1
|
Wu M, Xiong Y, Cao M, Zhi Y, Jin Y, Huang Y, Chen JH. A cluster of inhibitory residues in the regulatory domain prevents activation of the cystic fibrosis transmembrane conductance regulator. J Biol Chem 2025; 301:108460. [PMID: 40154618 DOI: 10.1016/j.jbc.2025.108460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/21/2025] [Accepted: 03/24/2025] [Indexed: 04/01/2025] Open
Abstract
Activation of the cystic fibrosis transmembrane conductance regulator (CFTR) Cl‒ channel requires PKA phosphorylation at the regulatory (R) domain to relieve inhibition of ATP-dependent channel activity. This study aimed to identify the primary inhibitory site that prevents channel activation. CFTR mutants with deletion of residues 760 to 783 (ΔR760-783) elicited constitutive macroscopic and single-channel Cl‒ currents in the presence of ATP before PKA phosphorylation, suggesting that protein segment R760-783 in the R domain blocks CFTR activation. With the background of ΔR760-835, further deletion of R708-759 led to fully active channels in the presence of ATP, but the absence of PKA, suggesting that R708-759 prevents the activation of ΔR760-835-CFTR. R760-783 peptides were unstructured in buffered solutions in CD spectroscopy and the N771P mutation that interrupts the α-helix formation induced no apparent constitutive current before PKA phosphorylation. These data suggest that interpeptide interactions by α-helices likely contribute trivially to the blocking effect of R760-783. CFTR mutants with small deletions or alanine replacements containing any one of residues R766 and S768 in a PKA consensus sequence and M773 and T774 generated PKA-independent CFTR Cl‒ currents. Similarly, introducing the mutations Q767C or T774C into a control CFTR construct produced constitutive CFTR Cl‒ currents by positively charged 2-(trimethylammonium)ethylmethanethiosulfonate modification of target cysteines. Moreover, PKA-independent single-channel activity was evidently observed in R766K-, S768K-, and T774K-CFTR mutants. Therefore, the four residues, R766, S768, M773, and T774, may form an inhibitory module that precludes CFTR activation through side-chain interactions. This inhibitory mechanism might be emulated by other PKA-dependent proteins.
Collapse
Affiliation(s)
- Min Wu
- College of Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang Province, China
| | - Yawei Xiong
- Department of Applied Science, College of William & Mary, Williamsburg, Virginia, USA
| | - Mengyuan Cao
- College of Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang Province, China
| | - Yunqi Zhi
- College of Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang Province, China
| | - Yan Jin
- Department of Gynecology and Obstetrics, Jinhua People's Hospital, Jinhua, Zhejiang Province, China
| | - Yizhen Huang
- School of Information Engineering, Jinhua Polytechnic University, Jinhua, Zhejiang, China
| | - Jeng-Haur Chen
- College of Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang Province, China; Departments of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA; Howard Hughes Medical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA.
| |
Collapse
|
2
|
Fiedorczuk K, Iordanov I, Mihályi C, Szollosi A, Csanády L, Chen J. The structures of protein kinase A in complex with CFTR: Mechanisms of phosphorylation and noncatalytic activation. Proc Natl Acad Sci U S A 2024; 121:e2409049121. [PMID: 39495916 PMCID: PMC11573500 DOI: 10.1073/pnas.2409049121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 10/03/2024] [Indexed: 11/06/2024] Open
Abstract
Protein kinase A (PKA) is a key regulator of cellular functions by selectively phosphorylating numerous substrates, including ion channels, enzymes, and transcription factors. It has long served as a model system for understanding the eukaryotic kinases. Using cryoelectron microscopy, we present complex structures of the PKA catalytic subunit (PKA-C) bound to a full-length protein substrate, the cystic fibrosis transmembrane conductance regulator (CFTR)-an ion channel vital to human health. CFTR gating requires phosphorylation of its regulatory (R) domain. Unphosphorylated CFTR engages PKA-C at two locations, establishing two "catalytic stations" near to, but not directly involving, the R domain. This configuration, coupled with the conformational flexibility of the R domain, permits transient interactions of the eleven spatially separated phosphorylation sites. Furthermore, we determined two structures of the open-pore CFTR stabilized by PKA-C, providing a molecular basis to understand how PKA-C stimulates CFTR currents even in the absence of phosphorylation.
Collapse
Affiliation(s)
- Karol Fiedorczuk
- Laboratory of Membrane Biology and Biophysics, The Rockefeller University, New York, NY 10065
| | - Iordan Iordanov
- Department of Biochemistry, Semmelweis University, Budapest H-1094, Hungary
- Ion Channel Research Group, Hungarian Research Network - Semmelweis University, Budapest H-1094, Hungary
| | - Csaba Mihályi
- Department of Biochemistry, Semmelweis University, Budapest H-1094, Hungary
- Ion Channel Research Group, Hungarian Research Network - Semmelweis University, Budapest H-1094, Hungary
| | - Andras Szollosi
- Department of Biochemistry, Semmelweis University, Budapest H-1094, Hungary
- Ion Channel Research Group, Hungarian Research Network - Semmelweis University, Budapest H-1094, Hungary
| | - László Csanády
- Department of Biochemistry, Semmelweis University, Budapest H-1094, Hungary
- Ion Channel Research Group, Hungarian Research Network - Semmelweis University, Budapest H-1094, Hungary
| | - Jue Chen
- Laboratory of Membrane Biology and Biophysics, The Rockefeller University, New York, NY 10065
- HHMI, Chevy Chase, MD 20815
| |
Collapse
|
3
|
Gao X, Yeh HI, Yang Z, Fan C, Jiang F, Howard RJ, Lindahl E, Kappes JC, Hwang TC. Allosteric inhibition of CFTR gating by CFTRinh-172 binding in the pore. Nat Commun 2024; 15:6668. [PMID: 39107303 PMCID: PMC11303713 DOI: 10.1038/s41467-024-50641-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 07/09/2024] [Indexed: 08/10/2024] Open
Abstract
Loss-of-function mutations of the CFTR gene cause the life-shortening genetic disease cystic fibrosis (CF), whereas overactivity of CFTR may lead to secretory diarrhea and polycystic kidney disease. While effective drugs targeting the CFTR protein have been developed for the treatment of CF, little progress has been made for diseases caused by hyper-activated CFTR. Here, we solve the cryo-EM structure of CFTR in complex with CFTRinh-172 (Inh-172), a CFTR gating inhibitor with promising potency and efficacy. We find that Inh-172 binds inside the pore of CFTR, interacting with amino acid residues from transmembrane segments (TMs) 1, 6, 8, 9, and 12 through mostly hydrophobic interactions and a salt bridge. Substitution of these residues lowers the apparent affinity of Inh-172. The inhibitor-bound structure reveals re-orientations of the extracellular segment of TMs 1, 8, and 12, supporting an allosteric modulation mechanism involving post-binding conformational changes. This allosteric inhibitory mechanism readily explains our observations that pig CFTR, which preserves all the amino acid residues involved in Inh-172 binding, exhibits a much-reduced sensitivity to Inh-172 and that the apparent affinity of Inh-172 is altered by the CF drug ivacaftor (i.e., VX-770) which enhances CFTR's activity through binding to a site also comprising TM8.
Collapse
Affiliation(s)
- Xiaolong Gao
- Dalton Cardiovascular Research Center, University of Missouri-Columbia, Columbia, MO, 65211, USA.
| | - Han-I Yeh
- Dalton Cardiovascular Research Center, University of Missouri-Columbia, Columbia, MO, 65211, USA
- Institute of Pharmacology, National Yang Ming Chiao Tung University, College of Medicine, Taipei, Taiwan
- Membrane Protein Structural Biology Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Zhengrong Yang
- Heersink School of Medicine, University of Alabama School of Medicine, Birmingham, AL, 35233, USA
| | - Chen Fan
- Department of Applied Physics, Science for Life Laboratory, KTH Royal Institute of Technology, Solna, Sweden
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Solna, Sweden
| | - Fan Jiang
- Heersink School of Medicine, University of Alabama School of Medicine, Birmingham, AL, 35233, USA
| | - Rebecca J Howard
- Department of Applied Physics, Science for Life Laboratory, KTH Royal Institute of Technology, Solna, Sweden
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Solna, Sweden
| | - Erik Lindahl
- Department of Applied Physics, Science for Life Laboratory, KTH Royal Institute of Technology, Solna, Sweden
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Solna, Sweden
| | - John C Kappes
- Heersink School of Medicine, University of Alabama School of Medicine, Birmingham, AL, 35233, USA
- Research Service, Birmingham Veterans Affairs Medical Center, Veterans Health Administration, Birmingham, AL, 35233, USA
| | - Tzyh-Chang Hwang
- Dalton Cardiovascular Research Center, University of Missouri-Columbia, Columbia, MO, 65211, USA.
- Institute of Pharmacology, National Yang Ming Chiao Tung University, College of Medicine, Taipei, Taiwan.
- Membrane Protein Structural Biology Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
4
|
Khandelwal NK, Tomasiak TM. Structural basis for autoinhibition by the dephosphorylated regulatory domain of Ycf1. Nat Commun 2024; 15:2389. [PMID: 38493146 PMCID: PMC10944535 DOI: 10.1038/s41467-024-46722-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 03/01/2024] [Indexed: 03/18/2024] Open
Abstract
Yeast Cadmium Factor 1 (Ycf1) sequesters glutathione and glutathione-heavy metal conjugates into yeast vacuoles as a cellular detoxification mechanism. Ycf1 belongs to the C subfamily of ATP Binding Cassette (ABC) transporters characterized by long flexible linkers, notably the regulatory domain (R-domain). R-domain phosphorylation is necessary for activity, whereas dephosphorylation induces autoinhibition through an undefined mechanism. Because of its transient and dynamic nature, no structure of the dephosphorylated Ycf1 exists, limiting understanding of this R-domain regulation. Here, we capture the dephosphorylated Ycf1 using cryo-EM and show that the unphosphorylated R-domain indeed forms an ordered structure with an unexpected hairpin topology bound within the Ycf1 substrate cavity. This architecture and binding mode resemble that of a viral peptide inhibitor of an ABC transporter and the secreted bacterial WXG peptide toxins. We further reveal the subset of phosphorylation sites within the hairpin turn that drive the reorganization of the R-domain conformation, suggesting a mechanism for Ycf1 activation by phosphorylation-dependent release of R-domain mediated autoinhibition.
Collapse
Affiliation(s)
- Nitesh Kumar Khandelwal
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, 85721, USA
- Department of Biochemistry and Biophysics, University of California - San Francisco, San Francisco, CA, 94158, USA
| | - Thomas M Tomasiak
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, 85721, USA.
| |
Collapse
|
5
|
Csanády L. Blue flash sheds light on the roles of individual phosphoserines in CFTR channel activation. J Gen Physiol 2023; 155:e202313336. [PMID: 37017643 PMCID: PMC10082323 DOI: 10.1085/jgp.202313336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2023] Open
Abstract
Light-controlled availability for phosphorylation reveals dominant roles of select R-domain serines in CFTR channel activation.
Collapse
Affiliation(s)
- László Csanády
- Department of Biochemistry, Semmelweis University, Budapest, Hungary
- HCEMM-SE Molecular Channelopathies Research Group, Budapest, Hungary
- ELKH-SE Ion Channel Research Group, Budapest, Hungary
| |
Collapse
|
6
|
Infield DT, Schene ME, Fazan FS, Galles GD, Galpin JD, Ahern CA. Real-time observation of functional specialization among phosphorylation sites in CFTR. J Gen Physiol 2023; 155:e202213216. [PMID: 36695813 PMCID: PMC9930130 DOI: 10.1085/jgp.202213216] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 11/23/2022] [Accepted: 01/09/2023] [Indexed: 01/26/2023] Open
Abstract
Phosphoregulation is ubiquitous in biology. Defining the functional roles of individual phosphorylation sites within a multivalent system remains particularly challenging. We have therefore applied a chemical biology approach to light-control the state of single candidate phosphoserines in the canonical anion channel CFTR while simultaneously measuring channel activity. The data show striking non-equivalency among protein kinase A consensus sites, which vary from <10% to >1,000% changes in channel activity upon phosphorylation. Of note, slow phosphorylation of S813 suggests that this site is rate-limiting to the full activation of CFTR. Further, this approach reveals an unexpected coupling between the phosphorylation of S813 and a nearby site, S795. Overall, these data establish an experimental route to understanding roles of specific phosphoserines within complex phosphoregulatory domains. This strategy may be employed in the study of phosphoregulation of other eukaryotic proteins.
Collapse
Affiliation(s)
- Daniel T. Infield
- Department of Molecular Physiology and Biophysics and Iowa Neuroscience Institute, University of Iowa, Carver College of Medicine, Iowa, IA, USA
| | - Miranda E. Schene
- Department of Molecular Physiology and Biophysics and Iowa Neuroscience Institute, University of Iowa, Carver College of Medicine, Iowa, IA, USA
| | - Frederico S. Fazan
- Department of Molecular Physiology and Biophysics and Iowa Neuroscience Institute, University of Iowa, Carver College of Medicine, Iowa, IA, USA
| | - Grace D. Galles
- Department of Molecular Physiology and Biophysics and Iowa Neuroscience Institute, University of Iowa, Carver College of Medicine, Iowa, IA, USA
| | - Jason D. Galpin
- Department of Molecular Physiology and Biophysics and Iowa Neuroscience Institute, University of Iowa, Carver College of Medicine, Iowa, IA, USA
| | - Christopher A. Ahern
- Department of Molecular Physiology and Biophysics and Iowa Neuroscience Institute, University of Iowa, Carver College of Medicine, Iowa, IA, USA
| |
Collapse
|
7
|
Khandelwal NK, Millan CR, Zangari SI, Avila S, Williams D, Thaker TM, Tomasiak TM. The structural basis for regulation of the glutathione transporter Ycf1 by regulatory domain phosphorylation. Nat Commun 2022; 13:1278. [PMID: 35277487 PMCID: PMC8917219 DOI: 10.1038/s41467-022-28811-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 02/07/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractYeast Cadmium Factor 1 (Ycf1) sequesters heavy metals and glutathione into the vacuole to counter cell stress. Ycf1 belongs to the ATP binding cassette C-subfamily (ABCC) of transporters, many of which are regulated by phosphorylation on intrinsically-disordered domains. The regulatory mechanism of phosphorylation is still poorly understood. Here, we report two cryo-EM structures of Ycf1 at 3.4 Å and 4.0 Å resolution in inward-facing open conformations that capture previously unobserved ordered states of the intrinsically disordered regulatory domain (R-domain). R-domain phosphorylation is clearly evident and induces a topology promoting electrostatic and hydrophobic interactions with Nucleotide Binding Domain 1 (NBD1) and the Lasso motif. These interactions stay constant between the structures and are related by rigid body movements of the NBD1/R-domain complex. Biochemical data further show R-domain phosphorylation reorganizes the Ycf1 architecture and is required for maximal ATPase activity. Together, we provide insights into how R-domains control ABCC transporter activity.
Collapse
|
8
|
Della Sala A, Prono G, Hirsch E, Ghigo A. Role of Protein Kinase A-Mediated Phosphorylation in CFTR Channel Activity Regulation. Front Physiol 2021; 12:690247. [PMID: 34211404 PMCID: PMC8240754 DOI: 10.3389/fphys.2021.690247] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 05/10/2021] [Indexed: 11/17/2022] Open
Abstract
Cystic fibrosis transmembrane conductance regulator (CFTR) is an anion channel expressed on the apical membrane of epithelial cells, where it plays a pivotal role in chloride transport and overall tissue homeostasis. CFTR constitutes a unique member of the ATP-binding cassette transporter superfamily, due to its distinctive cytosolic regulatory (R) domain carrying multiple phosphorylation sites that allow the tight regulation of channel activity and gating. Mutations in the CFTR gene cause cystic fibrosis, the most common lethal autosomal genetic disease in the Caucasian population. In recent years, major efforts have led to the development of CFTR modulators, small molecules targeting the underlying genetic defect of CF and ultimately rescuing the function of the mutant channel. Recent evidence has highlighted that this class of drugs could also impact on the phosphorylation of the R domain of the channel by protein kinase A (PKA), a key regulatory mechanism that is altered in various CFTR mutants. Therefore, the aim of this review is to summarize the current knowledge on the regulation of the CFTR by PKA-mediated phosphorylation and to provide insights into the different factors that modulate this essential CFTR modification. Finally, the discussion will focus on the impact of CF mutations on PKA-mediated CFTR regulation, as well as on how small molecule CFTR regulators and PKA interact to rescue dysfunctional channels.
Collapse
Affiliation(s)
- Angela Della Sala
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | | | - Emilio Hirsch
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy.,Kither Biotech S.r.l, Turin, Italy
| | - Alessandra Ghigo
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy.,Kither Biotech S.r.l, Turin, Italy
| |
Collapse
|
9
|
Simple binding of protein kinase A prior to phosphorylation allows CFTR anion channels to be opened by nucleotides. Proc Natl Acad Sci U S A 2020; 117:21740-21746. [PMID: 32817533 PMCID: PMC7474675 DOI: 10.1073/pnas.2007910117] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) anion channel is essential for epithelial salt-water balance. CFTR mutations cause cystic fibrosis, a lethal incurable disease. In cells CFTR is activated through the cAMP signaling pathway, overstimulation of which during cholera leads to CFTR-mediated intestinal salt-water loss. Channel activation is achieved by phosphorylation of its regulatory (R) domain by cAMP-dependent protein kinase catalytic subunit (PKA). Here we show using two independent approaches--an ATP analog that can drive CFTR channel gating but is unsuitable for phosphotransfer by PKA, and CFTR mutants lacking phosphorylatable serines--that PKA efficiently opens CFTR channels through simple binding, under conditions that preclude phosphorylation. Unlike when phosphorylation happens, CFTR activation by PKA binding is completely reversible. Thus, PKA binding promotes release of the unphosphorylated R domain from its inhibitory position, causing full channel activation, whereas phosphorylation serves only to maintain channel activity beyond termination of the PKA signal. The results suggest two levels of CFTR regulation in cells: irreversible through phosphorylation, and reversible through R-domain binding to PKA--and possibly also to other members of a large network of proteins known to interact with the channel.
Collapse
|
10
|
Drosophila as a model for studying cystic fibrosis pathophysiology of the gastrointestinal system. Proc Natl Acad Sci U S A 2020; 117:10357-10367. [PMID: 32345720 DOI: 10.1073/pnas.1913127117] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Cystic fibrosis (CF) is a recessive disease caused by mutations in the CF transmembrane conductance regulator (CFTR) gene. The most common symptoms include progressive lung disease and chronic digestive conditions. CF is the first human genetic disease to benefit from having five different species of animal models. Despite the phenotypic differences among the animal models and human CF, these models have provided invaluable insight into understanding disease mechanisms at the organ-system level. Here, we identify a member of the ABCC4 family, CG5789, that has the structural and functional properties expected for encoding the Drosophila equivalent of human CFTR, and thus refer to it as Drosophila CFTR (Dmel\CFTR). We show that knockdown of Dmel\CFTR in the adult intestine disrupts osmotic homeostasis and displays CF-like phenotypes that lead to intestinal stem cell hyperplasia. We also show that expression of wild-type human CFTR, but not mutant variants of CFTR that prevent plasma membrane expression, rescues the mutant phenotypes of Dmel\CFTR Furthermore, we performed RNA sequencing (RNA-Seq)-based transcriptomic analysis using Dmel\CFTR fly intestine and identified a mucin gene, Muc68D, which is required for proper intestinal barrier protection. Altogether, our findings suggest that Drosophila can be a powerful model organism for studying CF pathophysiology.
Collapse
|
11
|
Chen JH. Protein kinase A phosphorylation potentiates cystic fibrosis transmembrane conductance regulator gating by relieving autoinhibition on the stimulatory C terminus of the regulatory domain. J Biol Chem 2020; 295:4577-4590. [PMID: 32102849 DOI: 10.1074/jbc.ra119.008427] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 02/25/2020] [Indexed: 01/12/2023] Open
Abstract
Cystic fibrosis transmembrane conductance regulator (CFTR) is a chloride channel activated by protein kinase A (PKA) phosphorylation on the regulatory (R) domain. Phosphorylation at several R domain residues stimulates ATP-dependent channel openings and closings, termed channel gating. To explore the protein segment responsible for channel potentiation and PKA-dependent activation, deletion mutations were constructed by removing one to three protein segments of the R domain including residues 708-759 (ΔR708-759), R760-783, and R784-835, each of which contains one or two PKA phosphorylation sites. Deletion of R708-759 or R760-783 had little effect on CFTR gating, whereas all mutations lacking R784-835 reduced CFTR activity by decreasing the mean burst duration and increasing the interburst interval (IBI). The data suggest that R784-835 plays a major role in stimulating CFTR gating. For ATP-associated regulation, ΔR784-835 had minor impact on gating potentiation by 2'dATP, CaATP, and pyrophosphate. Interestingly, introducing a phosphorylated peptide matching R809-835 shortened the IBI of ΔR708-835-CFTR. Consistently, ΔR815-835, but not ΔR784-814, enhanced IBI, whereas both reduced mean burst duration. These data suggest that the entirety of R784-835 is required for stabilizing the open state of CFTR; however, R815-835, through interactions with the channel, is dominant for enhancing the opening rate. Of note, PKA markedly decreased the IBI of ΔR708-783-CFTR. Conversely, the IBI of ΔR708-814-CFTR was short and PKA-independent. These data reveal that for stimulating CFTR gating, PKA phosphorylation may relieve R784-814-mediated autoinhibition that prevents IBI shortening by R815-835 This mechanism may elucidate how the R domain potentiates channel gating and may unveil CFTR stimulation by other protein kinases.
Collapse
Affiliation(s)
- Jeng-Haur Chen
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang Province 321004, China .,University of Hong Kong Shenzhen Institute of Research and Innovation, Shenzhen 518057, China .,Department of Internal Medicine and Howard Hughes Medical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242
| |
Collapse
|
12
|
Poroca DR, Amer N, Li A, Hanrahan JW, Chappe VM. Changes in the R-region interactions depend on phosphorylation and contribute to PKA and PKC regulation of the cystic fibrosis transmembrane conductance regulator chloride channel. FASEB Bioadv 2020; 2:33-48. [PMID: 32123855 PMCID: PMC6996395 DOI: 10.1096/fba.2019-00053] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 11/19/2019] [Indexed: 01/30/2023] Open
Abstract
The CFTR chloride channel is regulated by phosphorylation at PKA and PKC consensus sites within its regulatory region (R-region) through a mechanism, which is still not completely understood. We used a split-CFTR construct expressing the N-term-TMD1-NBD1 (Front Half; FH), TMD2-NBD2-C-Term (Back Half; BH), and the R-region as separate polypeptides (Split-R) in BHK cells, to investigate in situ how different phosphorylation conditions affect the R-region interactions with other parts of the protein. In proximity ligation assays, we studied the formation of complexes between the R-region and each half of the Split-CFTR. We found that at basal conditions, the density of complexes formed between the R-region and both halves of the split channel were equal. PKC stimulation alone had no effect, whereas PKA stimulation induced the formation of more complexes between the R-region and both halves compared to basal conditions. Moreover, PKC + PKA stimulation further enhanced the formation of FH-R complexes by 40% from PKA level. In cells expressing the Split-R with the two inhibitory PKC sites on the R-region inactivated (SR-S641A/T682A), density of FH-R complexes was much higher than in Split-R WT expressing cells after PKC or PKC + PKA stimulation. No differences were observed for BH-R complexes measured at all phosphorylation conditions. Since full-length CFTR channels display large functional responses to PKC + PKA in WT and S641A/T682A mutant, we conclude that FH-R interactions are important for CFTR function. Inactivation of consensus PKC site serine 686 (S686A) significantly reduced the basal BH-R interaction and prevented the PKC enhancing effect on CFTR function and FH-R interaction. The phospho-mimetic mutation (S686D) restored basal BH-R interaction and the PKC enhancing effect on CFTR function with enhanced FH-R interaction. As the channel function is mainly stimulated by PKA phosphorylation of the R-region, and this response is known to be enhanced by PKC phosphorylation, our data support a model in which the regulation of CFTR activation results from increased interactions of the R-region with the N-term-TMD1-NBD1. Also, serine S686 was found to be critical for the PKC enhancing effect which requires a permissive BH-R interaction at basal level and increased FH-R interaction after PKC + PKA phosphorylation.
Collapse
Affiliation(s)
- Diogo R. Poroca
- Department of Physiology & BiophysicsDalhousie UniversityHalifaxNSCanada
| | - Noha Amer
- Department of Physiology & BiophysicsDalhousie UniversityHalifaxNSCanada
| | - Audrey Li
- Department of Physiology & BiophysicsDalhousie UniversityHalifaxNSCanada
| | | | - Valerie M. Chappe
- Department of Physiology & BiophysicsDalhousie UniversityHalifaxNSCanada
| |
Collapse
|
13
|
Csanády L, Vergani P, Gadsby DC. STRUCTURE, GATING, AND REGULATION OF THE CFTR ANION CHANNEL. Physiol Rev 2019; 99:707-738. [PMID: 30516439 DOI: 10.1152/physrev.00007.2018] [Citation(s) in RCA: 164] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) belongs to the ATP binding cassette (ABC) transporter superfamily but functions as an anion channel crucial for salt and water transport across epithelial cells. CFTR dysfunction, because of mutations, causes cystic fibrosis (CF). The anion-selective pore of the CFTR protein is formed by its two transmembrane domains (TMDs) and regulated by its cytosolic domains: two nucleotide binding domains (NBDs) and a regulatory (R) domain. Channel activation requires phosphorylation of the R domain by cAMP-dependent protein kinase (PKA), and pore opening and closing (gating) of phosphorylated channels is driven by ATP binding and hydrolysis at the NBDs. This review summarizes available information on structure and mechanism of the CFTR protein, with a particular focus on atomic-level insight gained from recent cryo-electron microscopic structures and on the molecular mechanisms of channel gating and its regulation. The pharmacological mechanisms of small molecules targeting CFTR's ion channel function, aimed at treating patients suffering from CF and other diseases, are briefly discussed.
Collapse
Affiliation(s)
- László Csanády
- Department of Medical Biochemistry, Semmelweis University , Budapest , Hungary ; MTA-SE Ion Channel Research Group, Budapest , Hungary ; Department of Neuroscience, Physiology and Pharmacology, University College London , London , United Kingdom ; and Laboratory of Cardiac/Membrane Physiology, The Rockefeller University , New York, New York
| | - Paola Vergani
- Department of Medical Biochemistry, Semmelweis University , Budapest , Hungary ; MTA-SE Ion Channel Research Group, Budapest , Hungary ; Department of Neuroscience, Physiology and Pharmacology, University College London , London , United Kingdom ; and Laboratory of Cardiac/Membrane Physiology, The Rockefeller University , New York, New York
| | - David C Gadsby
- Department of Medical Biochemistry, Semmelweis University , Budapest , Hungary ; MTA-SE Ion Channel Research Group, Budapest , Hungary ; Department of Neuroscience, Physiology and Pharmacology, University College London , London , United Kingdom ; and Laboratory of Cardiac/Membrane Physiology, The Rockefeller University , New York, New York
| |
Collapse
|
14
|
Aleksandrov LA, Fay JF, Riordan JR. R-Domain Phosphorylation by Protein Kinase A Stimulates Dissociation of Unhydrolyzed ATP from the First Nucleotide-Binding Site of the Cystic Fibrosis Transmembrane Conductance Regulator. Biochemistry 2018; 57:5073-5075. [PMID: 30109929 DOI: 10.1021/acs.biochem.8b00646] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) is an asymmetric ATP-binding cassette transporter in which ATP hydrolysis occurs only at the second of the two composite nucleotide-binding sites whereas there are noncanonical substitutions of key catalytic residues in the first site. Therefore, in widely accepted models of CFTR function, ATP is depicted as remaining bound at the first site while it is hydrolyzed at the second site. However, the long lifetime of ATP at nucleotide-binding domain 1 (NBD1) had been measured under conditions where the channel had not been activated by phosphorylation. Here we show that phosphorylation by protein kinase A (PKA), obligatory for channel activation, strongly accelerates dissociation of the unhydrolyzed ATP from NBD1 of both full-length and NBD2-deleted CFTR. This stimulation of nucleotide release results from phosphorylation of the CFTR regulatory domain (residues 634-835) (R-domain). Mimicking phosphorylation by mutating the eight phosphorylation sites in the R-domain (8SE) has the same robust effect on accelerating the dissociation of ATP from NBD1. These findings provide new insight into relationships between R-domain phosphorylation and ATP binding and hydrolysis, the two main CFTR regulatory pathways.
Collapse
Affiliation(s)
- Luba A Aleksandrov
- University of North Carolina , Chapel Hill , North Carolina 27599 , United States
| | - Jonathan F Fay
- University of North Carolina , Chapel Hill , North Carolina 27599 , United States
| | - John R Riordan
- University of North Carolina , Chapel Hill , North Carolina 27599 , United States
| |
Collapse
|
15
|
Abstract
Cystic fibrosis transmembrane conductance regulator (CFTR) is an anion channel expressed in the apical membrane of epithelia. Mutations in the CFTR gene are the cause of cystsic fibrosis. CFTR is the only ABC-protein that constitutes an ion channel pore forming subunit. CFTR gating is regulated in complex manner as phosphorylation is mandatory for channel activity and gating is directly regulated by binding of ATP to specific intracellular sites on the CFTR protein. This review covers our current understanding on the gating mechanism in CFTR and illustrates the relevance of alteration of these mechanisms in the onset of cystic fibrosis.
Collapse
Affiliation(s)
- Oscar Moran
- Istituto di Biofisica, CNR. Via De Marini, 6, 16149, Genoa, Italy.
| |
Collapse
|
16
|
Wong MKS, Pipil S, Kato A, Takei Y. Duplicated CFTR isoforms in eels diverged in regulatory structures and osmoregulatory functions. Comp Biochem Physiol A Mol Integr Physiol 2016; 199:130-141. [PMID: 27322796 DOI: 10.1016/j.cbpa.2016.06.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 06/15/2016] [Accepted: 06/15/2016] [Indexed: 12/20/2022]
Abstract
Two cystic fibrosis transmembrane conductance regulator (CFTR) isoforms, CFTRa and CFTRb, were cloned in Japanese eel and their structures and functions were studied in different osmoregulatory tissues in freshwater (FW) and seawater (SW) eels. Molecular phylogenetic results suggested that the CFTR duplication in eels occurred independently of the duplication event in salmonid. CFTRa was expressed in the intestine and kidney and downregulated in both tissues in SW eels, while CFTRb was specifically expressed in the gill and greatly upregulated in SW eels. Structurally, the CFTR isoforms are similar in most functional domains except the regulatory R domain, where the R domain of CFTRa is similar to that of human CFTR but the R domain of CFTRb is unique in having high intrinsic negative charges and fewer phosphorylation sites, suggesting divergence of isoforms in terms of gating properties and hormonal regulation. Immunohistochemical results showed that CFTR was localized on the apical regions of SW ionocytes, suggesting a Cl(-) secretory role as in other teleosts. In intestine and kidney, however, immunoreactive CFTR was mostly found in the cytosolic vesicles in FW eels, indicating that Cl(-) channel activity could be low at basal conditions, but could be rapidly increased by membrane insertion of the stored channels. Guanylin (GN), a known hormone that increases CFTR activity in mammalian intestine, failed to redistribute CFTR and to affect its expression in eel intestine. The results suggested that GN-independent CFTR regulation is present in eel intestine and kidney.
Collapse
Affiliation(s)
| | - Supriya Pipil
- Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba, Japan
| | - Akira Kato
- Department of Biological Sciences, Tokyo Institute of Technology, Yokohama, Japan
| | - Yoshio Takei
- Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba, Japan
| |
Collapse
|
17
|
Wang G. Molecular Basis for Fe(III)-Independent Curcumin Potentiation of Cystic Fibrosis Transmembrane Conductance Regulator Activity. Biochemistry 2015; 54:2828-40. [DOI: 10.1021/acs.biochem.5b00219] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Guangyu Wang
- Department of Physiology
and Biophysics and Gregory Fleming James Cystic Fibrosis Research
Center, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama 35294, United States
- Department of Pharmacology, University of Nevada School of Medicine, Reno, Nevada 89557, United States
- Department of Physiology
and Membrane Biology, University of California School of Medicine, Davis, California 95616, United States
| |
Collapse
|
18
|
Baroni D, Zegarra-Moran O, Moran O. Functional and pharmacological induced structural changes of the cystic fibrosis transmembrane conductance regulator in the membrane solved using SAXS. Cell Mol Life Sci 2015; 72:1363-75. [PMID: 25274064 PMCID: PMC11113906 DOI: 10.1007/s00018-014-1747-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 09/18/2014] [Accepted: 09/26/2014] [Indexed: 01/13/2023]
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel is a membrane-integral protein that belongs to the ATP-binding cassette superfamily. Mutations in the CFTR gene cause cystic fibrosis in which salt, water, and protein transports are defective in various tissues. To investigate the conformation of the CFTR in the membrane, we applied the small-angle x-ray scattering (SAXS) technique on microsomal membranes extracted from NIH/3T3 cells permanentely transfected with wild-type (WT) CFTR and with CFTR carrying the ΔF508 mutation. The electronic density profile of the membranes was calculated from the SAXS data, assuming the lipid bilayer electronic density to be composed by a series of Gaussian shells. The data indicate that membranes in the microsome vesicles, that contain mostly endoplasmic reticulum membranes, are oriented in the outside-out conformation. Phosphorylation does not change significantly the electronic density profile, while dephosphorylation produces a significant modification in the inner side of the profile. Thus, we conclude that the CFTR and its associated protein complex in microsomes are mostly phosphorylated. The electronic density profile of the ΔF508-CFTR microsomes is completely different from WT, suggesting a different assemblage of the proteins in the membranes. Low-temperature treatment of cells rescues the ΔF508-CFTR protein, resulting in a conformation that resembles the WT. Differently, treatment with the corrector VX-809 modifies the electronic profile of ΔF508-CFTR membrane, but does not recover completely the WT conformation. To our knowledge, this is the first report of a direct physical measurement of the structure of membranes containing CFTR in its native environment and in different functional and pharmacological conditions.
Collapse
Affiliation(s)
- Debora Baroni
- Istituto di Biofisica, CNR, via De Marini, 6, 16149 Genoa, Italy
| | | | - Oscar Moran
- Istituto di Biofisica, CNR, via De Marini, 6, 16149 Genoa, Italy
| |
Collapse
|
19
|
Yang JG, Rees DC. The allosteric regulatory mechanism of the Escherichia coli MetNI methionine ATP binding cassette (ABC) transporter. J Biol Chem 2015; 290:9135-40. [PMID: 25678706 DOI: 10.1074/jbc.m114.603365] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Indexed: 01/06/2023] Open
Abstract
The MetNI methionine importer of Escherichia coli, an ATP binding cassette (ABC) transporter, uses the energy of ATP binding and hydrolysis to catalyze the high affinity uptake of D- and L-methionine. Early in vivo studies showed that the uptake of external methionine is repressed by the level of the internal methionine pool, a phenomenon termed transinhibition. Our understanding of the MetNI mechanism has thus far been limited to a series of crystal structures in an inward-facing conformation. To understand the molecular mechanism of transinhibition, we studied the kinetics of ATP hydrolysis using detergent-solubilized MetNI. We find that transinhibition is due to noncompetitive inhibition by L-methionine, much like a negative feedback loop. Thermodynamic analyses revealed two allosteric methionine binding sites per transporter. This quantitative analysis of transinhibition, the first to our knowledge for a structurally defined transporter, builds upon the previously proposed structurally based model for regulation. This mechanism of regulation at the transporter activity level could be applicable to not only ABC transporters but other types of membrane transporters as well.
Collapse
Affiliation(s)
- Janet G Yang
- From the Division of Chemistry and Chemical Engineering and the Howard Hughes Medical Institute, California Institute of Technology, Pasadena, California 91125
| | - Douglas C Rees
- From the Division of Chemistry and Chemical Engineering and the Howard Hughes Medical Institute, California Institute of Technology, Pasadena, California 91125
| |
Collapse
|
20
|
Sengar AS, Agarwal A, Singh MK. Cystic fibrosis: need for mass deployable screening methods. Appl Biochem Biotechnol 2014; 174:1127-36. [PMID: 24880895 DOI: 10.1007/s12010-014-0991-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 05/19/2014] [Indexed: 11/26/2022]
Abstract
Cystic fibrosis (CF) is an autosomal recessive disease caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. CFTR is a member of the adenosine triphosphate (ATP)-binding cassette superfamily of proteins and it functions as a chloride channel. CFTR largely controls the working of epithelial cells of the airways, the gastrointestinal tract, exocrine glands, and genitourinary system. Cystic fibrosis is responsible for severe chronic pulmonary disorders in children. Other maladies in the spectrum of this life-limiting disorder include nasal polyposis, pansinusitis, rectal prolapse, pancreatitis, cholelithiasis, insulin-dependent hyperglycemia, and cirrhosis. This review summarizes the recent state of art in the field of cystic fibrosis diagnostic methods with the help of CF literature published so far and proposes new research domains in the field of cystic fibrosis diagnosis.
Collapse
Affiliation(s)
- Aditya Singh Sengar
- Department of Electronics and Communication, The LNM Institute of Information Technology, Jaipur, 302031, India,
| | | | | |
Collapse
|
21
|
On the structural organization of the intracellular domains of CFTR. Int J Biochem Cell Biol 2014; 52:7-14. [PMID: 24513531 DOI: 10.1016/j.biocel.2014.01.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 01/17/2014] [Accepted: 01/21/2014] [Indexed: 12/17/2022]
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) is a multidomain membrane protein forming an anion selective channel. Mutations in the gene encoding CFTR cause cystic fibrosis (CF). The intracellular side of CFTR constitutes about 80% of the total mass of the protein. This region includes domains involved in ATP-dependent gating and regulatory protein kinase-A phosphorylation sites. The high-resolution molecular structure of CFTR has not yet been solved. However, a range of lower resolution structural data, as well as functional biochemical and electrophysiological data, are now available. This information has enabled the proposition of a working model for the structural architecture of the intracellular domains of the CFTR protein.
Collapse
|
22
|
Sebastian A, Rishishwar L, Wang J, Bernard KF, Conley AB, McCarty NA, Jordan IK. Origin and evolution of the cystic fibrosis transmembrane regulator protein R domain. Gene 2013; 523:137-46. [PMID: 23578801 DOI: 10.1016/j.gene.2013.02.050] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 02/18/2013] [Indexed: 10/27/2022]
Abstract
The Cystic Fibrosis Transmembrane Conductance Regulator protein (CFTR) is a member of the ABC transporter superfamily. CFTR is distinguished from all other members of this superfamily by its status as an ion channel as well as the presence of its unique regulatory (R) domain. We investigated the origin and subsequent evolution of the R domain along the CFTR evolutionary lineage. The R domain protein coding sequence originated via the loss of a splice donor site at the 3' end of exon 14, leading to the subsequent read-through and capture of formerly intronic sequence as novel coding sequence. Inclusion of the remaining part of the R domain coding sequence in the CFTR transcript involved a lineage-specific gain of exonic sequence with no homology to protein coding sequences outside of CFTR and loss of two exons conserved among ABC family members. These events occurred at the base of the Gnathostome evolutionary lineage ~550-650 million years ago. The apparent origination of the R domain de novo from previously non-coding sequence is consistent with its lack of sequence similarity to other domains as well as its intrinsically disordered structure, which has important implications for its function. In particular, this lack of structure may provide for a dynamic and inducible regulatory activity based on transient physical interactions with more structured domains of the protein. Since its acquisition along the CFTR evolutionary lineage, the R domain has evolved more rapidly than any other CFTR domain; however, there is no evidence for positive (adaptive) selection in the evolution of the domain. The R domain does show a distinct pattern of relative evolutionary rates compared to other CFTR domains, which sheds additional light on the connection between its function and evolution. The regulatory function of the R domain is dependent upon a fairly small number of sites that are subject to phosphorylation, and these sites were fixed very early in R domain evolution and have remained largely invariant since that time. In contrast, the rest of the R domain has been free to drift in sequence space leading to a more star-like phylogeny than seen for the other CFTR domains. The case of the R domain suggests that domain acquisition via the de novo creation of coding sequence, and the novel functional utility that such an event would seemingly entail, can be one route by which neo-functionalization is favored to occur.
Collapse
Affiliation(s)
- Aswathy Sebastian
- School of Biology, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Fong P. CFTR-SLC26 transporter interactions in epithelia. Biophys Rev 2012; 4:107-116. [PMID: 22685498 PMCID: PMC3369697 DOI: 10.1007/s12551-012-0068-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Accepted: 01/23/2012] [Indexed: 12/18/2022] Open
Abstract
Transport mechanisms that mediate the movements of anions must be coordinated tightly in order to respond appropriately to physiological stimuli. This process is of paramount importance in the function of diverse epithelial tissues of the body, such as, for example, the exocrine pancreatic duct and the airway epithelia. Disruption of any of the finely tuned components underlying the transport of anions such as Cl(-), HCO(3) (-), SCN(-), and I(-) may contribute to a plethora of disease conditions. In many anion-secreting epithelia, the interactions between the cystic fibrosis transmembrane conductance regulator (CFTR) and solute carrier family 26 (SLC26) transporters determine the final exit of anions across the apical membrane and into the luminal compartment. The molecular identification of CFTR and many SLC26 members has enabled the acquisition of progressively more detailed structural information about these transport molecules. Studies employing a vast array of increasingly sophisticated approaches have culminated in a current working model which places these key players within an interactive complex, thereby setting the stage for future work.
Collapse
Affiliation(s)
- Peying Fong
- Department of Anatomy and Physiology, Kansas State University College of Veterinary Medicine, 1600 Denison Avenue, Manhattan, KS 66506 USA
| |
Collapse
|
24
|
Boudaya M, Fredj SH, Haj RB, Khrouf M, Bouker A, Halouani L, Messaoud T. Cystic fibrosis transmembrane conductance regulator mutations and polymorphisms associated with congenital bilateral absence of vas deferens in a restricted group of patients from North Africa. Ann Hum Biol 2011; 39:76-9. [DOI: 10.3109/03014460.2011.642892] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
25
|
Tsybovsky Y, Wang B, Quazi F, Molday RS, Palczewski K. Posttranslational modifications of the photoreceptor-specific ABC transporter ABCA4. Biochemistry 2011; 50:6855-66. [PMID: 21721517 DOI: 10.1021/bi200774w] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
ABCA4 is a photoreceptor-specific ATP-binding cassette transporter implicated in the clearance of all-trans-retinal produced in the retina during light perception. Multiple mutations in this protein have been linked to Stargardt disease and other visual disorders. Here we report the first systematic study of posttranslational modifications in native ABCA4 purified from bovine rod outer segments. Seven N-glycosylation sites were detected in exocytoplasmic domains 1 and 2 by mass spectrometry, confirming the topological model of ABCA4 proposed previously. The modifying oligosaccharides were relatively short and homogeneous, predominantly representing a high-mannose type of N-glycosylation. Five phosphorylation sites were detected in cytoplasmic domain 1, with four of them located in the linker "regulatory-like" region conserved among ABCA subfamily members. Contrary to published results, phosphorylation of ABCA4 was found to be independent of light. Using human ABCA4 mutants heterologously expressed in mammalian cells, we showed that the Stargardt disease-associated alanine mutation in the phosphorylation site at position 901 led to protein misfolding and degradation. Furthermore, replacing the S1317 phosphorylation site reduced the basal ATPase activity of ABCA4, whereas an alanine mutation in either the S1185 or T1313 phosphorylation site resulted in a significant decrease in the all-trans-retinal-stimulated ATPase activity without affecting the basal activity, protein expression, or localization. In agreement with this observation, partial dephosphorylation of native bovine ABCA4 led to reduction of both basal and stimulated ATPase activity. Thus, we present the first evidence that phosphorylation of ABCA4 can regulate its function.
Collapse
Affiliation(s)
- Yaroslav Tsybovsky
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | | | | | | | | |
Collapse
|
26
|
|
27
|
Chen JH, Cai Z, Sheppard DN. Direct sensing of intracellular pH by the cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channel. J Biol Chem 2010; 284:35495-506. [PMID: 19837660 DOI: 10.1074/jbc.m109.072678] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
In cystic fibrosis (CF), dysfunction of the cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channel disrupts epithelial ion transport and perturbs the regulation of intracellular pH (pH(i)). CFTR modulates pH(i) through its role as an ion channel and by regulating transport proteins. However, it is unknown how CFTR senses pH(i). Here, we investigate the direct effects of pH(i) on recombinant CFTR using excised membrane patches. By altering channel gating, acidic pH(i) increased the open probability (P(o)) of wild-type CFTR, whereas alkaline pH(i) decreased P(o) and inhibited Cl(-) flow through the channel. Acidic pH(i) potentiated the MgATP dependence of wild-type CFTR by increasing MgATP affinity and enhancing channel activity, whereas alkaline pH(i) inhibited the MgATP dependence of wild-type CFTR by decreasing channel activity. Because these data suggest that pH(i) modulates the interaction of MgATP with the nucleotide-binding domains (NBDs) of CFTR, we examined the pH(i) dependence of site-directed mutations in the two ATP-binding sites of CFTR that are located at the NBD1:NBD2 dimer interface (site 1: K464A-, D572N-, and G1349D-CFTR; site 2: G551D-, K1250M-, and D1370N-CFTR). Site 2 mutants, but not site 1 mutants, perturbed both potentiation by acidic pH(i) and inhibition by alkaline pH(i), suggesting that site 2 is a critical determinant of the pH(i) sensitivity of CFTR. The effects of pH(i) also suggest that site 2 might employ substrate-assisted catalysis to ensure that ATP hydrolysis follows NBD dimerization. We conclude that the CFTR Cl(-) channel senses directly pH(i). The direct regulation of CFTR by pH(i) has important implications for the regulation of epithelial ion transport.
Collapse
Affiliation(s)
- Jeng-Haur Chen
- Department of Physiology and Pharmacology, University of Bristol, School of Medical Sciences, University Walk, Bristol BS8 1TD, United Kingdom
| | | | | |
Collapse
|
28
|
Hegedus T, Aleksandrov A, Mengos A, Cui L, Jensen TJ, Riordan JR. Role of individual R domain phosphorylation sites in CFTR regulation by protein kinase A. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1788:1341-9. [PMID: 19328185 DOI: 10.1016/j.bbamem.2009.03.015] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2008] [Revised: 02/25/2009] [Accepted: 03/19/2009] [Indexed: 12/16/2022]
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) plays a critical role in transcellular ion transport and when defective, results in the genetic disease cystic fibrosis. CFTR is novel in the ATP-binding cassette superfamily as an ion channel that is enabled by a unique unstructured regulatory domain. This R domain contains multiple protein kinase A sites, which when phosphorylated allow channel gating. Most of the sites have been indicated to stimulate channel activity, while two of them have been suggested to be inhibitory. It is unknown whether individual sites act coordinately or distinctly. To address this issue, we raised monoclonal antibodies recognizing the unphosphorylated, but not the phosphorylated states of four functionally relevant sites (700, 737, 768, and 813). This enabled simultaneous monitoring of their phosphorylation and dephosphorylation and revealed that both processes occurred rapidly at the first three sites, but more slowly at the fourth. The parallel phosphorylation rates of the stimulatory 700 and the putative inhibitory 737 and 768 sites prompted us to reexamine the role of the latter two. With serines 737 and 768 reintroduced individually into a PKA insensitive variant, in which serines at 15 sites had been replaced by alanines, a level of channel activation by PKA was restored, showing that these sites can mediate stimulation. Thus, we have provided new tools to study the CFTR regulation by phosphorylation and found that sites proposed to inhibit channel activity can also participate in stimulation.
Collapse
Affiliation(s)
- Tamás Hegedus
- Department of Biochemistry, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | | | | | |
Collapse
|
29
|
Hughes LK, Ju M, Sheppard DN. Potentiation of cystic fibrosis transmembrane conductance regulator (CFTR) Cl- currents by the chemical solvent tetrahydrofuran. Mol Membr Biol 2009; 25:528-38. [PMID: 18989824 DOI: 10.1080/09687680802487967] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The chemical solvent tetrahydrofuran (THF) increases short-circuit current (I(sc)) in renal epithelia endogenously expressing the cystic fibrosis transmembrane conductance regulator (CFTR). To understand how THF increases I(sc), we employed the Ussing chamber and patch-clamp techniques to study cells expressing recombinant human CFTR. THF increased I(sc) in Fischer rat thyroid (FRT) epithelia expressing wild-type CFTR with half-maximal effective concentration (K(D)) of 134 mM. This THF-induced increase in I(sc) was enhanced by forskolin (10 microM), inhibited by the PKA inhibitor H-89 (10 microM) and the thiazolidinone CFTR(inh)-172 (10 microM) and attenuated greatly in FRT epithelia expressing the cystic fibrosis mutants F508del- and G551D-CFTR. By contrast, THF (100 mM) was without effect on untransfected FRT epithelia, while other solvents failed to increase I(sc) in FRT epithelia expressing wild-type CFTR. In excised inside-out membrane patches, THF (100 mM) potentiated CFTR Cl(-) channels open in the presence of ATP (1 mM) alone by increasing the frequency of channel openings without altering their duration. However, following the phosphorylation of CFTR by PKA (75 nM), THF (100 mM) did not potentiate channel activity. Similar results were obtained with the triangle upR-S660A-CFTR Cl(-) channel that is not regulated by PKA-dependent phosphorylation and using 2'deoxy-ATP, which gates wild-type CFTR more effectively than ATP. Our data suggest that THF acts directly on CFTR to potentiate channel gating, but that its efficacy is weak and dependent on the phosphorylation status of CFTR.
Collapse
Affiliation(s)
- Lauren K Hughes
- Department of Physiology and Pharmacology, University of Bristol, School of Medical Sciences, Bristol, UK
| | | | | |
Collapse
|
30
|
d-Amphetamine inhibits inwardly rectifying potassium channels in Xenopus oocytes expression system. Neurotoxicology 2008; 29:638-46. [DOI: 10.1016/j.neuro.2008.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2007] [Revised: 05/01/2008] [Accepted: 05/05/2008] [Indexed: 12/13/2022]
|
31
|
Karger AB, Park S, Reyes S, Bienengraeber M, Dyer RB, Terzic A, Alekseev AE. Role for SUR2A ED domain in allosteric coupling within the K(ATP) channel complex. ACTA ACUST UNITED AC 2008; 131:185-96. [PMID: 18299394 PMCID: PMC2248718 DOI: 10.1085/jgp.200709852] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Allosteric regulation of heteromultimeric ATP-sensitive potassium (KATP) channels is unique among protein systems as it implies transmission of ligand-induced structural adaptation at the regulatory SUR subunit, a member of ATP-binding cassette ABCC family, to the distinct pore-forming K+ (Kir6.x) channel module. Cooperative interaction between nucleotide binding domains (NBDs) of SUR is a prerequisite for KATP channel gating, yet pathways of allosteric intersubunit communication remain uncertain. Here, we analyzed the role of the ED domain, a stretch of 15 negatively charged aspartate/glutamate amino acid residues (948–962) of the SUR2A isoform, in the regulation of cardiac KATP channels. Disruption of the ED domain impeded cooperative NBDs interaction and interrupted the regulation of KATP channel complexes by MgADP, potassium channel openers, and sulfonylurea drugs. Thus, the ED domain is a structural component of the allosteric pathway within the KATP channel complex integrating transduction of diverse nucleotide-dependent states in the regulatory SUR subunit to the open/closed states of the K+-conducting channel pore.
Collapse
Affiliation(s)
- Amy B Karger
- Division of Cardiovascular Diseases, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Hegedűs T, Serohijos AW, Dokholyan NV, He L, Riordan JR. Computational studies reveal phosphorylation-dependent changes in the unstructured R domain of CFTR. J Mol Biol 2008; 378:1052-63. [PMID: 18423665 PMCID: PMC2556564 DOI: 10.1016/j.jmb.2008.03.033] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2007] [Revised: 03/11/2008] [Accepted: 03/15/2008] [Indexed: 01/09/2023]
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) is a cAMP-dependent chloride channel that is mutated in cystic fibrosis, an inherited disease of high morbidity and mortality. The phosphorylation of its approximately 200 amino acid R domain by protein kinase A is obligatory for channel gating under normal conditions. The R domain contains more than ten PKA phosphorylation sites. No individual site is essential but phosphorylation of increasing numbers of sites enables progressively greater channel activity. In spite of numerous studies of the role of the R domain in CFTR regulation, its mechanism of action remains largely unknown. This is because neither its structure nor its interactions with other parts of CFTR have been completely elucidated. Studies have shown that the R domain lacks well-defined secondary structural elements and is an intrinsically disordered region of the channel protein. Here, we have analyzed the disorder pattern and employed computational methods to explore low-energy conformations of the R domain. The specific disorder and secondary structure patterns detected suggest the presence of molecular recognition elements (MoREs) that may mediate phosphorylation-regulated intra- and inter-domain interactions. Simulations were performed to generate an ensemble of accessible R domain conformations. Although the calculated structures may represent more compact conformers than occur in vivo, their secondary structure propensities are consistent with predictions and published experimental data. Equilibrium simulations of a mimic of a phosphorylated R domain showed that it exhibited an increased radius of gyration. In one possible interpretation of these findings, by changing its size, the globally unstructured R domain may act as an entropic spring to perturb the packing of membrane-spanning sequences that constitute the ion permeability pathway and thereby activate channel gating.
Collapse
Affiliation(s)
- Tamás Hegedűs
- Department of Biochemistry and Biophysics, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, USA
- Cystic Fibrosis Treatment and Research Center, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, USA
| | - Adrian W.R. Serohijos
- Cystic Fibrosis Treatment and Research Center, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Physics and Astronomy, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, USA
| | - Nikolay V. Dokholyan
- Department of Biochemistry and Biophysics, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, USA
| | - Lihua He
- Department of Biochemistry and Biophysics, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, USA
- Cystic Fibrosis Treatment and Research Center, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, USA
| | - John R. Riordan
- Department of Biochemistry and Biophysics, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, USA
- Cystic Fibrosis Treatment and Research Center, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
33
|
Abstract
CLC-0 and cystic fibrosis transmembrane conductance regulator (CFTR) Cl−channels play important roles in Cl−transport across cell membranes. These two proteins belong to, respectively, the CLC and ABC transport protein families whose members encompass both ion channels and transporters. Defective function of members in these two protein families causes various hereditary human diseases. Ion channels and transporters were traditionally viewed as distinct entities in membrane transport physiology, but recent discoveries have blurred the line between these two classes of membrane transport proteins. CLC-0 and CFTR can be considered operationally as ligand-gated channels, though binding of the activating ligands appears to be coupled to an irreversible gating cycle driven by an input of free energy. High-resolution crystallographic structures of bacterial CLC proteins and ABC transporters have led us to a better understanding of the gating properties for CLC and CFTR Cl−channels. Furthermore, the joined force between structural and functional studies of these two protein families has offered a unique opportunity to peek into the evolutionary link between ion channels and transporters. A promising byproduct of this exercise is a deeper mechanistic insight into how different transport proteins work at a fundamental level.
Collapse
|
34
|
Baker JMR, Hudson RP, Kanelis V, Choy WY, Thibodeau PH, Thomas PJ, Forman-Kay JD. CFTR regulatory region interacts with NBD1 predominantly via multiple transient helices. Nat Struct Mol Biol 2007; 14:738-45. [PMID: 17660831 PMCID: PMC3943242 DOI: 10.1038/nsmb1278] [Citation(s) in RCA: 226] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2007] [Accepted: 06/27/2007] [Indexed: 02/06/2023]
Abstract
The regulatory (R) region of the cystic fibrosis transmembrane conductance regulator (CFTR) is intrinsically disordered and must be phosphorylated at multiple sites for full CFTR channel activity, with no one specific phosphorylation site required. In addition, nucleotide binding and hydrolysis at the nucleotide-binding domains (NBDs) of CFTR are required for channel gating. We report NMR studies in the absence and presence of NBD1 that provide structural details for the isolated R region and its interaction with NBD1 at residue-level resolution. Several sites in the R region with measured fractional helical propensity mediate interactions with NBD1. Phosphorylation reduces the helicity of many R-region sites and reduces their NBD1 interactions. This evidence for a dynamic complex with NBD1 that transiently engages different sites of the R region suggests a structural explanation for the dependence of CFTR activity on multiple PKA phosphorylation sites.
Collapse
Affiliation(s)
- Jennifer M R Baker
- Program in Molecular Structure and Function, The Hospital for Sick Children, 555 University Ave., Toronto, Ontario M5G 1X8, Canada
| | | | | | | | | | | | | |
Collapse
|
35
|
Xie LH, John SA, Ribalet B, Weiss JN. Activation of inwardly rectifying potassium (Kir) channels by phosphatidylinosital-4,5-bisphosphate (PIP2): Interaction with other regulatory ligands. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2007; 94:320-35. [PMID: 16837026 DOI: 10.1016/j.pbiomolbio.2006.04.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
All members of the inwardly rectifying potassium channels (Kir1-7) are regulated by the membrane phospholipid, phosphatidylinosital-4,5-bisphosphate (PIP(2)). Some are also modulated by other regulatory factors or ligands such as ATP and G-proteins, which give them their common names, such as the ATP sensitive potassium (K(ATP)) channel and the G-protein gated potassium channel. Other more non-specific regulators include polyamines, kinases, pH and Na(+) ions. Recent studies have demonstrated that PIP(2) acts cooperatively with other regulatory factors to modulate Kir channels. Here we review how PIP(2) and co-factors modulate channel activities in each subfamily of the Kir channels.
Collapse
Affiliation(s)
- Lai-Hua Xie
- Cardiovascular Research Laboratory, Departments of Medicine (Cardiology) and Physiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA.
| | | | | | | |
Collapse
|
36
|
Aleksandrov AA, Aleksandrov LA, Riordan JR. CFTR (ABCC7) is a hydrolyzable-ligand-gated channel. Pflugers Arch 2006; 453:693-702. [PMID: 17021796 DOI: 10.1007/s00424-006-0140-z] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2006] [Revised: 07/13/2006] [Accepted: 07/19/2006] [Indexed: 01/28/2023]
Abstract
As the product of the gene mutated in cystic fibrosis, the most common genetic disease of Caucasians, CFTR is an atypical ABC protein. From an evolutionary perspective, it is apparently a relatively young member of the ABC family, present only in metazoans where it plays a critical role in epithelial salt and fluid homeostasis. Functionally, the membrane translocation process it mediates, the passive bidirectional diffusion of small inorganic anions, is simpler than the vectorial transport of larger more complex substrates ("allocrites") by most ABC transporters. However, the control of the permeation pathway which cannot go unchecked is necessarily more stringent than in the case of the transporters. There is tight regulation by the phosphorylation/dephosphorylation of the unique CFTR R domain superimposed on the basic ABC regulation mode of ATP binding and hydrolysis at the dual nucleotide binding sites. As with other ABCC subfamily members, only the second of these sites is hydrolytic in CFTR. The phosphorylation and ATP binding/hydrolysis events do not strongly influence each other; rather, R domain phosphorylation appears to enable transduction of the nucleotide binding allosteric signal to the responding channel gate. ATP hydrolysis is not required for either the opening or closing gating transitions but efficiently clears the ligand-binding site enabling a new gating cycle to be initiated.
Collapse
Affiliation(s)
- Andrei A Aleksandrov
- Department of Biochemistry and Biophysics and Cystic Fibrosis Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | |
Collapse
|
37
|
Abstract
CFTR chloride channels are encoded by the gene mutated in patients with cystic fibrosis. These channels belong to the superfamily of ABC transporter ATPases. ATP-driven conformational changes, which in other ABC proteins fuel uphill substrate transport across cellular membranes, in CFTR open and close a gate to allow transmembrane flow of anions down their electrochemical gradient. New structural and biochemical information from prokaryotic ABC proteins and functional information from CFTR channels has led to a unifying mechanism explaining those ATP-driven conformational changes.
Collapse
Affiliation(s)
- David C Gadsby
- Laboratory of Cardiac/Membrane Physiology, The Rockefeller University, New York, NY 10021, USA.
| | | | | |
Collapse
|
38
|
Reddy MM, Quinton PM. Cytosolic potassium controls CFTR deactivation in human sweat duct. Am J Physiol Cell Physiol 2006; 291:C122-9. [PMID: 16481373 DOI: 10.1152/ajpcell.00134.2005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Absorptive epithelial cells must admit large quantities of salt (NaCl) during the transport process. How these cells avoid swelling to protect functional integrity in the face of massive salt influx is a fundamental, unresolved problem. A special preparation of the human sweat duct provides critical insights into this crucial issue. We now show that negative feedback control of apical salt influx by regulating the cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channel activity is key to this protection. As part of this control process, we report a new physiological role of K(+) in intracellular signaling and provide the first direct evidence of acute in vivo regulation of CFTR dephosphorylation activity. We show that cytosolic K(+) concentration ([K(+)](c)) declines as a function of increasing cellular NaCl content at the onset of absorptive activity. Declining [K(+)](c) cause parallel deactivation of CFTR by dephosphorylation, thereby limiting apical influx of Cl(-) (and its co-ion Na(+)) until [K(+)](c) is stabilized. We surmise that [K(+)](c) stabilizes when Na(+) influx decreases to a level equal to its efflux through the basolateral Na(+)-K(+) pump thereby preventing disruptive changes in cell volume.
Collapse
Affiliation(s)
- M M Reddy
- Department of Pediatrics, 0831 University of California, San Diego School of Medicine, 9500 Gilman Dr., La Jolla, 92093-0831, USA.
| | | |
Collapse
|
39
|
Frelet A, Klein M. Insight in eukaryotic ABC transporter function by mutation analysis. FEBS Lett 2006; 580:1064-84. [PMID: 16442101 DOI: 10.1016/j.febslet.2006.01.024] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2005] [Revised: 01/10/2006] [Accepted: 01/10/2006] [Indexed: 11/21/2022]
Abstract
With regard to structure-function relations of ATP-binding cassette (ABC) transporters several intriguing questions are in the spotlight of active research: Why do functional ABC transporters possess two ATP binding and hydrolysis domains together with two ABC signatures and to what extent are the individual nucleotide-binding domains independent or interacting? Where is the substrate-binding site and how is ATP hydrolysis functionally coupled to the transport process itself? Although much progress has been made in the elucidation of the three-dimensional structures of ABC transporters in the last years by several crystallographic studies including novel models for the nucleotide hydrolysis and translocation catalysis, site-directed mutagenesis as well as the identification of natural mutations is still a major tool to evaluate effects of individual amino acids on the overall function of ABC transporters. Apart from alterations in characteristic sequence such as Walker A, Walker B and the ABC signature other parts of ABC proteins were subject to detailed mutagenesis studies including the substrate-binding site or the regulatory domain of CFTR. In this review, we will give a detailed overview of the mutation analysis reported for selected ABC transporters of the ABCB and ABCC subfamilies, namely HsCFTR/ABCC7, HsSUR/ABCC8,9, HsMRP1/ABCC1, HsMRP2/ABCC2, ScYCF1 and P-glycoprotein (Pgp)/MDR1/ABCB1 and their effects on the function of each protein.
Collapse
Affiliation(s)
- Annie Frelet
- Zurich Basel Plant Science Center, University of Zurich, Plant Biology, Zollikerstrasse 107, CH-8008 Zurich, Switzerland
| | | |
Collapse
|
40
|
Biemans-Oldehinkel E, Doeven MK, Poolman B. ABC transporter architecture and regulatory roles of accessory domains. FEBS Lett 2005; 580:1023-35. [PMID: 16375896 DOI: 10.1016/j.febslet.2005.11.079] [Citation(s) in RCA: 185] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2005] [Revised: 11/30/2005] [Accepted: 11/30/2005] [Indexed: 10/25/2022]
Abstract
We present an overview of the architecture of ATP-binding cassette (ABC) transporters and dissect the systems in core and accessory domains. The ABC transporter core is formed by the transmembrane domains (TMDs) and the nucleotide binding domains (NBDs) that constitute the actual translocator. The accessory domains include the substrate-binding proteins, that function as high affinity receptors in ABC type uptake systems, and regulatory or catalytic domains that can be fused to either the TMDs or NBDs. The regulatory domains add unique functions to the transporters allowing the systems to act as channel conductance regulators, osmosensors/regulators, and assemble into macromolecular complexes with specific properties.
Collapse
Affiliation(s)
- Esther Biemans-Oldehinkel
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | | | | |
Collapse
|
41
|
Chappe V, Irvine T, Liao J, Evagelidis A, Hanrahan JW. Phosphorylation of CFTR by PKA promotes binding of the regulatory domain. EMBO J 2005; 24:2730-40. [PMID: 16001079 PMCID: PMC1182242 DOI: 10.1038/sj.emboj.7600747] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2004] [Accepted: 06/21/2005] [Indexed: 11/08/2022] Open
Abstract
The unphosphorylated regulatory (R) domain of the Cystic Fibrosis Transmembrane conductance Regulator (CFTR) is often viewed as an inhibitor that is released by phosphorylation. To test this notion, we studied domain interactions using CFTR channels assembled from three polypeptides. Nucleotides encoding the R domain (aa 635-836) were replaced with an internal ribosome entry sequence so that amino- and carboxyl-terminal half-molecules would be translated from the same mRNA transcript. Although only core glycosylation was detected on SplitDeltaR, biotinylation, immunostaining, and functional studies clearly demonstrated its trafficking to the plasma membrane. SplitDeltaR generated a constitutive halide permeability, which became responsive to cAMP when the missing R domain was coexpressed. Each half-molecule was co-precipitated by antibody against the other half. Contrary to expectations, GST-R domain was pulled down only if prephosphorylated by protein kinase A, and coexpressed R domain was precipitated with SplitDeltaR much more efficiently when cells were stimulated with cAMP. These results indicate that phosphorylation regulates CFTR by promoting association of the R domain with other domains rather than by causing its dissociation from an inhibitory site.
Collapse
Affiliation(s)
- Valerie Chappe
- Department of Physiology, McGill University, Montréal, QC, Canada
- Department of Physiology and Biophysics, Dalhousie University, Halifax, NS, Canada
| | - Thomas Irvine
- Department of Physiology, McGill University, Montréal, QC, Canada
| | - Jie Liao
- Department of Physiology, McGill University, Montréal, QC, Canada
| | | | - John W Hanrahan
- Department of Physiology, McGill University, Montréal, QC, Canada
| |
Collapse
|
42
|
Abstract
The assembly of the cystic fibrosis transmembrane regulator (CFTR) chloride channel is of interest from the broad perspective of understanding how ion channels and ABC transporters are formed as well as dealing with the mis-assembly of CFTR in cystic fibrosis. CFTR is functionally distinct from other ABC transporters because it permits bidirectional permeation of anions rather than vectorial transport of solutes. This adaptation of the ABC transporter structure can be rationalized by considering CFTR as a hydrolyzable-ligand-gated channel with cytoplasmic ATP as ligand. Channel gating is initiated by ligand binding when the protein is also phosphorylated by protein kinase A and made reversible by ligand hydrolysis. The two nucleotide-binding sites play different roles in channel activation. CFTR self-associates, possibly as a function of its activation, but most evidence, including the low-resolution three-dimensional structure, indicates that the channel is monomeric. Domain assembly and interaction within the monomer is critical in maturation, stability, and function of the protein. Disease-associated mutations, including the most common, DeltaF508, interfere with domain folding and association, which occur both co- and post-translationally. Intermolecular interactions of mature CFTR have been detected primarily with the N- and C-terminal tails, and these interactions have some impact not only on channel function but also on localization and processing within the cell. The biosynthetic processing of the nascent polypeptide leading to channel assembly involves transient interactions with numerous chaperones and enzymes on both sides of the endoplasmic reticulum membrane.
Collapse
Affiliation(s)
- John R Riordan
- Mayo Clinic College of Medicine, Scottsdale, Arizona, 85259, USA.
| |
Collapse
|
43
|
Bompadre SG, Ai T, Cho JH, Wang X, Sohma Y, Li M, Hwang TC. CFTR gating I: Characterization of the ATP-dependent gating of a phosphorylation-independent CFTR channel (DeltaR-CFTR). ACTA ACUST UNITED AC 2005; 125:361-75. [PMID: 15767295 PMCID: PMC1382195 DOI: 10.1085/jgp.200409227] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The CFTR chloride channel is activated by phosphorylation of serine residues in the regulatory (R) domain and then gated by ATP binding and hydrolysis at the nucleotide binding domains (NBDs). Studies of the ATP-dependent gating process in excised inside-out patches are very often hampered by channel rundown partly caused by membrane-associated phosphatases. Since the severed ΔR-CFTR, whose R domain is completely removed, can bypass the phosphorylation-dependent regulation, this mutant channel might be a useful tool to explore the gating mechanisms of CFTR. To this end, we investigated the regulation and gating of the ΔR-CFTR expressed in Chinese hamster ovary cells. In the cell-attached mode, basal ΔR-CFTR currents were always obtained in the absence of cAMP agonists. Application of cAMP agonists or PMA, a PKC activator, failed to affect the activity, indicating that the activity of ΔR-CFTR channels is indeed phosphorylation independent. Consistent with this conclusion, in excised inside-out patches, application of the catalytic subunit of PKA did not affect ATP-induced currents. Similarities of ATP-dependent gating between wild type and ΔR-CFTR make this phosphorylation-independent mutant a useful system to explore more extensively the gating mechanisms of CFTR. Using the ΔR-CFTR construct, we studied the inhibitory effect of ADP on CFTR gating. The Ki for ADP increases as the [ATP] is increased, suggesting a competitive mechanism of inhibition. Single channel kinetic analysis reveals a new closed state in the presence of ADP, consistent with a kinetic mechanism by which ADP binds at the same site as ATP for channel opening. Moreover, we found that the open time of the channel is shortened by as much as 54% in the presence of ADP. This unexpected result suggests another ADP binding site that modulates channel closing.
Collapse
Affiliation(s)
- Silvia G Bompadre
- Department of Medical Pharmacology and Physiology, University of Missouri-Columbia 65211, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Ito K, Wakabayashi T, Horie T. Mrp2/Abcc2 transport activity is stimulated by protein kinase Calpha in a baculo virus co-expression system. Life Sci 2005; 77:539-50. [PMID: 15904671 DOI: 10.1016/j.lfs.2004.10.071] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2004] [Accepted: 10/20/2004] [Indexed: 10/25/2022]
Abstract
Cholestatic and choleretic effect are well known for protein kinase C activator and inhibitor, respectively. However, post-translational regulation, especially the effect of phosphorylation status of the biliary transporters on their intrinsic transport activity has not been fully understood. In this study, effect of phosphorylation on the transport activity of Mrp2, a biliary organic anion transporter, was examined in membrane vesicles isolated from Sf9 cells co-expressing excess amount of protein kinase Calpha (PKCalpha). Mrp2-mediated transport activity was enhanced to three-fold by co-expressing PKCalpha. At the same time, phosphorylation of Mrp2 was also detected. The Km and Vmax values for the transport of [3H]estradiol-17beta-D-glucuronide exhibited a 1.5-fold decrease and a 1.9-fold increase, respectively. Probenecid (100 microM) and benzylpenicillin (1 mM), both are activator of Mrp2, did not stimulated the transport activity of phosphorylated Mrp2. On the other hand, transport activity was further stimulated by Estron-3-sulfate and taurocholic acid. Similar mechanism that occurred in the presence of probenecid and benzylpenicillin, but different from that occurred in the presence of Estron-3-sulfate and taurocholic acid seems to be involved in the stimulation. Considering the discrepancy between the previous in vivo inhibitory effect of PKC activators and our in vitro stimulatory effect of PKCalpha on Mrp2 transport activity, direct modulation of Mrp2-transport activity may be minor if any under in vivo condition.
Collapse
Affiliation(s)
- Kousei Ito
- Graduate School of Pharmaceutical Sciences, Chiba University, Inohana 1-8-1, Chiba, 260-8675, Japan
| | | | | |
Collapse
|
45
|
Csanády L, Seto-Young D, Chan KW, Cenciarelli C, Angel BB, Qin J, McLachlin DT, Krutchinsky AN, Chait BT, Nairn AC, Gadsby DC. Preferential phosphorylation of R-domain Serine 768 dampens activation of CFTR channels by PKA. ACTA ACUST UNITED AC 2005; 125:171-86. [PMID: 15657296 PMCID: PMC2217491 DOI: 10.1085/jgp.200409076] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
CFTR (cystic fibrosis transmembrane conductance regulator), the protein whose dysfunction causes cystic fibrosis, is a chloride ion channel whose gating is controlled by interactions of MgATP with CFTR's two cytoplasmic nucleotide binding domains, but only after several serines in CFTR's regulatory (R) domain have been phosphorylated by cAMP-dependent protein kinase (PKA). Whereas eight R-domain serines have previously been shown to be phosphorylated in purified CFTR, it is not known how individual phosphoserines regulate channel gating, although two of them, at positions 737 and 768, have been suggested to be inhibitory. Here we show, using mass spectrometric analysis, that Ser 768 is the first site phosphorylated in purified R-domain protein, and that it and five other R-domain sites are already phosphorylated in resting Xenopus oocytes expressing wild-type (WT) human epithelial CFTR. The WT channels have lower activity than S768A channels (with Ser 768 mutated to Ala) in resting oocytes, confirming the inhibitory influence of phosphoserine 768. In excised patches exposed to a range of PKA concentrations, the open probability (P(o)) of mutant S768A channels exceeded that of WT CFTR channels at all [PKA], and the half-maximally activating [PKA] for WT channels was twice that for S768A channels. As the open burst duration of S768A CFTR channels was almost double that of WT channels, at both low (55 nM) and high (550 nM) [PKA], we conclude that the principal mechanism by which phosphoserine 768 inhibits WT CFTR is by hastening the termination of open channel bursts. The right-shifted P(o)-[PKA] curve of WT channels might explain their slower activation, compared with S768A channels, at low [PKA]. The finding that phosphorylation kinetics of WT or S768A R-domain peptides were similar provides no support for an alternative explanation, that early phosphorylation of Ser 768 in WT CFTR might also impair subsequent phosphorylation of stimulatory R-domain serines. The observed reduced sensitivity to activation by [PKA] imparted by Ser 768 might serve to ensure activation of WT CFTR by strong stimuli while dampening responses to weak signals.
Collapse
Affiliation(s)
- László Csanády
- Department of Medical Biochemistry, Semmelweis University, Budapest, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Sugita M, Kongo H, Shiba Y. Molecular dissection of the butyrate action revealed the involvement of mitogen-activated protein kinase in cystic fibrosis transmembrane conductance regulator biogenesis. Mol Pharmacol 2004; 66:1248-59. [PMID: 15304546 DOI: 10.1124/mol.104.001008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cystic fibrosis is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene, which belongs to the superfamily of ATP-binding cassette transporters and uniquely possesses an additional large cytoplasmic domain [regulatory (R) domain]. CFTR inefficiently folds by means of co- and post-translational interactions with the cytosolic chaperones as well as luminal chaperones in the endoplasmic reticulum (ER). Aberrant folding and defective trafficking of the CFTR protein, which functions as an apical membrane Cl(-) channel, is the principal cause of cystic fibrosis. Recent data indicated that butyrate improves CFTR trafficking partly by regulating molecular chaperones; however, the precise mechanism of butyrate action remains elusive. In the present study, we examine the molecular aspect underlying the butyrate action in CFTR biogenesis by evaluating the expression and localization of the green fluorescent protein (GFP)-tagged CFTR transgenes in Cos7 cells. Our data show that butyrate significantly promoted stability of the ER-located form of GFP-wild-type (wt)-CFTR, followed by an increase in the amount of plasma membrane GFP-wt-CFTR. In contrast, the expression of the R domain deletion mutant GFP-DeltaR-CFTR was slightly increased by butyrate. The butyrate action on wt-CFTR expression was partially blocked by PD98059 (2'-amino-3'-methoxyflavone), a specific inhibitor of mitogen-activated protein kinase kinase (MAPKK/MEK), which is the upstream activator of extracellular-regulated kinase (ERK)/mitogen-activated protein kinase (MAPK). Furthermore, activation of ERK/MAPK by the coexpression of constitutively active MAPKK/MEK predominantly augmented the expression of wt-CFTR, but not of DeltaR-CFTR, induced by butyrate. These data suggest that butyrate may facilitate the biogenesis and trafficking of wt-CFTR by requiring the presence of the R domain and further involving active ERK/MAPK in its biogenesis.
Collapse
Affiliation(s)
- Makoto Sugita
- Department of Oral Physiology, Graduate School of Biomedical Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima 734-8553, Japan.
| | | | | |
Collapse
|
47
|
Ai T, Bompadre SG, Wang X, Hu S, Li M, Hwang TC. Capsaicin potentiates wild-type and mutant cystic fibrosis transmembrane conductance regulator chloride-channel currents. Mol Pharmacol 2004; 65:1415-26. [PMID: 15155835 DOI: 10.1124/mol.65.6.1415] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To examine the effects of capsaicin on cystic fibrosis transmembrane conductance regulator (CFTR), we recorded wild-type and mutant CFTR chloride-channel currents using patch-clamp methods. The effects of capsaicin were compared with those of genistein, a well-characterized CFTR activator. In whole-cell experiments, capsaicin potentiates cAMP-stimulated wild-type CFTR currents expressed in NIH 3T3 cells or Chinese hamster ovary cells in a dose-dependent manner with a maximal response approximately 60% of that with genistein and an apparent Kd of 48.4 +/- 6.8 microM. In cell-attached recordings, capsaicin alone fails to activate CFTR in cells that show negligible basal CFTR activity, indicating that capsaicin does not stimulate the cAMP cascade. The magnitude of potentiation with capsaicin depends on the channel activity before drug application; the lower the prestimulated Po, the higher the potentiation. Single-channel kinetic analysis shows that capsaicin potentiates CFTR by increasing the opening rate and decreasing the closing rate of the channel. Capsaicin may act as a partial agonist of genistein because the maximally enhanced wild-type CFTR currents with genistein are partially inhibited by capsaicin. Capsaicin increases DeltaR-CFTR, a protein kinase A (PKA)-independent, constitutively active channel, in cell-attached patches. In excised inside-out patches, capsaicin potentiates the PKA-phosphorylated, ATP-dependent CFTR activity. Both capsaicin and genistein potentiate the cAMP-stimulated G551D-CFTR, DeltaF508-CFTR, and 8SA mutant channel currents. The binding site for capsaicin is probably located at the cytoplasmic domain of CFTR, because pipette application of capsaicin fails to potentiate CFTR activity. In conclusion, capsaicin is a partial agonist of genistein in activation of the CFTR chloride channel. Both compounds affect ATP-dependent gating of CFTR.
Collapse
Affiliation(s)
- Tomohiko Ai
- Department of Medical Pharmacology and Physiology, Dalton Cardiovascular Research Center, University of Missouri-Columbia School of Medicine, Columbia, Missouri 65211, USA
| | | | | | | | | | | |
Collapse
|
48
|
Vais H, Zhang R, Reenstra WW. Dibasic phosphorylation sites in the R domain of CFTR have stimulatory and inhibitory effects on channel activation. Am J Physiol Cell Physiol 2004; 287:C737-45. [PMID: 15140750 DOI: 10.1152/ajpcell.00504.2003] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To better understand the mechanisms by which PKA-dependent phosphorylation regulates CFTR channel activity, we have assayed open probabilities (P(o)), mean open time, and mean closed time for a series of CFTR constructs with mutations at PKA phosphorylation sites in the regulatory (R) domain. Forskolin-stimulated channel activity was recorded in cell-attached and inside-out excised patches from transiently transfected Chinese hamster ovary cells. Wild-type CFTR and constructs with a single Ser-to-Ala mutation as well as octa (Ser-to-Ala mutations at 8 sites) and constructs with one or two Ala-to-Ser mutations were studied. In cell-attached patches, Ser-to-Ala mutations at amino acids 700, 795, and 813 decreased P(o), whereas Ser-to-Ala mutations at 737 and 768 increased P(o). In general, differences in P(o) were due to differences in mean closed time. For selected constructs with either high or low values of P(o), channel activity was measured in excised patches. With 1 mM ATP, P(o) was similar to that observed in cell-attached patches, but with 10 mM ATP, all constructs tested showed elevated P(o) values. ATP-dependent increases in P(o) were due to reductions in mean closed time. These results indicate that R-domain phosphorylation affects ATP binding and not the subsequent steps of hydrolysis and channel opening. A model was developed whereby R-domain phosphorylation, in a site-dependent manner, alters equilibrium between forms of CFTR with low and high affinities for ATP.
Collapse
Affiliation(s)
- Horia Vais
- Division of Medical Genetics, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
49
|
Grimard V, Li C, Ramjeesingh M, Bear CE, Goormaghtigh E, Ruysschaert JM. Phosphorylation-induced Conformational Changes of Cystic Fibrosis Transmembrane Conductance Regulator Monitored by Attenuated Total Reflection-Fourier Transform IR Spectroscopy and Fluorescence Spectroscopy. J Biol Chem 2004; 279:5528-36. [PMID: 14660584 DOI: 10.1074/jbc.m311014200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cystic fibrosis transmembrane conductance regulator (CFTR) is a member of the ABC protein superfamily. Phosphorylation of a regulatory domain of this protein is a prerequisite for activity. We analyzed the effect of protein kinase A (PKA) phosphorylation on the structure of purified and reconstituted CFTR protein. 1H/2H exchange monitored by attenuated total reflection Fourier transform IR spectroscopy demonstrates that CFTR is highly accessible to aqueous medium. Phosphorylation of the regulatory (R) domain by PKA further increases this accessibility. More specifically, fluorescence quenching of cytosolic tryptophan residues revealed that the accessibility of the cytoplasmic part of the protein is modified by phosphorylation. Moreover, the combination of polarized IR spectroscopy with 1H/2H exchange suggested an increase of the accessibility of the transmembrane domains of CFTR. This suggests that CFTR phosphorylation can induce a large conformational change that could correspond either to a displacement of the R domain or to long range conformational changes transmitted from the phosphorylation sites to the nucleotide binding domains and the transmembrane segments. Such structural changes may provide better access for the solutes to the nucleotide binding domains and the ion binding site.
Collapse
Affiliation(s)
- Vinciane Grimard
- Center for Structural Biology and Bioinformatics, Free University of Brussels, Campus Plaine CP206/2, 1050 Brussels, Belgium
| | | | | | | | | | | |
Collapse
|
50
|
Chappe V, Hinkson DA, Howell LD, Evagelidis A, Liao J, Chang XB, Riordan JR, Hanrahan JW. Stimulatory and inhibitory protein kinase C consensus sequences regulate the cystic fibrosis transmembrane conductance regulator. Proc Natl Acad Sci U S A 2004; 101:390-5. [PMID: 14695900 PMCID: PMC314195 DOI: 10.1073/pnas.0303411101] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2003] [Accepted: 10/22/2003] [Indexed: 11/18/2022] Open
Abstract
Protein kinase C (PKC) phosphorylation stimulates the cystic fibrosis transmembrane conductance regulator (CFTR) channel and enhances its activation by protein kinase A (PKA) through mechanisms that remain poorly understood. We have examined the effects of mutating consensus sequences for PKC phosphorylation and report here evidence for both stimulatory and inhibitory sites. Sequences were mutated in subsets and the mutants characterized by patch clamping. Activation of a 4CA mutant (S707A/S790A/T791A/S809A) by PKA was similar to that of wild-type CFTR and was enhanced by PKC, whereas responses of 3CA (T582A/T604A/S641A) and 2CA (T682A/S686A) channels to PKA were both drastically reduced (>90%). When each mutation in the 3CA and 2CA constructs was studied individually in a wild-type background, T582, T604, and S686 were found to be essential for PKA activation. Responses were restored when these three residues were reintroduced simultaneously into a 9CA mutant lacking all nine PKC consensus sequences (R6CA revertant); however, PKC phosphorylation was not required for this rescue. Nevertheless, two of the sites (T604 and S686) were phosphorylated in vitro, and PKC alone partially activated wild-type CFTR, the 4CA mutant, and the point mutants T582A and T604A, but not S686A channels, indicating that PKC does act at S686. The region encompassing S641 and T682 is inhibitory, because S641A enhanced activation by PKA, and T682A channels had 4-fold larger responses to PKC compared to wild-type channels. These results identify functionally important PKC consensus sequences on CFTR and will facilitate studies of its convergent regulation by PKC and PKA.
Collapse
Affiliation(s)
- Valerie Chappe
- Department of Physiology, McGill University, Montréal, QC, Canada H3G 1Y6.
| | | | | | | | | | | | | | | |
Collapse
|