1
|
Llambrich M, Ramírez N, Cumeras R, Brezmes J. SPME arrow-based extraction for enhanced targeted and untargeted urinary volatilomics. Anal Chim Acta 2024; 1329:343261. [PMID: 39396318 DOI: 10.1016/j.aca.2024.343261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/13/2024] [Accepted: 09/18/2024] [Indexed: 10/15/2024]
Abstract
BACKGROUND Volatile organic compounds (VOCs) present in human urine are promising biomarkers for various health conditions and environmental exposures. However, their reliable detection is challenging due to the complexity of urinary matrices and the low concentrations of VOCs. Moreover, untargeted approaches present considerable challenges in terms of data interpretation, increasing the complexity of method development. Here we address these challenges by developing a new method that combines solid-phase microextraction (SPME) Arrow with gas chromatography-high resolution mass spectrometry (GC-HRMS), using a design of experiments (DOE) approach for targeted and untargeted compounds. This methodology, specifically tailored for SPME Arrow, represents a significant advancement in untargeted urinary analysis. RESULTS The method was developed based on targeted and untargeted outcomes, were ranking results focus on the highest response area of 11 spiked target VOCs representative of urinary volatilomics, and on identifying the maximum untargeted number of VOCs. The method was developed focusing on the highest response area of 11 spiked target VOCs representative of urinary volatilomics and identifying the maximum number of VOCs. A univariate method determined the optimal coating type, urine volume, and salt addition. Subsequently, a central composite design (CCD) DOE was used to determine ideal temperature, extraction, and incubation times. The best method obtained has an extraction time of 60 min at a temperature of 53 °C, with an SPME Arrow CAR/PDMS using 2 mL of urine, with 0.25 % w/v of NaCl and a pH of 2. Compared to conventional SPME fibers, the SPME Arrow showed improved extraction efficiency, detecting more VOCs. Finally, the enhanced method was successfully applied to urine samples from children exposed and non-exposed to tobacco smoke, identifying specific VOCs, like p-cymene and p-isopropenyl toluene related to tobacco exposure. SIGNIFICANCE By integrating both targeted and untargeted approaches, the developed method comprehensively captures the complexity of urinary metabolomics. This dual strategy ensures the precise identification of known compounds and the discovery of novel biomarkers, thereby providing a more complete metabolic profile. Such an approach is crucial for advancing in non-invasive diagnostics and environmental health studies, as it offers deeper insights into the intricate relationships between metabolic processes and various health conditions.
Collapse
Affiliation(s)
- Maria Llambrich
- Department of Electrical Electronic Engineering and Automation, Universitat Rovira I Virgili (URV), 43003, Tarragona, Spain; Department of Nutrition and Metabolism, Institut D'Investigació Sanitària Pere Virgili (IISPV), CERCA, 43204, Spain.
| | - Noelia Ramírez
- Department of Electrical Electronic Engineering and Automation, Universitat Rovira I Virgili (URV), 43003, Tarragona, Spain; Department of Nutrition and Metabolism, Institut D'Investigació Sanitària Pere Virgili (IISPV), CERCA, 43204, Spain; Centre for Biomedical Research in Diabetes and Associated Metabolic Diseases (CIBERDEM), Av. Monforte de Lemos, 3-5, Pabellón 11, Planta 0, 28029, Madrid, Spain.
| | - Raquel Cumeras
- Department of Electrical Electronic Engineering and Automation, Universitat Rovira I Virgili (URV), 43003, Tarragona, Spain; Department of Oncology, Institut D'Investigació Sanitària Pere Virgili (IISPV), CERCA, 43204, Reus, Spain.
| | - Jesús Brezmes
- Department of Electrical Electronic Engineering and Automation, Universitat Rovira I Virgili (URV), 43003, Tarragona, Spain; Department of Nutrition and Metabolism, Institut D'Investigació Sanitària Pere Virgili (IISPV), CERCA, 43204, Spain.
| |
Collapse
|
2
|
Alminderej FM, Saleh SM, Abdallah OI. Monitoring pesticide residues in pepper ( Capsicum annuum L.) from Al-Qassim region, Saudi Arabia: Occurrence, quality, and risk evaluations. Heliyon 2024; 10:e36805. [PMID: 39296155 PMCID: PMC11408781 DOI: 10.1016/j.heliyon.2024.e36805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/21/2024] Open
Abstract
The Al-Qassim region, a prominent agricultural hub in Saudi Arabia, significantly contributes to the national production of vegetables and fruits. This study validated the standard EN-QuEChERS (Quick, Easy, Cheap, Effective, Rugged and Safe) method in conjunction with liquid chromatography-tandem mass spectrometry (LC-MS/MS) to determine 90 multiple pesticide residues in three categories of peppers: green bell, green hot and red chilli peppers. Validation criteria, including linearity range, accuracy, precision, limit of detection (LOD), and limit of quantification (LOQ), were within the acceptance range of the SANTE/11312/2021 guideline. The validated method was then used to analyse 536 pepper samples collected in 2023 from the Al-Qassim region of Saudi Arabia. The analysis of 536 pepper samples revealed that 394 samples (73.51 %) contained pesticide residues, with 126 (23.51 %) exceeding the established maximum residue limits (MRLs). The most frequently identified pesticide was imidacloprid (171 samples, 31.9 %) and acetamiprid (94 samples, 17.54 %), followed by bifenazate and difenoconazole, which were each detected in 66 samples (12.31 %). Among the remaining 32 pesticides, 24 were detected in 1%-10 % of the samples, whereas 8 were detected in <1 %. The 36 pesticides detected were classified into 14 insecticides (38.9 %), 14 fungicides (38.9 %) and 8 acaricides (22.2 %). Notably, the overall detection rate of the pesticides was relatively higher in red chilli peppers (232 %) compared with bell peppers (165 %), followed by green hot peppers (132 %). Red chilli peppers also showed the highest residue concentrations of various pesticides. Neonicotinoids and triazoles exhibited the highest detection rates in this study. The residue quality index (IqR) of the samples analysed fell into the categories excellent (26.49 %), good (31.72 %), and adequate (14.06 %), with 28.73 % of the samples deemed inadequate. Long-term dietary exposure was examined for adults and children. This study highlights the crucial role of continual observation in defending public health and securing the trade standardisation and safety.
Collapse
Affiliation(s)
- Fahad M Alminderej
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia
| | - Sayed M Saleh
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia
| | - Osama I Abdallah
- Pesticide Residues and Environmental Pollution Department, Central Agricultural Pesticide Laboratory, Agriculture Research Center, Dokki, Giza, 12618, Egypt
- Food Safety Laboratory, Al-Qassim Municipality, Buraidah, Saudi Arabia
| |
Collapse
|
3
|
Vivaldi FM, Reale S, Ghimenti S, Biagini D, Lenzi A, Lomonaco T, Di Francesco F. A low-cost internal standard loader for solid-phase sorbing tools. J Breath Res 2023; 17:046008. [PMID: 37567168 DOI: 10.1088/1752-7163/acef4b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 08/11/2023] [Indexed: 08/13/2023]
Abstract
Solid-phase sorption is widely used for the analysis of gaseous specimens as it allows at the same time to preconcentrate target analytes and store samples for relatively long periods. The addition of internal standards (ISs) in the analytical workflow can greatly reduce the variability of the analyses and improve the reliability of the protocols. In this work, we describe the development and testing of a portable system for the reliable production of gaseous mixture of8D-Toluene in a 1L Silonite canister as well as its reproducible loading into solid-phase sorbing tools as ISs. The portable system was tested using needle trap microextraction, solid-phase extraction, and thin-film microextraction techniques commonly employed for the analysis of gaseous samples. Even though our specific interest is in breath analysis, the system can also be used for the collection of any kind of gaseous specimen. A microcontroller allows the fine control of the sampling flow by a digital mass flow controller. Flow rate and sample volume could be set either through a rotary encoder mounted onto the control board or through a dedicated android app. The variability of the airflow is in the range 5-200 ml min-1and it is lower than 1%, whereas the variability of the IS (8D-Toluene) concentration dispensed over time by the loader measured by selected-ion flow-tube mass spectrometry (MS) is <3%. This combination resulted in intra- and inter-day precision of the amount loaded in the sorbent tools lower than 15%. No carry-over was detected in the loader after the delivery of the8D-Toluene measured by gas chromatography-MS. The8D-Toluene concentration in the canister was stable for up to three weeks at room temperature.
Collapse
Affiliation(s)
- F M Vivaldi
- Department of Chemistry and Industrial Chemistry, University of Pisa, via Giuseppe Moruzzi 13, 56124 Pisa, Italy
| | - S Reale
- Department of Chemistry and Industrial Chemistry, University of Pisa, via Giuseppe Moruzzi 13, 56124 Pisa, Italy
| | - S Ghimenti
- Department of Chemistry and Industrial Chemistry, University of Pisa, via Giuseppe Moruzzi 13, 56124 Pisa, Italy
| | - D Biagini
- Department of Chemistry and Industrial Chemistry, University of Pisa, via Giuseppe Moruzzi 13, 56124 Pisa, Italy
| | - A Lenzi
- Department of Chemistry and Industrial Chemistry, University of Pisa, via Giuseppe Moruzzi 13, 56124 Pisa, Italy
| | - T Lomonaco
- Department of Chemistry and Industrial Chemistry, University of Pisa, via Giuseppe Moruzzi 13, 56124 Pisa, Italy
| | - F Di Francesco
- Department of Chemistry and Industrial Chemistry, University of Pisa, via Giuseppe Moruzzi 13, 56124 Pisa, Italy
| |
Collapse
|
4
|
A Comprehensive Review of Pesticide Residues in Peppers. Foods 2023; 12:foods12050970. [PMID: 36900487 PMCID: PMC10000673 DOI: 10.3390/foods12050970] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 02/14/2023] [Accepted: 02/21/2023] [Indexed: 03/03/2023] Open
Abstract
Pesticides are chemicals that are used to control pests such as insects, fungi, and weeds. Pesticide residues can remain on crops after application. Peppers are popular and versatile foods that are valued for their flavor, nutrition, and medicinal properties. The consumption of raw or fresh peppers (bell and chili) can have important health benefits due to their high levels of vitamins, minerals, and antioxidants. Therefore, it is crucial to consider factors such as pesticide use and preparation methods to fully realize these benefits. Ensuring that the levels of pesticide residues in peppers are not harmful to human health requires rigorous and continuous monitoring. Several analytical methods, such as gas chromatography (GC), liquid chromatography (LC), mass spectrometry (MS), infrared spectroscopy (IR), ultraviolet-visible spectroscopy (UV-Vis), and nuclear magnetic resonance spectroscopy (NMR), can detect and quantify pesticide residues in peppers. The choice of analytical method depends on the specific pesticide, that is being tested for and the type of sample being analyzed. The sample preparation method usually involves several processes. This includes extraction, which is used to separate the pesticides from the pepper matrix, and cleanup, which removes any interfering substances that could affect the accuracy of the analysis. Regulatory agencies or food safety organizations typically monitor pesticide residues in peppers by stipulating maximum residue limits (MRLs). Herein, we discuss various sample preparation, cleanup, and analytical techniques, as well as the dissipation patterns and application of monitoring strategies for analyzing pesticides in peppers to help safeguard against potential human health risks. From the authors' perspective, several challenges and limitations exist in the analytical approach to monitoring pesticide residues in peppers. These include the complexity of the matrix, the limited sensitivity of some analytical methods, cost and time, a lack of standard methods, and limited sample size. Furthermore, developing new analytical methods, using machine learning and artificial intelligence, promoting sustainable and organic growing practices, improving sample preparation methods, and increasing standardization could assist efficiently in analyzing pesticide residues in peppers.
Collapse
|
5
|
Llambrich M, Brezmes J, Cumeras R. The untargeted urine volatilome for biomedical applications: methodology and volatilome database. Biol Proced Online 2022; 24:20. [PMID: 36456991 PMCID: PMC9714113 DOI: 10.1186/s12575-022-00184-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/18/2022] [Indexed: 12/03/2022] Open
Abstract
Chemically diverse in compounds, urine can give us an insight into metabolic breakdown products from foods, drinks, drugs, environmental contaminants, endogenous waste metabolites, and bacterial by-products. Hundreds of them are volatile compounds; however, their composition has never been provided in detail, nor has the methodology used for urine volatilome untargeted analysis. Here, we summarize key elements for the untargeted analysis of urine volatilome from a comprehensive compilation of literature, including the latest reports published. Current achievements and limitations on each process step are discussed and compared. 34 studies were found retrieving all information from the urine treatment to the final results obtained. In this report, we provide the first specific urine volatilome database, consisting of 841 compounds from 80 different chemical classes.
Collapse
Affiliation(s)
- Maria Llambrich
- Department of Electrical Electronic Engineering and Automation, Universitat Rovira I Virgili, 43007 Tarragona, Spain
- Department of Nutrition and Metabolism, Metabolomics Interdisciplinary Group, Institut d’Investigació Sanitària Pere Virgili (IISPV), 43204, Reus, Spain
| | - Jesús Brezmes
- Department of Electrical Electronic Engineering and Automation, Universitat Rovira I Virgili, 43007 Tarragona, Spain
- Department of Nutrition and Metabolism, Metabolomics Interdisciplinary Group, Institut d’Investigació Sanitària Pere Virgili (IISPV), 43204, Reus, Spain
| | - Raquel Cumeras
- Department of Electrical Electronic Engineering and Automation, Universitat Rovira I Virgili, 43007 Tarragona, Spain
- Department of Nutrition and Metabolism, Metabolomics Interdisciplinary Group, Institut d’Investigació Sanitària Pere Virgili (IISPV), 43204, Reus, Spain
- Oncology Department, Institut d’Investigació Sanitària Pere Virgili (IISPV), 43204, Reus, Spain
| |
Collapse
|
6
|
Tabbal S, El Aroussi B, Bouchard M, Marchand G, Haddad S. A new headspace solid-phase microextraction coupled with gas chromatography-tandem mass spectrometry method for the simultaneous quantification of 21 microbial volatile organic compounds in urine and blood. CHEMOSPHERE 2022; 296:133901. [PMID: 35143866 DOI: 10.1016/j.chemosphere.2022.133901] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 02/03/2022] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
Mold growth can cause the development of several metabolites including microbial volatile organic compounds (mVOCs). These latter may be considered as potential biomarkers of fungal presence and have been detected in human biological matrices such as urine and blood. Exposure to molds and their metabolites (e.g., mVOCs, mycotoxins) in occupational settings, is responsible for several health effects. Thus, this exposure cannot be neglected and must be evaluated. Herein, a method has been developed to quantify 21 mVOCs in urine and human blood by headspace solid phase micro-extraction (HS-SPME) coupled with gas chromatography-triple quadrupole mass spectrometry (GC-MS/MS). The parameters influencing the extraction process, such as the type of fiber, the incubation and extraction time and temperature and the desorption time, have been optimized to ensure better mVOCs extraction. The developed method showed good linearity over the concentration range of the compounds (R2 ˃ 0.995) for all the mVOCs in all the matrices. The low limits of detection (LOD) ranging from 0.7 to 417 ng/L in urine and from 1 to 507 ng/L in blood, make the developed methods sensitive and effective for biomonitoring of exposure at low levels. Recoveries, at low and high concentrations, were between 87% and 120% in urine and between 83% and 118% in blood. The repeatability and the intermediate precision in terms of coefficients of variation (CV%) was lower than 13% and 8.58% respectively for all compounds in all matrices. These values show satisfactory accuracy and precision of the developed method. Thus, this practical, simple, and sensitive method is well suited for the simultaneous quantification of target mVOCs.
Collapse
Affiliation(s)
- Sarah Tabbal
- Department of Environmental and Occupational Health (DSEST), University of Montréal, Montréal, Québec, Canada; Centre de recherche en santé publique (CReSP), Montréal, Québec, Canada
| | - Badr El Aroussi
- Department of Environmental and Occupational Health (DSEST), University of Montréal, Montréal, Québec, Canada; Centre de recherche en santé publique (CReSP), Montréal, Québec, Canada
| | - Michèle Bouchard
- Department of Environmental and Occupational Health (DSEST), University of Montréal, Montréal, Québec, Canada; Centre de recherche en santé publique (CReSP), Montréal, Québec, Canada
| | - Geneviève Marchand
- Institut de recherche Robert-Sauvé en santé et en sécurité du travail (IRSST), Montréal, Québec, Canada
| | - Sami Haddad
- Department of Environmental and Occupational Health (DSEST), University of Montréal, Montréal, Québec, Canada; Centre de recherche en santé publique (CReSP), Montréal, Québec, Canada.
| |
Collapse
|
7
|
Ciacci C, Zingone F. New perspectives on the diagnosis of adulthood coeliac disease. COELIAC DISEASE AND GLUTEN-RELATED DISORDERS 2022:101-110. [DOI: 10.1016/b978-0-12-821571-5.00013-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
8
|
Metabolomics profiling of human exhaled breath condensate by SPME/GC × GC-ToFMS: Exploratory study on the use of face masks at the level of lipid peroxidation volatile markers. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106830] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
9
|
Rosado T, Barroso M, Vieira DN, Gallardo E. Trends in microextraction approaches for handling human hair extracts - A review. Anal Chim Acta 2021; 1185:338792. [PMID: 34711317 DOI: 10.1016/j.aca.2021.338792] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 06/20/2021] [Accepted: 06/21/2021] [Indexed: 11/20/2022]
Abstract
The complementary role of hair in testing scenarios has expanded across the spectrum of toxicological and clinical monitoring investigations and, over the last 20 years, hair analysis has gained increasing attention and recognition. Moreover, a great deal of attention has been paid to the miniaturisation of extraction procedures, minimising/eliminating toxic organic solvents consumption, making them user-friendly and rapid, in addition to maximising extraction efficiency. The aim of this work is to provide a critical review of the advances observed over the last 5 years in the use of miniaturised approaches for sample clean-up and drug pre-concentration in hair analysis. There have been major improvements in some well-established microextraction approaches, such as liquid phase microextraction, mainly through the use of supramolecular and ionic liquids. In addition, new developments have also been reported in solid phase microextraction, driven by d-SPE applications. In the last 5 years, a total of 69 articles have been published using some type of microextraction technique for hair specimens, thus justifying the relevance of a critical review of innovations, improvements and trends related to these miniaturised approaches for sample preparation.
Collapse
Affiliation(s)
- Tiago Rosado
- Centro de Investigação em Ciências da Saúde (CICS-UBI), Universidade da Beira Interior, Covilhã, Portugal; Laboratório de Fármaco-Toxicologia - UBIMedical, Universidade da Beira Interior, Covilhã, Portugal; C4 - Cloud Computing Competence Centre, Universidade da Beira Interior, Covilhã, Portugal
| | - Mário Barroso
- Serviço de Química e Toxicologia Forenses, Instituto Nacional de Medicina Legal e Ciências Forenses, Delegação do Sul, Lisboa, Portugal
| | | | - Eugenia Gallardo
- Centro de Investigação em Ciências da Saúde (CICS-UBI), Universidade da Beira Interior, Covilhã, Portugal; Laboratório de Fármaco-Toxicologia - UBIMedical, Universidade da Beira Interior, Covilhã, Portugal.
| |
Collapse
|
10
|
Abedi H. Solid-phase microextraction of methadone by using a chitosan nanocomposite incorporated with Polyoxomolibdate nanocluster/Graphene oxide. J Sep Sci 2021; 44:1969-1977. [PMID: 33594820 DOI: 10.1002/jssc.202100095] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 02/13/2021] [Indexed: 12/19/2022]
Abstract
In the present study, we report on the simple sol-gel preparation of a nanocomposite composed of chitosan/ polyoxometalate /graphene oxide, and its application in the headspace solid-phase microextraction combined with the ion mobility spectrometry for the analysis of methadone in biological matrices. The developed nanocomposite was characterized through the infrared spectroscopy and thermogravimetric analyses. The ternary nanocomposite coating offers good mechanical and thermal stability and high extraction efficiency thanks to its large specific surface. A central composite statistical design was used to study the main variables affecting the extraction efficiency. Afterward, to study the relationship between different input and output variables as well as to identify the optimal operating conditions, response surface methodology was used, whereby a second-order polynomial equation was fit to the experimental data. The optimized extraction conditions were as follows: temperature, 70°C; extraction time, 15 min; and concentration of NaCl, 5%w/v. The detection limit of 0.12 ng/mL was obtained at the optimized extraction conditions, and the calibration plot was linear in the concentration range of 0.30-200 ng/mL. With relatively low limit of detection and good precisions, the proposed method has the potential for the extraction and determination of methadone in biological samples.
Collapse
Affiliation(s)
- Hamid Abedi
- Department of Police Equipment and Technologies, Police Sciences and Social Studies Institute, Tehran, Iran
| |
Collapse
|
11
|
Park SK, Khan F, Cho YJ, Hong DL, Jang YM, Kim YM. Optimization and Analysis of Acid Treated Trimethylamine using Surface Response and Gas Chromatography Analytical Methods. CURR ANAL CHEM 2020. [DOI: 10.2174/1573411015666190301145807] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Trimethylamine (TMA) is a nitrogenous base aliphatic organic compound
accounting for the odor of rotten fish and it is used as an indicator for analyzing the quality of fish
products.
Introduction:
Extraction procedures and analytical methods including colorimetric and Gas-
Chromatography (GC) can quantify the TMA contents of fish products after pre-treatment with basic
solutions. However, the extraction procedure and analytical methods for acid-treated samples are not
known, despite the majority of fish products being preserved using acid preservatives.
Methods:
The methodologies used included solid-phase micro-extraction of TMA followed by its
quantification by a GC-based analytical method. An analysis of response surface methodology was
also conducted to verify the optimum conditions for TMA detection in acid-treated liquid samples
affected by factors including trapping time, temperature, and stirring speed.
Results:
The results obtained from this study showed that the optimum conditions for the best yield
of TMA extraction are 20 min of trapping, emission at 55°C, and stirring at 400 rpm. The validation
of the developed method was carried out using rotten fish after acid treatment. Acid treatment decreased
TMA by up to 73.01%, however, when adding NaOH solution of the same volume to the
samples, TMA increased similar to the control group.
Conclusion:
Here, we report a simple, sensitive, and rapid extraction procedure. A GC-based analytical
method was developed for the analysis of TMA from the acid-treated sample. The developed extraction
procedure and analytical methods were optimized and validated, which could be helpful for
the extraction of TMA without damaging the sample.
Collapse
Affiliation(s)
- Seul-Ki Park
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Korea
| | - Fazlurrahman Khan
- Marine-Integrated Bionics Research Center, Pukyong National University, Busan 48513, Korea
| | - Yeon-Jin Cho
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Korea
| | - Dong-Lee Hong
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Korea
| | - Yu-Mi Jang
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Korea
| | - Young-Mog Kim
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Korea
| |
Collapse
|
12
|
Jalili V, Barkhordari A, Ghiasvand A. Bioanalytical Applications of Microextraction Techniques: A Review of Reviews. Chromatographia 2020. [DOI: 10.1007/s10337-020-03884-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
13
|
Nguyen TD, Riordan-Short S, Dang TTT, O’Brien R, Noestheden M. Quantitation of Select Terpenes/Terpenoids and Nicotine Using Gas Chromatography-Mass Spectrometry with High-Temperature Headspace Sampling. ACS OMEGA 2020; 5:5565-5573. [PMID: 32201850 PMCID: PMC7081649 DOI: 10.1021/acsomega.0c00384] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 02/18/2020] [Indexed: 05/22/2023]
Abstract
Plants are the main sources of many high-value bioactive terpenoids used in the medical, fragrance, and food industries. Increasing demand for these bioactive plants and their derivative products (e.g., cannabis and extracts thereof) requires robust approaches to verify feedstock, identify product adulteration, and ensure product safety. Reported here are single-laboratory validation details for a robust testing method to quantitate select terpenes and terpenoids in dry plant materials and terpenoid-containing vaping liquids (e.g., a derivative product) using high-temperature headspace gas chromatography-mass spectrometry, with glycerol used as a headspace solvent. Validated method recoveries were 75-103%, with excellent repeatability (relative standard deviation (RSD) < 5%) and intermediate precision (RSD < 12%). The use of high-temperature headspace (180 °C) permitted terpene and terpenoid profiles to be monitored at temperatures consistent with vaping conditions.
Collapse
Affiliation(s)
- Trinh-Don Nguyen
- Department
of Chemistry, Irving K. Barber School of Arts and Sciences, University of British Columbia, Kelowna, British Columbia V1V 1V7, Canada
- Supra
Research and Development, Kelowna, British Columbia V1W 4C2, Canada
| | | | - Thu-Thuy T. Dang
- Department
of Chemistry, Irving K. Barber School of Arts and Sciences, University of British Columbia, Kelowna, British Columbia V1V 1V7, Canada
| | - Rob O’Brien
- Supra
Research and Development, Kelowna, British Columbia V1W 4C2, Canada
- Department
of Biology, Irving K. Barber School of Arts and Sciences, University of British Columbia, Kelowna, British Columbia V1V 1V7, Canada
| | - Matthew Noestheden
- Department
of Chemistry, Irving K. Barber School of Arts and Sciences, University of British Columbia, Kelowna, British Columbia V1V 1V7, Canada
- Supra
Research and Development, Kelowna, British Columbia V1W 4C2, Canada
- E-mail: . Phone: +1 778 760 8982 (M.N.)
| |
Collapse
|
14
|
Scortichini S, Boarelli MC, Silvi S, Fiorini D. Development and validation of a GC-FID method for the analysis of short chain fatty acids in rat and human faeces and in fermentation fluids. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1143:121972. [PMID: 32193004 DOI: 10.1016/j.jchromb.2020.121972] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 01/29/2023]
Abstract
Short-chain fatty acids (SCFAs) are gut microbiota metabolites recognized for their beneficial effects on the host organism. In this study, a simple and rapid sample preparation method combined to SCFAs analysis by direct injection and gas chromatography coupled with flame ionization detection (GC-FID), for the determination and quantification of eight SCFAs (acetic, propionic, i-butyric, butyric, i-valeric, valeric, i-caproic and caproic acids) in rat, mice and human faeces and in fermentation fluids samples, has been developed and validated. The method consists of extraction of the SCFAs by ethyl ether after acidification of the samples. The effect of the number of extractions has been assessed in order to optimize the procedure and to obtain a satisfactory yield for all the analyzed SCFAs. The increase of the extracted analytes quantity was significant passing from 1 to 2 and from 2 to 3 extractions (P < 0.05), while no significant differences were found performing 3, 4 or 5 extractions (P > 0.05). The SCFAs extracted are directly analyzed by GC-FID without derivatization and separated on a polyethylene glycol nitroterephthalic acid modified coated capillary column, with a chromatographic run time of 13 min. The proposed method showed good sensitivity, with limits of quantifications in the range 0.14-0.48 µM for SCFAs from propionic to caproic acids and 2.12 µM for acetic acid; recovery was between 80.8 and 108.8% and intraday and interday repeatability in the range 0.6-5.0% of precision (RSD, %) The optimized method is suitable for the quantitative analysis of SCFAs in real samples of rat, mouse and human faeces and in fermentation fluids, and it can be applied also to very small amount of faecal sample (20 mg).
Collapse
Affiliation(s)
- Serena Scortichini
- School of Science and Technology, Chemistry Division, University of Camerino, V. S. Agostino 1, I-62032 Camerino, MC, Italy
| | - Maria Chiara Boarelli
- School of Science and Technology, Chemistry Division, University of Camerino, V. S. Agostino 1, I-62032 Camerino, MC, Italy
| | - Stefania Silvi
- School of Biosciences and Veterinary Medicine, University of Camerino, V. S. Agostino 1, I-62032 Camerino, MC, Italy
| | - Dennis Fiorini
- School of Science and Technology, Chemistry Division, University of Camerino, V. S. Agostino 1, I-62032 Camerino, MC, Italy.
| |
Collapse
|
15
|
|
16
|
|
17
|
Zhu S, Corsetti S, Wang Q, Li C, Huang Z, Nabi G. Optical sensory arrays for the detection of urinary bladder cancer-related volatile organic compounds. JOURNAL OF BIOPHOTONICS 2019; 12:e201800165. [PMID: 30168296 PMCID: PMC7065633 DOI: 10.1002/jbio.201800165] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Accepted: 08/29/2018] [Indexed: 05/06/2023]
Abstract
Non-invasive detection of urinary bladder cancer remains a significant challenge. Urinary volatile organic compounds (VOCs) are a promising alternative to cell-based biomarkers. Herein, we demonstrate a novel diagnosis system based on an optic fluorescence sensor array for detecting urinary bladder cancer VOCs biomarkers. This study describes a fluorescence-based VOCs sensor array detecting system in detail. The choice of VOCs for the initial part was based on an extensive systematic search of the literature and then followed up using urinary samples from patients with urinary bladder transitional cell carcinoma. Canonical discriminant analysis and partial least squares discriminant analysis (PLS-DA) were employed and correctly detected 31/48 urinary bladder cancer VOC biomarkers and achieved an overall 77.75% sensitivity and 93.25% specificity by PLS-DA modelling. All five urine samples from bladder cancer patients, and five healthy controls were successfully identified with the same sensor arrays. Overall, the experiments in this study describe a real-time platform for non-invasive bladder cancer diagnosis using fluorescence-based gas-sensor arrays. Pure VOCs and urine samples from the patients proved such a system to be promising; however, further research is required using a larger population sample.
Collapse
Affiliation(s)
- Simian Zhu
- Cancer Research DivisionSchool of Medicine, University of DundeeDundeeUK
- Mechanical and Electronic Engineering, School of Science and EngineeringUniversity of DundeeDundeeUK
| | | | - Qifan Wang
- Mechanical and Electronic Engineering, School of Science and EngineeringUniversity of DundeeDundeeUK
| | - Chunhui Li
- Mechanical and Electronic Engineering, School of Science and EngineeringUniversity of DundeeDundeeUK
| | - Zhihong Huang
- Mechanical and Electronic Engineering, School of Science and EngineeringUniversity of DundeeDundeeUK
| | - Ghulam Nabi
- Cancer Research DivisionSchool of Medicine, University of DundeeDundeeUK
| |
Collapse
|
18
|
Mohamed EI, Mohamed MA, Abdel-Mageed SM, Abdel-Mohdy TS, Badawi MI, Darwish SH. Volatile organic compounds of biofluids for detecting lung cancer by an electronic nose based on artificial neural network. J Appl Biomed 2019; 17:67. [DOI: 10.32725/jab.2018.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Indexed: 01/04/2023] Open
|
19
|
Analysis of extracellular metabolome by HS-SPME/GC–MS: Optimization and application in a pilot study to evaluate galactosamine-induced hepatotoxicity. Toxicol Lett 2018; 295:22-31. [DOI: 10.1016/j.toxlet.2018.05.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 04/24/2018] [Accepted: 05/22/2018] [Indexed: 01/19/2023]
|
20
|
Developing a new sensitive solid-phase microextraction fiber based on carbon nanotubes for preconcentration of morphine. APPLIED NANOSCIENCE 2018. [DOI: 10.1007/s13204-018-0882-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
21
|
Optimization, validation and application of headspace solid-phase microextraction gas chromatography for the determination of 1-nitro-2-phenylethane and methyleugenol from Aniba canelilla (H.B.K.) Mez essential oil in skin permeation samples. J Chromatogr A 2018; 1564:163-175. [DOI: 10.1016/j.chroma.2018.05.073] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 05/25/2018] [Accepted: 05/31/2018] [Indexed: 11/19/2022]
|
22
|
Niu J, Zhao X, Jin Y, Yang G, Li Z, Wang J, Zhao R, Li Z. Determination of aromatic amines in the urine of smokers using a porous organic framework (JUC-Z2)-coated solid-phase microextraction fiber. J Chromatogr A 2018; 1555:37-44. [DOI: 10.1016/j.chroma.2018.04.059] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 04/14/2018] [Accepted: 04/25/2018] [Indexed: 10/17/2022]
|
23
|
Fujii H, Waters B, Hara K, Ikematsu N, Takayama M, Matsusue A, Kashiwagi M, Kubo SI. A modified direct-heating headspace solid-phase microextraction method for drug screening with urine samples. Forensic Toxicol 2017. [DOI: 10.1007/s11419-017-0396-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
24
|
Mozūraitis R, Kutra J, Borg-Karlson AK, Būda V. Dynamics of putative sex pheromone components during heat periods in estrus-induced cows. J Dairy Sci 2017; 100:7686-7695. [DOI: 10.3168/jds.2016-12376] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 05/05/2017] [Indexed: 11/19/2022]
|
25
|
Lv F, Gan N, Huang J, Hu F, Cao Y, Zhou Y, Dong Y, Zhang L, Jiang S. A poly-dopamine based metal-organic framework coating of the type PDA-MIL-53(Fe) for ultrasound-assisted solid-phase microextraction of polychlorinated biphenyls prior to their determination by GC-MS. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2208-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
26
|
Recent progress, challenges and trends in trace determination of drug analysis using molecularly imprinted solid-phase microextraction technology. Talanta 2017; 164:612-625. [DOI: 10.1016/j.talanta.2016.11.007] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 11/03/2016] [Accepted: 11/04/2016] [Indexed: 01/11/2023]
|
27
|
Jin Y, Li Z, Yang L, Xu J, Zhao L, Li Z, Niu J. Porous Aromatic Framework 48/Gel Hybrid Material Coated Solid-Phase Microextraction Fiber for the Determination of the Migration of Styrene from Polystyrene Food Contact Materials. Anal Chem 2017; 89:1290-1298. [DOI: 10.1021/acs.analchem.6b04083] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | | | | | | | - Le Zhao
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, Henan 450001, China
| | - Zhonghao Li
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, Henan 450001, China
| | - Jiajia Niu
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, Henan 450001, China
| |
Collapse
|
28
|
Rahman MM, Abd El-Aty AM, Kim SW, Shin SC, Shin HC, Shim JH. Quick, easy, cheap, effective, rugged, and safe sample preparation approach for pesticide residue analysis using traditional detectors in chromatography: A review. J Sep Sci 2016; 40:203-212. [DOI: 10.1002/jssc.201600889] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 10/10/2016] [Accepted: 10/10/2016] [Indexed: 11/07/2022]
Affiliation(s)
- Md. Musfiqur Rahman
- Biotechnology Research Institute, College of Agriculture and Life Sciences; Chonnam National University; Gwangju Republic of Korea
| | - A. M. Abd El-Aty
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine; Konkuk University; Seoul Republic of Korea
- Department of Pharmacology, Faculty of Veterinary Medicine; Cairo University; Giza Egypt
| | - Sung-Woo Kim
- Biotechnology Research Institute, College of Agriculture and Life Sciences; Chonnam National University; Gwangju Republic of Korea
| | - Sung Chul Shin
- Department of Chemistry and Research Institute of Life Sciences; Gyeongsang National University; Jinju Republic of Korea
| | - Ho-Chul Shin
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine; Konkuk University; Seoul Republic of Korea
| | - Jae-Han Shim
- Biotechnology Research Institute, College of Agriculture and Life Sciences; Chonnam National University; Gwangju Republic of Korea
| |
Collapse
|
29
|
Gras K, Luong J, Gras R, Shellie RA. Trace-level screening of dichlorophenols in processed dairy milk by headspace gas chromatography. J Sep Sci 2016; 39:3957-3963. [DOI: 10.1002/jssc.201600748] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 08/12/2016] [Accepted: 08/15/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Kaelyn Gras
- Department of Science; University of Alberta; Edmonton Alberta
| | - Jim Luong
- Dow Chemical Canada ULC; Fort Saskatchewan Alberta Canada
- Australian Centre for Research on Separation Science (ACROSS); University of Tasmania; Hobart Tasmania Australia
| | - Ronda Gras
- Dow Chemical Canada ULC; Fort Saskatchewan Alberta Canada
- Australian Centre for Research on Separation Science (ACROSS); University of Tasmania; Hobart Tasmania Australia
- ARC Training Centre for Portable Analytical Separation Technologies (ASTech); University of Tasmania; Hobart Tasmania Australia
| | - Robert A. Shellie
- Australian Centre for Research on Separation Science (ACROSS); University of Tasmania; Hobart Tasmania Australia
- ARC Training Centre for Portable Analytical Separation Technologies (ASTech); University of Tasmania; Hobart Tasmania Australia
- Trajan Scientific and Medical; Victoria Australia
| |
Collapse
|
30
|
Niu J, Li Z, Yang H, Ye C, Chen C, Li D, Xu J, Fan L. A water resistant solid-phase microextraction fiber with high selectivity prepared by a metal organic framework with perfluorinated pores. J Chromatogr A 2016; 1441:16-23. [DOI: 10.1016/j.chroma.2016.02.076] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 02/23/2016] [Accepted: 02/24/2016] [Indexed: 01/09/2023]
|
31
|
Lakade SS, Borrull F, Furton KG, Kabir A, Fontanals N, Marcé RM. Comparative study of different fabric phase sorptive extraction sorbents to determine emerging contaminants from environmental water using liquid chromatography–tandem mass spectrometry. Talanta 2015; 144:1342-51. [DOI: 10.1016/j.talanta.2015.08.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 07/30/2015] [Accepted: 08/04/2015] [Indexed: 12/22/2022]
|
32
|
Comparative Characterization of Aroma Volatiles and Related Gene Expression Analysis at Vegetative and Mature Stages in Basmati and Non-Basmati Rice (Oryza sativa L.) Cultivars. Appl Biochem Biotechnol 2015; 178:619-39. [DOI: 10.1007/s12010-015-1898-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 10/09/2015] [Indexed: 10/22/2022]
|
33
|
Inhibiting sorbent stripping by designing a sorbent-packed porous probe for headspace solid-phase microextraction. J Sep Sci 2015; 38:3582-7. [DOI: 10.1002/jssc.201500370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 07/15/2015] [Accepted: 07/31/2015] [Indexed: 11/07/2022]
|
34
|
Current Challenges in Volatile Organic Compounds Analysis as Potential Biomarkers of Cancer. J Biomark 2015; 2015:981458. [PMID: 26317039 PMCID: PMC4437398 DOI: 10.1155/2015/981458] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 03/10/2015] [Indexed: 12/11/2022] Open
Abstract
An early diagnosis and appropriate treatment are crucial in reducing mortality among people suffering from cancer. There is a lack of characteristic early clinical symptoms in most forms of cancer, which highlights the importance of investigating new methods for its early detection. One of the most promising methods is the analysis of volatile organic compounds (VOCs). VOCs are a diverse group of carbon-based chemicals that are present in exhaled breath and biofluids and may be collected from the headspace of these matrices. Different patterns of VOCs have been correlated with various diseases, cancer among them. Studies have also shown that cancer cells in vitro produce or consume specific VOCs that can serve as potential biomarkers that differentiate them from noncancerous cells. This review identifies the current challenges in the investigation of VOCs as potential cancer biomarkers, by the critical evaluation of available matrices for the in vivo and in vitro approaches in this field and by comparison of the main extraction and detection techniques that have been applied to date in this area of study. It also summarises complementary in vivo, ex vivo, and in vitro studies conducted to date in order to try to identify volatile biomarkers of cancer.
Collapse
|
35
|
Sanagi MM, Hussain I, Ibrahim WAW, Yahaya N, Kamaruzaman S, Abidin NNZ, Ali I. Micro-extraction of Xenobiotics and Biomolecules from Different Matrices on Nanostructures. SEPARATION AND PURIFICATION REVIEWS 2014. [DOI: 10.1080/15422119.2014.973507] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
36
|
Zeverdegani SK, Bahrami A, Shahna FG, Rismanchian M, Heidari M. Determination of Toluene by Needle Trap Micro-Extraction with Carbon Nanotube Sol-Gel and Polydimethylsiloxane Sorbents. ANAL LETT 2014. [DOI: 10.1080/00032719.2014.900782] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
37
|
Zeverdegani SK, Bahrami A, Rismanchian M, Shahna FG. Analysis of xylene in aqueous media using needle-trap microextraction with a carbon nanotube sorbent. J Sep Sci 2014; 37:1850-5. [DOI: 10.1002/jssc.201400262] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 04/12/2014] [Accepted: 04/21/2014] [Indexed: 11/05/2022]
Affiliation(s)
- Sara Karimi Zeverdegani
- Department of Occupational Health, Research Center for Health Sciences; School of Public health; Hamadan University of Medical Sciences; Hamadan Iran
| | - Abdulrahman Bahrami
- Department of Occupational Health, Research Center for Health Sciences; School of Public health; Hamadan University of Medical Sciences; Hamadan Iran
| | - Masoud Rismanchian
- Department of Occupational Health; School of Public health; Isfahan University of Medical Sciences; Isfahan Iran
| | - Farshid Ghorbani Shahna
- Department of Occupational Health, Research Center for Health Sciences; School of Public health; Hamadan University of Medical Sciences; Hamadan Iran
| |
Collapse
|
38
|
Analysis of volatile human urinary metabolome by solid-phase microextraction in combination with gas chromatography–mass spectrometry for biomarker discovery: Application in a pilot study to discriminate patients with renal cell carcinoma. Eur J Cancer 2014; 50:1993-2002. [DOI: 10.1016/j.ejca.2014.04.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 02/26/2014] [Accepted: 04/10/2014] [Indexed: 12/31/2022]
|
39
|
Analysis of BTEX and chlorinated solvents in meconium by headspace-solid-phase microextraction gas chromatography coupled with mass spectrometry. Anal Bioanal Chem 2014; 406:4481-90. [PMID: 24838489 DOI: 10.1007/s00216-014-7836-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 04/07/2014] [Accepted: 04/14/2014] [Indexed: 10/25/2022]
Abstract
Meconium is the earliest stool of newborns, and is a complex matrix that reflects the degree of exposure of the fetus to xenobiotics. To investigate fetal exposure to volatile organic compounds, an analytical method was developed to identify and quantify BTEX (benzene, toluene, ethylbenzene, and o,m,p-xylene) and two chlorinated solvents (trichloroethylene and tetrachloroethylene) in meconium. Headspace-solid-phase microextraction coupled with gas chromatography-mass spectrometry was selected because it is simple, sensitive, can be automated, and requires no extensive sample preparation. Several extraction variables were optimized (fiber type, incubation time, temperature of fiber, and use of salt). Because meconium is a complex matrix, quantification by SPME was considered carefully because of potential interference, for example competitive adsorption. Calibration in water was compared with calibration in meconium using external and internal methods (with isotope-labeled compounds). In meconium, limits of quantification were determined to be in the range 0.064-0.096 ng g(-1) for the investigated compounds. All target compounds were determined in "real-case" meconium samples.
Collapse
|
40
|
Yang T, Ma C, Chen H, Zhang Y, Dang X, Huang J. A molecularly imprinted organic-inorganic hybrid monolithic column for the selective extraction and HPLC determination of isoprocarb residues in rice. J Sep Sci 2014; 37:587-94. [DOI: 10.1002/jssc.201301227] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Revised: 12/12/2013] [Accepted: 12/13/2013] [Indexed: 11/11/2022]
Affiliation(s)
- Ting Yang
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules; Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials; College of Chemistry and Chemical Engineering; Hubei University; Wuhan China
| | - Chao Ma
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules; Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials; College of Chemistry and Chemical Engineering; Hubei University; Wuhan China
| | - Huaixia Chen
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules; Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials; College of Chemistry and Chemical Engineering; Hubei University; Wuhan China
| | - Yajie Zhang
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules; Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials; College of Chemistry and Chemical Engineering; Hubei University; Wuhan China
| | - Xueping Dang
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules; Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials; College of Chemistry and Chemical Engineering; Hubei University; Wuhan China
| | - Jianlin Huang
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules; Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials; College of Chemistry and Chemical Engineering; Hubei University; Wuhan China
| |
Collapse
|
41
|
Zhang M, Zeng J, Wang Y, Chen X. Developments and trends of molecularly imprinted solid-phase microextraction. J Chromatogr Sci 2014; 51:577-86. [PMID: 23833206 DOI: 10.1093/chromsci/bms260] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
This review focuses on a solid-phase microextraction (SPME) method coupled with molecularly imprinted polymers (MIPs), namely molecularly imprinted solid-phase microextraction (MISPME). The first two sections discuss the summaries of conventional SPME and MIPs. The third section reviews the development of MISPME in past years, including the preparation of MISPME, and the applications to compounds in real samples.
Collapse
Affiliation(s)
- Maosheng Zhang
- Department of Chemistry and Environmental Science, Fujian Province University Key Laboratory of Analytical Science, Zhangzhou Normal University, Zhangzhou 363000, China
| | | | | | | |
Collapse
|
42
|
Fischer MJ, Beatty AM. Solid phase microextraction (SPME) combined with TGA as a technique for guest analysis in crystal engineering. CrystEngComm 2014. [DOI: 10.1039/c4ce00419a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Guest identification using SPME – a technique for analysis of TGA off-gas that eliminates the need for direct TGA-GC/MS coupling.
Collapse
Affiliation(s)
- Matthew J. Fischer
- Department of Chemistry and Biochemistry and the Center for Nanoscience
- University of Missouri-St. Louis
- , USA
| | - Alicia M. Beatty
- Department of Chemistry and Biochemistry and the Center for Nanoscience
- University of Missouri-St. Louis
- , USA
| |
Collapse
|
43
|
Heaven MW, Verheyen TV, Reynolds A, Wild K, Watkins M, Nash D. Matrix effects of milk, dairy factory wastewater and soil water on the determination of disinfection by-products andpara-cresol using solid-phase microextraction. INT J DAIRY TECHNOL 2013. [DOI: 10.1111/1471-0307.12104] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Michael W Heaven
- Farming Systems Research; Department of Environment and Primary Industries; 1301 Hazeldean Road Ellinbank Vic. 3821 Australia
| | - T Vincent Verheyen
- School of Applied Science and Engineering; Gippsland Campus; Monash University; Bldg. 2W Churchill Vic. 3842 Australia
| | - Alicia Reynolds
- School of Applied Science and Engineering; Gippsland Campus; Monash University; Bldg. 2W Churchill Vic. 3842 Australia
| | - Karl Wild
- Burra Foods Australia Pty. Ltd.; 47 Station Street Korumburra Vic. 3950 Australia
| | - Mark Watkins
- Farming Systems Research; Department of Environment and Primary Industries; 1301 Hazeldean Road Ellinbank Vic. 3821 Australia
| | - David Nash
- Farming Systems Research; Department of Environment and Primary Industries; 1301 Hazeldean Road Ellinbank Vic. 3821 Australia
| |
Collapse
|
44
|
Alonso M, Castellanos M, Sanchez JM. Evaluation of matrix effects in the analysis of volatile organic compounds in whole blood with solid-phase microextraction. J Sep Sci 2013; 36:3776-82. [DOI: 10.1002/jssc.201300636] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 09/23/2013] [Accepted: 09/23/2013] [Indexed: 11/11/2022]
Affiliation(s)
- Monica Alonso
- Department of Chemistry; University of Girona; Campus Montilivi s/n; Girona Spain
| | - Mar Castellanos
- Department of Neurology; Dr. Josep Trueta University Hospital; Girona Spain
- Cerebrovascular Unit, Girona Biomedical Research Institute (IdIBGi); Girona Spain
| | - Juan M. Sanchez
- Department of Chemistry; University of Girona; Campus Montilivi s/n; Girona Spain
- Cerebrovascular Unit, Girona Biomedical Research Institute (IdIBGi); Girona Spain
| |
Collapse
|
45
|
Wachsmuth CJ, Vogl FC, Oefner PJ, Dettmer K. Gas Chromatographic Techniques in Metabolomics. CHROMATOGRAPHIC METHODS IN METABOLOMICS 2013. [DOI: 10.1039/9781849737272-00087] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
High chemical diversity and abundances ranging from trace to millimolar levels still constitute at times insurmountable challenges in the comprehensive analysis of metabolites in biomedical specimens. Nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry (MS) hyphenated with separation techniques such as liquid chromatography (LC), gas chromatography (GC) and capillary electrophoresis (CE) are the most frequently used techniques for both targeted and discovery‐driven metabolomics. Of the separation techniques, comprehensive two‐dimensional gas chromatography (GC×GC) offers the highest peak resolution and capacity, and in combination with MS lower quantification limits in the submicromolar concentration range are realized. Moreover, electron ionization (EI), the most prominent ionization technique for GC‐MS, is highly reproducible, facilitating the generation of mass spectral libraries for routine metabolite identification. However, GC analysis often requires a derivatization prior to analysis and not all metabolite derivatives are recorded in the libraries available. Consequently, metabolite identification is still a major challenge. To identify unknown metabolite signals, soft ionization techniques in combination with high‐resolution MS are employed to determine the accurate mass of the quasi‐molecular ion. The latter is used to calculate elemental formulae that can be fed into metabolite databases for a putative identification or used for the interpretation of EI spectra.
Collapse
Affiliation(s)
- Christian J. Wachsmuth
- Institute of Functional Genomics University of Regensburg, Josef‐Engert‐Strasse 9, 93053 Regensburg Germany ‐regensburg.de
| | - Franziska C. Vogl
- Institute of Functional Genomics University of Regensburg, Josef‐Engert‐Strasse 9, 93053 Regensburg Germany ‐regensburg.de
| | - Peter J. Oefner
- Institute of Functional Genomics University of Regensburg, Josef‐Engert‐Strasse 9, 93053 Regensburg Germany ‐regensburg.de
| | - Katja Dettmer
- Institute of Functional Genomics University of Regensburg, Josef‐Engert‐Strasse 9, 93053 Regensburg Germany ‐regensburg.de
| |
Collapse
|
46
|
Abstract
The extraction and/or purification of drugs and medicines from biological matrices are important objectives in investigating their toxicological and pharmaceutical properties. Many widely used methods such as liquid–liquid extraction or SPE, used for extracting, purifying and enriching drugs and medicines found in biological materials, involve laborious, intensive and expensive preparatory procedures, and they require organic solvents that are toxic to both humans and the environment. Recent trends are focused on miniaturization, high-throughput and automation techniques. All the advantages and disadvantages of these techniques and devices in biological analysis are presented, and their applications in the extraction and/or purification of drugs and medicines from biological matrices are discussed in this review.
Collapse
|
47
|
Spietelun A, Kloskowski A, Chrzanowski W, Namieśnik J. Understanding solid-phase microextraction: key factors influencing the extraction process and trends in improving the technique. Chem Rev 2012; 113:1667-85. [PMID: 23273266 DOI: 10.1021/cr300148j] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Agata Spietelun
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Narutowicza Street, 80-233 Gdańsk, Poland
| | | | | | | |
Collapse
|
48
|
García-Villalba R, Giménez-Bastida JA, García-Conesa MT, Tomás-Barberán FA, Carlos Espín J, Larrosa M. Alternative method for gas chromatography-mass spectrometry analysis of short-chain fatty acids in faecal samples. J Sep Sci 2012; 35:1906-13. [PMID: 22865755 DOI: 10.1002/jssc.201101121] [Citation(s) in RCA: 213] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Short-chain fatty acids are the major end products of bacterial metabolism in the large bowel. They derive mostly from the bacterial breakdown of carbohydrates and are known to have positive health benefits. Due to the biological relevance of these compounds it is important to develop efficient, cheap, fast, and sensitive analytical methods that enable the identification and quantification of the short-chain fatty acids in a large number of biological samples. In this study, a gas chromatography-mass spectrometry method was developed and validated for the analysis of short-chain fatty acids in faecal samples. These volatile compounds were extracted with ethyl acetate and 4-methyl valeric acid was used as an internal standard. No further cleanup, concentration, and derivatization steps were needed and the extract was directly injected onto the column. Recoveries ranged between 65 and 105%, and no matrix effects were observed. The proposed method has wide linear ranges, good inter- and intraday variability values (below 2.6 and 5.6%, respectively) and limits of detection between 0.49 μM (0.29 μg/g) and 4.31 μM (3.8 μg/g). The applicability of this analytical method was successfully tested in faecal samples from rats and humans.
Collapse
Affiliation(s)
- Rocio García-Villalba
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, Murcia, Spain.
| | | | | | | | | | | |
Collapse
|
49
|
Meier L, Berchtold C, Schmid S, Zenobi R. High mass resolution breath analysis using secondary electrospray ionization mass spectrometry assisted by an ion funnel. JOURNAL OF MASS SPECTROMETRY : JMS 2012; 47:1571-1575. [PMID: 23280745 DOI: 10.1002/jms.3118] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 09/23/2012] [Accepted: 10/03/2012] [Indexed: 06/01/2023]
Abstract
In this study, we used secondary electrospray ionization mass spectrometry assisted by an ion funnel (IF) operating at ambient pressure to find compounds in the mass range of 100-500 m/z in online breath fingerprinting experiments. In low-resolution experiments conducted on an ion trap instrument, we found that pyridine is present in breath of individuals long after drinking coffee. In high-resolution experiments conducted on a Fourier transform ion cyclotron resonance, we found more than 30 compounds in the mass range of 100-500 m/z in analogous online breath experiments. More than a third of these compounds have molecular weights above 200 Daltons and have not been mentioned in previous studies. In low-resolution experiments as well as experiments without the IF, these compounds could not be detected.
Collapse
Affiliation(s)
- Lukas Meier
- Department of Chemistry and Applied Biosciences, ETH Zurich, Switzerland
| | | | | | | |
Collapse
|
50
|
Zareba D, Ziarno M, Obiedzinski M. Volatile Profile of Non-Fermented Milk and Milk Fermented byBifidoBacterium animalissubsp.lactis. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2012. [DOI: 10.1080/10942912.2010.513024] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|