completely and specifically competed by an AP2 consensus oligonucleotide that has been proved to bind AP2alpha exclusively. However, the AP2alpha recombinant protein was unable to bind the F2 region directly, thus suggesting that AP2alpha may participate in F2 protection by protein-protein interactions with other nuclear factors. The minimal promoter has been shown to be stimulated by two additional regions, one located downstream of F2 and the other upstream of the minimal promoter itself. In neuronal cells, the combined stimulatory activities of these three regions have synergistic effects, whereas in non-neuronal cells, there is a negative interference between the upstream and downstream regions. These opposite transcriptional effects may account for at least part of the neuro-specific expression profile of the alpha(3) gene.
Collapse
Affiliation(s)
- S Terzano
- Department of Medical Pharmacology, University of Milan and CNR Cellular and Molecular Pharmacology Center, Via Vanvitelli 32, 20129 Milano, Italy
| | | | | | | |
Collapse
|
29
|
Melnikova IN, Lin HR, Blanchette AR, Gardner PD. Synergistic transcriptional activation by Sox10 and Sp1 family members. Neuropharmacology 2000; 39:2615-23. [PMID: 11044731 DOI: 10.1016/s0028-3908(00)00125-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Neuronal nicotinic acetylcholine receptors (nAChR) are expressed at specific times during development and in discrete neuronal populations. Transcriptional regulation of the receptor genes clearly plays a key role in the molecular pathway underlying the expression of these critical synaptic components. In an effort to understand this regulation, we focus upon the genes encoding three receptor subunits: alpha3, alpha5 and beta4. These subunits are genomically clustered and constitute the predominant nAChR subtype expressed in the peripheral nervous system. We and others demonstrated that the general transcription factors, Sp1 and Sp3, can transactivate the promoter of each subunit gene. Further, we showed that the regulatory factor Sox10 transactivates the alpha3 and beta4 promoters and does so in a cell-type-specific manner. Interestingly, the Sp- and Sox10-binding sites on the beta4 promoter are located immediately adjacent to each other, raising the possibility that the two sets of factors functionally interact to regulate receptor gene expression. Consistent with this hypothesis, we demonstrated that the proteins can directly interact. Here, we extend these observations and show that Sox10 and the Sp factors functionally interact, leading to synergistic transcriptional activation in a cholinergic cell line. Finally, evidence for the existence of cell-type-specific co-regulators for Sp1 and Sox10 is presented.
Collapse
Affiliation(s)
- I N Melnikova
- Department of Molecular Medicine, University of Texas Health Science Center, San Antonio, TX 78245-3207, USA
| | | | | | | |
Collapse
|
30
|
Taranenko N, Krause DS. Regulation of CD34 transcription by Sp1 requires sites upstream and downstream of the transcription start site. Exp Hematol 2000; 28:974-84. [PMID: 10989198 DOI: 10.1016/s0301-472x(00)00492-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
CD34 is a cell surface glycoprotein expressed on hematopoietic stem and progenitor cells, but not on fully differentiated cells in the peripheral blood. To better understand the molecular regulation of early hematopoiesis, we are elucidating the mechanisms of CD34 transcriptional regulation. By deletion analysis we identify a 39-bp element in the proximal region of murine CD34 promoter that is critical for promoter activity. Electromobility shift assays indicate that nuclear proteins of hematopoietic cells bind to this domain; however, the presence of this binding activity does not correlate directly with CD34 expression.Using methylation interference, the DNA binding site for this activity was localized to four guanine residues within the GGGGTCGG sequence from -48 to -54 bp. When the four contact guanines were mutated, both protein binding and promoter activity were abolished. Although this sequence does not contain a standard consensus for Sp1, this transcription factor binds specifically to the 39-bp region and stimulates promoter activity in both hematopoietic cells and in Sp1 null Drosophila S2 cells. In addition, Ku binds to this domain in a sequence-specific manner. Activation of the CD34 promoter by Sp1 requires the presence of a binding domain at -48 bp as well as the 5' untranslated region, which also binds Sp1.A functional interaction between regulatory regions upstream and downstream of the transcription start site is required for CD34 gene expression.
Collapse
Affiliation(s)
- N Taranenko
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT, USA
| | | |
Collapse
|
31
|
The human ankyrin-1 gene is selectively transcribed in erythroid cell lines despite the presence of a housekeeping-like promoter. Blood 2000. [DOI: 10.1182/blood.v96.3.1136] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractTo begin to study the sequence variations identified in the 5′ flanking genomic DNA of the ankyrin gene in ankyrin-deficient hereditary spherocytosis patients and to provide additional insight into our understanding of the regulation of genes encoding erythrocyte membrane proteins, we have identified and characterized the erythroid promoter of the human ankyrin-1 gene. This compact promoter has characteristics of a housekeeping gene promoter, including very high G+C content and enzyme restriction sites characteristic of an HTF-island, no TATA, InR, or CCAAT consensus sequences, and multiple transcription initiation sites. In vitro DNAseI footprinting analyses revealed binding sites for GATA-1, CACCC-binding, and CGCCC-binding proteins. Transfection of ankyrin promoter/reporter plasmids into tissue culture cell lines yielded expression in erythroid, but not muscle, neural, or HeLa cells. Electrophoretic mobility shift assays, including competition and antibody supershift experiments, demonstrated binding of GATA-1, BKLF, and Sp1 to core ankyrin promoter sequences. In transfection assays, mutation of the Sp1 site had no effect on reporter gene expression, mutation of the CACCC site decreased expression by half, and mutation of the GATA-1 site completely abolished activity. The ankyrin gene erythroid promoter was transactivated in heterologous cells by forced expression of GATA-1 and to a lesser degree BKLF.
Collapse
|
32
|
The human ankyrin-1 gene is selectively transcribed in erythroid cell lines despite the presence of a housekeeping-like promoter. Blood 2000. [DOI: 10.1182/blood.v96.3.1136.015k48_1136_1143] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To begin to study the sequence variations identified in the 5′ flanking genomic DNA of the ankyrin gene in ankyrin-deficient hereditary spherocytosis patients and to provide additional insight into our understanding of the regulation of genes encoding erythrocyte membrane proteins, we have identified and characterized the erythroid promoter of the human ankyrin-1 gene. This compact promoter has characteristics of a housekeeping gene promoter, including very high G+C content and enzyme restriction sites characteristic of an HTF-island, no TATA, InR, or CCAAT consensus sequences, and multiple transcription initiation sites. In vitro DNAseI footprinting analyses revealed binding sites for GATA-1, CACCC-binding, and CGCCC-binding proteins. Transfection of ankyrin promoter/reporter plasmids into tissue culture cell lines yielded expression in erythroid, but not muscle, neural, or HeLa cells. Electrophoretic mobility shift assays, including competition and antibody supershift experiments, demonstrated binding of GATA-1, BKLF, and Sp1 to core ankyrin promoter sequences. In transfection assays, mutation of the Sp1 site had no effect on reporter gene expression, mutation of the CACCC site decreased expression by half, and mutation of the GATA-1 site completely abolished activity. The ankyrin gene erythroid promoter was transactivated in heterologous cells by forced expression of GATA-1 and to a lesser degree BKLF.
Collapse
|
33
|
Sp1 and C/EBP are necessary to activate the lactoferrin gene promoter during myeloid differentiation. Blood 2000. [DOI: 10.1182/blood.v95.12.3734] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
AbstractIn this study, we sought to identify factors responsible for the positive modulation of lactoferrin (LF), a neutrophil-specific, secondary-granule protein gene. Initial reporter gene transfection assays indicated that the first 89 base pairs of the LF promoter are capable of directing myeloid-specific LF gene expression. The presence of a C/EBP site flanked by 2 Sp1 sites within this segment of the LF promoter prompted us to investigate the possible role of these sites in LF expression. Cotransfection studies of LF-89luc plasmid with increasing concentrations of a C/EBP expression vector in myeloid cells resulted in a linear transactivation of luciferase reporter activity. Electrophoretic mobility shift assays found that the C/EBP site is recognized by C/EBP and that both LF Sp1 binding sites bind the Sp1 transcription factor specifically in myeloid cells. Mutation of either Sp1 site markedly reduced activity of the LF-89luc plasmid in myeloid cells, and neither Sp1 mutant plasmid was transactivated by a C/EBP expression plasmid to the same extent as wild-type LF-89luc. We also transfected LF-89luc into Drosophila Schneider cells, which do not express endogenous Sp1, and demonstrated up-regulation of luciferase activity in response to a cotransfected Sp1 expression plasmid, as well as to a C/EBP expression plasmid. Furthermore, cotransfection of LF-89luc plasmid simultaneously with C/EBP and Sp1 expression plasmids resulted in an increase in luciferase activity greater than that induced by either factor alone. Taken together, these observations indicate a functional interaction between C/EBP and Sp1 in mediating LF expression.
Collapse
|
34
|
Abstract
In this study, we sought to identify factors responsible for the positive modulation of lactoferrin (LF), a neutrophil-specific, secondary-granule protein gene. Initial reporter gene transfection assays indicated that the first 89 base pairs of the LF promoter are capable of directing myeloid-specific LF gene expression. The presence of a C/EBP site flanked by 2 Sp1 sites within this segment of the LF promoter prompted us to investigate the possible role of these sites in LF expression. Cotransfection studies of LF-89luc plasmid with increasing concentrations of a C/EBP expression vector in myeloid cells resulted in a linear transactivation of luciferase reporter activity. Electrophoretic mobility shift assays found that the C/EBP site is recognized by C/EBP and that both LF Sp1 binding sites bind the Sp1 transcription factor specifically in myeloid cells. Mutation of either Sp1 site markedly reduced activity of the LF-89luc plasmid in myeloid cells, and neither Sp1 mutant plasmid was transactivated by a C/EBP expression plasmid to the same extent as wild-type LF-89luc. We also transfected LF-89luc into Drosophila Schneider cells, which do not express endogenous Sp1, and demonstrated up-regulation of luciferase activity in response to a cotransfected Sp1 expression plasmid, as well as to a C/EBP expression plasmid. Furthermore, cotransfection of LF-89luc plasmid simultaneously with C/EBP and Sp1 expression plasmids resulted in an increase in luciferase activity greater than that induced by either factor alone. Taken together, these observations indicate a functional interaction between C/EBP and Sp1 in mediating LF expression.
Collapse
|
35
|
Hernández I, de la Torre P, Rey-Campos J, Garcia I, Sánchez JA, Muñoz R, Rippe RA, Muñoz-Yagüe T, Solís-Herruzo JA. Collagen alpha1(I) gene contains an element responsive to tumor necrosis factor-alpha located in the 5' untranslated region of its first exon. DNA Cell Biol 2000; 19:341-52. [PMID: 10882233 DOI: 10.1089/10445490050043317] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The aims of the present study were to identify the cis-acting element through which tumor necrosis factor-alpha (TNFalpha) inhibits collagen alpha1(I) gene transcription and the trans-acting factors involved in this effect in cultured hepatic stellate cells. Deletion analysis of the collagen alpha1(I) promoter demonstrated that TNFalpha inhibited gene expression through an element located between -59 and + 116 bp relative to the transcription start site. DNase I protection assays revealed a footprint between +68 and +86 bp of the collagen first exon, the intensity of which decreased when the DNA probe was incubated with nuclear protein from TNFalpha-treated hepatic stellate cells. This footprint contained a G+C-rich box. Transfection experiments demonstrated that mutations in this G+C-rich element abrogated the inhibitory effect of TNFalpha on the collagen alpha1(I) promoter. Gel retardation experiments using a radiolabeled oligonucleotide containing sequences of this region confirmed that TNFalpha treatment decreased the formation of two complexes between nuclear proteins and DNA. These complexes were efficiently blocked with an oligonucleotide containing an Spl-binding site and were supershifted with specific Spl and Sp3 antibodies. These results suggest that TNFalpha inhibits collagen alpha1(I) gene expression by decreasing the binding of Spl to a G+C-rich box in the 5' untranslated region of its first exon.
Collapse
Affiliation(s)
- I Hernández
- Centro de Investigación del Hospital 12 de Octubre, School of Medicine, Universidad Complutense, Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
The Nuclear Factor I (NFI) family of site-specific DNA-binding proteins (also known as CTF or CAAT box transcription factor) functions both in viral DNA replication and in the regulation of gene expression. The classes of genes whose expression is modulated by NFI include those that are ubiquitously expressed, as well as those that are hormonally, nutritionally, and developmentally regulated. The NFI family is composed of four members in vertebrates (NFI-A, NFI-B, NFI-C and NFI-X), and the four NFI genes are expressed in unique, but overlapping, patterns during mouse embryogenesis and in the adult. Transcripts of each NFI gene are differentially spliced, yielding as many as nine distinct proteins from a single gene. Products of the four NFI genes differ in their abilities to either activate or repress transcription, likely through fundamentally different mechanisms. Here, we will review the properties of the NFI genes and proteins and their known functions in gene expression and development.
Collapse
Affiliation(s)
- R M Gronostajski
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, Case Western Reserve University, OH 44195, USA.
| |
Collapse
|
37
|
Noti JD, Johnson AK, Dillon JD. Structural and functional characterization of the leukocyte integrin gene CD11d. Essential role of Sp1 and Sp3. J Biol Chem 2000; 275:8959-69. [PMID: 10722744 DOI: 10.1074/jbc.275.12.8959] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
CD11d encodes the latest alpha-subunit of the leukocyte integrin family to be discovered, and it is expressed predominantly in myelomonocytic cells. We have isolated a genomic clone that contains CD11d and showed this gene to be 11,461 bp downstream and oriented in the same direction as the related CD11c gene. CD11d transcription begins 69-79 nucleotides upstream of the ATG codon. Transfection analysis of CD11d-luc reporter constructs revealed that the -173 to +74 region is sufficient to confer leukocyte-specific expression of luciferase in myelomonocytic cells (THP1 and HL60), B-cells (IM9), and T-cells (Jurkat). Transfection analysis showed that down-regulation of CD11d expression by phorbol ester was myelomonocyte-specific and is mediated by one or more cis-elements within the -173 to +74 region. In vitro DNase I footprint analysis and electrophoretic mobility shift analysis showed that Sp1 and Sp3 bind at -63 to -40. Deletion of the Sp-binding site significantly reduced CD11d promoter activity. Overexpression of either Sp1 or Sp3 in THP1 cells led to activation of the CD11d promoter even in the presence of phorbol ester, whereas down-regulation of either factor by antisense oligonucleotides decreased CD11d promoter activity. In contrast, overexpression of Sp3 in IM9 and Jurkat cells down-regulated CD11d promoter expression. In vivo genomic footprinting revealed that the -63 to -40 region is bound by a Sp protein in unstimulated HL60 cells but not in phorbol ester-stimulated HL60 cells. In contrast, this site is bound in both unstimulated and phorbol ester-stimulated IM9 and Jurkat cells. Together, these results show that myelomonocyte-specific phorbol ester down-regulation of CD11d is mediated through both Sp1 and Sp3.
Collapse
Affiliation(s)
- J D Noti
- Guthrie Research Institute, Sayre, Pennsylvania 18840, USA.
| | | | | |
Collapse
|
38
|
Dachet C, Poirier O, Cambien F, Chapman J, Rouis M. New functional promoter polymorphism, CETP/-629, in cholesteryl ester transfer protein (CETP) gene related to CETP mass and high density lipoprotein cholesterol levels: role of Sp1/Sp3 in transcriptional regulation. Arterioscler Thromb Vasc Biol 2000; 20:507-15. [PMID: 10669650 DOI: 10.1161/01.atv.20.2.507] [Citation(s) in RCA: 133] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A new polymorphism located at position -629 (CETP/-629A/C) in the promoter of the cholesteryl ester transfer protein (CETP) gene is described. The -629A allele was associated with lower CETP mass (P<0. 0001) and higher high density lipoprotein cholesterol (P<0.001) than the C allele in a sample of 536 control subjects from the ECTIM study. Transfection studies in HepG2 cells with a luciferase expression vector incorporating a 777-bp fragment of the CETP promoter and containing either A or C at position -629 showed significantly lower luciferase activity with the promoter fragment of the A allele (-25%, P<0.05). By gel-shift assay, DNA-protein interactions were evaluated in nuclear extracts of HepG2 cells with the use of 2 probes (A or C probe) composed of 20 bp of the promoter sequence surrounding the polymorphic site. Two specific complexes of distinct migration rate were identified with the A and the C probe. Competition with an excess of oligonucleotide containing the Sp1 consensus binding site showed that a protein(s) of the Sp transcription factor family was implicated in complex formation with the A probe but not with the C probe. Incubation with specific antibodies indicated that Sp1 and Sp3 bound specifically to the A probe. We introduced mutations in the -629-Sp1 binding site to test its functionality and to define the characteristics of transcription factor binding. We showed, by gel-shift assay, that no nuclear proteins bound to the mutated sequence. Transient transfection of HepG2 cells revealed that the expression of the mutated fragment was significantly increased compared with that of the A promoter fragment (25%, P<0.05). The mutated fragment displayed the same activity as that of the C promoter. These results indicate that Sp1 and/or Sp3 repress CETP promoter activity, whereas nuclear factors binding the C allele are without effect on promoter expression.
Collapse
Affiliation(s)
- C Dachet
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité 321, Hopital de la Pitié-Salpétrière, Paris, France.
| | | | | | | | | |
Collapse
|
39
|
Rustighi A, Mantovani F, Fusco A, Giancotti V, Manfioletti G. Sp1 and CTF/NF-1 transcription factors are involved in the basal expression of the Hmgi-c proximal promoter. Biochem Biophys Res Commun 1999; 265:439-47. [PMID: 10558886 DOI: 10.1006/bbrc.1999.1680] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
HMGI-C is a nuclear architectural factor which is expressed during embryogenesis but not in adult tissues while it becomes re-expressed following neoplastic transformation. In this paper we identify the promoter region of the mouse Hmgi-c gene and by stepwise deletion of the 5' sequences we map the promoter activity of the most abundant transcript to a very short fragment containing a long polypyrimidine/polypurine (ppyr/ppur) tract. We demonstrate that this tract is a multiple binding site for the transcription factors Sp1 and Sp3 and that in Drosophila SL2 cells, Sp1 activates the Hmgi-c promoter. In addition, another transcription factor, CTF/NF-1, binds the proximal promoter immediately downstream of this region and its mutation decreases transcription in NIH-3T3 cells. This study identifies factors responsible for the basal activity of Hmgi-c gene and provides a foundation for further analysis of the mechanism of its regulation.
Collapse
Affiliation(s)
- A Rustighi
- Dipartimento di Biochimica, Biofisica e Chimica delle Macromolecole, Università di Trieste, Trieste, Italy
| | | | | | | | | |
Collapse
|
40
|
Pengue G, Srivastava AK, Kere J, Schlessinger D, Durmowicz MC. Functional characterization of the promoter of the X-linked ectodermal dysplasia gene. J Biol Chem 1999; 274:26477-84. [PMID: 10473608 DOI: 10.1074/jbc.274.37.26477] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Anhidrotic ectodermal dysplasia (EDA) is a disorder characterized by poor development of hair, teeth, and sweat glands, and results from lesions in the X-linked EDA gene. We have cloned a 1.6-kilobase 5'-flanking region of the human EDA gene and used it to analyze features of transcriptional regulation. Primer extension analysis located a single transcription initiation site 264 base pairs (bp) upstream of the translation start site. When the intact cloned fragment or truncated derivatives were placed upstream of a reporter luciferase gene and transfected into a series of cultured cells, expression comparable with that conferred by an SV40 promoter-enhancer was observed. The region lacks a TATA box sequence, and basal transcription from the unique start site is dependent on two binding sites for the Sp1 transcription factor. One site lies 38 bp 5' to the transcription start site, in a 71-bp sequence that is sufficient to support up to 35% of maximal transcription. The functional importance of the Sp1 sites was demonstrated when cotransfection of an Sp1 expression vector transactivated the EDA promoter in the SL2 Drosophila cell line that otherwise lacks endogenous Sp1. Also, both Sp1 binding sites were active in footprinting and gel shift assays in the presence of either crude HeLa cell nuclear extract or purified Sp1 and lost activity when the binding sites were mutated. A second region involved in positive control was localized to a 40-bp sequence between -673 and -633 bp. This region activated an SV40 minimal promoter 4- to 5-fold in an orientation-independent manner and is thus inferred to contain an enhancer region.
Collapse
Affiliation(s)
- G Pengue
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | |
Collapse
|
41
|
Petit L, Lesnik P, Dachet C, Hugou I, Moreau M, Chapman J, Rouis M. The promoter of human tissue factor pathway inhibitor gene: identification of potential regulatory elements. Thromb Res 1999; 95:255-62. [PMID: 10515290 DOI: 10.1016/s0049-3848(99)00040-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Tissue factor pathway inhibitor is the major potent physiologic inhibitor of tissue factor-induced coagulation. Several potential binding sites for transcription factors have been described in the 750 bp of the 5' flanking region of the human tissue factor pathway inhibitor gene reported earlier. To identify elements that regulate the expression of tissue factor pathway inhibitor in endothelial, hepatocyte, and monocyte cells, the sequence of an additional 770 bp of tissue factor pathway inhibitor was determined. Comparison of this new sequence as well as that reported earlier with consensus sequences for transcription factor binding sites provided matches for GATA-2, SP1, and c-Myc sequences. Moreover, plasmids containing deletion mutants of the 5' tissue factor pathway inhibitor promoter region and the luciferase reporter gene were transfected into HepG2, ECV304, and THP1 cells. Three negative regulatory elements were localized between -548 to -390, - 390 to -75, and -1158 to -796 relative to the transcriptional start, respectively, in HepG2, ECV304 and THP-1 cells.
Collapse
Affiliation(s)
- L Petit
- Institut National de la Santé et de la Recherche Médicale, Unité 321, Lipoproteins and Atherogenesis, Hôpital de la Pitié-Salpêtrière, Paris, France
| | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
Cyclin D3 plays a major role in the development of polyploidy in megakaryocytes. The expression of cyclin D3 gene and the level of cyclin D3 protein are increased by the Mpl ligand in the Y10/L8057 megakaryocytic cell line, as indicated by Northern and Western blot analyses, and by nuclear run-on assays and transfection experiments with cyclin D3 promoter constructs. DNase I footprinting of the promoter region showed protected segments, at −75 to −60 bp and at −134 to −92 bp, which display binding sites for the Sp family of transcription factors. Gel mobility shift assay and supershifts with specific antibodies indicate that Sp1 binds to these regions in the cyclin D3 promoter and that Sp1 binding activity is significantly increased by Mpl ligand. Mutation of either Sp1 site both decreases the basal promoter activity and eliminates the induction by Mpl ligand. We find that the nonphosphorylated form of SP1 has greater affinity for the cyclin D3 promoter and that the majority of Sp1 in the cells is nonphosphorylated. Mpl ligand treatment results in increased levels of Sp1 protein, which also appears as nonphosphorylated. Okadaic acid, which inhibits protein phosphatase 1 (PP1) and shifts Sp1 to a phosphorylated form, decreases cyclin D3 gene expression and suppresses Mpl ligand induction. Our data point to the potential of Mpl ligand to activate at once several Sp1-dependent genes during megakaryopoiesis.
Collapse
|
43
|
Mpl Ligand Enhances the Transcription of the Cyclin D3 Gene: A Potential Role for Sp1 Transcription Factor. Blood 1999. [DOI: 10.1182/blood.v93.12.4208] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractCyclin D3 plays a major role in the development of polyploidy in megakaryocytes. The expression of cyclin D3 gene and the level of cyclin D3 protein are increased by the Mpl ligand in the Y10/L8057 megakaryocytic cell line, as indicated by Northern and Western blot analyses, and by nuclear run-on assays and transfection experiments with cyclin D3 promoter constructs. DNase I footprinting of the promoter region showed protected segments, at −75 to −60 bp and at −134 to −92 bp, which display binding sites for the Sp family of transcription factors. Gel mobility shift assay and supershifts with specific antibodies indicate that Sp1 binds to these regions in the cyclin D3 promoter and that Sp1 binding activity is significantly increased by Mpl ligand. Mutation of either Sp1 site both decreases the basal promoter activity and eliminates the induction by Mpl ligand. We find that the nonphosphorylated form of SP1 has greater affinity for the cyclin D3 promoter and that the majority of Sp1 in the cells is nonphosphorylated. Mpl ligand treatment results in increased levels of Sp1 protein, which also appears as nonphosphorylated. Okadaic acid, which inhibits protein phosphatase 1 (PP1) and shifts Sp1 to a phosphorylated form, decreases cyclin D3 gene expression and suppresses Mpl ligand induction. Our data point to the potential of Mpl ligand to activate at once several Sp1-dependent genes during megakaryopoiesis.
Collapse
|
44
|
Bakovic M, Waite K, Tang W, Tabas I, Vance DE. Transcriptional activation of the murine CTP:phosphocholine cytidylyltransferase gene (Ctpct): combined action of upstream stimulatory and inhibitory cis-acting elements. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1438:147-65. [PMID: 10216289 DOI: 10.1016/s1388-1981(99)00042-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
CTP:phosphocholine cytidylyltransferase plays a key role in regulating the rate of phosphatidylcholine biosynthesis. However, the proximal regulatory elements for the gene (Ctpct) that encode this enzyme and the cognate transcription factors involved have not been characterized. Ctpct promoter activities were deduced from promoter deletion constructs linked to a luciferase reporter and transiently transfected into C3H10T1/2 and McArdle RH7777 cells. Positive regulatory elements were located between -130 and -52 bp from the transcription start site. Basal expression resided downstream between -52 and +38 bp. DNase I protection and electromobility-shift assays indicated that Sp1-related nuclear factors bind to a stimulatory, a possible inhibitory and minimal promoter element. Gel-shift assays confirmed that all three regulatory regions bound Sp1. Sp1 was further implicated when Sp1-deficient Drosophila cells were co-transfected with promoter-reporter constructs and an Sp1 construct. DNase I assays also indicated that the Ap1 binding elements could be occupied in the proximal activator and minimal promoter regions. Gel-shift assays demonstrated that the distal activator region could bind Ap1 and an unknown transcription factor. We conclude that Sp1, Ap1 and an unknown transcription factor have important roles in regulating expression of the Ctpct gene.
Collapse
Affiliation(s)
- M Bakovic
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, T6G 2S2, Canada
| | | | | | | | | |
Collapse
|
45
|
Gallagher PG, Sabatino DE, Romana M, Cline AP, Garrett LJ, Bodine DM, Forget BG. A human beta-spectrin gene promoter directs high level expression in erythroid but not muscle or neural cells. J Biol Chem 1999; 274:6062-73. [PMID: 10037687 DOI: 10.1074/jbc.274.10.6062] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
beta-Spectrin is an erythrocyte membrane protein that is defective in many patients with abnormalities of red blood cell shape including hereditary spherocytosis and elliptocytosis. It is expressed not only in erythroid tissues but also in muscle and brain. We wished to determine the regulatory elements that determine the tissue-specific expression of the beta-spectrin gene. We mapped the 5'-end of the beta-spectrin erythroid cDNA and cloned the 5'-flanking genomic DNA containing the putative beta-spectrin gene promoter. Using transfection of promoter/reporter plasmids in human tissue culture cell lines, in vitro DNase I footprinting analyses, and gel mobility shift assays, a beta-spectrin gene erythroid promoter with two binding sites for GATA-1 and one site for CACCC-related proteins was identified. All three binding sites were required for full promoter activity; one of the GATA-1 motifs and the CACCC-binding motif were essential for activity. The beta-spectrin gene promoter was able to be transactivated in heterologous cells by forced expression of GATA-1. In transgenic mice, a reporter gene directed by the beta-spectrin promoter was expressed in erythroid tissues at all stages of development. Only weak expression of the reporter gene was detected in muscle and brain tissue, suggesting that additional regulatory elements are required for high level expression of the beta-spectrin gene in these tissues.
Collapse
Affiliation(s)
- P G Gallagher
- Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut 06520-8021, USA.
| | | | | | | | | | | | | |
Collapse
|
46
|
Selective Sp1 Binding Is Critical for Maximal Activity of the Human c-kit Promoter. Blood 1998. [DOI: 10.1182/blood.v92.11.4138.423k44_4138_4149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The receptor tyrosine kinase c-kit is necessary for normal hematopoiesis, the development of germ cells and melanocytes, and the pathogenesis of certain hematologic and nonhematologic malignancies. To better understand the regulation of the c-kit gene, a detailed analysis of the core promoter was performed. Rapid amplification of cDNA ends (RACE) and RNase protection methods showed two major transcriptional initiation sites. Luciferase reporter assays using 5′ promoter deletion-reporter constructs containing up to 3 kb of 5′ sequence were performed in hematopoietic and small-cell lung cancer cell lines which either did or did not express the endogenous c-kit gene. This analysis showed the region 83 to 124 bp upstream of the 5′ transcription initiation site was crucial for maximal core promoter activity. Sequence analysis showed several potential Sp1 binding sites within this highly GC-rich region. Gel shift and DNase footprinting showed that Sp1 selectively bound to a single site within this region. Supershift studies using an anti-Sp1 antibody confirmed specific Sp1 binding. Site-directed mutagenesis of the −93/−84 Sp1 binding site reduced promoter-reporter activity to basal levels in c-kit–expressing cells. Cotransfection into DrosophilaSL2 cells of a c-kit promoter-reporter construct with an Sp1 expression vector showed an Sp1 dose-dependent enhancement of expression that was markedly attenuated by mutation of the −93/−84 site. These results indicate that despite the fact that the human c-kit promoter contains multiple potential Sp1 sites, Sp1 binding is a selective process that is essential for core promoter activity.
Collapse
|
47
|
Abstract
AbstractThe receptor tyrosine kinase c-kit is necessary for normal hematopoiesis, the development of germ cells and melanocytes, and the pathogenesis of certain hematologic and nonhematologic malignancies. To better understand the regulation of the c-kit gene, a detailed analysis of the core promoter was performed. Rapid amplification of cDNA ends (RACE) and RNase protection methods showed two major transcriptional initiation sites. Luciferase reporter assays using 5′ promoter deletion-reporter constructs containing up to 3 kb of 5′ sequence were performed in hematopoietic and small-cell lung cancer cell lines which either did or did not express the endogenous c-kit gene. This analysis showed the region 83 to 124 bp upstream of the 5′ transcription initiation site was crucial for maximal core promoter activity. Sequence analysis showed several potential Sp1 binding sites within this highly GC-rich region. Gel shift and DNase footprinting showed that Sp1 selectively bound to a single site within this region. Supershift studies using an anti-Sp1 antibody confirmed specific Sp1 binding. Site-directed mutagenesis of the −93/−84 Sp1 binding site reduced promoter-reporter activity to basal levels in c-kit–expressing cells. Cotransfection into DrosophilaSL2 cells of a c-kit promoter-reporter construct with an Sp1 expression vector showed an Sp1 dose-dependent enhancement of expression that was markedly attenuated by mutation of the −93/−84 site. These results indicate that despite the fact that the human c-kit promoter contains multiple potential Sp1 sites, Sp1 binding is a selective process that is essential for core promoter activity.
Collapse
|
48
|
Abstract
Coproporphyrinogen oxidase (CPO) catalyzes the sixth step of the heme biosynthetic pathway. To assess the tissue-specific regulation of the CPO gene promoter, mouse genomic DNA clones for CPO were isolated. Structural analysis demonstrated that the mouse CPO gene spans approximately 11 kb and consists of seven exons, just like its human counterpart. Functional analysis of the promoter by transient transfection assays indicated that synergistic action between an SP-1–like element at −21/−12, a GATA site at −59/−54, and a novel regulatory element, CPRE (-GGACTACAG-) at −49/−41, is essential for the promoter activity in murine erythroleukemia (MEL) cells. In nonerythroid NIH3T3 cells, however, the GATA site is not required. Gel mobility shift assays demonstrated that specific DNA-protein complexes can be formed with each element, and that there are cell-specific differences in factors, which bind to the SP-1–like element between MEL and NIH3T3 cells. These results provide evidence for differential regulation of the promoter function of CPO gene between erythroid and nonerythroid cells.© 1998 by The American Society of Hematology.
Collapse
|
49
|
Differential Regulation of Coproporphyrinogen Oxidase Gene Between Erythroid and Nonerythroid Cells. Blood 1998. [DOI: 10.1182/blood.v92.9.3436] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractCoproporphyrinogen oxidase (CPO) catalyzes the sixth step of the heme biosynthetic pathway. To assess the tissue-specific regulation of the CPO gene promoter, mouse genomic DNA clones for CPO were isolated. Structural analysis demonstrated that the mouse CPO gene spans approximately 11 kb and consists of seven exons, just like its human counterpart. Functional analysis of the promoter by transient transfection assays indicated that synergistic action between an SP-1–like element at −21/−12, a GATA site at −59/−54, and a novel regulatory element, CPRE (-GGACTACAG-) at −49/−41, is essential for the promoter activity in murine erythroleukemia (MEL) cells. In nonerythroid NIH3T3 cells, however, the GATA site is not required. Gel mobility shift assays demonstrated that specific DNA-protein complexes can be formed with each element, and that there are cell-specific differences in factors, which bind to the SP-1–like element between MEL and NIH3T3 cells. These results provide evidence for differential regulation of the promoter function of CPO gene between erythroid and nonerythroid cells.© 1998 by The American Society of Hematology.
Collapse
|
50
|
Yang J, Riley M, Thomas K. Cell-type-specific transcription factor interactions with cis-elements present in the mouse LDH/C proximal promoter region. ACTA ACUST UNITED AC 1998. [DOI: 10.1002/(sici)1097-010x(199809/10)282:1/2<179::aid-jez20>3.0.co;2-o] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|