1
|
Zhang X, Yarman A, Bagheri M, El-Sherbiny IM, Hassan RYA, Kurbanoglu S, Waffo AFT, Zebger I, Karabulut TC, Bier FF, Lieberzeit P, Scheller FW. Imprinted Polymers on the Route to Plastibodies for Biomacromolecules (MIPs), Viruses (VIPs), and Cells (CIPs). ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2024; 187:107-148. [PMID: 37884758 DOI: 10.1007/10_2023_234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Around 30% of the scientific papers published on imprinted polymers describe the recognition of proteins, nucleic acids, viruses, and cells. The straightforward synthesis from only one up to six functional monomers and the simple integration into a sensor are significant advantages as compared with enzymes or antibodies. Furthermore, they can be synthesized against toxic substances and structures of low immunogenicity and allow multi-analyte measurements via multi-template synthesis. The affinity is sufficiently high for protein biomarkers, DNA, viruses, and cells. However, the cross-reactivity of highly abundant proteins is still a challenge.
Collapse
Affiliation(s)
- Xiaorong Zhang
- Institute for Biochemistry and Biology, Universität Potsdam, Potsdam, Germany
| | - Aysu Yarman
- Molecular Biotechnology, Faculty of Science, Turkish-German University, Istanbul, Turkey
| | - Mahdien Bagheri
- Department of Physical Chemistry, Faculty for Chemistry, University of Vienna, Vienna, Austria
| | - Ibrahim M El-Sherbiny
- Nanoscience Program, University of Science and Technology (UST), Zewail City of Science and Technology, Giza, Egypt
- Center for Materials Science (CMS), Zewail City of Science and Technology, Giza, Egypt
| | - Rabeay Y A Hassan
- Nanoscience Program, University of Science and Technology (UST), Zewail City of Science and Technology, Giza, Egypt
- Center for Materials Science (CMS), Zewail City of Science and Technology, Giza, Egypt
| | - Sevinc Kurbanoglu
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | | | - Ingo Zebger
- Institut für Chemie, PC 14 Technische Universität Berlin, Berlin, Germany
| | | | - Frank F Bier
- Institute for Biochemistry and Biology, Universität Potsdam, Potsdam, Germany
| | - Peter Lieberzeit
- Department of Physical Chemistry, Faculty for Chemistry, University of Vienna, Vienna, Austria.
| | - Frieder W Scheller
- Institute for Biochemistry and Biology, Universität Potsdam, Potsdam, Germany.
| |
Collapse
|
2
|
Shchipunov Y. Biomimetic Sol-Gel Chemistry to Tailor Structure, Properties, and Functionality of Bionanocomposites by Biopolymers and Cells. MATERIALS (BASEL, SWITZERLAND) 2023; 17:224. [PMID: 38204077 PMCID: PMC10779932 DOI: 10.3390/ma17010224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 12/23/2023] [Accepted: 12/24/2023] [Indexed: 01/12/2024]
Abstract
Biosilica, synthesized annually only by diatoms, is almost 1000 times more abundant than industrial silica. Biosilicification occurs at a high rate, although the concentration of silicic acid in natural waters is ~100 μM. It occurs in neutral aqueous solutions, at ambient temperature, and under the control of proteins that determine the formation of hierarchically organized structures. Using diatoms as an example, the fundamental differences between biosilicification and traditional sol-gel technology, which is performed with the addition of acid/alkali, organic solvents and heating, have been identified. The conditions are harsh for the biomaterial, as they cause protein denaturation and cell death. Numerous attempts are being made to bring sol-gel technology closer to biomineralization processes. Biomimetic synthesis must be conducted at physiological pH, room temperature, and without the addition of organic solvents. To date, significant progress has been made in approaching these requirements. The review presents a critical analysis of the approaches proposed to date for the silicification of biomacromolecules and cells, the formation of bionanocomposites with controlled structure, porosity, and functionality determined by the biomaterial. They demonstrated the broad capabilities and prospects of biomimetic methods for creating optical and photonic materials, adsorbents, catalysts and biocatalysts, sensors and biosensors, and biomaterials for biomedicine.
Collapse
Affiliation(s)
- Yury Shchipunov
- Institute of Chemistry, Far East Department, Russian Academy of Sciences, Vladivostok 690022, Russia
| |
Collapse
|
3
|
Zhang Y, Wang Q, Zhao X, Ma Y, Zhang H, Pan G. Molecularly Imprinted Nanomaterials with Stimuli Responsiveness for Applications in Biomedicine. Molecules 2023; 28:molecules28030918. [PMID: 36770595 PMCID: PMC9919331 DOI: 10.3390/molecules28030918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/11/2023] [Accepted: 01/11/2023] [Indexed: 01/19/2023] Open
Abstract
The review aims to summarize recent reports of stimuli-responsive nanomaterials based on molecularly imprinted polymers (MIPs) and discuss their applications in biomedicine. In the past few decades, MIPs have been proven to show widespread applications as new molecular recognition materials. The development of stimuli-responsive nanomaterials has successfully endowed MIPs with not only affinity properties comparable to those of natural antibodies but also the ability to respond to external stimuli (stimuli-responsive MIPs). In this review, we will discuss the synthesis of MIPs, the classification of stimuli-responsive MIP nanomaterials (MIP-NMs), their dynamic mechanisms, and their applications in biomedicine, including bioanalysis and diagnosis, biological imaging, drug delivery, disease intervention, and others. This review mainly focuses on studies of smart MIP-NMs with biomedical perspectives after 2015. We believe that this review will be helpful for the further exploration of stimuli-responsive MIP-NMs and contribute to expanding their practical applications especially in biomedicine in the near future.
Collapse
Affiliation(s)
- Yan Zhang
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Qinghe Wang
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Xiao Zhao
- College of Life Sciences, Northwest Normal University, Lanzhou 730071, China
| | - Yue Ma
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
- Pharmaceutical Sciences Laboratory, Åbo Akademi University, 20520 Turku, Finland
- Correspondence: (Y.M.); (G.P.)
| | - Hongbo Zhang
- Pharmaceutical Sciences Laboratory, Åbo Akademi University, 20520 Turku, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Guoqing Pan
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
- Correspondence: (Y.M.); (G.P.)
| |
Collapse
|
4
|
He Y, Lin Z. Recent advances in protein-imprinted polymers: synthesis, applications and challenges. J Mater Chem B 2022; 10:6571-6589. [PMID: 35507351 DOI: 10.1039/d2tb00273f] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The molecular imprinting technique (MIT), also described as the "lock to key" method, has been demonstrated as an effective tool for the creation of synthetic polymers with antibody-like sites to specifically recognize target molecules. To date, most successful molecular imprinting researches were limited to small molecules (<1500 Da); biomacromolecule (especially protein) imprinting remains a serious challenge due to their large size, chemical and structural complexity, and environmental instability. Nevertheless, protein imprinting has achieved some significant breakthroughs in imprinting methods and applications over the past decade. Some special protein-imprinted materials with outstanding properties have been developed and exhibited excellent potential in several advanced fields such as separation and purification, proteomics, biomarker detection, bioimaging and therapy. In this review, we critically and comprehensively surveyed the recent advances in protein imprinting, particularly emphasizing the significant progress in imprinting methods and highlighted applications. Finally, we summarize the major challenges remaining in protein imprinting and propose its development direction in the near future.
Collapse
Affiliation(s)
- Yanting He
- School of Pharmacy, Bengbu Medical University, 2600 Donghai Avenue, Bengbu, Anhui, 233000, China.,Ministry of Education Key Laboratory of Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China.
| | - Zian Lin
- Ministry of Education Key Laboratory of Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China.
| |
Collapse
|
5
|
Bognár Z, Supala E, Yarman A, Zhang X, Bier FF, Scheller FW, Gyurcsányi RE. Peptide epitope-imprinted polymer microarrays for selective protein recognition. Application for SARS-CoV-2 RBD protein. Chem Sci 2022; 13:1263-1269. [PMID: 35222909 PMCID: PMC8809392 DOI: 10.1039/d1sc04502d] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 11/23/2021] [Indexed: 12/18/2022] Open
Abstract
We introduce a practically generic approach for the generation of epitope-imprinted polymer-based microarrays for protein recognition on surface plasmon resonance imaging (SPRi) chips. The SPRi platform allows the subsequent rapid screening of target binding kinetics in a multiplexed and label-free manner. The versatility of such microarrays, both as synthetic and screening platform, is demonstrated through developing highly affine molecularly imprinted polymers (MIPs) for the recognition of the receptor binding domain (RBD) of SARS-CoV-2 spike protein. A characteristic nonapeptide GFNCYFPLQ from the RBD and other control peptides were microspotted onto gold SPRi chips followed by the electrosynthesis of a polyscopoletin nanofilm to generate in one step MIP arrays. A single chip screening of essential synthesis parameters, including the surface density of the template peptide and its sequence led to MIPs with dissociation constants (K D) in the lower nanomolar range for RBD, which exceeds the affinity of RBD for its natural target, angiotensin-convertase 2 enzyme. Remarkably, the same MIPs bound SARS-CoV-2 virus like particles with even higher affinity along with excellent discrimination of influenza A (H3N2) virus. While MIPs prepared with a truncated heptapeptide template GFNCYFP showed only a slightly decreased affinity for RBD, a single mismatch in the amino acid sequence of the template, i.e. the substitution of the central cysteine with a serine, fully suppressed the RBD binding.
Collapse
Affiliation(s)
- Zsófia Bognár
- BME "Lendület" Chemical Nanosensors Research Group, Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics Szt. Gellért tér 4 1111 Budapest Hungary
| | - Eszter Supala
- BME "Lendület" Chemical Nanosensors Research Group, Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics Szt. Gellért tér 4 1111 Budapest Hungary
| | - Aysu Yarman
- Institute of Biochemistry and Biology, University of Potsdam Karl-Liebknecht-Str. 24-25 14476 Potsdam OT Golm Germany
| | - Xiaorong Zhang
- Institute of Biochemistry and Biology, University of Potsdam Karl-Liebknecht-Str. 24-25 14476 Potsdam OT Golm Germany
| | - Frank F Bier
- Institute of Biochemistry and Biology, University of Potsdam Karl-Liebknecht-Str. 24-25 14476 Potsdam OT Golm Germany
| | - Frieder W Scheller
- Institute of Biochemistry and Biology, University of Potsdam Karl-Liebknecht-Str. 24-25 14476 Potsdam OT Golm Germany
| | - Róbert E Gyurcsányi
- BME "Lendület" Chemical Nanosensors Research Group, Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics Szt. Gellért tér 4 1111 Budapest Hungary
| |
Collapse
|
6
|
Esen E, Osman B, Demir MN. Molecularly imprinted solid-phase extractıon sorbent for selective determınatıon of melatonin. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
7
|
Ansari S, Masoum S. Molecularly imprinted polymers for capturing and sensing proteins: Current progress and future implications. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.02.008] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Jetzschmann KJ, Tank S, Jágerszki G, Gyurcsányi RE, Wollenberger U, Scheller FW. Bio‐Electrosynthesis of Vectorially Imprinted Polymer Nanofilms for Cytochrome P450cam. ChemElectroChem 2019. [DOI: 10.1002/celc.201801851] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Katharina J. Jetzschmann
- Institute for Biochemistry and BiologyUniversity of Potsdam Karl-Liebknecht-Str. 24–25 14476 Potsdam Germany
| | - Steffen Tank
- Institute for Biochemistry and BiologyUniversity of Potsdam Karl-Liebknecht-Str. 24–25 14476 Potsdam Germany
| | - Gyula Jágerszki
- Chemical Nanosensors Research GroupDepartment of Inorganic and Analytical ChemistryBudapest University of Technology and Economics Szt. Gellért tér 4 H-1111 Budapest Hungary
| | - Róbert E. Gyurcsányi
- Chemical Nanosensors Research GroupDepartment of Inorganic and Analytical ChemistryBudapest University of Technology and Economics Szt. Gellért tér 4 H-1111 Budapest Hungary
| | - Ulla Wollenberger
- Institute for Biochemistry and BiologyUniversity of Potsdam Karl-Liebknecht-Str. 24–25 14476 Potsdam Germany
| | - Frieder W. Scheller
- Institute for Biochemistry and BiologyUniversity of Potsdam Karl-Liebknecht-Str. 24–25 14476 Potsdam Germany
| |
Collapse
|
9
|
Holzmeister I, Schamel M, Groll J, Gbureck U, Vorndran E. Artificial inorganic biohybrids: The functional combination of microorganisms and cells with inorganic materials. Acta Biomater 2018; 74:17-35. [PMID: 29698705 DOI: 10.1016/j.actbio.2018.04.042] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/12/2018] [Accepted: 04/22/2018] [Indexed: 02/07/2023]
Abstract
Biohybrids can be defined as the functional combination of proteins, viable cells or microorganisms with non-biological materials. This article reviews recent findings on the encapsulation of microorganisms and eukaryotic cells in inorganic matrices such as silica gels or cements. The entrapment of biological entities into a support material is of great benefit for processing since the encapsulation matrix protects sensitive cells from shear forces, unfavourable pH changes, or cytotoxic solvents, avoids culture-washout, and simplifies the separation of formed products. After reflecting general aspects of such an immobilization as well as the chemistry of the inorganic matrices, we focused on manufacturing aspects and the application of such biohybrids in biotechnology, medicine as well as in environmental science and for civil engineering purpose. STATEMENT OF SIGNIFICANCE The encapsulation of living cells and microorganisms became an intensively studied and rapidly expanding research field with manifold applications in medicine, bio- and environmental technology, or civil engineering. Here, the use of silica or cements as encapsulation matrices have the advantage of a higher chemical and mechanical resistance towards harsh environmental conditions during processing compared to their polymeric counterparts. In this perspective, the article gives an overview about the inorganic material systems used for cell encapsulation, followed by reviewing the most important applications. The future may lay in a combination of the currently achieved biohybrid systems with additive manufacturing techniques. In a longer perspective, this would enable the direct printing of cell loaded bioreactor components.
Collapse
|
10
|
Zhang X, Yarman A, Erdossy J, Katz S, Zebger I, Jetzschmann KJ, Altintas Z, Wollenberger U, Gyurcsányi RE, Scheller FW. Electrosynthesized MIPs for transferrin: Plastibodies or nano-filters? Biosens Bioelectron 2018; 105:29-35. [DOI: 10.1016/j.bios.2018.01.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 01/05/2018] [Accepted: 01/07/2018] [Indexed: 02/08/2023]
|
11
|
Liu D, Zhao K, Qi M, Li S, Xu G, Wei J, He X. Preparation of Protein Molecular-Imprinted Polysiloxane Membrane Using Calcium Alginate Film as Matrix and Its Application for Cell Culture. Polymers (Basel) 2018; 10:E170. [PMID: 30966206 PMCID: PMC6415182 DOI: 10.3390/polym10020170] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 02/08/2018] [Accepted: 02/09/2018] [Indexed: 12/31/2022] Open
Abstract
Bovine serum albumin (BSA) molecular-imprinted polysiloxane (MIP) membrane was prepared by sol-gel technology, using silanes as the functional monomers, BSA as the template and CaAlg hydrogel film as the matrix. The stress-strain curves of wet CaAlg membrane and molecular-imprinted polysiloxane membrane were investigated. We evaluate the adsorption and recognition properties of MIP membrane. Results showed that the adsorption capacity of BSA-imprinted polysiloxane for BSA reached 28.83 mg/g, which was 2.18 times the non-imprinted polysiloxane (NIP) membrane. The adsorption rate was higher than that of the protein-imprinted hydrogel. BSA-imprinted polysiloxane membrane could identify the protein template from competitive proteins such as bovine hemoglobin, ovalbumin and bovine γ-globulin. In order to obtain the biomaterial that can promote cell adhesion and proliferation, fibronectin (FN)-imprinted polysiloxane (FN-MIP) membrane was obtained by using fibronectin as the template, silanes as functional monomers, and CaAlg hydrogel membrane as the substrate or matrix. The FN-MIP adsorbed more FN than NIP. The FN-imprinted polysiloxane membrane was applied to culture mouse fibroblast cells (L929) and the results proved that the FN-MIP had a better effect on cell adhesion than NIP.
Collapse
Affiliation(s)
- Dong Liu
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Polytechnic University, Tianjin 300387, China.
| | - Kongyin Zhao
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Polytechnic University, Tianjin 300387, China.
- School of Material Science and Engineering, Tianjin Polytechnic University, Tianjin 300387, China.
| | - Meng Qi
- School of Material Science and Engineering, Tianjin Polytechnic University, Tianjin 300387, China.
| | - Shuwen Li
- School of Material Science and Engineering, Tianjin Polytechnic University, Tianjin 300387, China.
| | - Guoqing Xu
- School of Material Science and Engineering, Tianjin Polytechnic University, Tianjin 300387, China.
| | - Junfu Wei
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Polytechnic University, Tianjin 300387, China.
- School of Material Science and Engineering, Tianjin Polytechnic University, Tianjin 300387, China.
| | - Xiaoling He
- School of Material Science and Engineering, Tianjin Polytechnic University, Tianjin 300387, China.
| |
Collapse
|
12
|
Jetzschmann KJ, Yarman A, Rustam L, Kielb P, Urlacher VB, Fischer A, Weidinger IM, Wollenberger U, Scheller FW. Molecular LEGO by domain-imprinting of cytochrome P450 BM3. Colloids Surf B Biointerfaces 2018; 164:240-246. [PMID: 29413602 DOI: 10.1016/j.colsurfb.2018.01.047] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 01/24/2018] [Indexed: 01/16/2023]
Abstract
HYPOTHESIS Electrosynthesis of the MIP nano-film after binding of the separated domains or holo-cytochrome BM3 via an engineered anchor should result in domain-specific cavities in the polymer layer. EXPERIMENTS Both the two domains and the holo P450 BM3 have been bound prior polymer deposition via a N-terminal engineered his6-anchor to the electrode surface. Each step of MIP preparation was characterized by cyclic voltammetry of the redox-marker ferricyanide. Rebinding after template removal was evaluated by quantifying the suppression of the diffusive permeability of the signal for ferricyanide and by the NADH-dependent reduction of cytochrome c by the reductase domain (BMR). FINDINGS The working hypothesis is verified by the discrimination of the two domains by the respective MIPs: The holoenzyme P450 BM3 was ca. 5.5 times more effectively recognized by the film imprinted with the oxidase domain (BMO) as compared to the BMR-MIP or the non-imprinted polymer (NIP). Obviously, a cavity is formed during the imprinting process around the his6-tag-anchored BMR which cannot accommodate the broader BMO or the P450 BM3. The affinity of the MIP towards P450 BM3 is comparable with that to the monomer in solution. The his6-tagged P450 BM3 binds (30 percent) stronger which shows the additive effect of the interaction with the MIP and the binding to the electrode.
Collapse
Affiliation(s)
- K J Jetzschmann
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht Str. 24-25, 14476 Potsdam, Germany
| | - A Yarman
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht Str. 24-25, 14476 Potsdam, Germany; Faculty of Science, Molecular Biotechnology, Turkish-German University, Sahinkaya Cad. 86, 34820 Beykoz, Istanbul, Turkey
| | - L Rustam
- Institut für Anorganische und Analytische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstrasse 21, 79104 Freiburg, Germany
| | - P Kielb
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 135, 10623 Berlin, Germany
| | - V B Urlacher
- Institute of Biochemistry, Heinrich-Heine-University, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - A Fischer
- Institut für Anorganische und Analytische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstrasse 21, 79104 Freiburg, Germany
| | - I M Weidinger
- Department of Chemistry and Food Chemistry, Technische Universität Dresden, Zellescher Weg 19, 01069 Dresden, Germany
| | - U Wollenberger
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht Str. 24-25, 14476 Potsdam, Germany
| | - F W Scheller
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht Str. 24-25, 14476 Potsdam, Germany.
| |
Collapse
|
13
|
Cai W, Li HH, Lu ZX, Collinson MM. Bacteria assisted protein imprinting in sol-gel derived films. Analyst 2018; 143:555-563. [PMID: 29260166 DOI: 10.1039/c7an01509g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
A hierarchical imprinting strategy was used to create protein imprints in a silicate film with a high binding capacity as well as selectivity toward the imprint protein and little specificity towards other proteins. In the first part of this work, rod-shaped bacteria were used as templates to create imprints in silica films of various thicknesses to open up the silica framework and increase the surface area exposed to solution. In the second part, the protein (e.g., cytochrome c (CYC) or green fluorescent protein (GFP)) was covalently attached to the surface of Bacillus subtilis and this protein-bacteria complex served as the imprint moiety. Atomic force microscopy and scanning electron microscopy were used to image the micron-size rod-shaped bacteria imprints formed on the silica surface. Fluorescence microscopy, which was used to follow the fabrication process with GFP as the representative protein, clearly demonstrated protein imprinting, protein removal and protein rebinding as well as protein specificity. Visible absorption spectroscopy using CYC as the imprint protein demonstrated relatively fast uptake kinetics and also good specificity against other proteins including bovine serum albumin (BSA), horseradish peroxidase (HRP), glucose oxidase (GOD), and lysozyme (LYZ). Collectively this work demonstrates a new surface bio-imprinting approach that generates recognition sites for proteins and provides a viable means to increase the binding capacity of such imprinted thin films.
Collapse
Affiliation(s)
- Wei Cai
- College of Science, Huazhong Agricultural University, Wuhan 430070, China.
| | | | | | | |
Collapse
|
14
|
Liu Z, He H. Synthesis and Applications of Boronate Affinity Materials: From Class Selectivity to Biomimetic Specificity. Acc Chem Res 2017; 50:2185-2193. [PMID: 28849912 DOI: 10.1021/acs.accounts.7b00179] [Citation(s) in RCA: 222] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Due to the complexity of biological systems and samples, specific capture and targeting of certain biomolecules is critical in much biological research and many applications. cis-Diol-containing biomolecules, a large family of important compounds including glycoproteins, saccharides, nucleosides, nucleotides, and so on, play essential roles in biological systems. As boronic acids can reversibly bind with cis-diols, boronate affinity materials (BAMs) have gained increasing attention in recent years. However, real-world applications of BAMs are often severely hampered by three bottleneck issues, including nonbiocompatible binding pH, weak affinity, and difficulty in selectivity manipulation. Therefore, solutions to these issues and knowledge about the factors that influence the binding properties are of significant importance. These issues have been well solved by our group in past years. Our solutions started from the synthesis and screening of boronic acid ligands with chemical moieties favorable for binding at neutral and acidic pH. To avoid tedious synthesis routes, we proposed a straightforward strategy called teamed boronate affinity, which permitted facile preparation of BAMs with strong binding at neutral pH. To enhance the affinity, we confirmed that multivalent binding could significantly enhance the affinity toward glycoproteins. More interestingly, we observed that molecular interactions could be significantly enhanced by confinement within nanoscale spaces. To improve the selectivity, we investigated interactions that govern the selectivity and their interplays. We then proposed a set of strategies for selectivity manipulation, which proved to be useful guidelines for not only the design of new BAMs but also the selection of binding conditions. Applications in metabolomic analysis, glycoproteomic analysis, and aptamer selection well demonstrated the great potential of the prepared BAMs. Molecular imprinting is an important methodology for creating affinity materials with antibody-like binding properties. Boronate affinity-based covalent imprinting is a pioneering approach in molecular imprinting, but only a few cases of successful imprinting of glycoproteins by this method were reported. With sound understanding of boronate affinity, we developed two facile and generally applicable boronate affinity-based molecular imprinting approaches. The resulting boronate affinity molecularly imprinted polymers (MIPs) exhibited dramatically improved binding properties, including biocompatible binding pH range, enhanced affinity, improved specificity, and superb tolerance to interference. In terms of nanoconfinement effect, we explained why the binding pH range was widened and why the affinity was enhanced. The excellent binding properties made boronate affinity MIPs appealing alternatives to antibodies in promising applications such as disease diagnosis, cancer-cell targeting, and single-cell analysis. In this Account, we survey the key aspects of BAMs, the efforts we made to solve these issues, and the connections between imprinted and nonimprinted BAMs. Through this survey, we wish to pave a sound fundamental basis of the dependence of binding properties of BAMs on the nature and structure of the ligands and the supporting materials, which can facilitate the development and applications of BAMs. We also briefly sketch remaining challenges and directions for future development.
Collapse
Affiliation(s)
- Zhen Liu
- State Key Laboratory of Analytical
Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hui He
- State Key Laboratory of Analytical
Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
15
|
Benson JJ, Sakkos JK, Radian A, Wackett LP, Aksan A. Enhanced biodegradation of atrazine by bacteria encapsulated in organically modified silica gels. J Colloid Interface Sci 2017; 510:57-68. [PMID: 28934611 DOI: 10.1016/j.jcis.2017.09.044] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 09/06/2017] [Accepted: 09/10/2017] [Indexed: 01/16/2023]
Abstract
Biodegradation by cells encapsulated in silica gel is an economical and environmentally friendly method for the removal of toxic chemicals from the environment. In this work, recombinant E. coli expressing atrazine chlorohydrolase (AtzA) were encapsulated in organically modified silica (ORMOSIL) gels composed of TEOS, silica nanoparticles (SNPs), and either phenyltriethoxysilane (PTES) or methyltriethoxysilane (MTES). ORMOSIL gels adsorbed much higher amounts of atrazine than the hydrophilic TEOS gels. The highest amount of atrazine adsorbed by ORMOSIL gels was 48.91×10-3μmol/mlgel, compared to 8.71×10-3μmol/mlgel by the hydrophilic TEOS gels. Atrazine biodegradation rates were also higher in ORMOSIL gels than the TEOS gels, mainly due to co-localization of the hydrophobic substrate at high concentrations in close proximity of the encapsulated bacteria. A direct correlation between atrazine adsorption and biodegradation was observed unless biodegradation decreased due to severe phase separation. The optimized PTES and MTES gels had atrazine biodegradation rates of 0.041±0.003 and 0.047±0.004μmol/mlgel, respectively. These rates were approximately 80% higher than that measured in the TEOS gel. This study showed for the first time that optimized hydrophobic gel material design can be used to enhance both removal and biodegradation of hydrophobic chemicals.
Collapse
Affiliation(s)
- Joey J Benson
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455, USA; BioTechnology Institute, University of Minnesota, St Paul, MN 55108, USA
| | - Jonathan K Sakkos
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455, USA; BioTechnology Institute, University of Minnesota, St Paul, MN 55108, USA
| | - Adi Radian
- BioTechnology Institute, University of Minnesota, St Paul, MN 55108, USA; Department of Environmental, Water and Agricultural Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Lawrence P Wackett
- BioTechnology Institute, University of Minnesota, St Paul, MN 55108, USA; Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Alptekin Aksan
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455, USA; BioTechnology Institute, University of Minnesota, St Paul, MN 55108, USA.
| |
Collapse
|
16
|
Erol K, Uzun L. Two-step polymerization approach for synthesis of macroporous surface ion-imprinted cryogels. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2017. [DOI: 10.1080/10601325.2017.1342519] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Kadir Erol
- Hacettepe University, Faculty of Science, Department of Chemistry, Ankara, Turkey
- Hitit University, Osmancık Ömer Derindere Vocational School, Çorum, Turkey
| | - Lokman Uzun
- Hacettepe University, Faculty of Science, Department of Chemistry, Ankara, Turkey
| |
Collapse
|
17
|
Preparation of molecularly imprinted polymers specific to glycoproteins, glycans and monosaccharides via boronate affinity controllable–oriented surface imprinting. Nat Protoc 2017; 12:964-987. [DOI: 10.1038/nprot.2017.015] [Citation(s) in RCA: 220] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
18
|
Jetzschmann KJ, Zhang X, Yarman A, Wollenberger U, Scheller FW. Label-Free MIP Sensors for Protein Biomarkers. SPRINGER SERIES ON CHEMICAL SENSORS AND BIOSENSORS 2017. [DOI: 10.1007/5346_2017_3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
19
|
Puiu M, Jaffrezic-Renault N, Bala C. Biomimetic Sensors Based on Molecularly Imprinted Interfaces. PAST, PRESENT AND FUTURE CHALLENGES OF BIOSENSORS AND BIOANALYTICAL TOOLS IN ANALYTICAL CHEMISTRY: A TRIBUTE TO PROFESSOR MARCO MASCINI 2017. [DOI: 10.1016/bs.coac.2017.05.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
20
|
“Smart” molecularly imprinted monoliths for the selective capture and easy release of proteins. J Sep Sci 2016; 39:3267-73. [DOI: 10.1002/jssc.201600576] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 06/19/2016] [Accepted: 06/20/2016] [Indexed: 12/26/2022]
|
21
|
Menger M, Yarman A, Erdőssy J, Yildiz HB, Gyurcsányi RE, Scheller FW. MIPs and Aptamers for Recognition of Proteins in Biomimetic Sensing. BIOSENSORS 2016; 6:E35. [PMID: 27438862 PMCID: PMC5039654 DOI: 10.3390/bios6030035] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 07/04/2016] [Accepted: 07/11/2016] [Indexed: 12/12/2022]
Abstract
Biomimetic binders and catalysts have been generated in order to substitute the biological pendants in separation techniques and bioanalysis. The two major approaches use either "evolution in the test tube" of nucleotides for the preparation of aptamers or total chemical synthesis for molecularly imprinted polymers (MIPs). The reproducible production of aptamers is a clear advantage, whilst the preparation of MIPs typically leads to a population of polymers with different binding sites. The realization of binding sites in the total bulk of the MIPs results in a higher binding capacity, however, on the expense of the accessibility and exchange rate. Furthermore, the readout of the bound analyte is easier for aptamers since the integration of signal generating labels is well established. On the other hand, the overall negative charge of the nucleotides makes aptamers prone to non-specific adsorption of positively charged constituents of the sample and the "biological" degradation of non-modified aptamers and ionic strength-dependent changes of conformation may be challenging in some application.
Collapse
Affiliation(s)
- Marcus Menger
- Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, Potsdam D-14476, Germany.
| | - Aysu Yarman
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Strasse 25-26, Potsdam D-14476, Germany.
- Turkish-German University, Faculty of Science, Molecular Biotechnology, Sahinkaya Cad. No. 86, Bekoz, Istanbul 34820, Turkey.
| | - Júlia Erdőssy
- MTA-BME "Lendület" Chemical Nanosensors Research Group, Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Szent Gellért tér 4, Budapest H-1111, Hungary.
| | - Huseyin Bekir Yildiz
- Department of Materials Science and Nanotechnology Engineering, KTO Karatay University, Konya 42020, Turkey.
| | - Róbert E Gyurcsányi
- MTA-BME "Lendület" Chemical Nanosensors Research Group, Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Szent Gellért tér 4, Budapest H-1111, Hungary.
| | - Frieder W Scheller
- Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, Potsdam D-14476, Germany.
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Strasse 25-26, Potsdam D-14476, Germany.
| |
Collapse
|
22
|
Karimian N, Gholivand M, Malekzadeh G. Cefixime detection by a novel electrochemical sensor based on glassy carbon electrode modified with surface imprinted polymer/multiwall carbon nanotubes. J Electroanal Chem (Lausanne) 2016. [DOI: 10.1016/j.jelechem.2016.03.042] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
23
|
Erdőssy J, Horváth V, Yarman A, Scheller FW, Gyurcsányi RE. Electrosynthesized molecularly imprinted polymers for protein recognition. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2015.12.018] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
24
|
Dopaminergic receptor-ligand binding assays based on molecularly imprinted polymers on quartz crystal microbalance sensors. Biosens Bioelectron 2016; 81:117-124. [PMID: 26926593 DOI: 10.1016/j.bios.2016.02.047] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Revised: 02/11/2016] [Accepted: 02/16/2016] [Indexed: 11/21/2022]
Abstract
Molecularly imprinted polymers (MIPs) have been successfully applied as selective materials for assessing the binding activity of agonist and antagonist of dopamine D1 receptor (D1R) by using quartz crystal microbalance (QCM). In this study, D1R derived from rat hypothalamus was used as a template and thus self-organized on stamps. Those were pressed into an oligomer film consisting of acrylic acid: N-vinylpyrrolidone: N,N'-(1,2-dihydroxyethylene) bis-acrylamide in a ratio of 2:3:12 spin coated onto a dual electrode QCM. Such we obtained one D1R-MIP-QCM electrode, whereas the other electrode carried the non-imprinted control polymer (NIP) that had remained untreated. Successful imprinting of D1R was confirmed by AFM. The polymer can re-incorporate D1R leading to frequency responses of 100-1200Hz in a concentration range of 5.9-47.2µM. In a further step such frequency changes proved inherently useful for examining the binding properties of test ligands to D1R. The resulting mass-sensitive measurements revealed Kd of dopamine∙HCl, haloperidol, and (+)-SCH23390 at 0.874, 25.6, and 0.004nM, respectively. These results correlate well with the values determined in radio ligand binding assays. Our experiments revealed that D1R-MIP sensors are useful for estimating the strength of ligand binding to the active single site. Therefore, we have developed a biomimetic surface imprinting strategy for QCM studies of D1R-ligand binding and presented a new method to ligand binding assay for D1R.
Collapse
|
25
|
A Review on Bio-macromolecular Imprinted Sensors and Their Applications. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2016. [DOI: 10.1016/s1872-2040(16)60898-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
26
|
Albela B, Bonneviot L. Surface molecular engineering in the confined space of templated porous silica. NEW J CHEM 2016. [DOI: 10.1039/c5nj03437j] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Recent developments in molecular surface engineering inside the confined space of porous materials are surveyed including a new nomenclature proposal.
Collapse
Affiliation(s)
- Belén Albela
- Laboratoire de Chimie
- Ecole Normale Supérieure de Lyon
- University of Lyon
- Lyon Cedex-07
- France
| | - Laurent Bonneviot
- Laboratoire de Chimie
- Ecole Normale Supérieure de Lyon
- University of Lyon
- Lyon Cedex-07
- France
| |
Collapse
|
27
|
Shinde S, El-Schich Z, Malakpour-Permlid A, Wan W, Dizeyi N, Mohammadi R, Rurack K, Gjörloff Wingren A, Sellergren B. Sialic Acid-Imprinted Fluorescent Core-Shell Particles for Selective Labeling of Cell Surface Glycans. J Am Chem Soc 2015; 137:13908-12. [PMID: 26414878 DOI: 10.1021/jacs.5b08482] [Citation(s) in RCA: 171] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The expression of cell surface glycans terminating with sialic acid (SA) residues has been found to correlate with various disease states there among cancer. We here report a novel strategy for specific fluorescence labeling of such motifs. This is based on sialic acid-imprinted core-shell nanoparticles equipped with nitrobenzoxadiazole (NBD) fluorescent reporter groups allowing environmentally sensitive fluorescence detection at convenient excitation and emission wavelengths. Imprinting was achieved exploiting a hybrid approach combining reversible boronate ester formation between p-vinylphenylboronic acid and SA, the introduction of cationic amine functionalities, and the use of an NBD-appended urea-monomer as a binary hydrogen-bond donor targeting the SA carboxylic acid and OH functionalities. The monomers were grafted from 200 nm RAFT-modified silica core particles using ethylene glycol dimethacrylate (EGDMA) as cross-linker resulting in a shell thickness of ca. 10 nm. The particles displayed strong affinity for SA in methanol/water mixtures (K = 6.6 × 10(5) M(-1) in 2% water, 5.9 × 10(3) M(-1) in 98% water, B(max) ≈ 10 μmol g(-1)), whereas binding of the competitor glucuronic acid (GA) and other monosaccharides was considerably weaker (K (GA) = 1.8 × 10(3) M(-1) in 98% water). In cell imaging experiments, the particles selectively stained different cell lines in correlation with the SA expression level. This was further verified by enzymatic cleavage of SA and by staining using a FITC labeled SA selective lectin.
Collapse
Affiliation(s)
- Sudhirkumar Shinde
- Department of Biomedical Sciences, Faculty of Health and Society, Malmö University , SE-20506 Malmö, Sweden
| | - Zahra El-Schich
- Department of Biomedical Sciences, Faculty of Health and Society, Malmö University , SE-20506 Malmö, Sweden
| | - Atena Malakpour-Permlid
- Department of Biomedical Sciences, Faculty of Health and Society, Malmö University , SE-20506 Malmö, Sweden
| | - Wei Wan
- Chemical and Optical Sensing Division, Federal Institute for Materials Research and Testing (BAM) , 12200 Berlin, Germany
| | - Nishtman Dizeyi
- Department of Translational Medicine, Lund University , SE-20502 Malmö, Sweden
| | - Reza Mohammadi
- Department of Biomedical Sciences, Faculty of Health and Society, Malmö University , SE-20506 Malmö, Sweden
| | - Knut Rurack
- Chemical and Optical Sensing Division, Federal Institute for Materials Research and Testing (BAM) , 12200 Berlin, Germany
| | - Anette Gjörloff Wingren
- Department of Biomedical Sciences, Faculty of Health and Society, Malmö University , SE-20506 Malmö, Sweden
| | - Börje Sellergren
- Department of Biomedical Sciences, Faculty of Health and Society, Malmö University , SE-20506 Malmö, Sweden
| |
Collapse
|
28
|
Li D, Chen Y, Liu Z. Boronate affinity materials for separation and molecular recognition: structure, properties and applications. Chem Soc Rev 2015; 44:8097-123. [PMID: 26377373 DOI: 10.1039/c5cs00013k] [Citation(s) in RCA: 393] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Boronate affinity materials, as unique sorbents, have emerged as important media for the selective separation and molecular recognition of cis-diol-containing compounds. With the introduction of boronic acid functionality, boronate affinity materials exhibit several significant advantages, including broad-spectrum selectivity, reversible covalent binding, pH-controlled capture/release, fast association/desorption kinetics, and good compatibility with mass spectrometry. Because cis-diol-containing biomolecules, including nucleosides, saccharides, glycans, glycoproteins and so on, are the important targets in current research frontiers such as metabolomics, glycomics and proteomics, boronate affinity materials have gained rapid development and found increasing applications in the last decade. In this review, we critically survey recent advances in boronate affinity materials. We focus on fundamental considerations as well as important progress and new boronate affinity materials reported in the last decade. We particularly discuss on the effects of the structure of boronate ligands and supporting materials on the properties of boronate affinity materials, such as binding pH, affinity, selectivity, binding capacity, tolerance for interference and so on. A variety of promising applications, including affinity separation, proteomics, metabolomics, disease diagnostics and aptamer selection, are introduced with main emphasis on how boronate affinity materials can solve the issues in the applications and what merits boronate affinity materials can provide.
Collapse
Affiliation(s)
- Daojin Li
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 22 Hankou Road, Nanjing 210093, China.
| | | | | |
Collapse
|
29
|
Kan B, Feng L, Zhao K, Wei J, Zhu D, Zhang L, Ren Q. Preparation and rebinding properties of protein-imprinted polysiloxane using mesoporous calcium silicate grafted non-woven polypropylene as matrix. J Mol Recognit 2015; 29:115-22. [DOI: 10.1002/jmr.2455] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 11/01/2014] [Accepted: 12/03/2014] [Indexed: 01/08/2023]
Affiliation(s)
- Bohong Kan
- The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine; Tianjin China
| | - Lingzhi Feng
- State Key Laboratory of Hollow Fiber Membrane Materials and Processes; Tianjin Polytechnic University; Tianjin China
| | - Kongyin Zhao
- State Key Laboratory of Hollow Fiber Membrane Materials and Processes; Tianjin Polytechnic University; Tianjin China
| | - Junfu Wei
- The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine; Tianjin China
| | - Dunwan Zhu
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College; Tianjin Key Laboratory of Biomedical Materials; Tianjin China
| | - Linhua Zhang
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College; Tianjin Key Laboratory of Biomedical Materials; Tianjin China
| | - Qian Ren
- State Key Laboratory of Hollow Fiber Membrane Materials and Processes; Tianjin Polytechnic University; Tianjin China
| |
Collapse
|
30
|
Ladenhauf EM, Pum D, Wastl DS, Toca-Herrera JL, Phan NVH, Lieberzeit PA, Sleytr UB. S-layer based biomolecular imprinting. RSC Adv 2015. [DOI: 10.1039/c5ra14971a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AFM image of an S-layer protein array used for making molecular imprints.
Collapse
Affiliation(s)
- Eva M. Ladenhauf
- University of Natural Resources and Life Sciences, Vienna
- Department of Nanobiotechnology
- Institute of Biophysics
- A-1190 Vienna
- Austria
| | - Dietmar Pum
- University of Natural Resources and Life Sciences, Vienna
- Department of Nanobiotechnology
- Institute of Biophysics
- A-1190 Vienna
- Austria
| | - Daniel S. Wastl
- University of Natural Resources and Life Sciences, Vienna
- Department of Nanobiotechnology
- Institute of Biophysics
- A-1190 Vienna
- Austria
| | - Jose Luis Toca-Herrera
- University of Natural Resources and Life Sciences, Vienna
- Department of Nanobiotechnology
- Institute of Biophysics
- A-1190 Vienna
- Austria
| | - Nam V. H. Phan
- University of Vienna
- Department of Analytical Chemistry
- A-1090 Vienna
- Austria
| | | | - Uwe B. Sleytr
- University of Natural Resources and Life Sciences, Vienna
- Department of Nanobiotechnology
- Institute of Biophysics
- A-1190 Vienna
- Austria
| |
Collapse
|
31
|
Zhu D, Chen Z, Zhao K, Kan B, Li H, Zhang X, Lin B, Zhang L. Adsorption and sustained release of haemoglobin imprinted polysiloxane using a calcium alginate film as a matrix. RSC Adv 2015. [DOI: 10.1039/c5ra03593g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Schematic representation of the fabrication procedure of the CA film based MIP.
Collapse
Affiliation(s)
- Dunwan Zhu
- Institute of Biomedical Engineering
- Chinese Academy of Medical Sciences & Peking Union Medical College
- Tianjin Key Laboratory of Biomedical Materials
- Tianjin, 300192
- China
| | - Zhuo Chen
- Institute of Biomedical Engineering
- Chinese Academy of Medical Sciences & Peking Union Medical College
- Tianjin Key Laboratory of Biomedical Materials
- Tianjin, 300192
- China
| | - Kongyin Zhao
- State Key Laboratory of Hollow Fiber Film Materials and Processes
- Tianjin Polytechnic University
- Tianjin 300387
- China
| | - Bohong Kan
- The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine
- Tianjin 300193
- China
| | - Hui Li
- State Key Laboratory of Hollow Fiber Film Materials and Processes
- Tianjin Polytechnic University
- Tianjin 300387
- China
| | - Xinxin Zhang
- State Key Laboratory of Hollow Fiber Film Materials and Processes
- Tianjin Polytechnic University
- Tianjin 300387
- China
| | - Beibei Lin
- State Key Laboratory of Hollow Fiber Film Materials and Processes
- Tianjin Polytechnic University
- Tianjin 300387
- China
| | - Linhua Zhang
- Institute of Biomedical Engineering
- Chinese Academy of Medical Sciences & Peking Union Medical College
- Tianjin Key Laboratory of Biomedical Materials
- Tianjin, 300192
- China
| |
Collapse
|
32
|
Tielmann P, Kierkels H, Zonta A, Ilie A, Reetz MT. Increasing the activity and enantioselectivity of lipases by sol-gel immobilization: further advancements of practical interest. NANOSCALE 2014; 6:6220-8. [PMID: 24676487 DOI: 10.1039/c3nr06317h] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The entrapment of lipases in hydrophobic silicate matrices formed by sol-gel mediated hydrolysis of RSi(OCH3)3/Si(OCH3)4 as originally reported in 1996 has been improved over the years by a number of modifications. In the production of second-generation sol-gel lipase immobilizates, a variety of additives during the sol-gel process leads to increased activity and enhanced stereoselectivity in esterifying kinetic resolution. Recent advances in this type of lipase immobilization are reviewed here, in addition to new results regarding the sol-gel entrapment of the lipase from Burkholderia cepacia. It constitutes an excellent heterogeneous biocatalyst in the acylating kinetic resolution of two synthetically and industrially important chiral alcohols, rac-sulcatol and rac-trans-2-methoxycyclohexanol. The observation that the catalyst can be used 10 times in recycling experiments without losing its significant activity or enantioselectivity demonstrates the practical viability of the sol-gel approach.
Collapse
Affiliation(s)
- Patrick Tielmann
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim/Ruhr, Germany.
| | | | | | | | | |
Collapse
|
33
|
Chen H, Kong J, Yuan D, Fu G. Synthesis of surface molecularly imprinted nanoparticles for recognition of lysozyme using a metal coordination monomer. Biosens Bioelectron 2014; 53:5-11. [DOI: 10.1016/j.bios.2013.09.037] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 09/14/2013] [Accepted: 09/17/2013] [Indexed: 11/25/2022]
|
34
|
Pannier A, Lehrer T, Vogel M, Soltmann U, Böttcher H, Tarre S, Green M, Raff J, Pollmann K. Long-term activity of biohybrid coatings of atrazine-degrading bacteria Pseudomonas sp. ADP. RSC Adv 2014. [DOI: 10.1039/c4ra02928c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
35
|
Wang S, Ye J, Bie Z, Liu Z. Affinity-tunable specific recognition of glycoproteins via boronate affinity-based controllable oriented surface imprinting. Chem Sci 2014. [DOI: 10.1039/c3sc52986j] [Citation(s) in RCA: 195] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
36
|
Lv Y, Tan T, Svec F. Molecular imprinting of proteins in polymers attached to the surface of nanomaterials for selective recognition of biomacromolecules. Biotechnol Adv 2013; 31:1172-86. [DOI: 10.1016/j.biotechadv.2013.02.005] [Citation(s) in RCA: 180] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 02/21/2013] [Accepted: 02/23/2013] [Indexed: 10/27/2022]
|
37
|
Chaves AR, Costa Queiroz ME. In-tube solid-phase microextraction with molecularly imprinted polymer to determine interferon alpha 2a in plasma sample by high performance liquid chromatography. J Chromatogr A 2013; 1318:43-8. [DOI: 10.1016/j.chroma.2013.10.018] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
38
|
Akoz E, Akbulut OY, Yilmaz M. Calix[n]arene Carboxylic Acid Derivatives as Regulators of Enzymatic Reactions: Enhanced Enantioselectivity in Lipase-Catalyzed Hydrolysis of (R/S)-Naproxen Methyl Ester. Appl Biochem Biotechnol 2013; 172:509-23. [DOI: 10.1007/s12010-013-0527-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 09/15/2013] [Indexed: 11/28/2022]
|
39
|
Affiliation(s)
- Romana Schirhagl
- Physics
Department, ETH-Zurich, Schafmattstrasse
16, 8046 Zurich
| |
Collapse
|
40
|
Li L, Lu Y, Bie Z, Chen HY, Liu Z. Photolithographic Boronate Affinity Molecular Imprinting: A General and Facile Approach for Glycoprotein Imprinting. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201207950] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
41
|
Li L, Lu Y, Bie Z, Chen HY, Liu Z. Photolithographic boronate affinity molecular imprinting: a general and facile approach for glycoprotein imprinting. Angew Chem Int Ed Engl 2013; 52:7451-4. [PMID: 23765872 DOI: 10.1002/anie.201207950] [Citation(s) in RCA: 196] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 04/29/2013] [Indexed: 01/25/2023]
Abstract
Better than expected: With a regular boronic acid as the functional monomer, a general and facile approach for glycoprotein imprinting exhibited several highly favorable features that are beyond normal expectation, which make the prepared MIPs feasible for the recognition of trace glycoproteins in complicated real samples.
Collapse
Affiliation(s)
- Li Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, 22 Hankou Road, Nanjing 210093, China
| | | | | | | | | |
Collapse
|
42
|
Lin Z, Lin Y, Sun X, Yang H, Zhang L, Chen G. One-pot preparation of a molecularly imprinted hybrid monolithic capillary column for selective recognition and capture of lysozyme. J Chromatogr A 2013; 1284:8-16. [DOI: 10.1016/j.chroma.2013.02.042] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 02/14/2013] [Accepted: 02/14/2013] [Indexed: 10/27/2022]
|
43
|
Pelton R, Cui Y, Zhang D, Chen Y, Thompson KL, Armes SP, Brook MA. Facile phenylboronate modification of silica by a silaneboronate. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:594-598. [PMID: 23268744 DOI: 10.1021/la3040837] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Macroscopic and colloidal silica surfaces were readily modified with alkoxysilaneboronate, IV, yielding silica surfaces with covalently bonded phenylboronic acid groups. XPS and neutron activation confirmed the presence of boron. The ability of these surfaces to specifically interact with polyols was demonstrated with polyol-coated latex and ARS, a dye that specifically couples to boronic acid groups immobilized on colloidal or macroscopic silica. This is a new, direct approach for introduction of phenylboronic acid groups onto silica surfaces.
Collapse
Affiliation(s)
- Robert Pelton
- Department of Chemical Engineering, McMaster University, Hamilton, Ontario, Canada.
| | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
Lipases can be efficiently entrapped in the pores of hydrophobic silicates by a simple and cheap sol-gel process in which a mixture of a hydrophobic alkylsilane RSi(OCH3)3 and Si(OCH3)4 is hydrolyzed under basic conditions in the presence of the enzyme. Additives such as isopropanol, polyvinyl alcohol, cyclodextrins, ionic liquids or surfactants enhance the efficiency of this type of lipase-immobilization. The main area of application of these heterogeneous biocatalysts concerns esterification or transesterification in organic solvents, ionic liquids, or supercritical carbon dioxide. Rate enhancements (relative to the traditional use of lipase powders) of several orders of magnitude have been observed, in addition to higher thermal stability. The lipase-immobilizates are particularly useful in the kinetic resolution of chiral esters, enantioselectivity often being higher than what is observed when using the commercial forms of these lipases (powder or classical immobilizates). Thus, due to the low price of sol-gel entrapment, the excellent performance of the lipase-immobilizates, and the ready recyclability, the method is industrially viable.
Collapse
Affiliation(s)
- Manfred T Reetz
- Max-Planck-Institut fur Kohlenforschung, Mulheim an der Ruhr, Germany
| |
Collapse
|
45
|
Ugajin H, Oka N, Okamoto T, Kawaguchi H. Polymer particles having molecule-imprinted skin layer. Colloid Polym Sci 2012. [DOI: 10.1007/s00396-012-2685-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
46
|
Wang C, Sheng ZH, Ouyang J, Xu JJ, Chen HY, Xia XH. Nanoconfinement Effects: Glucose Oxidase Reaction Kinetics in Nanofluidics. Chemphyschem 2012; 13:762-8. [DOI: 10.1002/cphc.201100842] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Indexed: 11/06/2022]
|
47
|
Immobilization of laccase by encapsulation in a sol-gel matrix and its characterization and use for the removal of estrogens. Biotechnol Prog 2011; 27:1570-9. [DOI: 10.1002/btpr.694] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Revised: 05/25/2011] [Indexed: 11/07/2022]
|
48
|
Jabasingh SA. Optimization and Kinetics of Cellulase Immobilization on Modified Chitin Using Response Surface Methodology. ADSORPT SCI TECHNOL 2011. [DOI: 10.1260/0263-6174.29.9.897] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Affiliation(s)
- S. Anuradha Jabasingh
- Department of Chemical Engineering, Sathyabama University, Chennai 600119, Tamilnadu, India
| |
Collapse
|
49
|
Paik P, Zhang Y. Synthesis of hollow and mesoporous polycaprolactone nanocapsules. NANOSCALE 2011; 3:2215-2219. [PMID: 21455517 DOI: 10.1039/c1nr10134j] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
New polycaprolactone (PCL) nanocapsules with a hollow core and mesoporous shell have been synthesized. The PCL nanocapsules have an average size of about 100 nm and a mesopores shell of about 20 nm. The size of the mesopores on the shell is about 4 nm. Fluorescent dye Rhodamin 6G was loaded into the nanocapsules to demonstrate the mesoporous structure of the capsules and their ability to load small molecules. The nanocapsules with such a structure can be used in many areas for various applications such as drug and gene delivery.
Collapse
Affiliation(s)
- Pradip Paik
- Division of Bioengineering, Faculty of Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576
| | | |
Collapse
|
50
|
Catalytic effect of calix[n]arene based sol–gel encapsulated or covalent immobilized lipases on enantioselective hydrolysis of (R/S)-naproxen methyl ester. J INCL PHENOM MACRO 2011. [DOI: 10.1007/s10847-011-9962-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|