1
|
Čokrtová K, Mareš V, Křížek T. On-capillary fluorescent labeling of saccharides for capillary electrophoresis. Electrophoresis 2023; 44:35-43. [PMID: 35699059 DOI: 10.1002/elps.202200136] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 02/01/2023]
Abstract
The feasibility of on-capillary derivatization of saccharides by aromatic amine-based fluorescent labeling agents was tested. To avoid the problematic evolution of gaseous hydrogen cyanide, the Schiff base reduction by sodium cyanoborohydride, as the second step of the standard reductive amination protocol, was omitted. Glucose was used as a model analyte and 7-amino-1,3-naphthalenedisulfonic acid as the labeling agent. Our experiments showed that the direct reaction of the saccharide with the labeling agent in 2.5-M acetic acid yields a labeled product that is sufficiently stable to be separated from the labeling agent in 20-mM phosphate buffer, pH 3.5, and detected using UV detection. The glucose and label zones were introduced separately into the capillary and mixed using a negative voltage. Mixing voltage, its duration, the concentration of acetic acid in the reaction zone, and the waiting time between mixing and separation were optimized. To show the applicability of the procedure to a broader range of analytes, a mixture of different types of saccharides, that is, xylose (pentose), fucose (hexose), glucose (hexose), N-acetylglucosamine (N-acetylaminosaccharide), and lactose (disaccharide), was subjected to derivatization and analysis under the optimal conditions. The linearity and repeatability of the process were evaluated as critical parameters for its analytical applications. Six-point calibration dependences in the 1-50 mM range showed excellent determination coefficients of 0.9992 or higher for all five saccharides tested. The repeatability of the labeled saccharide peak areas was between 2.2% and 4.3%.
Collapse
Affiliation(s)
- Kateřina Čokrtová
- Department of Analytical Chemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Vít Mareš
- Department of Analytical Chemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Tomáš Křížek
- Department of Analytical Chemistry, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
2
|
Toppazzini M, Coslovi A, Rossi M, Flamigni A, Baiutti E, Campa C. Capillary Electrophoresis of Mono- and Oligosaccharides. Methods Mol Biol 2016; 1483:301-338. [PMID: 27645743 DOI: 10.1007/978-1-4939-6403-1_16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
This chapter reports an overview of the recent advances in the analysis of mono- and oligosaccharides by capillary electrophoresis (CE); furthermore, relevant reviews and research articles recently published in the field are tabulated. Additionally, pretreatments and procedures applied to uncharged and acidic carbohydrates (i.e., monosaccharides and lower oligosaccharides carrying carboxylate, sulfate, or phosphate groups) are described.Representative examples of such procedures are reported in detail, upon describing robust methodologies for the study of (1) neutral oligosaccharides derivatized by reductive amination and by formation of glycosylamines; (2) sialic acid derivatized with 2-aminoacridone, released from human serum immunoglobulin G; (3) anomeric couples of neutral glycosides separated using borate-based buffers; (4) unsaturated, underivatized oligosaccharides from lyase-treated alginate.
Collapse
Affiliation(s)
- Mila Toppazzini
- GSK Vaccines, Manufacturing Science & Technology Bellaria di Rosia, Sovicille (Siena), Italy
| | - Anna Coslovi
- GSK Vaccines, Manufacturing Science & Technology Bellaria di Rosia, Sovicille (Siena), Italy
| | - Marco Rossi
- Bracco Imaging SpA-CRB Trieste, AREA Science Park, Trieste, Italy
| | - Anna Flamigni
- Bracco Imaging SpA-CRB Trieste, AREA Science Park, Trieste, Italy
| | - Edi Baiutti
- Bracco Imaging SpA-CRB Trieste, AREA Science Park, Trieste, Italy
| | - Cristiana Campa
- GSK Vaccines, Manufacturing Science & Technology Bellaria di Rosia, Sovicille (Siena), Italy.
| |
Collapse
|
3
|
Glatz Z. On-capillary derivatisation as an approach to enhancing sensitivity in capillary electrophoresis. Electrophoresis 2014; 36:744-63. [DOI: 10.1002/elps.201400449] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Revised: 10/09/2014] [Accepted: 10/11/2014] [Indexed: 12/23/2022]
Affiliation(s)
- Zdeněk Glatz
- Department of Biochemistry; Faculty of Science and CEITEC; Masaryk University; Brno Czech Republic
| |
Collapse
|
4
|
Wan D, Yang H, Song F, Liu Z, Liu S. Identification of isomeric disaccharides in mixture by the 1-phenyl-3-methyl-5-pyrazolone labeling technique in conjunction with electrospray ionization tandem mass spectrometry. Anal Chim Acta 2013; 780:36-45. [PMID: 23680549 DOI: 10.1016/j.aca.2013.03.062] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2013] [Revised: 03/15/2013] [Accepted: 03/27/2013] [Indexed: 10/27/2022]
Abstract
1-Phenyl-3-methyl-5-pyrazolone (PMP) labeling technique has hitherto proved to be a convenient and sensitive method for separating and detecting oligosaccharides. However, the detailed fragmentation of the derivatives by tandem mass spectrometry has been reported limitedly and no characteristic fragment ions for isomers have been detected. In this study, eight disaccharide isomers were labeled with PMP and analyzed by positive ion electrospray ionization multi-stage tandem mass spectrometry (ESI-MS(n)). In comparison with the native disaccharides, PMP labeled disaccharides gave rise to more fragment ions in the tandem mass spectra. The distinctive diagnostic fragment ions formed from cleavage of C-C bonds have been detected in the fragmentation of PMP-labeled disaccharide linkage isomers, allowing unambiguous assignment of the position of the glycosidic linkages. This feature is particularly useful for the structural determination of unknown isomeric disaccharides mixed together. In addition, the anomeric configurations can also be easily assigned based on the relative abundance ratios of the selected ion pairs. To verify the feasibility of the method used in the analysis of natural product, water soluble Panax Ginseng extract has been further investigated to identify its unknown disaccharides. The results confirmed that the PMP labeling technique in conjunction with ESI-MS(n) could offer a powerful and convenient tool for differentiation of structurally closely related isomers, even the unknown mixtures of isomeric disaccharides with different linkage types.
Collapse
Affiliation(s)
- Debin Wan
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | | | | | | | | |
Collapse
|
5
|
Kuo CY, Wang SH, Lin C, Liao SKS, Hung WT, Fang JM, Yang WB. Application of 2,3-naphthalenediamine in labeling natural carbohydrates for capillary electrophoresis. Molecules 2012; 17:7387-400. [PMID: 22706370 PMCID: PMC6269047 DOI: 10.3390/molecules17067387] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 06/14/2012] [Accepted: 06/14/2012] [Indexed: 11/20/2022] Open
Abstract
Neutral and acidic monosaccharide components in Ganoderma lucidum polysaccharide are readily labeled with 2,3-naphthalenediamine, and the resulting saccharide-naphthimidazole (NAIM) derivatives are quantified by capillary electrophoresis (CE) in borate buffer. Using sulfated-α-cyclodextrin as the chiral selector, enantiomers of monosaccharide-NAIMs are resolved on CE in phosphate buffer, allowing a simultaneous determination of the absolute configuration and sugar composition in the mucilage polysaccharide of a medicinal herb Dendrobiumhuoshanense. Together with the specific enzymatic reactions of various glycoside hydrolases on the NAIM derivatives of glycans, the structures of natural glycans can be deduced from the digestion products identified by CE analysis. Though heparin dissachrides could be successfully derived with the NAIM-labeling method, the heparin derivatives with the same degree of sulfation could not be separated by CE.
Collapse
Affiliation(s)
- Chien-Yuan Kuo
- The Genomics Research Center, Academia Sinica, 128, Academia Road, Section 2, Taipei 115, Taiwan
| | - Shwu-Huey Wang
- Core Facility Center, Office of Research and Development, Taipei Medical University, 250, Wu-Hsing Street, Taipei 110, Taiwan
| | - Chunchi Lin
- The Genomics Research Center, Academia Sinica, 128, Academia Road, Section 2, Taipei 115, Taiwan
| | - Sylvain Kuo-Shiang Liao
- The Genomics Research Center, Academia Sinica, 128, Academia Road, Section 2, Taipei 115, Taiwan
| | - Wei-Ting Hung
- The Genomics Research Center, Academia Sinica, 128, Academia Road, Section 2, Taipei 115, Taiwan
| | - Jim-Min Fang
- The Genomics Research Center, Academia Sinica, 128, Academia Road, Section 2, Taipei 115, Taiwan
- Department of Chemistry, National Taiwan University, No. 1, Roosevelt Road, Section 4, Taipei 106, Taiwan
- Authors to whom correspondence should be addressed; (J.-M.F.); (W.-B.Y.); Tel.: +886-2-3366-1663 (J.-M.F.); Fax: +886-2-2363-7812 (J.-M.F.); Tel.: +886-2-2787-1264 (W.-B.Y.); Fax: +886-2-2789-8771 (W.-B.Y.)
| | - Wen-Bin Yang
- The Genomics Research Center, Academia Sinica, 128, Academia Road, Section 2, Taipei 115, Taiwan
- Authors to whom correspondence should be addressed; (J.-M.F.); (W.-B.Y.); Tel.: +886-2-3366-1663 (J.-M.F.); Fax: +886-2-2363-7812 (J.-M.F.); Tel.: +886-2-2787-1264 (W.-B.Y.); Fax: +886-2-2789-8771 (W.-B.Y.)
| |
Collapse
|
6
|
Analysis of Reducing Carbohydrates and Fructosyl Saccharides in Maple Syrup and Maple Sugar by CE. Chromatographia 2012. [DOI: 10.1007/s10337-012-2199-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
7
|
Harvey DJ. Derivatization of carbohydrates for analysis by chromatography; electrophoresis and mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2011; 879:1196-225. [DOI: 10.1016/j.jchromb.2010.11.010] [Citation(s) in RCA: 182] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Revised: 11/01/2010] [Accepted: 11/06/2010] [Indexed: 12/21/2022]
|
8
|
Mason PE, Schildt DC, Strein TG. In-capillary determination of creatinine with electrophoretically mediated microanalysis: characterization of the effects of reagent zone and buffer conditions. J Chromatogr A 2009; 1216:154-8. [PMID: 19046749 PMCID: PMC2657084 DOI: 10.1016/j.chroma.2008.11.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2008] [Revised: 11/03/2008] [Accepted: 11/13/2008] [Indexed: 11/29/2022]
Abstract
Previous work has demonstrated proof-of-concept for carrying out the clinically useful Jaffe reaction between creatinine and picrate within a capillary tube using electrophoretically mediated microanalysis (EMMA). Here, it is shown that careful control of reagent plug length as well as concentration and pH of the background electrolyte (BGE) can result in a marked improvement in the sensitivity of this assay. Increasing the length of the picrate reagent zone is shown to give rise to as much as a 3-4-fold enhancement, and increasing the concentration and/or pH of the borate buffer also results in an additional, albeit modest, improvement in sensitivity. Interestingly, borate BGE concentrations approaching 100mM give rise to an unexplained drop in reaction efficiency, an effect which can be avoided by utilizing lower borate concentration with higher pH. The improvements appear to primarily minimize electrodispersion of the picrate reagent, allowing higher picrate concentration in the reaction zone. The same conditions also appear to minimize the electrodispersion of the in-line product as well. With optimized EMMA parameters, the sensitivity of the in-line Jaffe chemistry can be enhanced to an extent that there is no need for the two capillary "high sensitivity" detection system required in previous work. Using optimized conditions, three different human serum samples spanning the expected clinical range of creatinine concentrations were successfully analyzed. Overall, this work illustrates the importance of systematically characterizing the conditions under which EMMA analyses are carried out.
Collapse
Affiliation(s)
- Philip E Mason
- Department of Chemistry, Bucknell University, Lewisburg, PA 17837, USA
| | | | | |
Collapse
|
9
|
Bao Y, Newburg DS. Capillary electrophoresis of acidic oligosaccharides from human milk. Electrophoresis 2008; 29:2508-15. [PMID: 18512675 DOI: 10.1002/elps.200700873] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Interest in defining the array of oligosaccharides of human milk has been increasing. Pathogens that bind glycans on their host mucosal surfaces may be inhibited by human milk oligosaccharides. It has been postulated that acidic oligosaccharides in human milk may inhibit binding by pathogens that bind acidic glycans in the gut, but testing this hypothesis requires their reliable quantification in milk. Sialyloligosaccharides of human milk have been quantified by HPLC and CE. A recent CE technique uses the MEKC mode with direct detection at 205 nm to resolve and quantify, in the native form, the 12 most dominant sialyloligosaccharides of human milk in a single 35-min run. The method gives a linear response from 39 to 2500 microg/mL with a coefficient of variation between 2 to 9% and accuracy from 93 to 109%. This was used to detect variation in expression of specific sialyloligosaccharides in milk. Individual sialyloligosaccharide concentrations in milk differ among individual donors and between less and more mature milk. Thus, CE can be used to measure variation in sialyloligosaccharide expression in milk, and thereby test the relationship of this variation-to-variation in risk of specific diseases in breastfed infants.
Collapse
Affiliation(s)
- Yuanwu Bao
- Massachusetts General Hospital, Charlestown, MA 02129, USA
| | | |
Collapse
|
10
|
Dong P, Xue CH, Yu LF, Xu J, Chen SG. Determination of triterpene glycosides in sea cucumber (Stichopus japonicus) and its related products by high-performance liquid chromatography. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2008; 56:4937-4942. [PMID: 18557622 DOI: 10.1021/jf800893r] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
A creative and sensitive method has been developed for the determination of triterpene glycosides concentrations in sea cucumber ( Stichopus japonicus) and related products by using d-quinovose (6-deoxyglucose) as the measurement standard by reverse-phase high-performance liquid chromatography (HPLC) and variable-wavelength detection. d-quinovose, which is a unique monosaccharide in holostane triterpene glycosides, was liberated by acid hydrolysis and precolumn derivatized by 1-phenyl-3-methyl-5-pyrazolone (PMP). PMP-quinovose was analyzed by HPLC with 22% acetonitrile in 0.05 M KH2PO4 aquatic solution (pH 5.2) as mobile phase. The calibration curves of d-quinovose were linear within the range of 6.56-164 mg/L (r(2) > 0.995). The contents of triterpene glycosides in various S. japonicus products were determined after appropriate pretreatment methods. The concentration of triterpene glycosides was calculated by the formula C = C(qui) x alpha (alpha = 8.5). The result showed that this method was a simple, rapid, and stable method for the determination of triterpene glycosides in S. japonicus products.
Collapse
Affiliation(s)
- Ping Dong
- College of Food Science and Technology, Ocean University of China, No. 5, Yu Shan Road, Qingdao, Shandong Province 266003, People's Republic of China
| | | | | | | | | |
Collapse
|
11
|
Zhou L, Zhou X, Luo Z, Wang W, Yan N, Hu Z. In-capillary derivatization and analysis of ephedrine and pseudoephedrine by micellar electrokinetic chromatography with laser-induced fluorescence detection. J Chromatogr A 2008; 1190:383-9. [DOI: 10.1016/j.chroma.2008.03.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2008] [Revised: 02/29/2008] [Accepted: 03/06/2008] [Indexed: 10/22/2022]
|
12
|
Campa C, Rossi M. Capillary electrophoresis of neutral carbohydrates: mono-, oligosaccharides, glycosides. Methods Mol Biol 2008; 384:247-305. [PMID: 18392573 DOI: 10.1007/978-1-59745-376-9_11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
This chapter reports an overview of the recent advances in the analysis of neutral sugars by capillary electrophoresis (CE); furthermore, some relevant reviews and research articles in the field are tabulated. Comparison of CE with chromatography is also presented, with special attention to separation efficiency and sensitivity. The main routes aimed at pretreatment and CE analysis of uncharged mono-, oligosaccharides, and glycosides are described. Representative examples of such procedures are reported in detail, upon describing robust methodologies for the study of (1) neutral mono- and oligosaccharides derivatized by reductive amination and by formation of glycosylamines; (2) underivatized mono- and di-saccharides analyzed using highly alkaline buffers; and (3) anomeric couples of glycosides separated using borate-based buffers.
Collapse
|
13
|
Kodama S, Aizawa SI, Taga A, Yamashita T, Kemmei T, Yamamoto A, Hayakawa K. Simultaneous chiral resolution of monosaccharides as 8-aminonaphthalene-1,3,6-trisulfonate derivatives by ligand-exchange CE using borate as a central ion of the chiral selector. Electrophoresis 2007; 28:3930-3. [DOI: 10.1002/elps.200700306] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
14
|
Wang XY, Chen Y, Li Z, Wang Z. ANALYSIS OF CARBOHYDRATES BY CAPILLARY ZONE ELECTROPHORESIS WITH ON-CAPILLARY DERIVATIZATION. J LIQ CHROMATOGR R T 2007. [DOI: 10.1081/jlc-120008813] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- X. Y. Wang
- a Center for Molecular Science, Institute of Chemistry, The Chinese Academy of Sciences , Beijing, 100080, P. R. China
| | - Y. Chen
- a Center for Molecular Science, Institute of Chemistry, The Chinese Academy of Sciences , Beijing, 100080, P. R. China
| | - Z. Li
- a Center for Molecular Science, Institute of Chemistry, The Chinese Academy of Sciences , Beijing, 100080, P. R. China
| | - Z. Wang
- a Center for Molecular Science, Institute of Chemistry, The Chinese Academy of Sciences , Beijing, 100080, P. R. China
| |
Collapse
|
15
|
Kodama S, Aizawa SI, Taga A, Yamashita T, Yamamoto A. Chiral resolution of monosaccharides as 1-phenyl-3-methyl-5-pyrazolone derivatives by ligand-exchange CE using borate anion as a central ion of the chiral selector. Electrophoresis 2006; 27:4730-4. [PMID: 17080489 DOI: 10.1002/elps.200600140] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Six reducing monosaccharides (mannose, galactose, fucose, glucose, xylose, and arabinose) were derivatized with 1-phenyl-3-methyl-5-pyrazolone (PMP) and chiral resolution of these racemic PMP-monosaccharides was studied by ligand-exchange CE using borate anion as a central ion of the chiral selector and (S)-3-amino-1,2-propanediol (SAP) as a chiral selector ligand. PMP-mannose, PMP-galactose and PMP-fucose were successfully enantioseparated. Lowering the capillary temperature increased the resolution of PMP-mannose system, but decreased that of PMP-galactose and PMP-fucose systems. Whereas the maximum resolution was obtained at pH 8.9 in the PMP-mannose system, resolution increased gradually with pH in the PMP-galactose and PMP-fucose systems. Expecting the formation of the ternary borate complexes with SAP and PMP-monosaccharide in the CE experiments, the optimized structures of the borate diastereomers were obtained by semiempirical molecular orbital calculations to discuss the structural difference of the diastereomers in connection with the enantioseparation behaviors.
Collapse
|
16
|
Priego-Capote F, Luque de Castro MD. Dual injection capillary electrophoresis: Foundations and applications. Electrophoresis 2004; 25:4074-85. [PMID: 15597416 DOI: 10.1002/elps.200406135] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The state of the art of capillary electrophoresis (CE) approaches based on dual injection is here reported. Dual injection strategies have been proposed with three main objectives: (i) to provide information about reaction kinetics and/or related parameters, (ii) to perform in-capillary derivatization for improving separation and/or determination, (iii) to develop electrophoretic methods for the simultaneous analysis of anionic and cationic compounds. For the first two purposes, dual injection, which involves sample and reagent, can be realized either from the same end of the capillary (electrophoretically mediated microanalysis, EMMA) or from the two ends of the capillary (electroinjection analysis, EIA). The third objective, with dual injection of sample from the two ends of the capillary, takes advantage of moving cationic and anionic compounds with opposite directions. The foundations of each alternative, conditions necessary for working with them, restrictions, applications as well as perspectives are reviewed in order to establish the advantages, shortcomings, and convenience or no of their use in comparison to conventional CE.
Collapse
|
17
|
Altria KD, Elder D. Overview of the status and applications of capillary electrophoresis to the analysis of small molecules. J Chromatogr A 2004; 1023:1-14. [PMID: 14760844 DOI: 10.1016/j.chroma.2003.10.054] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The status of capillary electrophoresis (CE) in the analysis of small molecules is reviewed and summarised with the illustrative use of recent literature references. Examples are cited in this review which demonstrate that CE is now a recognised and established technique in many industries, law courts and government regulatory agencies. Each of the principal areas of CE application in small molecule analysis are covered in sections which highlight the recent developments and possibilities within that area. Application areas include the analysis of pharmaceuticals, agrochemicals, chiral separations, and forensics is covered. This is an update to a previous review article [J. Chromatogr. A 856 (1999) 443] and covers papers published between 1999 and 2002. Technical developments and improvements, such as the advent of capillary array instrumentation for increased sample throughput, and improved detection options are described. Overall it is concluded that CE has become a recognised and established technique in many areas and is still within a period of development of both instrumentation and application which will continue to expand usage.
Collapse
Affiliation(s)
- K D Altria
- Product Line Extension Department, Pharmaceutical Development, GSK R&D, New Frontiers Science Park, Third Avenue, Harlow, Essex CM19 5AW, UK.
| | | |
Collapse
|
18
|
Andersen KE, Bjergegaard C, Sørensen H. Analysis of reducing carbohydrates by reductive tryptamine derivatization prior to micellar electrokinetic capillary chromatography. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2003; 51:7234-7239. [PMID: 14640563 DOI: 10.1021/jf030329e] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
A micellar electrokinetic capillary chromatography method for determination of low molecular weight carbohydrates (dp 1-2) with an unbound carbonyl group as in aldoses or other reducing carbohydrates has been developed. Reductive amination of aldoses on the carbonyl group using tryptamine introduced a chromophor system to the carbohydrates enabling their sensitive UV detection at 220 nm and identification based on the indole group using diode array detection. Twelve carbohydrates including pentoses (d-ribose, l-arabinose, and d-xylose), hexoses (d-glucose, d-mannose, and d-galactose), deoxy sugars (l-rhamnose and l-fucose), uronic acids (d-glucuronic acid and d-galacturonic acid), and disaccharides (cellobiose and melibiose) are included in the study, using d-thyminose (2-deoxy-d-ribose) as the internal standard. Detection of all 12 carbohydrates is performed within 30 min. Linearity with correlation coefficients from 0.9864 to 0.9992 was found in the concentration range of 25-2500 micromol/L for all carbohydrates; the relative standard deviation on the migration times was between 0.27 and 0.80 min, and limits of quantification and limits of determination were in the picomole range.
Collapse
Affiliation(s)
- Keld E Andersen
- Chemistry Department, Royal Veterinary and Agricultural University, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| | | | | |
Collapse
|
19
|
Lamari FN, Kuhn R, Karamanos NK. Derivatization of carbohydrates for chromatographic, electrophoretic and mass spectrometric structure analysis. J Chromatogr B Analyt Technol Biomed Life Sci 2003; 793:15-36. [PMID: 12880852 DOI: 10.1016/s1570-0232(03)00362-3] [Citation(s) in RCA: 181] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Carbohydrates, either alone or as constituents of glycoproteins, proteoglycans and glycolipids, are mediators of several cellular events and (patho)physiological processes. Progress in the "glycome" project is closely related to the analytical tools used to define carbohydrate structure and correlate structure with function. Chromatography, electrophoresis and mass spectrometry are the indispensable analytical tools of the on-going research. Carbohydrate derivatization is required for most of these analytical procedures. This review article gives an overview of derivatization methods of carbohydrates for their liquid chromatographic and electrophoretic separation, as well as the mass spectrometric characterization. Pre-column and on-capillary derivatization methods are presented with special emphasis on the derivatization of large carbohydrates.
Collapse
Affiliation(s)
- Fotini N Lamari
- Department of Chemistry, University of Patras, 261 10, Patras, Greece
| | | | | |
Collapse
|
20
|
Yang WP, Zhang ZJ, Deng W. Simultaneous, sensitive and selective on-line chemiluminescence determination of Cr(III) and Cr(VI) by capillary electrophoresis. Anal Chim Acta 2003. [DOI: 10.1016/s0003-2670(03)00421-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
21
|
Honda S, Suzuki S, Taga A. Analysis of carbohydrates as 1-phenyl-3-methyl-5-pyrazolone derivatives by capillary/microchip electrophoresis and capillary electrochromatography. J Pharm Biomed Anal 2003; 30:1689-714. [PMID: 12485711 DOI: 10.1016/s0731-7085(02)00512-5] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The 1-phenyl-3-methyl-5-pyrazolone (PMP) method has many advantages over hitherto reported methods based on reductive amination and hydrazone formation. This short review summarizes the various aspects of the PMP method, including the principle of derivatization, the simplicity of derivatization procedure, the high sensitivities to UV monitoring and ESI-MS, and the diversity of separation modes in capillary electrophoresis, and presents a number of application data for carbohydrate analysis in biological samples by this method. It also describes successful automation of carbohydrate analysis by in-capillary derivatization with PMP and miniaturization to microchip electrophoresis with whole channel UV detection allowing rapid (within 1 min) analysis of small amounts of PMP derivatives of carbohydrates. Furthermore, it discusses the possibility of capillary electrochromatography in carbohydrate analysis as PMP derivatives, and proposes an in-capillary modification strategy for improving column efficiency and elution time reproducibility.
Collapse
Affiliation(s)
- Susumu Honda
- Faculty of Pharmaceutical Sciences, Kinki University, 3-4-1 Kowakae, Higashi-osaka 577-8502, Japan.
| | | | | |
Collapse
|
22
|
Gao X, Yang J, Huang F, Wu X, Li L, Sun C. Progresses of Derivatization Techniques for Analyses of Carbohydrates. ANAL LETT 2003. [DOI: 10.1081/al-120021087] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
23
|
Taga A, Sugimura M, Suzuki S, Honda S. Estimation of sialic acid in a sialoglycan and a sialoglycoprotein by capillary electrophoresis with in-capillary sialidase digestion. J Chromatogr A 2002; 954:259-66. [PMID: 12058910 DOI: 10.1016/s0021-9673(02)00151-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
An example of application of in-capillary derivatization for CE, obtained by using the throughout-capillary format, is presented. Introduction of a sialoglycan (N-acetylneuraminyllactose) or a sialoglycoprotein (bovine serum fetuin) sample to a running buffer (pH 5.0) containing N-acetylneuraminidase followed by application of a voltage resulted in the release of N-acetylneuraminic acid (NANA) which could be estimated by CE with UV detection. Two-step application of voltages (5 and 20 kV) was proved to be more effective for rapid estimation of the released NANA. This format (modified throughout-capillary format) allowed differential estimation of the NANA present in the sample as an impurity and the NANA released from the substrate at the picomol level, and thereby reliable micro assay of the sialidase activity. It also allowed estimation of the rate constant of this enzymatic reaction.
Collapse
Affiliation(s)
- Atsushi Taga
- Faculty of Pharmaceutical Sciences, Kinki University, Higashi-Osaka, Japan
| | | | | | | |
Collapse
|
24
|
Rassi ZE. Chapter 18 Capillary electrophoresis and electrochromatography of carbohydrates. ACTA ACUST UNITED AC 2002. [DOI: 10.1016/s0301-4770(02)80043-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
25
|
Derivatization Reactions for Analytes with Various Functional Groups. ACTA ACUST UNITED AC 2002. [DOI: 10.1016/s0301-4770(02)80020-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
26
|
Campo GM, Campo S, Ferlazzo AM, Vinci R, Calatroni A. Improved high-performance liquid chromatographic method to estimate aminosugars and its application to glycosaminoglycan determination in plasma and serum. JOURNAL OF CHROMATOGRAPHY. B, BIOMEDICAL SCIENCES AND APPLICATIONS 2001; 765:151-160. [PMID: 11767308 DOI: 10.1016/s0378-4347(01)00427-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
An improved isocratic high-performance liquid chromatography (HPLC) method for the analysis of L-(-)-fucose. D-(+)-galactosamine, D-(+)-glucosamine, D-(+)-galactose, obtained by hydrolysis of glycosaminoglycans (GAGs) and D-(+)-glucose and D-(+)-mannose is described. The presence in circulation of GAGs, acid polysaccharide sequences of alternate monosaccharide units, aminosugar and uronic acid (galactose in keratan sulfate), has been measured in terms of their sugar components. To evaluate concentration of these circulating sugars we considered blood samples obtained from healthy humans. Plasma or serum was filtered through weak anion-exchange Ecteola-cellulose either untreated or after mild alkaline treatment. GAGs adhering to resin were recovered by salt elution, and desalted on Bio-Gel P-2 resin. GAG fractionation by charge was carried out on a strong anion exchanger. GAG composition was evaluated in terms of galactose and aminosugars, measured in HPLC by the proposed procedure using anion-exchange resin and pulsed amperometric detection. The mobile phase consisted of 0.02 M NaOH and elution was carried out at flow-rate of 1.0 ml/min. The amperometric detector was set as follows: t1 (0.5 s), E1 (+0.1 V); t2 (0.09 s), E2 (+0.6 V); t3 (0.05 s), E3 (-0.6 V). The analysis required 14 min. Calibration standard curves for the six analytes were linear from 0.25 to 40 microM. RSD values for intra- and inter-day variabilities were < or = 5.3% at concentrations between 0.25 and 40 microM. Accuracy, expressed as percentage error, ranged from - 16 to 14%. The method was specific and sensitive with quantitation limits of 1 pmol for L-(-)-fucose, D-galactosamine and D-glucosamine, 3 pmol for D-(+)-galactose and D-(+)-glucose and 5 pmol for D-(+)-mannose. The results of the assay showed higher GAG concentrations in serum than in plasma.
Collapse
Affiliation(s)
- G M Campo
- Department of Biochemical, Physiological and Nutritional Sciences, School of Medicine, University of Messina, Italy.
| | | | | | | | | |
Collapse
|