1
|
Siar EH, Abellanas-Perez P, Morellon-Sterling R, Bolivar JM, Rocha-Martin J, Fernandez-Lafuente R. Designing tailor-made steric matters to improve the immobilized ficin specificity for small versus large proteins. J Biotechnol 2024; 395:12-21. [PMID: 39260701 DOI: 10.1016/j.jbiotec.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/13/2024]
Abstract
The development of strategies that can permit to adjust the size specificity of immobilized proteases by the generation of steric hindrances may enlarge its applicability. Using as a model ficin immobilized on glyoxyl agarose, two strategies were assayed to generate tailor made steric hindrances. First, ficin has been coimmobilized on supports coated with large proteins (hemoglobin or bovine serum albumin (BSA)). While coimmobilization of ficin with BSA presented no effect on the activity versus any of the assayed substrates, coimmobilization with hemoglobin permitted to improve the immobilized ficin specificity for casein versus hemoglobin, but still significant activity versus hemoglobin remained. Second, aldehyde-dextran has been employed to modify the immobilized ficin, trying to generate steric hindrances to avoid the entry of large proteins (hemoglobin) while enabling the entry of small ones (casein). This also increased the size specificity of ficin, but still did not suppress the activity versus hemoglobin. The combination of both strategies and the use of 37ºC during the proteolysis enabled to almost fully nullify the hydrolytic activity versus hemoglobin while preserving a high percentage of the activity versus casein. The modifications improved enzyme stability and the biocatalyst could be reused for 5 cycles without alteration of its properties.
Collapse
Affiliation(s)
- El Hocine Siar
- Departamento de Biocatálisis, ICP-CSIC, Campus UAM-CSIC, Madrid 28049, Spain; Agri-food Engineering Laboratory (GENIAAL), Institute of Food, Nutrition and Agri-Food Technologies (INATAA), University of Brothers Mentouri Constantine 1, Algeria
| | | | | | - Juan M Bolivar
- FQPIMA group, Chemical and Materials Engineering Department, Faculty of Chemical Sciences, Complutense University of Madrid, Complutense Ave, Madrid 28040, Spain
| | - Javier Rocha-Martin
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Complutense University of Madrid, José Antonio Novais 12, Madrid 28040, Spain.
| | | |
Collapse
|
2
|
Siar EH, Abellanas-Perez P, Rocha-Martin J, Fernandez-Lafuente R. Tailoring the specificity of ficin versus large hemoglobin and small casein by co-immobilizing inert proteins on the immobilized enzyme layer and further modification with aldehyde dextran. Int J Biol Macromol 2024; 277:134487. [PMID: 39102910 DOI: 10.1016/j.ijbiomac.2024.134487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/31/2024] [Accepted: 08/02/2024] [Indexed: 08/07/2024]
Abstract
Ficin has been immobilized at full loading on glyoxyl agarose beads. Then, ficin was blocked with 2,2'-dipyridyldisulfide. To be effective, the modification must be performed in the presence of 0.5 M urea, as the enzyme was not inhibited under standard conditions, very likely because the catalytic Cys was not fully exposed to the medium. Activity could be fully recovered by incubation with 1 M mercaptoethanol. This biocatalyst could hydrolyze hemoglobin and casein. The objective of this paper was to increase the enzyme specificity versus small proteins by generating steric hindrances to the access of large proteins. The step by step blocking via ionic exchange of the biocatalyst with aminated bovine serum albumin (BSA), aldehyde dextran and a second layer of aminated BSA produced a biocatalyst that maintained its activity versus small synthetic substrates, increased the biocatalyst stability, while reduced its activity to over 50 % versus casein. Interestingly, this treatment almost fully annulled the activity versus hemoglobin, more effectively at 37 °C than at 55 °C. The biocatalyst could be reused 5 times without changes in activity. The changes could be caused by steric hindrances, but it cannot be discarded some changes in enzyme sequence specificity caused by the modifications.
Collapse
Affiliation(s)
- El Hocine Siar
- Departamento de Biocatálisis, ICP-CSIC, Campus UAM-CSIC, 28049 Madrid, Spain; Transformation and Food Product Elaboration Laboratory, Nutrition and Food Technology Institute (INATAA), University of Brothers Mentouri Constantine 1, Constantine, Algeria
| | | | - Javier Rocha-Martin
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Complutense University of Madrid, José Antonio Novais 12, Madrid 28040, Spain.
| | | |
Collapse
|
3
|
Jennings MR, Min S, Xu GS, Homayuni K, Suresh B, Haikal YA, Blazeck J. Optimized expression and purification of a human adenosine deaminase in E. coli and characterization of its Asp8Asn variant. Protein Expr Purif 2024; 213:106362. [PMID: 37683902 PMCID: PMC10664833 DOI: 10.1016/j.pep.2023.106362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/22/2023] [Accepted: 09/01/2023] [Indexed: 09/10/2023]
Abstract
Homo sapiens adenosine deaminase isoform 1 (HsADA1) hydrolyzes adenosine and 2-deoxyadenosine as a key step in the purine nucleoside salvage pathway. Some HsADA1 mutations have severe deleterious effects, as is the case in a severe combined immunodeficiency resulting from loss of enzyme activity (ADA-SCID). Other mutations that reduce enzyme activity, for instance the Asp8Asn (D8N) variant, do not cause ADA-SCID but are correlated with other consequences to health. To ease further study of HsADA1 and its variants, we optimized an inexpensive, recombinant expression process in an Escherichia coli host through multiplexed parameter testing enabled by a lysate-based microtiter plate assay. We demonstrate the importance of gene codon usage, induction time and temperature, and alcohol supplementation towards improving enzyme yield to a final titer of 5 mg per liter of culture. We further show that use of a double-histidine-tag (his-tag) system greatly improves purity. We then utilize our expression and purification framework to produce the HsADA1 D8N variant, which had previously not been purified to homogeneity. We confirm that the D8N variant is ∼30% less active than the wildtype HsADA1 and show that it better retains its activity in human serum. Additionally, we show that both HsADA1 and the D8N variant have heightened activity in serum, driven in part by a previously undescribed phenomenon involving albumin. Therefore, this work presents a valuable process to produce HsADA1 that allows for insights into it and its variants' behavior. We also confirm the utility of lysate-based activity assays towards finding optimal E. coli expression conditions for enzymes and show how fusing his-tags in tandem can enhance product purity.
Collapse
Affiliation(s)
- Maria Rain Jennings
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Soohyon Min
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Grace S Xu
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Kassandra Homayuni
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Bhavana Suresh
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Yusef Amir Haikal
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - John Blazeck
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| |
Collapse
|
4
|
Bolivar JM, Woodley JM, Fernandez-Lafuente R. Is enzyme immobilization a mature discipline? Some critical considerations to capitalize on the benefits of immobilization. Chem Soc Rev 2022; 51:6251-6290. [PMID: 35838107 DOI: 10.1039/d2cs00083k] [Citation(s) in RCA: 180] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Enzyme immobilization has been developing since the 1960s and although many industrial biocatalytic processes use the technology to improve enzyme performance, still today we are far from full exploitation of the field. One clear reason is that many evaluate immobilization based on only a few experiments that are not always well-designed. In contrast to many other reviews on the subject, here we highlight the pitfalls of using incorrectly designed immobilization protocols and explain why in many cases sub-optimal results are obtained. We also describe solutions to overcome these challenges and come to the conclusion that recent developments in material science, bioprocess engineering and protein science continue to open new opportunities for the future. In this way, enzyme immobilization, far from being a mature discipline, remains as a subject of high interest and where intense research is still necessary to take full advantage of the possibilities.
Collapse
Affiliation(s)
- Juan M Bolivar
- FQPIMA group, Chemical and Materials Engineering Department, Faculty of Chemical Sciences, Complutense University of Madrid, Madrid, 28040, Spain
| | - John M Woodley
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, 2800 Kgs Lyngby, Denmark.
| | - Roberto Fernandez-Lafuente
- Departamento de Biocatálisis. ICP-CSIC, C/Marie Curie 2, Campus UAM-CSIC Cantoblanco, Madrid 28049, Spain. .,Center of Excellence in Bionanoscience Research, External Scientific Advisory Academic, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
5
|
Research progress and the biotechnological applications of multienzyme complex. Appl Microbiol Biotechnol 2021; 105:1759-1777. [PMID: 33564922 DOI: 10.1007/s00253-021-11121-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 01/07/2021] [Accepted: 01/16/2021] [Indexed: 11/26/2022]
Abstract
The multienzyme complex system has become a research focus in synthetic biology due to its highly efficient overall catalytic ability and has been applied to various fields. Multienzyme complexes are formed by cascading complexes, which are multiple functionally related enzymes that continuously and efficiently catalyze the production of substrates. Compared with current mainstream microbial cell catalytic systems, in vitro multienzyme molecular machines have many advantages, such as fewer side reactions, a high product yield, a fast reaction speed, easy product separation, a tolerable toxic environment, and robust system operability, showing increasing competitiveness in the field of biomanufacturing. In this review, the research progress of multienzyme complexes in nature and multienzyme cascades in vivo or in vitro will be introduced, and the discovered enzyme cascades concerning scaffolding proteins will also be discussed. This review is expected to provide a more theoretical basis for the modification of multienzyme complexes and broaden their application in the field of synthetic biology. KEY POINTS: • The cascade reactions of some natural multienzyme complexes are reviewed. • The main approaches of constructing artificial multienzyme complexes are summarized. • The structure and application of cellulosomes are discussed and prospected.
Collapse
|
6
|
You CX, Huang PH, Lin SC. Concomitant selective adsorption and covalent immobilization of a His-tagged protein switch with silica-based metal chelate-epoxy bifunctional adsorbents. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.09.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
7
|
Abstract
Dextran aldehyde (dexOx), resulting from the periodate oxidative cleavage of 1,2-diol moiety inside dextran, is a polymer that is very useful in many areas, including as a macromolecular carrier for drug delivery and other biomedical applications. In particular, it has been widely used for chemical engineering of enzymes, with the aim of designing better biocatalysts that possess improved catalytic properties, making them more stable and/or active for different catalytic reactions. This polymer possesses a very flexible hydrophilic structure, which becomes inert after chemical reduction; therefore, dexOx comes to be highly versatile in a biocatalyst design. This paper presents an overview of the multiple applications of dexOx in applied biocatalysis, e.g., to modulate the adsorption of biomolecules on carrier surfaces in affinity chromatography and biosensors design, to serve as a spacer arm between a ligand and the support in biomacromolecule immobilization procedures or to generate artificial microenvironments around the enzyme molecules or to stabilize multimeric enzymes by intersubunit crosslinking, among many other applications.
Collapse
|
8
|
de Sousa M, Melo VMM, Hissa DC, Manzo RM, Mammarella EJ, Antunes ASLM, García JL, Pessela BC, Gonçalves LRB. One-Step Immobilization and Stabilization of a Recombinant Enterococcus faecium DBFIQ E36 L-Arabinose Isomerase for D-Tagatose Synthesis. Appl Biochem Biotechnol 2018; 188:310-325. [PMID: 30430344 DOI: 10.1007/s12010-018-2905-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 10/08/2018] [Indexed: 10/27/2022]
Abstract
A recombinant L-arabinose isomerase from Enterococcus faecium DBFIQ E36 was immobilized onto multifunctional epoxide supports by chemical adsorption and onto a chelate-activated support via polyhistidine-tag, located on the N-terminal (N-His-L-AI) or on the C-terminal (C-His-L-AI) sequence, followed by covalent bonding between the enzyme and the support. The results were compared to reversible L-AI immobilization by adsorption onto charged agarose supports with improved stability. All the derivatives presented immobilization yields of above 75%. The ionic interaction established between agarose gels containing monoaminoethyl-N-aminoethyl structures (MANAE) and the enzyme was the most suitable strategy for L-AI immobilization in comparison to the chelate-activated agarose. In addition, the immobilized biocatalysts by ionic interaction in MANAE showed to be the most stable, retaining up to 100% of enzyme activity for 60 min at 60 °C and with Km values of 28 and 218 mM for MANAE-N-His-L-AI and MANAE-C-His-L-AI, respectively.
Collapse
Affiliation(s)
- Marylane de Sousa
- Department of Chemical Engineering, Federal University of Ceará, Campus do Pici, BL 709, Fortaleza, CE, Brazil
| | - Vânia M M Melo
- Department of Biology, Federal University of Ceará, Campus do Pici, BL 909, Fortaleza, CE, Brazil
| | - Denise C Hissa
- Department of Biology, Federal University of Ceará, Campus do Pici, BL 909, Fortaleza, CE, Brazil
| | - Ricardo M Manzo
- Food and Biotechnology Engineering Group, Institute of Technological Development for the Chemical Industry, National University of the Litoral (UNL), National Council of Scientific and Technical Research (CONICET), RN 168 Km 472 "Paraje El Pozo" S / N, Santa Fe, Argentina
| | - Enrique J Mammarella
- Food and Biotechnology Engineering Group, Institute of Technological Development for the Chemical Industry, National University of the Litoral (UNL), National Council of Scientific and Technical Research (CONICET), RN 168 Km 472 "Paraje El Pozo" S / N, Santa Fe, Argentina
| | | | - José L García
- Center for Biological Research, CIB, Higher Council for Scientific Research, CSIC, C / Ramiro de Maeztu, 9, Madrid, Spain
| | - Benevides C Pessela
- Department of Food Biotechnology and Microbiology, Institute of Research in Food Sciences, CIAL, Higher Council for Scientific Research, CSIC, C / Nicolás Cabrera 9, UAM Campus, Madrid, Spain. .,Department of Engineering and Technology, Polytechnic Institute of Sciences and Technology, Av. Luanda Sul, Rua Lateral Via S10, Talatona, Luanda, Angola.
| | - Luciana R B Gonçalves
- Department of Chemical Engineering, Federal University of Ceará, Campus do Pici, BL 709, Fortaleza, CE, Brazil.
| |
Collapse
|
9
|
Lai WJ, Lin SC. Hydroxyethyl cellulose-grafted loofa sponge-based metal affinity adsorbents for protein purification and enzyme immobilization. Process Biochem 2018. [DOI: 10.1016/j.procbio.2018.08.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
10
|
Hu Y, Romão E, Vertommen D, Vincke C, Morales-Yánez F, Gutiérrez C, Liu C, Muyldermans S. Generation of Nanobodies against SlyD and development of tools to eliminate this bacterial contaminant from recombinant proteins. Protein Expr Purif 2017; 137:64-76. [DOI: 10.1016/j.pep.2017.06.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 06/24/2017] [Accepted: 06/27/2017] [Indexed: 12/26/2022]
|
11
|
|
12
|
Hyeon JE, Shin SK, Han SO. Design of nanoscale enzyme complexes based on various scaffolding materials for biomass conversion and immobilization. Biotechnol J 2016; 11:1386-1396. [PMID: 27783468 PMCID: PMC5132044 DOI: 10.1002/biot.201600039] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 09/26/2016] [Accepted: 10/07/2016] [Indexed: 12/14/2022]
Abstract
The utilization of scaffolds for enzyme immobilization involves advanced bionanotechnology applications in biorefinery fields, which can be achieved by optimizing the function of various enzymes. This review presents various current scaffolding techniques based on proteins, microbes and nanomaterials for enzyme immobilization, as well as the impact of these techniques on the biorefinery of lignocellulosic materials. Among them, architectural scaffolds have applied to useful strategies for protein engineering to improve the performance of immobilized enzymes in several industrial and research fields. In complexed enzyme systems that have critical roles in carbon metabolism, scaffolding proteins assemble different proteins in relatively durable configurations and facilitate collaborative protein interactions and functions. Additionally, a microbial strain, combined with designer enzyme complexes, can be applied to the immobilizing scaffold because the in vivo immobilizing technique has several benefits in enzymatic reaction systems related to both synthetic biology and metabolic engineering. Furthermore, with the advent of nanotechnology, nanomaterials possessing ideal physicochemical characteristics, such as mass transfer resistance, specific surface area and efficient enzyme loading, can be applied as novel and interesting scaffolds for enzyme immobilization. Intelligent application of various scaffolds to couple with nanoscale engineering tools and metabolic engineering technology may offer particular benefits in research.
Collapse
Affiliation(s)
- Jeong Eun Hyeon
- Department of BiotechnologyKorea University02841SeoulRepublic of Korea
| | - Sang Kyu Shin
- Department of BiotechnologyKorea University02841SeoulRepublic of Korea
| | - Sung Ok Han
- Department of BiotechnologyKorea University02841SeoulRepublic of Korea
| |
Collapse
|
13
|
Immobilization of Cyclooxygenase-2 on Silica Gel Microspheres: Optimization and Characterization. Molecules 2015; 20:19971-83. [PMID: 26556331 PMCID: PMC6332325 DOI: 10.3390/molecules201119670] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 08/28/2015] [Indexed: 01/05/2023] Open
Abstract
In this study, immobilized COX-2 was successfully constructed through glutaraldehyde-mediated covalent coupling on functional silica gel microspheres. The optimum conditions, properties, and morphological characteristics of the immobilized COX-2 were investigated. The optimal immobilization process was as follows: about 0.02 g of aminated silica gel microspheres was activated by 0.25% GA solution for 6 h and mixed with 5 U of free recombinant COX-2 solution. Then, the mixture was shaken for 8 h at 20 °C. Results showed that the immobilized COX-2 produced by this method exhibited excellent biocatalytic activity, equivalent to that of free COX-2 under the test conditions employed. The best biocatalytic activity of immobilized COX-2 appeared at pH 8.0 and still maintained at about 84% (RSD < 7.39%, n = 3) at pH 10.0. For temperature tolerance, immobilized COX-2 exhibited its maximum biocatalytic activity at 40 °C and about 68% (RSD < 6.99%, n = 3) of the activity was maintained at 60 °C. The immobilized COX-2 retained over 85% (RSD < 7.26%, n = 3) of its initial biocatalytic activity after five cycles, and after 10 days storage, the catalytic activity of immobilized COX-2 still maintained at about 95% (RSD < 3.08%, n = 3). These characteristics ensured the convenient use of the immobilized COX-2 and reduced its production cost.
Collapse
|
14
|
Mateos SE, Cervantes CAM, Zenteno E, Slomianny MC, Alpuche J, Hernández-Cruz P, Martínez-Cruz R, del Socorro Pina Canseco M, Pérez-Campos E, Rubio MS, Mayoral LPC, Martínez-Cruz M. Purification and Partial Characterization of β-Glucosidase in Chayote (Sechium edule). Molecules 2015; 20:19372-19392. [PMID: 26512637 PMCID: PMC6332095 DOI: 10.3390/molecules201019372] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 10/07/2015] [Accepted: 10/10/2015] [Indexed: 12/23/2022] Open
Abstract
β-Glucosidase (EC 3.2.1.21) is a prominent member of the GH1 family of glycoside hydrolases. The properties of this β-glucosidase appear to include resistance to temperature, urea, and iodoacetamide, and it is activated by 2-ME, similar to other members. β-Glucosidase from chayote (Sechium edule) was purified by ionic-interchange chromatography and molecular exclusion chromatography. Peptides detected by LC-ESI-MS/MS were compared with other β-glucosidases using the BLAST program. This enzyme is a 116 kDa protein composed of two sub-units of 58 kDa and shows homology with Cucumis sativus β-glucosidase (NCBI reference sequence XP_004154617.1), in which seven peptides were found with relative masses ranging from 874.3643 to 1587.8297. The stability of β-glucosidase depends on an initial concentration of 0.2 mg/mL of protein at pH 5.0 which decreases by 33% in a period of 30 h, and then stabilizes and is active for the next 5 days (pH 4.0 gives similar results). One hundred μg/mL β-D-glucose inhibited β-glucosidase activity by more than 50%. The enzyme had a Km of 4.88 mM with p-NPG and a Kcat of 10,000 min(-1). The optimal conditions for the enzyme require a pH of 4.0 and a temperature of 50 °C.
Collapse
Affiliation(s)
| | | | - Edgar Zenteno
- Facultad de Medicina de la, Universidad Nacional Autónoma de México, Distrito Federal 04510, Mexico.
| | - Marie-Christine Slomianny
- Unité Mixte de Recherche CNRS/USTL 8576, Glycobiologie Structurale et Fonctionnelle, Université des Sciences et Technologies de Lille 1, Villeneuve d'Ascq 59655, France.
| | - Juan Alpuche
- Centro de Investigación Medicina-UNAM-UABJO, Facultad de Medicina y Cirugía, Universidad Autónoma "Benito Juárez" de Oaxaca, Oaxaca 68050, Mexico.
| | - Pedro Hernández-Cruz
- Centro de Investigación Medicina-UNAM-UABJO, Facultad de Medicina y Cirugía, Universidad Autónoma "Benito Juárez" de Oaxaca, Oaxaca 68050, Mexico.
| | - Ruth Martínez-Cruz
- Centro de Investigación Medicina-UNAM-UABJO, Facultad de Medicina y Cirugía, Universidad Autónoma "Benito Juárez" de Oaxaca, Oaxaca 68050, Mexico.
| | - Maria del Socorro Pina Canseco
- Centro de Investigación Medicina-UNAM-UABJO, Facultad de Medicina y Cirugía, Universidad Autónoma "Benito Juárez" de Oaxaca, Oaxaca 68050, Mexico.
| | - Eduardo Pérez-Campos
- Unidad de Bioquímica e Inmunología, Instituto Tecnológico de Oaxaca, Oaxaca 68030, Mexico.
- Centro de Investigación Medicina-UNAM-UABJO, Facultad de Medicina y Cirugía, Universidad Autónoma "Benito Juárez" de Oaxaca, Oaxaca 68050, Mexico.
| | - Manuel Sánchez Rubio
- Unidad de Bioquímica e Inmunología, Instituto Tecnológico de Oaxaca, Oaxaca 68030, Mexico.
| | - Laura Pérez-Campos Mayoral
- Centro de Investigación Medicina-UNAM-UABJO, Facultad de Medicina y Cirugía, Universidad Autónoma "Benito Juárez" de Oaxaca, Oaxaca 68050, Mexico.
| | | |
Collapse
|
15
|
Ossysek K, Uchański T, Kulesza M, Bzowska M, Klaus T, Woś K, Madej M, Bereta J. A new expression vector facilitating production and functional analysis of scFv antibody fragments selected from Tomlinson I + J phagemid libraries. Immunol Lett 2015. [DOI: 10.1016/j.imlet.2015.07.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
16
|
Barbosa O, Ortiz C, Berenguer-Murcia Á, Torres R, Rodrigues RC, Fernandez-Lafuente R. Strategies for the one-step immobilization–purification of enzymes as industrial biocatalysts. Biotechnol Adv 2015; 33:435-56. [DOI: 10.1016/j.biotechadv.2015.03.006] [Citation(s) in RCA: 491] [Impact Index Per Article: 49.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 03/03/2015] [Accepted: 03/04/2015] [Indexed: 01/06/2023]
|
17
|
|
18
|
Development of metal affinity-immobilized liposome chromatography and its basic characteristics. Biochem Eng J 2014. [DOI: 10.1016/j.bej.2013.12.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
19
|
Hyeon JE, Jeon SD, Han SO. Cellulosome-based, Clostridium-derived multi-functional enzyme complexes for advanced biotechnology tool development: advances and applications. Biotechnol Adv 2013; 31:936-44. [PMID: 23563098 DOI: 10.1016/j.biotechadv.2013.03.009] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 03/22/2013] [Accepted: 03/25/2013] [Indexed: 12/20/2022]
Abstract
The cellulosome is one of nature's most elegant and elaborate nanomachines and a key biological and biotechnological macromolecule that can be used as a multi-functional protein complex tool. Each protein module in the cellulosome system is potentially useful in an advanced biotechnology application. The high-affinity interactions between the cohesin and dockerin domains can be used in protein-based biosensors to improve both sensitivity and selectivity. The scaffolding protein includes a carbohydrate-binding module (CBM) that attaches strongly to cellulose substrates and facilitates the purification of proteins fused with the dockerin module through a one-step CBM purification method. Although the surface layer homology (SLH) domain of CbpA is not present in other strains, replacement of the cell surface anchoring domain allows a foreign protein to be displayed on the surface of other strains. The development of a hydrolysis enzyme complex is a useful strategy for consolidated bioprocessing (CBP), enabling microorganisms with biomass hydrolysis activity. Thus, the development of various configurations of multi-functional protein complexes for use as tools in whole-cell biocatalyst systems has drawn considerable attention as an attractive strategy for bioprocess applications. This review provides a detailed summary of the current achievements in Clostridium-derived multi-functional complex development and the impact of these complexes in various areas of biotechnology.
Collapse
Affiliation(s)
- Jeong Eun Hyeon
- School of Life Sciences and Biotechnology, Korea University, Seoul, 136-701, Republic of Korea
| | | | | |
Collapse
|
20
|
Wu Z, Qi W, Wang M, Wang Y, Su R, He Z. Chelate immobilization of amylase on metal ceramic powder: Preparation, characterization and application. Biochem Eng J 2013. [DOI: 10.1016/j.bej.2013.06.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
21
|
Barbosa O, Torres R, Ortiz C, Berenguer-Murcia Á, Rodrigues RC, Fernandez-Lafuente R. Heterofunctional Supports in Enzyme Immobilization: From Traditional Immobilization Protocols to Opportunities in Tuning Enzyme Properties. Biomacromolecules 2013; 14:2433-62. [DOI: 10.1021/bm400762h] [Citation(s) in RCA: 356] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Oveimar Barbosa
- Escuela de Química, Grupo
de investigación en Bioquímica y Microbiología
(GIBIM), Edificio Camilo Torres 210, Universidad Industrial de Santander, Bucaramanga, Colombia
| | - Rodrigo Torres
- Escuela de Química, Grupo
de investigación en Bioquímica y Microbiología
(GIBIM), Edificio Camilo Torres 210, Universidad Industrial de Santander, Bucaramanga, Colombia
| | - Claudia Ortiz
- Escuela de Bacteriología
y Laboratorio Clínico, Universidad Industrial de Santander, Bucaramanga, Colombia
| | - Ángel Berenguer-Murcia
- Instituto Universitario de Materiales,
Departamento de Química Inorgánica, Universidad de Alicante, Campus de San Vicente del Raspeig, Ap.
99 - 03080 Alicante, Spain
| | - Rafael C. Rodrigues
- Biocatalysis and Enzyme Technology
Lab, Institute of Food Science and Technology, Federal University of Rio Grande do Sul, Av. Bento Gonçalves,
9500, P.O. Box 15090, ZC 91501-970, Porto Alegre, RS, Brazil
| | - Roberto Fernandez-Lafuente
- Departamento de Biocatalisis, Instituto de Catálisis-CSIC, Campus UAM-CSIC,
Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
22
|
Garcia-Galan C, Barbosa O, Fernandez-Lafuente R. Stabilization of the hexameric glutamate dehydrogenase from Escherichia coli by cations and polyethyleneimine. Enzyme Microb Technol 2013; 52:211-7. [PMID: 23540921 DOI: 10.1016/j.enzmictec.2013.02.014] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 02/19/2013] [Accepted: 02/21/2013] [Indexed: 12/21/2022]
Abstract
The enzyme glutamate dehydrogenase (GDH) from Escherichia coli is a hexameric protein. The stability of this enzyme was increased in the presence of Li(+) in concentrations ranging from 1 to 10mM, 1M of sodium phosphate, or 1M ammonium sulfate. A very significant dependence of the enzyme stability on protein concentration was found, suggesting that subunit dissociation could be the first step of GDH inactivation. This effect of enzyme concentration on its stability was not significantly decreased by the presence of 10mM Li(+). Subunit crosslinking could not be performed using neither dextran nor glutaraldehyde because both reagents readily inactivated GDH. Thus, they were discarded as crosslinking reagents and GDH was incubated in the presence of polyethyleneimine (PEI) with the aim of physically crosslinking the enzyme subunits. This incubation does not have a significant effect on enzyme activity. However, after optimization, the PEI-GDH was found to almost maintain the full initial activity after 2h under conditions where the untreated enzyme retained only 20% of the initial activity, and the effect of the enzyme concentration on enzyme stability almost disappeared. This stabilization was maintained in the pH range 5-9, but it was lost at high ionic strength. This PEI-GDH composite was also much more stable than the unmodified enzyme in stirred systems. The results suggested that a real adsorption of the PEI on the GDH surface was required to obtain this stabilizing effect. A positive effect of Li(+) on enzyme stability was maintained after enzyme surface coating with PEI, suggesting that the effects of both stabilizing agents could not be exactly based on the same mechanism. Thus, the coating of GDH surface with PEI seems to be a good alternative to have a stabilized and soluble composite of the enzyme.
Collapse
Affiliation(s)
- Cristina Garcia-Galan
- Departamento de Biocatálisis, ICP-CSIC, Campus UAM, Cantoblanco, 28049 Madrid, Spain
| | | | | |
Collapse
|
23
|
Akkaya B, Akkaya R. Cross-Linked Bentonite-Acrylamide-histidine-Based Metal-Chelate Affinity Microcomposites for Lysozyme Separation From Egg White. SEP SCI TECHNOL 2012. [DOI: 10.1080/01496395.2012.683124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
24
|
Wu JY, Chen CI, Chen CM, Lin CC, Kan SC, Shieh CJ, Liu YC. Cell disruption enhanced the pure EGFP recovery from an EGFP-intein-surface protein production system in recombinant E. coli. Biochem Eng J 2012. [DOI: 10.1016/j.bej.2012.06.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
25
|
Ansari SA, Satar R. Recombinant β-galactosidases – Past, present and future: A mini review. ACTA ACUST UNITED AC 2012. [DOI: 10.1016/j.molcatb.2012.04.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
26
|
Hyeon JE, Kang DH, Kim YI, Jeon SD, You SK, Kim KY, Kim SW, Han SO. Production of functional agarolytic nano-complex for the synergistic hydrolysis of marine biomass and its potential application in carbohydrate-binding module-utilizing one-step purification. Process Biochem 2012. [DOI: 10.1016/j.procbio.2012.01.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
27
|
Wu JY, Tsai TY, Liu TT, Lin CC, Chen JH, Yang SC, Shieh CJ, Liu YC. Production of recombinant EGFP via surface display of ice nucleation protein and self-cleavage intein. Biochem Eng J 2011. [DOI: 10.1016/j.bej.2011.02.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
28
|
Equilibrium adsorption of poly(His)-tagged proteins on immobilized metal affinity chromatographic adsorbents. Biochem Eng J 2011. [DOI: 10.1016/j.bej.2010.12.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
29
|
Production of minicellulosomes for the enhanced hydrolysis of cellulosic substrates by recombinant Corynebacterium glutamicum. Enzyme Microb Technol 2011; 48:371-7. [PMID: 22112952 DOI: 10.1016/j.enzmictec.2010.12.014] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Revised: 11/08/2010] [Accepted: 12/27/2010] [Indexed: 11/24/2022]
Abstract
Although cellulosic materials of plant origin are the most abundant utilizable biomass resource, the amino acid-producing organism Corynebacterium glutamicum can not utilize these materials. Here we report the engineering of a C. glutamicum strain expressing functional minicellulosomes containing chimeric endoglucanase E bound to miniCbpA from Clostridium cellulovorans that can hydrolyze cellulosic materials. The chimeric endoglucanase E consists of the endoglucanase E catalytic backbone of Clostridium thermocellum fused with the endoglucanase B dockerin domain of C. cellulovorans. The resulting strain degraded cellulose efficiently by substrate targeting via the carbohydrate binding module. The assembly of minicellulosomes increased the activity against carboxymethyl cellulose approximately 2.8-fold compared with that for the corresponding enzymes alone. This is the first report of the formation of Clostridium minicellulosomes by C. glutamicum. The development of C. glutamicum strain that is capable of more effective cellulose hydrolysis brings about a realization of consolidated bioprocessing for the utilization of cellulosic biomass.
Collapse
|
30
|
Arifin N, Basuni M, Lan CA, Yahya ARM, Noordin R. Purification of BmR1 Recombinant Protein. Protein J 2010; 29:509-15. [DOI: 10.1007/s10930-010-9281-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
31
|
Hyeon JE, Yu KO, Suh DJ, Suh YW, Lee SE, Lee J, Han SO. Production of minicellulosomes from Clostridium cellulovorans for the fermentation of cellulosic ethanol using engineered recombinant Saccharomyces cerevisiae. FEMS Microbiol Lett 2010; 310:39-47. [DOI: 10.1111/j.1574-6968.2010.02035.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
32
|
|
33
|
Liao YC, Syu MJ. Effects of poly(ethylene glycol) and salt on the binding of α-amylase from the fermentation broth of Bacillus amyloliquefaciens by Cu2+-β-CD affinity adsorbent. Carbohydr Polym 2009. [DOI: 10.1016/j.carbpol.2009.01.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
34
|
|
35
|
Lin PC, Lin SC, Hsu WH. Adsorption behaviors of recombinant proteins on hydroxyapatite-based immobilized metal affinity chromatographic adsorbents. ACTA ACUST UNITED AC 2008. [DOI: 10.1016/j.jcice.2008.03.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
36
|
Liou CL, Chen YC, Lin SC. A poly(2-hydroxyethyl methacrylate)-based immobilized metal affinity chromatography adsorbent for protein purification. ACTA ACUST UNITED AC 2008. [DOI: 10.1016/j.jcice.2008.03.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
37
|
Block H, Kubicek J, Labahn J, Roth U, Schäfer F. Production and comprehensive quality control of recombinant human Interleukin-1beta: a case study for a process development strategy. Protein Expr Purif 2007; 57:244-54. [PMID: 18053740 DOI: 10.1016/j.pep.2007.09.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2007] [Revised: 09/17/2007] [Accepted: 09/26/2007] [Indexed: 11/29/2022]
Abstract
We describe an efficient strategy to produce high-quality proteins by using a single large IMAC chromatography column and enzymatic His-tag removal via the TAGZyme system in pilot scale. Numerous quality assays demonstrated a high purity of the final product, the human cytokine Interleukin-1beta (IL-1beta). The protein preparation was apparently free of host cell proteins, endotoxins, protease, and aggregates. The N-terminal amino acid sequence of IL-1beta was in full agreement with the natural mature form of IL-1beta. The homogeneity of the product was further shown by X-ray structure determination which confirmed the previously solved structure of the protein. We propose the applied workflow as a strategy for industrial production of protein-based biopharmaceuticals.
Collapse
Affiliation(s)
- Helena Block
- QIAGEN GmbH, Qiagen Strasse 1, 40724 Hilden, Germany
| | | | | | | | | |
Collapse
|
38
|
Pitarch A, Nombela C, Gil C. Reliability of antibodies to Candida methionine synthase for diagnosis, prognosis and risk stratification in systemic candidiasis: A generic strategy for the prototype development phase of proteomic markers. Proteomics Clin Appl 2007; 1:1221-42. [PMID: 21136621 DOI: 10.1002/prca.200601036] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2006] [Indexed: 11/10/2022]
Abstract
To be able to diagnose systemic candidiasis (SC) and to predict outcomes in SC patients are still challenging tasks for physicians. Previous proteomic studies suggest that anti-Candida methionine synthase (Met6p) IgG antibodies may be a candidate marker for SC. To evaluate their reliability for diagnosis, prognosis and risk stratification in SC, we developed a generic prototype strategy for their measurement in SC. Receiver-operating-characteristic curve analyses revealed a high diagnostic accuracy for this prototype format, which was slightly better to that for the widely used Western blot assays. Multivariate logistic-regression models showed a positive association between serum anti-Met6p IgG antibody levels and SC risk that was independent from established SC risk factors and other baseline variables. After adjusting for and stratifying according to known prognostic factors, a significant trend toward a lower two-month mortality risk with increasing levels was evidenced in SC patients at presentation. We conclude that these antibodies may be useful in discriminating SC from non-SC patients and determining risk stratification in SC. These may also confer protection against SC and be valuable for the design of future immunotherapies. Furthermore, our prototype format has the potential to make impact on other infectious diseases, cancers, allergies or autoimmune disorders.
Collapse
Affiliation(s)
- Aida Pitarch
- Department of Microbiology II, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
| | | | | |
Collapse
|
39
|
Gutiérrez R, Del Valle E, Galán M. Characterization of mass transport processes in IMAC chromatography by dynamics methods. Biochem Eng J 2007. [DOI: 10.1016/j.bej.2007.01.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
40
|
Parsy CB, Chapman CJ, Barnes AC, Robertson JF, Murray A. Two-step method to isolate target recombinant protein from co-purified bacterial contaminant SlyD after immobilised metal affinity chromatography. J Chromatogr B Analyt Technol Biomed Life Sci 2007; 853:314-9. [PMID: 17459787 DOI: 10.1016/j.jchromb.2007.03.046] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2007] [Revised: 03/15/2007] [Accepted: 03/25/2007] [Indexed: 11/17/2022]
Abstract
As part of a study to purify the internal domain of HER2 (ICD) from recombinant expression, through metal immobilised affinity chromatography (IMAC), we encountered a contaminant, SlyD, a 29 kDa native E. coli protein. SlyD is a recurrent contaminant, with a histidine rich domain enabling binding to IMAC columns and thus co-elution with the target protein. Research has been carried out on this protein and its purification, however, no work mentions how to treat it as a true contaminant or describe procedures to isolate it from target proteins. In this report, we described a two-step chromatographic method for the purification of ICD, including IMAC as a capture step and size exclusion chromatography (SEC) as a polishing step. IMAC allowed us to purify ICD from bacterial crude with SlyD co-eluting. SEC then allowed us to resolve ICD from SlyD and achieve a purity greater than 95% for ICD. However, this method has been developed to accommodate any protein whose molecular weight is different enough from SlyD to be separated by SEC.
Collapse
Affiliation(s)
- Céline B Parsy
- OncImmune Limited, Clinical Sciences Building, Nottingham City Hospital, Hucknall Road, and Tumor Immunology Group, University of Nottingham NG5 1PB, UK.
| | | | | | | | | |
Collapse
|
41
|
Xiao X, Yang X, Liu T, Chen Z, Chen L, Li H, Deng L. Preparing a highly specific inert immunomolecular-magnetic beads for rapid detection and separation of S. aureus and group G Streptococcus. Appl Microbiol Biotechnol 2007; 75:1209-16. [PMID: 17415559 DOI: 10.1007/s00253-007-0921-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2006] [Revised: 03/01/2007] [Accepted: 03/03/2007] [Indexed: 11/29/2022]
Abstract
The rapid detection and separation of Staphylococcus aureus and group G Streptococcus was based on the affinity chromatography interactions between Fc fragment of human IgG and protein A/G (located on the cell wall of S. aureus and group G Streptococcus). In this case, immobilization of antibodies had to take place in a different and complementary way than in the case of conventional immunosensors. In this study, three different kinds of immunomolecular-magnetic beads (IMB) were prepared for rapid detection and separation of S. aureus and group G Streptococcus (GGS). The Fc regions of the immobilized antibodies were fully accessible to adsorb protein A or protein G. On the contrary, conventional immunosensors had to have fully accessible Fab regions to facilitate the antigen-antibody recognition. It was suggested that the worse method of immobilization of the antibodies for conventional use would yield the better results for this specific use. In this study, we also perfectly solved the nonspecific adsorptions and interaction problems, which were the most serious critical problems for all kinds of sensors. It was achieved by blocking the excess surface groups of aldehyde IMB and the Fab region of the immobilized antibodies with aldehyde-dextran.
Collapse
Affiliation(s)
- Xiao Xiao
- Department of Microbiology, Hunan Normal University, Changsha, Hunan, 410081, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
42
|
Devakumar J, Mookambeswaran V. A novel affinity-based controlled release system involving derivatives of dextran with enhanced osmotic activity. Bioconjug Chem 2007; 18:477-83. [PMID: 17256883 DOI: 10.1021/bc060050e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Dextran is a highly biocompatible molecule with osmotic activity. We synthesized histidine derivatives of dextran, DexH (dextran histidine), to test the feasibility of an IMAC-based controlled release system. DexH was synthesized by the periodate oxidation method. The effect of periodate oxidation and histidine conjugation on osmotic activity was tested. The oxidized intermediate itself exhibited higher osmotic activity than native dextran. Conjugation with histidine further increased the osmotic activity, and the resulting DexH exhibited nine times more osmotic activity than native dextran. A positive correlation was observed between the extent of derivatization with histidine and osmotic activity. Association of DexH was tested on two of the matrices, namely, Cu-IDA-Novarose and Zn-IDA-Novarose. DexH bound to both these matrices, and only partial elution was achieved with stepwise lowering of pH, and complete elution was possible only with EDTA. Interestingly, it was found that DexH in its bound state (DexH-Cu-IDA-Novarose and DexH-Zn-IDA-Novarose) exhibited lesser osmotic activity than the eluted soluble form. The IDA-Cu and IDA-Zn-based solid supports bound strongly to DexH in a species-dependent manner, as the IDA-Zn matrix selectively bound DexH with clustered histidine. Further, this DexH with clustered histidine shows higher osmotic activity. A controlled release system is proposed on the basis of this difference in the osmotic activity between the bound and eluted forms of DexH with EDTA as the external trigger to induce this transition in osmotic activity.
Collapse
Affiliation(s)
- Jyothi Devakumar
- LIMTechS, Deptartment Génie Biologique, Université de Technologie de Compiègne, 60205 Compiegne, France
| | | |
Collapse
|
43
|
Pessela BC, Mateo C, Filho M, Carrascosa A, Fernández-Lafuente R, Guisan JM. Selective adsorption of large proteins on highly activated IMAC supports in the presence of high imidazole concentrations: Purification, reversible immobilization and stabilization of thermophilic α- and β-galactosidases. Enzyme Microb Technol 2007. [DOI: 10.1016/j.enzmictec.2006.04.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
44
|
Santiago-Hernández J, Vásquez-Bahena J, Calixto-Romo M, Xoconostle-Cázares G, Ortega-López J, Ruíz-Medrano R, Montes-Horcasitas M, Hidalgo-Lara M. Direct immobilization of a recombinant invertase to Avicel by E. coli overexpression of a fusion protein containing the extracellular invertase from Zymomonas mobilis and the carbohydrate-binding domain CBDCex from Cellulomonas fimi. Enzyme Microb Technol 2006. [DOI: 10.1016/j.enzmictec.2005.10.052] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
45
|
Bolanos-Garcia VM, Davies OR. Structural analysis and classification of native proteins from E. coli commonly co-purified by immobilised metal affinity chromatography. Biochim Biophys Acta Gen Subj 2006; 1760:1304-13. [PMID: 16814929 DOI: 10.1016/j.bbagen.2006.03.027] [Citation(s) in RCA: 156] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2006] [Revised: 03/23/2006] [Accepted: 03/24/2006] [Indexed: 11/16/2022]
Abstract
Immobilised metal affinity chromatography (IMAC) is the most widely used technique for single-step purification of recombinant proteins. However, despite its use in the purification of heterologue proteins in the eubacteria Escherichia coli for decades, the presence of native E. coli proteins that exhibit a high affinity for divalent cations such as nickel, cobalt or copper has remained problematic. This is of particular relevance when recombinant molecules are not expressed at high levels or when their overexpression induces that of native bacterial proteins due to pleiotropism and/or in response to stress conditions. Identification of such contaminating proteins is clearly relevant to those involved in the purification of histidine-tagged proteins either at small/medium scale or in high-throughput processes. The work presented here reviews the native proteins from E. coli most commonly co-purified by IMAC, including Fur, Crp, ArgE, SlyD, GlmS, GlgA, ODO1, ODO2, YadF and YfbG. The binding of these proteins to metal-chelating resins can mostly be explained by their native metal-binding functions or their possession of surface clusters of histidine residues. However, some proteins fall outside these categories, implying that a further class of interactions may account for their ability to co-purify with histidine-tagged proteins. We propose a classification of these E. coli native proteins based on their physicochemical, structural and functional properties.
Collapse
|
46
|
Howell JM, Winstone TL, Coorssen JR, Turner RJ. An evaluation ofin vitro protein–protein interaction techniques: Assessing contaminating background proteins. Proteomics 2006; 6:2050-69. [PMID: 16518870 DOI: 10.1002/pmic.200500517] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Determination of protein-protein interactions is an important component in assigning function and discerning the biological relevance of proteins within a broader cellular context. In vitro protein-protein interaction methodologies, including affinity chromatography, coimmunoprecipitation, and newer approaches such as protein chip arrays, hold much promise in the detection of protein interactions, particularly in well-characterized organisms with sequenced genomes. However, each of these approaches attracts certain background proteins that can thwart detection and identification of true interactors. In addition, recombinant proteins expressed in Escherichia coli are also extensively used to assess protein-protein interactions, and background proteins in these isolates can thus contaminate interaction studies. Rigorous validation of a true interaction thus requires not only that an interaction be found by alternate techniques, but more importantly that researchers be aware of and control for matrix/support dependence. Here, we evaluate these methods for proteins interacting with DmsD (an E. coli redox enzyme maturation protein chaperone), in vitro, using E. coli subcellular fractions as prey sources. We compare and contrast the various in vitro interaction methods to identify some of the background proteins and protein profiles that are inherent to each of the methods in an E. coli system.
Collapse
Affiliation(s)
- Jenika M Howell
- Department of Biological Sciences, University of Calgary, Calgary, Canada
| | | | | | | |
Collapse
|
47
|
|
48
|
Savina IN, Mattiasson B, Galaev IY. Graft polymerization of vinyl monomers inside macroporous polyacrylamide gel, cryogel, in aqueous and aqueous-organic media initiated by diperiodatocuprate(III) complexes. ACTA ACUST UNITED AC 2006. [DOI: 10.1002/pola.21305] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
49
|
Savina IN, Mattiasson B, Galaev IY. Graft polymerization of acrylic acid onto macroporous polyacrylamide gel (cryogel) initiated by potassium diperiodatocuprate. POLYMER 2005. [DOI: 10.1016/j.polymer.2005.07.091] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
50
|
Fuentes M, Mateo C, Rodriguez A, Casqueiro M, Tercero JC, Riese HH, Fernández-Lafuente R, Guisán JM. Detecting minimal traces of DNA using DNA covalently attached to superparamagnetic nanoparticles and direct PCR-ELISA. Biosens Bioelectron 2005; 21:1574-80. [PMID: 16129594 DOI: 10.1016/j.bios.2005.07.017] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2005] [Revised: 06/14/2005] [Accepted: 07/15/2005] [Indexed: 11/25/2022]
Abstract
A single bond covalent immobilization of aminated DNA probes on magnetic particles suitable for selective molecular hybridization of traces of DNA samples has been developed. Commercial superparamagnetic nanoparticles containing amino groups were activated by coating with a hetero-functional polymer (aldehyde-aspartic-dextran). This new immobilization procedure provides many practical advantages: (a) DNA probes are immobilized far from the support surface preventing steric hindrances; (b) the surface of the nanoparticles cannot adsorb DNA ionically; (c) DNA probes are bound via a very strong covalent bond (a secondary amine) providing very stable immobilized probes (at 100 degrees C, or in 70% formamide, or 0.1N NaOH). Due to the extreme sensitivity of this purification procedure based on DNA hybridization, the detection of hybridized products could be coupled to a PCR-ELISA direct amplification of the DNA bond to the magnetic nanoparticles. As a model system, an aminated DNA probe specific for detecting Hepatitis C Virus cDNA was immobilized according to the optimised procedure described herein. Superparamagnetic nanoparticles containing the immobilized HCV probe were able to give a positive result after PCR-ELISA detection when hybridized with 1 mL of solution containing 10(-18) g/mL of HCV cDNA (two molecules of HCV cDNA). In addition, the detection of HCV cDNA was not impaired by the addition to the sample solution of 2.5 million-fold excess of non-complementary DNA. The experimental data supports the use of magnetic nanoparticles containing DNA probes immobilized by the procedure here described as a convenient and extremely sensitive procedure for purification/detection DNA/RNA from biological samples. The concentration/purification potential of the magnetic nanoparticles, its stability under a wide range of conditions, coupled to the possibility of using the particles directly in amplification by PCR greatly reinforces this methodology as a molecular diagnostic tool.
Collapse
Affiliation(s)
- Manuel Fuentes
- Laboratorio de Tecnología Enzimática, Departamento de Biocatálisis, Instituto de Catálisis y Petroleoquímica-CSIC, Campus UAM, Cantoblanco, Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|